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Abstract— Most modern control systems are switched, mean-
ing they have continuous as well as discrete decision variables.
Switched systems often have constraints called dwell-time con-
straints (e.g., cycling constraints in a heat pump) on the switch-
ing rate. This paper introduces an embedding-based-method to
solve optimal control problems that have both discrete and
continuous decision variables. Unlike existing methods, the
developed technique can heuristically incorporate dwell-time
constraints via an auxiliary cost, while also preserving other
state and control constrains of the problem. Simulations results
for a switched optimal control problem with and without the
auxiliary cost showcase the utility of the developed method.

I. INTRODUCTION

The field of switched optimal control has grown expo-
nentially in recent years due to the advances in computing
technology. While optimal control methods for continuous
systems have been well-explored, a significant portion of
modern controlled systems have continuous as well as binary
(or integer) decision variables. For example, in a refrigeration
system with multiple fixed speed compressors and multiple
cooling racks, the compressors and the valves represent
binary on/off decision variables, yet the dynamics of the
system are continuous. Another example is the automatic
transmission in a vehicle, which has a discrete number of
gears but continuous dynamics for the torque from the engine
and load from the wheels. Due to the presence of discrete de-
cision variables, switched optimal control problems (SOCPs)
cannot be solved using traditional gradient-based methods
developed for continuous optimal control problems (OCPs).
Direct transcription of OCPs with continuous and discrete
decision variables often results in mixed-integer nonlinear
programs that are computationally intensive to solve.

A variety of methods for solving SOCPs have been de-
veloped over the past several decades, which can be roughly
classified as follows. In the first category are methods that
fix a mode sequence [1], [2], or use predefined switching
surfaces [3], [4] and optimize the timing of switching using
smooth optimization techniques such as gradient descent.

In the second category are methods to solve SOCPs
that optimize both the mode sequence and the switching
time instances [3], [5], [6]. In [7] a theoretical framework
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is developed for a general OCP involving a sub-class of
switched systems. In [8] a method is developed based on ap-
proximations of the differential constraints that are assumed
to be given in the form of controlled differential inclusions.
However, techniques in the first and second categories do
not incorporate dwell-time constraints, and as such are not
applicable to the problem at hand.

In the third category, OCPs for switched systems with
dwell-time are analyzed using a dynamic programming
method for restricted classes of systems such as systems
having stable state matrices for all of the subsystems and for
all of the time instances [9], and discrete time autonomous
systems [10]. Mode insertion methods such as [11] can in-
corporate dwell-time constraints, however, the dwell-time is
implemented by filtering the optimal controller after-the-fact,
resulting in loss of satisfaction guarantees for other state and
control constraints of the problem. The embedding method in
[12], when applied to problems that have chattering solution,
also requires changes to the optimal mode sequence after-the-
fact, which results in the loss of satisfaction guarantees for
the boundary constraints of the problem.

The goal in this paper is to develop a method to op-
timize continuous controllers, mode sequences, and mode
switching times, while guaranteeing satisfaction of boundary
constraints and dwell-time constraints. The paper extends
the embedding approach introduced by [12], which involves
solving the SOCP as a continuous OCP, to heuristically
incorporate dwell-time constraints and to preserve boundary
constraints by avoiding after-the-fact modification of the
optimal mode sequence. The switched system is embedded
in a continuous system by implementing the switched control
signals as continuous variables, as explained in Section II.
Section III details the primary contributions of this paper,
which is adding an auxiliary cost to the cost function in
the problem formulation to force a bang-bang type solution.
Section IV presents simulation results for a simple nonlinear
example and discusses how the magnitude of the added
auxiliary cost heuristically controls the switching rate of
the binary/integer control variables in numerical solutions.
Section V analyzes the numerical method used in section
IV and explains the differences between the theoretical and
simulation results. Section VI concludes the effort with a
discussion about the ways the developed technique improves
the current embedding methods.

