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Abstract—Adaptive dynamic programming is applied to
control-affine nonlinear systems with uncertain drift dynamics
to obtain a near-optimal solution to a finite-horizon optimal con-
trol problem with hard terminal constraints. A reinforcement
learning-based actor-critic framework is used to approximately
solve the Hamilton-Jacobi-Bellman equation, wherein critic
and actor neural networks (NN) are used for approximate
learning of the optimal value function and control policy, while
enforcing the optimality condition resulting from the hard
terminal constraint. Concurrent learning-based update laws
relax the restrictive persistence of excitation requirement. A
Lyapunov-based stability analysis guarantees uniformly ulti-
mately bounded convergence of the enacted control policy to
the optimal control policy.

I. INTRODUCTION

Many practical problems are best described as finite-
horizon optimal control problems with hard terminal con-
straints. For example, missile interception problems seek
to hit a target within a finite amount of time and with a
specified terminal angle; an aircraft seeks to arrive at a
specified destination and also minimize fuel consumption
along the way; a spacecraft must obtain an orbital position
with a specific velocity at a given final time. An abundance
of applications can be formulated into this type of optimal
control problem. However, an analytical solution is not
generally feasible because it requires the solution to a time-
varying Hamilton-Jacobi-Bellman (HJB) equation, which is
a nonlinear partial differential equation. This motivates the
development of an approximate optimal solution.

Approximate optimal control solutions are well-
established for unconstrained infinite-horizon problems.
One type of suboptimal control method utilizes the State-
Dependent Riccati Equation (SDRE) technique, which
minimizes the cost functional by restructuring the nonlinear
system into a linear form with state-dependent coefficients.
Then the corresponding Algebraic Riccati equation is solved
at each time step. However, SDRE techniques have a high
computing cost, and therefore require advanced numerical
methods for implementation [1]. One alternative to the
computationally expensive SDRE method is the θ −D
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technique [2]. Rather than solve the Algebraic Riccati
Equation at each step, the θ −D method uses a power
series expansion of the costate to solve for a closed form
approximate optimal control solution.

Alternatively, adaptive dynamic programming (ADP) can
be used with an actor-critic architecture to learn the optimal
control solution. In ADP methods, reinforcement learning is
used with an actor-critic framework to obtain an approximate
solution to the HJB equation and learn the optimal control
policy. The actor-critic framework consists of actor and
critic neural networks (NNs), which approximate the optimal
control policy and the optimal value function. The actor
NN interacts with the environment through the control, and
the critic NN evaluates the response to update the NNs.
A strong foundation has been established for terminally
unconstrained, infinite-horizon problems solved by either
offline or online ADP techniques [3]–[7]. ADP methods
have also been applied to the unconstrained, finite-horizon
problem [8]–[11]. However, less attention has been given to
the finite-horizon problem with hard terminal constraints.

Current approaches to the finite-horizon problem with
hard terminal constraints fall into two main categories. The
first category involves numerically solving for the optimal
control and then using the open loop optimal control solution
with another technique, such as neighboring optimal control
[12]. Alternatively, an approximate optimal feedback control
law can be developed. For example, a closed-form series
solution has been developed in [13] to exactly satisfy the hard
terminal constraint; however, convergence is not guaranteed
for a highly nonlinear system. Constrained optimal control
problems have been approached with offline ADP methods
in [14]–[16]. However, the offline ADP solution uses exact
model knowledge to train the weights. Consequently, the
solution does not have the flexibility to react online to uncer-
tainty. An online ADP solution can provide this flexibility.

