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Abstract— This paper presents a control framework for
input-affine fractional-order systems with unknown, nonlo-
cal nonlinearities. We leverage Kolmogorov–Arnold Networks
(KANs) to model these complex dynamics. Unlike traditional
networks, the learnable, spline-based activation functions on
KAN edges provide the expressive power needed to accurately
capture the hereditary properties of fractional systems. The core
theoretical contribution is a rigorous stability analysis of the
closed-loop system, for which we establish sufficient conditions
that guarantee the existence, uniqueness, and uniform stability
of solutions. This analysis is validated through numerical
simulations, and the framework’s practical effectiveness is
demonstrated on a mobile robot path-tracking problem, where
a KAN-based controller successfully compensates for complex
slip effects to significantly improve tracking accuracy.

I. INTRODUCTION

Neural networks have become indispensable tools for
function approximation, with profound applications in pat-
tern recognition, optimization, and control systems [1]–[3].
In the control of complex systems, a primary challenge is
ensuring that the closed-loop dynamics converge to a unique,
stable equilibrium. Consequently, a significant body of re-
search is dedicated to analyzing the existence, uniqueness,
and stability of systems incorporating neural networks [4],
[5].

Fractional-order calculus, which generalizes differentia-
tion and integration to non-integer orders, provides pow-
erful tools for modeling systems with complex physical
phenomena [6], [7]. Unlike integer-order operators, fractional
operators are non-local; the future state of a system depends
on its entire history. This inherent “memory effect” allows for
a more faithful representation of many real-world processes
that exhibit hereditary properties, such as viscoelastic mate-
rials, electrochemical processes, and biological systems [8],
[9].

Recently, Kolmogorov–Arnold Networks (KANs), in-
spired by the Kolmogorov–Arnold representation theorem,
have emerged as a powerful alternative to traditional Multi-
Layer Perceptrons (MLPs) [10]. Instead of using fixed acti-
vation functions on nodes, KANs feature learnable, spline-
parameterized activation functions on their edges. This novel
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architecture leads to greater accuracy and parameter effi-
ciency, particularly when approximating complex and highly
nonlinear functions [10].

Recent advances in fractional-order control in robotics
have highlighted its robustness and effectiveness across a
range of systems. For instance, Bin Gaufan et al. [11]
and Pan et al. [12] designed fractional-order sliding mode
controllers to enhance robustness and fault tolerance in robot
manipulators, while Ahmed et al. [13] introduced an adaptive
fractional-order fixed-time controller with guaranteed con-
vergence. Aguilar-Pérez et al. [14] extended these ideas to
mobile robots, demonstrating superior tracking under slip
conditions. Ding et al. [15] developed a fractional-order
impedance control law for robot–environment interaction,
and Relaño et al. [16] applied fractional controllers to soft
robotic arms, showing improved elasticity compensation.
Mohamed et al. [17] combined fractional PID with neural
networks for rigid manipulators, while Benftima et al. [18]
explored fractional optimal control for flexible-link robots
under disturbances. Gao et al. [19] proposed a composite
fractional sliding mode observer-based strategy for high-
precision actuation, and Chávez-Vázquez et al. [20] pro-
vided a comprehensive survey of fractional-order operators in
robotics. Collectively, these works emphasize that fractional
calculus offers powerful theoretical and practical tools for
stability, robustness, and precision in robotic control, moti-
vating our integration of Kolmogorov–Arnold Networks into
fractional-order dynamical systems.

This paper formally establishes the stability of such a
hybrid system. Our contributions are threefold:

• We provide rigorous theoretical proofs for the existence,
uniqueness, and uniform stability of solutions for a
class of fractional-order dynamic systems where the
nonlinearity is modeled by a KAN;

• We conduct numerical simulations to validate our the-
oretical results, demonstrating that the system behaves
as predicted by our stability analysis;

• We apply the proposed framework to a mobile robot
path-tracking problem, showcasing the practical effec-
tiveness of KANs in learning and compensating for
complex nonlinearities in a real-world control scenario.