II. EMBEDDED OPTIMAL CONTROL FORMULATION

For ease of exposition, this paper focuses on a SOCP
with two subsystems, but the developed method can be
extended to switched systems with a higher number of



subsystems using techniques similar to [12]. The system state
is represented by x : R≥0 → Rn with dynamics1

ẋ(t) = fv(t)(t, x(t), u(t)),∀∀t ∈ [t0, tf ], (1)

and x(t0) = x0, where v : R≥0 → {0, 1} is the mode
sequence, u : R≥0 → Ω ⊂ Rm is the control input
constrained to the compact set Ω, and fv(t) ∈ C1(R×Rn ×
Rm,Rn), ∀t ∈ [t0, tf ]. The control functions t 7→ v(t) and
t 7→ u(t) must be selected such that the following constraints
(t0, x(t0)) ∈ T0×B0 and (tf , x(tf )) ∈ Tf×Bf are satisfied,
where the endpoint constraint set B := T0×B0×Tf ×Bf ⊆
R2n+2 is compact. The switched cost functional is defined
as

J(t0, x0, u (·) , v (·)) :=

∫ tf

t0

Lv(t)(t, x(t), u(t))dt

+K(t0, x0, tf , xf ) (2)

where Lv(t) ∈ C1(R × Rn × Rm,R) ∀t ∈ [t0, tf ], and K ∈
C1(R× Rn × R× Rn,R). The SOCP is formulated as

min
u(·),v(·)

J(t0, x0, u (·) , v (·)) subject to:

(i) x (·) satisfies (1),
(ii) (t0, x(t0), tf , x(tf )) ∈ B,
(iii) v(t) ∈ {0, 1}, u(t) ∈ Ω, ∀t ∈ [t0, tf ],

(iv) ∀t1, t2 ∈ [t0, tf ] with v(t−1 ) 6= v(t+1 ) and

v(t−2 ) 6= v(t+2 ), |t1 − t2| ≥ T > 0,

where (iv) encodes the dwell-time constraint. In order to
solve this problem using conventional gradient-based tech-
niques that stem from dynamic programming or Pontrya-
gin’s minimum principle, all the decision variables in the
optimization problem need to be continuous. Therefore the
SOCP is embedded in a larger domain by replacing the mode
sequence with a continuous function v̄ : R≥0 → [0, 1].
Letting ui : R≥0 → Ω,∀i ∈ {0, 1} be the control input
in vector field fi, the dynamics of the embedded system are
defined as

ẋ(t) := [1− v̄(t)]f0(t, x(t), u0(t))+ v̄(t)f1(t, x(t), u1(t)),

x(t0) = x0 ,∀∀t ∈ [t0, tf ], (3)

and the cost functional is defined as

J(t0, x0, u0 (·) , u1 (·) , v̄ (·)) :=∫ tf

t0

(
[1− v̄(t)]L0(t, x(t), u0(t))

+ v̄(t)L1(t, x(t), u1(t))
)

dt+K(t0, x0, tf , xf ) (4)

The embedded optimal control problem (EOCP) is then
formulated as

min
u0(·),u1(·),v̄(·)

J (t0, x0, u0 (·) , u1 (·) , v̄ (·)) subject to:

(5)

1R≥a represents all positive real numbers greater than or equal to a, and
the symbol ∀∀ is used as as a shorthand for the phrase ’for almost all’.

(i) x (·) satisfies (3),
(ii) (t0, x(t0), tf , x(tf )) ∈ B,
(iii) v̄(t) ∈ [0, 1], u0(t), u1(t) ∈ Ω, ∀t ∈ [t0, tf ].

Since v̄ (·) is continuous, all the decision variables of the
EOCP are continuous, and as such, the classical necessary
and sufficient conditions of optimal control theory can be
utilized to analyze the EOCP [13]. However, solutions of the
EOCP are not necessarily feasible for the SOCP, since the
EOCP allows for smooth transition between modes, while
the SOCP does not. Furthermore, the dwell-time constraint
(iv) of the SOCP cannot be easily incorporated in the ECOP.
To ensure that the EOCP produces bang-bang solutions that
are feasible for the SOCP, the embedding process is modified
in Section III.

III. MODIFIED FORMULATION

When a solution to the EOCP is a regular solution,
otherwise known as a bang-bang type solution, the range
of the embedded mode signal, v̄, is restricted to {0, 1},
so it can be identified with a switched mode sequence, v.
In fact, regular solutions of the EOCP are also solutions
of the SOCP, as shown in [12]. However, whenever the
EOCP has a singular solution, i.e., v̄(t) ∈ (0, 1) over
a time interval of nonzero measure, the embedded mode
signal cannot be identified directly with any switched mode
sequence. Using the Chattering Lemma [14], a sub-optimal
bang-bang solution can be determined within an arbitrary ε-
distance from the singular solution [12]. However, such a
solution may not satisfy the boundary constraints and the
path constraints of the SOCP.

The method developed in this paper ensures that the EOCP
produces bang-bang solutions that meet all the boundary and
path constraints, while heuristically accounting for dwell-
time constraints of the SCOP.