The objective of this paper is to develop an online ADP
solution for terminally constrained, finite-horizon optimal
control problems with linear-in-the-parameters (LP) uncer-
tainty in the drift dynamics. Online ADP methods typically
employ a persistence of excitation (PE) condition, which
requires sufficient exploration in the observed data to guaran-
tee approximation convergence [4]. However, in this work,
concurrent learning (CL) is used to eliminate the need for
the PE condition. In CL, the approximate Bellman error is
evaluated at a pre-sampled set of data points. As a result, the
approximate Bellman error can be evaluated at any point in
state space rather than the limited set of observed data points



[17]. A Lyapunov-based stability analysis is presented to
establish uniformly ultimately bounded (UUB) convergence
of the enacted control policy to the optimal control policy.

II. PROBLEM FORMULATION

Consider the nonlinear control affine system

ẋ = f (x) + g (x) û, (1)

where x ∈ Rn represents the states, f : Rn → Rn
represents the drift dynamics, g : Rn → Rn×m is the control
effectiveness matrix, and û ∈ Rm is the control input. The
class of systems to be considered satisfies the following:

Assumption 1. The drift dynamics f (x) are unknown with
LP uncertainty, are locally Lipschitz, and f (0) = 0. The
control effectiveness matrix g (x) is known, bounded, and
locally Lipschitz.

The objective is to solve a constrained optimal control
problem by minimizing the cost functional J ∈ R, defined
as

J ,
ˆ tf

t0

(
xTQx+ ûTRû

)
dt, (2)

subject to the dynamics from (1) and the hard terminal
constraint ψ (x (tf )) = ψf ∈ Rp, where Q ∈ Rn×n
and R ∈ Rm×m are constant, positive definite symmetric
weighting matrices. The hard constraint on the terminal state
is defined as ψf , 0p, where 0p ∈ Rp denotes a p-
dimensional vector of zeros. The optimal value function,
V : Rn × R → R, is defined using the minimum cost
functional within the set of admissible control policies U
[5], given by

V (x, t) ,
ˆ tf

t

(
xTQx+ u (x, τ)

T
Ru (x, τ)

)
dτ

+ νT (ψ (x (tf ))− ψf ) , (3)

subject to the dynamic constraints, where ν ∈ Rp is the
optimal constant vector of Lagrange multipliers, and u : Rn×
R → Rm is the optimal control policy. If the hard terminal
constraint is satisfied, then (ψ (x (tf ))− ψf ) = 0p. As a
result, the optimal value function will have no sensitivity to
ν. Consequently, the optimal value function must satisfy the
necessary condition [13]

∂V (x, t)

∂ν
= 0p, ∀x ∈ Rn, t ∈ R. (4)

The HJB equation is given by [18]

H (x, t) +
∂V (x, t)

∂t
= 0, (5)

where the Hamiltonian, H : Rn × R→ R, is defined as

H (x, t) , xTQx+ u (x, t)
T
Ru (x, t)

+
∂V (x, t)

∂x
(f (x) + g (x)u (x, t)) . (6)

Using the stationary condition [18], the optimal control
policy is defined as

u (x, t) = −1

2
R−1g (x)

T

(
∂V (x, t)

∂x

)T
, (7)

where it is assumed that a minimizing policy exists and
that the value function is continuously differentiable. Solving
for the optimal control policy is often analytically infea-
sible, since it requires the solution to a nonlinear partial
differential equation. Consequently, an approximate optimal
control solution is desired. To facilitate the development of
an approximate control solution, an identifier is designed
in the following section for identification of the uncertain
parameters in the dynamics.

III. SYSTEM IDENTIFICATION

The drift dynamics f (x) can be linearly parametrized as
f (x) = Y (x) θ, where Y : Rn → Rn×s is the known
regression matrix, and θ ∈ Rs is the vector of constant
unknown parameters. The drift dynamics are estimated with
f̂
(
x, θ̂
)

: Rn × Rs → Rn, defined as f̂
(
x, θ̂
)
, Y (x) θ̂,

where θ̂ ∈ Rs is a vector of the estimated uncertain
parameters. The estimated dynamics are defined as

˙̂x = f̂
(
x, θ̂
)

+ g (x) û+ kxx̃, (8)

where x̃ , x−x̂ is the state estimation error, and kx ∈ Rn×n
is a constant, diagonal, positive definite gain matrix. Using
(1) and (8), the state estimation error dynamics are given by

˙̃x = Y (x) θ̃ − kxx̃, (9)

where the parameter estimation error is defined as θ̃ , θ− θ̂.