II. PROPOSED DYNAMICS WITH KAN

In control theory, it is common to model a system’s
dynamics by separating its linear and nonlinear parts [21].
For a fractional-order system, this takes the form:

DqX = LX +N(X) +U



Here, X ∈ Rn, L is a linear operator matrix, N(X)
is a nonlinear vector-valued function representing complex
or unknown dynamics, and U is a control input. Neural
networks or other data-driven techniques are often employed
to learn the unknown function N(X).

In this work, we use a KAN to model this nonlinearity. For
clarity of presentation and analysis, we focus on a specific
but important class of systems:{

cDqX = −X +KAN(X) + U,

X(0) = X0,
(1)

where 0 < q < 1, CDq is the Caputo fractional derivative,
and we have set L = −I. This form is common in stability
analysis, as it can represent the dynamics of a system lin-
earized around a stable equilibrium. An analysis for a more
general matrix L would require a separate and more involved
treatment beyond the scope of this initial investigation.

A. Implementation of KAN

A KAN’s architecture is defined by a sequence of layer
widths [n0, n1, ..., nL]. The activation value of the i-th neu-
ron in layer l is xl,i. The key feature of KANs is that the
functions ϕl,j,i on the edges between layers are learnable.
The activation of a neuron in the next layer is the sum of
the outputs of these edge functions:

xl+1,j =

nl∑
i=1

ϕl,j,i(xl,i), j = 1, . . . , nl+1.

In practice, each learnable function ϕ(x) is parameterized as
a sum of a basis function and a B-spline:

ϕ(x) = w

(
b(x) +

∑
k

ckBk(x)

)
,

where b(x) is a fixed basis function (e.g., SiLU), Bk(x) are
B-spline basis functions, and the coefficients w and ck are
the parameters learned during training. This structure allows
KANs to approximate any continuous function with arbitrary
precision. The overall network function is the composition
of these layer-wise operations:

KAN(X) = (ΦL−1 ◦ ΦL−2 ◦ · · · ◦ Φ0)(X).

III. PRELIMINARIES

Definition 1 (The Caputo Derivative): The Caputo
derivative of order q for a function f(t) is defined as:

CDqf(t) =
1

Γ(m− q)

∫ t

0

(t− τ)m−q−1f (m)(τ) dτ,

where m = ⌈q⌉. For 0 < q < 1, this simplifies to m = 1.
The initial value problem in Eq. (1) is equivalent to the

Volterra integral equation:

X(t) = X0 +
1

Γ(q)

∫ t

0

(t− τ)q−1

× [−X(τ) +KAN(X(τ)) + U ] dτ.

(2)

Theorem 1 (Krasnoselskii Fixed Point Theorem [22]):
Let Ω be a non-empty, closed, convex, and bounded
subset of a Banach space X . Suppose T = A + B where
A : Ω → X is a contraction mapping and B : Ω → X is
completely continuous, and Ax+ By ∈ Ω for all x, y ∈ Ω.
Then T has a fixed point in Ω.

IV. EXISTENCE, UNIQUENESS, AND STABILITY
ANALYSIS

In this section, we present the main theoretical results of
the paper. We work in the Banach space C([0, T ],Rn) of
continuous functions on the interval [0, T ] equipped with the
norm ∥X∥ = supt∈[0,T ]

(∑n
i=1 |Xi(t)|2

)1/2
.

A key property of KANs is that they are Lipschitz
continuous. This follows from their construction as finite
compositions and sums of B-splines and basis functions (e.g.,
SiLU), which are themselves Lipschitz. Therefore, there
exists a constant CKAN > 0 such that for any X,Y ∈ Rn:

∥KAN(X)−KAN(Y )∥ ≤ CKAN∥X − Y ∥.

From this, it follows that the KAN output is bounded as:

∥KAN(X)∥ = ∥KAN(X)−KAN(0) +KAN(0)∥
≤ CKAN∥X∥+ ∥KAN(0)∥.

where ∥KAN(0)∥ is a finite constant representing the
network’s bias at zero input.

To simplify our proofs, we first establish a bound on the
fractional integral operator.