Motivated by the Hamiltonian minimization condition of
Pontryagin’s minimum principle, a concave auxiliary cost
function Lv̄ : [0, 1] → R, such that Lv̄ (v̄(t)) = 0 whenever
v̄ (t) ∈ {0, 1} , and Lv̄ (v̄(t)) > 0 whenever v̄ (t) ∈ (0, 1)
is added to the EOCP to enforce bang-bang solutions. For
example, an inverted parabola of the form Lv̄(v̄ (·)) =
4β(v̄ (·)− v̄ (·)2

) with β being a positive constant could be
used, which outputs 0 at v̄ (t) ∈ {0, 1},∀t ∈ [t0, tf ] and
reaches a maximum value of β when v̄ (·) ≡ 0.5. Since the
minima of the auxiliary cost function will be the modes of the
SOCP, in minimizing the cost functional to find an optimal
solution to the modified ECOP (MEOCP), the embedded
mode signal is pushed towards the modes of the SOCP and
away from intermediate states which are not feasible for
the SOCP. In the following, Pontryagin’s minimum principle
is used to prove that the solutions of the MEOCP are of
a bang-bang type, which can be directly implemented on
the switched system, allowing the SOCP to be solved as a
continuous OCP using conventional techniques.2

2Design of auxiliary cost functions for a switched system with three or
more subsystems, where the Hamiltonian is equal to zero when evaluated
on the vertices of a polygon, is part of future research.



Let V := [u0, u1, v̄]T denote the augmented control input.
The Hamiltonian for the MEOCP is defined as

H(x, λ, V, t) := 〈λ, [1− v̄]f0(t, x, u0) + v̄f1(t, x, u1)〉
+ [1− v̄]L0(t, x, u0) + v̄L1(t, x, u1) + Lv̄(v̄). (6)

According to Pontryagin’s minimum principle, when evalu-
ated along the optimal state trajectory, x∗ (·), and the optimal
costate trajectory, λ∗ (·), the optimal augmented control
V ∗ (·) = [u∗0 (·) , u∗1 (·) , v̄∗ (·)]T minimizes the Hamiltonian
among all other controllers. That is, ∀t, V ∗(t) ∈ R3

minimizes the function V 7→ H(x∗(t), λ∗(t), V, t).
As a result, it can be concluded that the func-

tion v̄ 7→ H(x∗(t), λ∗(t), [u∗0(t), u∗1(t), v̄]T , t) is mini-
mized by the optimal mode signal v̄∗(t), ∀t. Since Lv̄

is a concave function and since the function v̄ 7→
〈λ∗(t), [1 − v̄]f0(t, x∗(t), u∗0(t)) + v̄f1(t, x∗(t), u∗1(t))〉 +
[1 − v̄]L0(t, x∗(t), u∗0(t) + v̄L1(t, x∗(t), u∗1(t)) is affine ∀t,
the function v̄ 7→ H(x∗(t), λ∗(t), [u∗0(t), u∗1(t), v̄]T , t) is
a sum of a concave function and an affine function, and
as a result, is concave for all t. Since concave functions
over a compact set have their minima on the boundary
of the compact set (see [15, Theorem 3]), the function
v̄ 7→ H(x∗(t), λ∗(t), [u∗0(t), u∗1(t), v̄]T , t) is minimized at the
boundary of the range of the embedded mode signal.

In the two-switched system, the Hamiltonian is minimized
when the embedded mode signal is either 0 or 1, which can
be identified with the modes of the SOCP. Thus, the solution
found for the MEOCP can be implemented in the original
switched system. In summary the auxiliary cost ensures that
solutions of the MEOCP are of a bang-bang type, and as a
result, can be implemented on the original switched system.
However, bang-bang optimal solutions of the MEOCP, while
feasible, are not necessarily optimal for SOCP. Determination
of optimality of bang-bang solutions of the MEOCP with
respect to the SOCP is an open question that requires further
research.