A. Parameter Update Law

Traditional parameter update laws rely on the PE condition
to guarantee parameter identification. Rather than assume
that the system states are exciting over all time, the PE
condition is relaxed by using a CL approach. Contrary to
the PE condition, CL only requires that the system states be
exciting for a finite amount of time to provide a rich history
of data points. The estimation of the uncertain parameters is
updated with a CL-based gradient descent law given by

˙̂
θ , ΓθY (x)

T
x̃+ Γθkθ

M∑
i=1

Y Ti

(
ẋi − giûi − Yiθ̂

)
, (10)

where Γθ ∈ Rs×s is a constant positive definite gain matrix,
kθ ∈ R is a constant positive gain, and (·)i represents
evaluation at a recorded data point. The update law depends
on the derivative ẋi, which is unknown. However, this can
be numerically obtained with a smoothing filter based on
past and current data [19]. To incorporate new information,
the history stack of recorded points is updated using a



singular value maximizing algorithm [20]. By substituting
ẋi = Yiθ + giûi, (10) can be expressed as

˙̂
θ = ΓθY (x)

T
x̃+ Γθkθ

M∑
i=1

(
Y Ti Yi

)
θ̃. (11)

Assumption 2. The CL-based matrix:
∑M
i=1 Y

T
i Yi ∈ Rs×s

is full rank ∀t ∈ [t0, tf ], with a minimum eigenvalue denoted
by y1 > 0.

To initially satisfy assumption 2, the data stack is initial-
ized with pre-obtained experimental data. The assumption
is weaker than the usual PE assumption because it only
requires the states to be exciting for a finite amount of time.
Furthermore, satisfaction of Assumption 2 can be verified
online unlike the PE condition [17].

B. Convergence Analysis

Consider the following positive definite continuously dif-
ferentiable Lyapunov function candidate

V0 (z) ,
1

2
x̃T x̃+

1

2
θ̃TΓ−1

θ θ̃, (12)

which is bounded by

v0 ‖z‖2 ≤ V0 (z) ≤ v0 ‖z‖2 , (13)

where v0 , 1
2 min

(
1, γθ

)
, v0 , 1

2 max (1, γθ), z ,[
x̃T θ̃T

]T ∈ Rn+s, and γθ, γθ ∈ R are the minimum
and maximum eigenvalues of Γ−1

θ .
The time derivative of V0 is given by

V̇0 = −x̃T kxx̃− θ̃T kθ
M∑
i=1

(
Y Ti Yi

)
θ̃. (14)

Using (13), (14) can be upperbounded as

V̇0 ≤ −min
(
kx, kθy1

) V0

v0
, (15)

where kx is the minimum eigenvalue of kx. From (15),∥∥∥θ̃ (t)
∥∥∥ → 0 and ‖x̃ (t)‖ → 0 exponentially fast. Further-

more, it can be shown that
∥∥ ˙̃x (t)

∥∥ → 0 exponentially fast,
resulting in exponential regulation of the parameter and state
derivative estimation errors [17]. The parameter estimates
are used within the development of an approximate optimal
control solution in the following section. Note that some
function arguments are suppressed hereafter for brevity.

IV. APPROXIMATE SOLUTION

An approximate optimal control policy is developed with
an actor-critic NN framework based on reinforcement learn-
ing [4]. Typically in ADP, the value function is represented
with one NN. However, due to the hard constraint, the value
function is augmented with a second NN, which represents
the effect of the hard constraint. A temporary assumption
is made that the state x lies on a compact set χ ⊂ Rn.
This assumption is common in NN-based control and will

be relaxed in the stability analysis, as long as the initial
condition x (0) is bounded.