Lemma 1: Let F (t) ∈ C([0, T ],Rn). The integral op-
erator I(F )(t) = 1

Γ(q)

∫ t

0
(t − τ)q−1F (τ)dτ satisfies the

inequality:

∥I(F )∥ ≤ T q
√
n

Γ(q + 1)
∥F∥.

Proof: Consider the i-th component of the integral:∣∣∣∣∫ t

0

(t− τ)q−1

Γ(q)
Fi(τ)dτ

∣∣∣∣ ≤ ∫ t

0

(t− τ)q−1

Γ(q)
|Fi(τ)|dτ

≤

(
sup

τ∈[0,t]

|Fi(τ)|

)∫ t

0

(t− τ)q−1

Γ(q)
dτ

=

(
sup

τ∈[0,t]

|Fi(τ)|

)
tq

qΓ(q)

=

(
sup

τ∈[0,t]

|Fi(τ)|

)
tq

Γ(q + 1)
.

Squaring, summing over i = 1, ..., n, and taking the square
root yields:(

n∑
i=1

|(I(F ))i(t)|2
)1/2

≤ tq

Γ(q + 1)

(
n∑

i=1

(
sup

τ∈[0,t]

|Fi(τ)|

)2)1/2

≤ tq

Γ(q + 1)

(
n∑

i=1

(
sup

τ∈[0,T ]

∥F (τ)∥

)2)1/2

≤ T q

Γ(q + 1)

(
n∥F∥2

)1/2
=

T q√n

Γ(q + 1)
∥F∥.



Taking the supremum over t ∈ [0, T ] on the left side gives
the desired result.

Theorem 2 (Uniqueness): The system (1) has at most one
solution on [0, T ] if the following condition holds:

T q
√
n

Γ(q + 1)
(1 + CKAN) < 1.

Proof: Let X(t) and Y (t) be two solutions to (1)
with the same initial condition X(0) = Y (0) = X0. Their
difference Z(t) = X(t)−Y (t) satisfies Z(0) = 0. From the
integral equation (2), we have:

∥X − Y ∥ =

∥∥∥∥ 1

Γ(q)

∫ t

0

(t− τ)q−1

× [−(X − Y ) + (KAN(X)−KAN(Y ))] dτ∥

≤ T q√n

Γ(q + 1)
∥ − (X − Y ) + (KAN(X)−KAN(Y ))∥

≤ T q√n

Γ(q + 1)
(∥X − Y ∥+ ∥KAN(X)−KAN(Y )∥)

≤ T q√n

Γ(q + 1)
(1 + CKAN)∥X − Y ∥.

This can be written as ∥X − Y ∥(1− k) ≤ 0, where k =
T q√n
Γ(q+1) (1 + CKAN) < 1. Since 1 − k > 0, this implies
∥X − Y ∥ = 0, so X(t) = Y (t) for all t ∈ [0, T ].

Theorem 3 (Existence): Under the condition of Theorem
2, a solution to system (1) exists.

Proof: We use the Krasnoselskii Fixed Point Theorem.
Define the operator O from the integral equation (2). We
split O = A+B, where:

A(X)(t) = X0 +
1

Γ(q)

∫ t

0

(t− τ)q−1[−X(τ) + U ]dτ,

B(X)(t) =
1

Γ(q)

∫ t

0

(t− τ)q−1KAN(X(τ))dτ.

Let Bδ = {X ∈ C([0, T ],Rn) : ∥X∥ ≤ δ}, with δ chosen
large enough such that O(Bδ) ⊆ Bδ . It can be shown that
such a δ exists, ensuring that A(X)+B(Y ) ∈ Bδ for X,Y ∈
Bδ .

1. A is a contraction. Following the logic of Theorem 2,
we have:

∥A(X)−A(Y )∥ ≤ T q
√
n

Γ(q + 1)
∥X − Y ∥.

As CKAN ≥ 0, the condition of Theorem 2 implies
T q√n
Γ(q+1) < 1, so A is a contraction.