IV. SIMULATION EXAMPLE

An example is used to showcase the developed method,
featuring a valve which empties into a tank which empties
into a second tank and then out. The flow rate out of each
tank is modeled as the square root of the water level, which
is the state of the system, and the objective is to maintain a
given water level in the second tank, with the control input
being the switched flow rate of the input valve. The valve
can either be open at a high flow rate of 2 or at a low flow
rate of 1. The dynamics of this switched system are defined
as

[
ẋ1(t)
ẋ2(t)

]
=



[
1−

√
x1(t)√

x1(t)−
√
x2(t)

]
, v(t) = 0,

[
2−

√
x1(t)√

x1(t)−
√
x2(t)

]
, v(t) = 1,

(7)

∀∀t ∈ [t0, tf ], where x1 (·) is the water level in the first
tank, x2 (·) is the water level in the second tank, and v (t) ∈

{0, 1},∀t ∈ [t0, tf ], denotes the mode of operation. The cost
functional to be minimized is defined as

J(t0, x0, v (·)) =

∫ tf

t0

α(x2(t)− 3)2dt. (8)

with t0 = 0, tf = 20, α = 2, and x(0) =
[
2 2
]T

. The goal
is to achieve a water level of 3 in the second tank, which
yields the SOCP

min
v(·)

J(t0, x0, v (·)) subject to:

(i) x (·) satisfies (12),
(ii) (t0, x(t0), tf , x(tf )) ∈

{0} ×
[
2
2

]
× {20} ×

[
[0, 4]

3

]
,

(iii) v(t) ∈ {0, 1}, ∀t ∈ [t0, tf ].

For the water level in the second tank to be maintained at 3,
we need ẋ2(t) = 0, which means

√
x1(t) =

√
x2(t) =⇒

x1(t) = x2(t) = 3. This means the water level in the first
tank must also be 3, and as a result, ẋ1(t) = 0. Therefore,
the flow rate of the valve must be

√
x1(t) =

√
3 which is

between the high and the low valve flow rates. A flow rate
of
√

3 is impossible to achieve without the solution infinitely
fast switching between the high and the low valve state,
which is characteristic of a singular solution to the SOCP
[12].

Following the developed embedding method, the con-
straints on the control are modified by the introducing the
embedded mode signal v̄ : [t0, tf ] → [0, 1]. The dynamics
then can be formulated using (3) as[

ẋ1(t)
ẋ2(t)

]
=

[
1 + v̄(t)−

√
x1(t)√

x1(t)−
√
x2(t)

]
, x(t0) =

[
2
2

]
,

∀∀t ∈ [t0, tf ]. (9)

Using the cost functional in (2), the EOCP is given by (5).
The results in Fig 1 indicate that the solution of the EOCP

is singuler, and as such, cannot be directly implemented in
the original switched system. The ECOP is solved using
pseudospectral optimization via GPOPS [16], with the dif-
ferentiation method set to finite-difference and the maximum
mesh iterations set to 5. As can be seen in Fig. 1, the control
signal settles to a value of ≈

√
3, in agreement with the

analytic solution. As shown in Fig. 2 both of the tank levels
settle to the desired level, 3.

Motivated by the discussion in section III, an auxiliary
cost function of the form 4β(v̄ (·) − v̄2 (·)) is added to
the EOCP to formulate the MEOCP. The auxiliary cost is
zero at both extremes of the embedded mode signal and
reaches its maximum, β, in between. The auxiliary cost
function was derived using the embedding process in section
III by setting L0(t, x(t), v̄(t)) = 2βv̄(t)+α(x2(t)−3)2 and
L1(t, x(t), v̄(t)) = 2β(1− v̄(t))+α(x2(t)−3)2, which after
simplifying, yields the cost functional for the MEOCP as
J(t0, x0, v̄ (·) =

∫ 20

0
(α(x2(t)− 3)2 + 4β(v̄(t)− v̄2(t))dt.

The numerical results indicate that the magnitude of the
added switching cost can be modified in accordance with



Fig. 1. The optimal control signal for the unmodified two-tank system
EOCP.

Fig. 2. The states of the two-tank system under optimal control signal for
the unmodified EOCP, with a final cost of 4.7312.

Fig. 3. The optimal control signal for the two-tank system EOCP with
β = 0.01.

Fig. 4. The states of the two-tank system under the optimal control signal
for the EOCP, with β = 0.01, with a final cost of 4.7355.

Fig. 5. The optimal control signal for the two-tank system EOCP with
β = 0.2.

Fig. 6. The states of the two-tank system under the optimal control signal
for the EOCP, with β = 0.2, with a final cost of 4.8032.



the desired dwell-time constraint, with a higher magnitude
resulting in a longer dwell-time, and vice versa. Figs. 3 and
4 show the solution to the modified EOCP when β = 0.01,
which results in a small auxiliary cost relative to the total
cost, a linear switching rate, and a lower dwell-time.
In each solution run with a different value of β, the control
is of a bang-bang type, which can be directly implemented
in the original switched system. Changing β changes the
frequency of the switching, thus a dwell-time constraint
can be implemented heuristically by tuning β. A greater
value of β results in a lower switching rate, but the water
level in the second tank is not kept as close to the desired
level, and the optimal cost is higher. Figs. 3 and 5 indicate
that increasing the constant β in the auxiliary cost function
increases the time between two consecutive switches of the
solution generated by the EOCP solver.