Motivated by the development in [14], the optimal value
function can be approximated as

V = WTσ (x, t) + ΓTφ (x, t, ν)− νTψf + ε (x, t, ν) , (16)

where W ∈ RN and Γ ∈ RL are the unknown ideal NN
weights, σ : Rn×R→ RN and φ : Rn×R×Rp → RL are
the continuous basis functions, and ε : Rn×R×Rp → R is
the unknown reconstruction error. The ideal NN weights are
bounded above by positive constants, i.e. ‖W‖ ≤ W̄ ∈ R
and ‖Γ‖ ≤ Γ̄ ∈ R. The selected basis functions σ and φ
as well as the partial derivatives with respect to state and
time are bounded. The reconstruction error and its partial
derivatives with respect to state and time are upperbounded,
i.e. Λ |ε| ≤ ε̄ ∈ R≥0, Λ

∥∥ ∂ε
∂x

∥∥ ≤ ε̄x ∈ R≥0, and Λ
∣∣∂ε
∂t

∣∣ ≤
ε̄t ∈ R≥0, where the operator Λ (·) , sup

x∈χ, t∈[t0,tf ]

(·). The

upperbounds W̄ , Γ̄, ε̄, ε̄x, ε̄t are assumed to be known.
Enforcing the optimality condition from (4), the optimal

Lagrange multiplier is given by

(
∂φ (x, t, ν)

∂ν

)T
Γ− ψf +

(
∂ε (x, t, ν)

∂ν

)T
= 0p. (17)

Since the value function in (16) contains the unknown ideal
weights W and Γ, and the unknown optimal Lagrange
multipliers ν, the value function is approximated as

V̂ , ŴT
c σ (x, t) + Γ̂Tc φ (x, t, ν̂)− ν̂Tψf , (18)

where Ŵc ∈ RN and Γ̂c ∈ RL are approximations of W and
Γ, and where ν̂ ∈ Rp is an estimate of ν. The update policies
for these estimates are given in the following section.

Using the optimal control definition from (7) and the value
function in (16), the optimal control can be represented as

u (x, t, ν) =− 1

2
R−1g (x)

T
(
σx (x, t)

T
W + φx (x, t, ν)

T
Γ

+εx (x, t, ν)
T
)
, (19)

where σx , ∂σ
∂x ∈ RN×n, φx , ∂φ

∂x ∈ RL×n, and εx , ∂ε
∂x ∈

R1×n. The approximate optimal control solution is given by

û = −1

2
R−1g (x)

T
(
σx (x, t)

T
Ŵa + φx (x, t, ν̂)

T
Γ̂a

)
,

(20)
where Ŵa ∈ RN and Γ̂a ∈ RL are approximations of the
ideal NN weights W and Γ.

To develop an estimate for the optimal Lagrange multipli-
ers, the optimality condition in (4) is applied to the approx-
imated value function, resulting in the following condition:(

∂φ (x, t, ν̂)

∂ν̂

)T
Γ̂c − ψf = 0p. (21)



The approximate Hamiltonian Ĥ ∈ R, rewritten with the NN
representation, is given by

Ĥ = xTQx+ ûTRû+
(
ŴT
c σx + Γ̂Tc φx

)
(f + gû) . (22)

The Bellman error (BE) is defined as the difference between
the approximated HJB and the optimal HJB. Using (5) and
the approximated drift dynamics f̂

(
x, θ̂
)

, an estimate of the

BE, δ̂ ∈ R, is expressed as

δ̂ ,ŴT
c

(
σt + σx

(
f̂ + gû

))
+ Γ̂Tc

(
φt + φx

(
f̂ + gû

))
+ xTQx+ ûTRû, (23)

where σt , ∂σ
∂t ∈ RN , and φt , ∂φ

∂t ∈ RL. The measurable
estimate of the BE in (23) can be computed to reveal
the proximity of the approximations to the actual values.
Consequently, the estimated BE can be used to learn the
ideal NN weights by incorporating it into the weight update
laws, which are developed in the following section.

V. NN WEIGHT UPDATE LAWS

In this section, weight update laws are defined so that the
approximated NN weights converge to the ideal NN weights.
In the NN representation, the integrated cost is approximated
by ŴT

c σ. Therefore, the weights Ŵc are trained based on the
BE estimate corresponding to the optimal control problem
without the hard constraint, denoted by δ̂1 ∈ R. The hard
terminal constraint is approximated by Γ̂Tc φ. Consequently,
the weights Γ̂c are trained based on δ̂HC ,

(
δ̂ − δ̂1

)
∈ R.

By taking this difference, the contribution to the BE from
the hard terminal constraint is isolated.

A. Integrated Cost Weight Estimates

Since Ŵc and Ŵa represent estimates associated with the
integrated cost, the weights are trained based on the BE
estimate that corresponds to the terminally unconstrained
problem, δ̂1, defined as

δ̂1 , ŴT
c

(
σt + σx

(
f̂ + gû1

))
+ xTQx+ ûT1 Rû1, (24)

where the approximate optimal control û1 is given by

û1

(
x, t, Ŵa

)
= −1

2
R−1g (x)

T
σx (x, t) Ŵa, (25)

where ε1 : Rn×R→ R is the reconstruction error and where
ε1x (x, t) , ∂ε1(x,t)

∂x ∈ R1×n, which is upperbounded by a
constant, i.e. Λ (‖ε1x‖) ≤ ε̄1x ∈ R≥0. The constant ε̄1x is
assumed to be known.

The critic weights Ŵc are updated based on the BE
estimate δ̂1. To provide sufficient data richness for learning,
the BE estimate is also evaluated over a set of k user-
selected sample points, given by dj = {xj | xj ∈ χ} ∪
{tj | tj ∈ [t0, tf ]} for j = 1, · · ·, k. The critic NN update

law, ˙̂
Wc ∈ RN , is defined by the CL-based gradient descent

of δ̂1, given by

˙̂
Wc , proj

−ηc1 ω1

Ω1
δ̂1 − ηc2

k∑
j=1

(
ω1j

Ω1j
δ̂1j

) , (26)

where (·)j represents evaluation at dj , the adaptation gains
ηc1, ηc2 ∈ R are positive constants, the regressor vectors
ω1, ω1j ∈ RN are defined as ω1 , σt + σx

(
f̂ + gû1

)
and ω1j , σtj + σxj

(
f̂j + gj û1j

)
, the normalization terms

Ω1, Ω1j ∈ R are defined as Ω1 ,
√

1 + ωT1 ω1 and
Ω1j ,

√
1 + ωT1jω1j , and proj {·} is a smooth orthogonal

projection operator used to bound the weight estimates [21].
The actor NN update law, ˙̂

Wa ∈ RN , is given by

˙̂
Wa , proj

(
−ηa1

(
Ŵa − Ŵc

))
, (27)

where ηa1 ∈ R is a positive constant gain.

B. Terminal Constraint Weight Estimates

Since Γ̂c and Γ̂a represent the hard terminal constraint,
they are updated based on δ̂HC , which represents the contri-
butions to the estimated BE that come from the hard terminal
constraint.

The critic NN update law for Γ̂c is defined by the CL-
based gradient descent of δ̂HC , given by

˙̂
Γc , −ηc3

ω2

Ω2
δ̂HC − ηc4

k∑
j=1

(
ω2j

Ω2j
δ̂HCj

)
, (28)

where ηc3, ηc4 ∈ R are positive constant adaptation gains,
ω2, ω2j ∈ RL are the regressor vectors defined as ω2 ,

φt + φx

(
f̂ + gû

)
and ω2j , φtj + φxj

(
f̂j + gj ûj

)
, and

Ω2, Ω2j ∈ R are normalization terms given by Ω2 =√
1 + ωT2 ω2 and Ω2j =

√
1 + ωT2jω2j .