Since the auxiliary cost function evaluates to zero when
the embedded mode sequence takes the values 0 or 1, the
contribution of this function to the total cost should be zero
when the solution of the EOCP is bang-bang. Furthermore,
the costate dynamics are also independent of the auxiliary
cost function. It can be shown that there should not be any
correlation between β and the dwell-time of the bang-bang
solution and that Pontryagin’s minimum principle fails to
explain the correlation observed in the numerical results. In
fact, a heuristic examination of the two-tank MEOCP reveals
that the optimal solution is a sliding mode solution that keeps
the water level in the second tank at exactly the required
height using infinite frequency switching.

V. ANALYSIS OF THE NUMERICAL RESULTS

While the auxiliary cost, evaluated along any trajectory
where v̄(t) ∈ {0, 1}, ∀ ∈ [t0, tf ], is identically zero,
solutions of the MEOCP, computed using numerical methods
that rely on smoothness of the state and control trajectories,
generally include intervals of time where v̄(t) /∈ {0, 1}. As
a result, it is hypothesized that while an optimal bang bang
solution of the MEOCP is independent of the auxiliary cost,
the numerical approximation of the optimal solution does
depend on the auxiliary cost, and as a result, the parameter
β. This section presents numerical experiments to support
the above hypothesis

According to [16], GPOPS uses Legendre–Gauss–Radau
points to determine where to do orthogonal collocation.
Collocation is an interpolation technique on continuous
functions. As a result, when calculating the cost, the solver
interpolates between the high and the low embedded mode
signal values in the collocation points on either side of
a mode switching time instance. As a result, for a few
collocation points, the embedded mode signal is no longer at
0 or 1, and at those collocation points, the trajectory incurs
a cost dependent on β.

The hypothesis can be tested using the following problem
with a known solution, as shown in Fig. 7 and 8. Consider
a double integrator[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)
u(t)

]
, x(t0) =

[
1
0

]
, x(tf ) =

[
0
0

]
, (10)

Fig. 7. The optimal control signal computed using GPOPS for the double
integrator system, with β = 0.

Fig. 8. The optimal states trajectories computed using GPOPS for the
double integrator system, with β = 0.

Fig. 9. The relationship between β and the optimal cost calculated by the
numerical solver for the double integrator system.



∀∀t ∈ [0, 2], where the control signal is constrained as
u (t) ∈ [−1, 1],∀t ∈ [0, 2]. The cost function for this system
is defined as

J(t0, x0, u (·)) =

∫ tf

t0

x2
1(t) + β(1− u2(t))dt. (11)

This problem can be solved analytically for β = 0, with the
optimal control being

u(t) =

{
−1, ∀t ∈ [0, 1),

1, ∀t ∈ [1, 2],
(12)

and the minimal cost being 23/30.
Since the contribution of the auxiliary cost, β(1−v2(t)), is

zero along the optimal trajectory, the optimal cost, for β 6= 0,
should be independent of β. However, as indicated by Fig.
9, the value of β changes the optimal cost, when computed
numerically.

Psedospectral numerical optimal control methods can be
used in multi-phase modes, where a mesh division occurs at
a switching point, and each section of the trajectory is cal-
culated separately, avoiding interpolation over the switching
point. As a result, the cost, computed using a multi-phasic
implementation, would no longer depend on β. However,
such a mesh division is possible only when the time of
switching is known a priori, which is not the case in the
SOCP studied in this paper.

VI. CONCLUSION

This paper introduces a way to solve SOCPs with dwell-
time constraints via embedding, by imposing a cost on the
embedded mode signal to encourage solutions of a bang-bang
type, which can be directly identified with modes switched
system. A dwell-time constraint can be implemented heuris-
tically using this method by changing the magnitude of
the constant introduced in the cost on the embedded mode
signals. Unlike existing methods, in spite of the heuristics
involved in tuning the dwell-time, the solutions produced
are guaranteed to meet other state and control constraints of
the original problem. The embedding facilitates the use of
fast, gradient-based numerical methods to solve the SOCP.

To capture the relationship between β and the optimal
trajectory theoretically, a constrained version of the MEOCP
can be formulated, where the embedded mode signal is con-
strained to be continuous with respect to time. Formulation
and analysis of the constrained version is a topic for future
research.
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