The actor NN update law for Γ̂a is given by

˙̂
Γa , proj

(
−ηa2

(
Γ̂a − Γ̂c

))
, (29)

where ηa2 ∈ R is a positive constant gain.

VI. STABILITY ANALYSIS

To facilitate the stability analysis, let G , gR−1gT ∈
Rn×n, Gσ , σxGσ

T
x ∈ RN×N , and let the mini-

mum eigenvalue of Q be denoted as q. The drift dy-
namics and regression matrix can be upperbounded on
the compact set χ as ‖f‖ ≤ Lf ‖x‖, ‖Y ‖ ≤ Y , and
‖Yi‖ ≤ Y i where Lf , Y , Y i ∈ R are positive con-
stants. The upperbounds on ‖σx‖ and ‖φx‖ are defined
as σ̄x and φ̄x. For brevity, let Y 12, Y 34 ∈ R be de-

fined as Y 12 ,

(
ηc1Y + ηc2 max

i∈[1,M ]

(
Y i
))

and Y 34 ,(
ηc3Y + ηc4k max

i∈[1,M ]

(
Y i
))

. Let the operators Λt and Λx



be defined as Λt (·) , sup
t∈[t0,tf ]

(·) and Λx (·) , sup
x∈χ

(·).

Lastly, let the operator Υa,b (·) be defined as Υa,b (·) ,
a (·) + b

∑k
j=1 (·)j for any a, b ∈ R.

Throughout the stability analysis, unmeasurable forms
of the BE estimates are used, which contain the weight
estimation errors W̃c, W̃a, Γ̃c, Γ̃a defined as W̃c ,W −Ŵc,
W̃a ,W − Ŵa, Γ̃c , Γ− Γ̂c, and Γ̃a , Γ− Γ̂a. Expressing
the BE estimates in an unmeasurable form allows the weight
estimation errors to enter the stability analysis through the
weight update laws.

Assumption 3. The CL-based matrices: c1 =∑k
j=1

ω1jω
T
1j

Ω1j
∈ RN×N and c2 =

∑k
j=1

ω2jω
T
2j

Ω2j
∈ RL×L

are full rank ∀t ∈ [t0, tf ], with minimum
eigenvalues of c1 , inf

t∈[t0,tf ]
(λmin (c1)) > 0 and

c2 , inf
t∈[t0,tf ]

(λmin (c2)) > 0.

Although Assumption 3 cannot be guaranteed a priori, it
can be verified online and, in general, can be satisfied by
selecting many sample points to create a rich database [17].

Theorem 1. Provided that Assumptions 1-3 hold and the
gains kθ, ηc1, ηc2, ηc3, ηc4 are designed such that the
following sufficient conditions are met

q >
ηc1
2
ε̄1xLf +

ηc3
2
Lf |(ε̄x − ε̄1x)| ,

kθ >
W̄ σ̄x
2y1

Y 12 +
Γ̄φ̄x
2y1

Y 34,

ηc2 >
1

2c1

(
ηa1 + ηc1ε̄1xLf + W̄ σ̄xY 12

)
,

ηc4 >
1

2c2

(
ηa2 + ηc3Lf |(ε̄x − ε̄1x)|+ Γ̄φ̄xY 34

)
, (30)

then the state x, the weight estimation errors W̃a, W̃c, Γ̃a,
Γ̃c, the state estimation error x̃, and the parameter estimation
error θ̃ are UUB, resulting in UUB convergence of the
approximate control policy to the optimal control policy.

Proof: Consider the following continuously differen-
tiable, positive definite Lyapunov function candidate

VL (Z, t) ,V (x, t) +
1

2
W̃T
a W̃a +

1

2
Γ̃Ta Γ̃a

+
1

2
W̃T
c W̃c +

1

2
Γ̃Tc Γ̃c + V0 (z) , (31)

where Z ,
[
xT W̃T

a Γ̃Ta W̃T
c Γ̃Tc x̃T θ̃T

]T
.

From Lemma 4.3 of [22], there exist class K functions, α1

and α2, such that

α1 (‖Z‖) ≤ VL (Z, t) ≤ α2 (‖Z‖) , (32)

for all t ∈ [0,∞) and for all Z ∈ R2n+2N+2L+s. The time
derivative of the candidate Lyapunov function is given by

V̇L =
∂V

∂t
+

(
∂V

∂x

)T
(f + gû)− W̃T

a

(
˙̂
Wa

)
− Γ̃Ta

(
˙̂
Γa

)
− W̃T

c

(
˙̂
Wc

)
− Γ̃Tc

(
˙̂
Γc

)
+ V̇0. (33)

Substituting ∂V
∂t from (5) and then using (6), (14), (16), (19),

(20), (26), (27), (28), (29), the unmeasurable forms of the BE
estimates, Young’s Inequality, and completion of the squares,
V̇L can be upperbounded as

V̇L ≤− ψx ‖x‖2 − kx ‖x̃‖2 −
ψa1

2

∥∥∥W̃a

∥∥∥2

− ψa2

2

∥∥∥Γ̃a

∥∥∥2

− ψθ
∥∥∥θ̃∥∥∥2

− ψc1
2

∥∥∥W̃c

∥∥∥2

− ψc2
2

∥∥∥Γ̃c

∥∥∥2

+
k2
a1

2ψa1
+

k2
a2

2ψa2
+

k2
c1

2ψc1
+

k2
c2

2ψc2
+ k, (34)

where

ψx , q− ηc1
2
ε̄1xLf−

ηc3
2
Lf |(ε̄x − ε̄1x)| , ψa1 ,

ηa1

2
,

ψa2 ,
ηa2

2
, ψθ , kθy1 −

W̄ σ̄x
2

Y 12 −
Γ̄φ̄x

2
Y 34,

ψc1 , ηc2c1 −
ηa1

2
− ηc1

2
ε̄1xLf −

W̄ σ̄x
2

Y 12,

ψc2 , ηc4c2 −
ηa2

2
− ηc3

2
Lf |(ε̄x − ε̄1x)| − Γ̄φ̄x

2
Y 34,

ka1 , Λ

(∥∥∥∥1

2

(
GσW + σxGε

T
x

)∥∥∥∥)+
1

2
σ̄xφ̄xΓ̄Λx (‖G‖) ,

ka2 ,
1

2
Λx (‖G‖) φ̄x

(
φ̄xΓ̄ + σ̄xW̄

)
+

1

2
φ̄xΛ

(∥∥GεTx ∥∥) ,
kc1 ,Λ

∥∥∥∥1

2
Υηc1,ηc2

(
1

2
ε1xGε

T
1x +WTσxGε

T
1x

)

+Υηc1,ηc2

(
1

4
W̃T
a GσW̃a − ε1t

)
− ηc2

k∑
j=1

ε1xjfj

∥∥∥∥∥∥ ,
kc2 ,Λ

∥∥∥∥1

2
Υηc3,ηc4

(
WTσxG

(
εTx − εT1x

))
+ Υηc3,ηc4

(
1

4
εxGε

T
x −

1

4
ε1xGε

T
1x + ε1t − εt

)

−ηc4
k∑
j=1

(εxj − ε1xj) fj

∥∥∥∥∥∥+ Λt

(∥∥∥Γ̃a

∥∥∥∥∥∥W̃a

∥∥∥) σ̄xφ̄x
+

1

2
(ηc3 + ηc4k) Λx (‖G‖)

(
1

2
Λt

(∥∥∥Γ̃a

∥∥∥2
)
φ̄2
x



+ Λt

(∥∥∥W̃c

∥∥∥) σ̄xφ̄xΓ̄ + φ̄xΓ̄ε̄x

+Λt

(∥∥∥Γ̃a

∥∥∥ ∥∥∥W̃c

∥∥∥) σ̄xφ̄x) ,
k , Λ

(
1

4
εxGε

T
x

)
. (35)

A further upperbound for (34) is

V̇L ≤ −
ψz
2
‖Z‖2 , ∀ ‖Z‖ ≥ µ > 0, (36)

where ψz , min
(
ψx, kx, ψθ,

ψa1

2 , ψa2

2 , ψc1

2 , ψc2

2

)
, µ ,√

2kz
ψz

, and kz , ka1

2ψa1
+

k2a2

2ψa2
+

k2c1
2ψc1

+
k2c2

2ψc2
+ k. The

upperbound can be made smaller by increasing the number
of neurons N and L or by adjusting the adaptation gains and
CL sample points. Based on (36), Z is UUB by invoking a
finite time version of Theorem 4.18 in [22].

Remark: If ‖Z (t0)‖ ≥ µ, then V̇L (Z (t0)) < 0. There
exists an ε0 ∈ R+ such that VL (Z (t0 + ε0)) < VL (Z (t0)).
Then, α1 (‖Z (t0 + ε0)‖) ≤ VL (Z (t0 + ε0)) <
α2 (‖Z (t0)‖). Rearranging terms, ‖Z (t0 + ε0)‖ <
α−1

1 (α2 (‖Z(t0)‖)). Hence, Z (t0 + ε0) ∈ L∞. It
can be shown by induction that Z (t) ∈ L∞ and
‖Z(t)‖ < α−1

1 (α2 (‖Z(t0)‖)) ∀t ∈ R+ when
‖Z (t0)‖ ≥ µ. If instead, ‖Z (t0)‖ < µ, then
‖Z (t)‖ < α−1

1

(
α2

(√
µ
α5

))
. Therefore, ‖Z(t)‖ ∈ L∞,

∀t ∈ R+ when ‖Z (t0)‖ < µ. Since Z (t) ∈ L∞
∀t ∈ R+, then x lies on the compact set χ, where
χ ,

{
x ∈ Rn| ‖x‖ ≤ α−1

1 (α2 (max (‖Z (t0)‖ , µ)))
}

. This
validates the compactness assumption and also implies that
if the gain conditions initially satisfy (30), then the gain
conditions are sufficient for all time.

VII. CONCLUSION

An approximately optimal controller is developed for
finite-horizon optimal control problems with hard terminal
constraints and LP uncertainty in the drift dynamics. The
solution is determined online by learning the optimal value
function and optimal control policy with an actor-critic
framework guided by reinforcement learning, while also
enforcing the optimality condition that results from the hard
terminal constraint. Actor and critic update laws were based
on the minimization of the BE estimate. Additionally, CL
is used in place of the more restrictive PE requirement. A
Lyapunov-based stability analysis proves UUB convergence
of the enacted control policy to the optimal policy.

One advantage of using an online ADP solution is the
ability to handle uncertain drift dynamics. Offline ADP
results from [14] and [16] show exact satisfaction of the hard
constraint; however, the NN weights are trained based on
exact model knowledge. Therefore, if there is uncertainty in
the drift dynamics, then the hard constraint will not be satis-
fied. Furthermore, the stability of the controller even becomes
questionable. Although the online ADP result developed in
this paper only proves UUB convergence, the advantage of

using online ADP is the ability to compensate for uncer-
tain parameters in the drift dynamics while simultaneously
learning the optimal solution. In practice, the NN weights for
the online ADP controller could be initialized according to
offline training based on the best knowledge of the dynamics
by leveraging results such as [14] and [16].
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