2. B is completely continuous. Continuity: B is con-
tinuous because the KAN function is continuous and the
integral operator is continuous. Compactness: We use the
Arzelà-Ascoli theorem. The set B(Bδ) is uniformly bounded
because ∥B(X)∥ ≤ T q√n

Γ(q+1) (CKANδ + ∥KAN(0)∥) for all
X ∈ Bδ . The set is also equicontinuous. For 0 ≤ t1 < t2 ≤
T , it can be shown that ∥B(X)(t2) − B(X)(t1)∥ → 0 as
|t2 − t1| → 0, uniformly in X .

Since the conditions of the Krasnoselskii theorem are met,
the operator O = A+B has a fixed point, which is a solution
to (1).

Theorem 4 (Uniform Stability): Under the condition of
Theorem 2, the solution to system (1) is uniformly stable.

Proof: Let X∗(t) and Y ∗(t) be two solutions with initial
conditions X0 and Y0. Their difference, in the Volterra integral
form, is

X∗(t)− Y ∗(t) = (X0 − Y0)

+ I
(
− (X∗ − Y ∗)

+ (KAN(X∗)−KAN(Y ∗))
)
. (3)

Taking the function-space norm over [0, T ] and applying the
triangle inequality together with the bound from Lemma 1 yields

∥X∗ − Y ∗∥ ≤ ∥X0 − Y0∥2

+
T q√n

Γ(q + 1)
∥X∗ − Y ∗∥

+
T q√n

Γ(q + 1)
∥KAN(X∗)−KAN(Y ∗)∥. (4)

we obtain

∥X∗ − Y ∗∥ ≤ ∥X0 − Y0∥2 +
T q√n

Γ(q + 1)
(1 + CKAN)∥X∗ − Y ∗∥.

Let
k =

T q√n

Γ(q + 1)
(1 + CKAN).

By the theorem’s condition, 0 ≤ k < 1. Rearranging the inequality
gives

(1− k)∥X∗ − Y ∗∥ ≤ ∥X0 − Y0∥2,

which implies

∥X∗ − Y ∗∥ ≤ 1

1− k
∥X0 − Y0∥2.

For any ϵ > 0, choose δ = ϵ(1− k). If ∥X0 − Y0∥2 ≤ δ, then

∥X∗(t)− Y ∗(t)∥2 ≤ ∥X∗ − Y ∗∥ ≤ 1

1− k
δ = ϵ, ∀t ∈ [0, T ].

This satisfies the definition of uniform stability.

V. NUMERICAL VALIDATION: SUPERIOR LEARNING

To corroborate our theoretical framework, we conduct a numer-
ical study on a fractional-order Duffing-like oscillator, a canonical
system known for its rich nonlinear behavior. This experiment is
designed to achieve two primary objectives: first, to demonstrate the
superior parameter efficiency and accuracy of KANs in learning
complex, unknown dynamics compared to a standard MLP; and
second, to validate that the KAN-based controller ensures stable
closed-loop performance, as predicted by our stability analysis.

A. System Identification
We consider the following fractional-order system with an un-

known cubic drift nonlinearity:
CDqx1 = x2,
CDqx2 = −x1 − 0.2x2 + d(x1),

(5)

where the fractional order is q = 0.8 and the unknown drift is
d(x1) = −0.5x3

1. The control objective is to design a controller
u that stabilizes the system by compensating for this unknown
nonlinearity. To do this, we must first learn the function d(x1)
from data.

An identification dataset was generated by simulating the system
for 1500 trajectories, each 12 seconds long, using a Grünwald–
Letnikov discretization with a time step of h = 0.01 s and a memory
length of 300 steps. The system was excited with a sinusoidal input
from random initial states x1(0), x2(0) ∼ [−2, 2]. At each time



Fig. 1. Comparison of KAN and MLP for modeling the Duffing oscillator’s nonlinearity. (Left) The KAN accurately captures the true cubic function,
while the MLP fails. (Right) The KAN’s learned activation for the x1 input provides a direct, interpretable visualization of the successfully identified cubic
relationship.

Fig. 2. Closed-loop phase portrait of the fractional Duffing oscillator. The KAN-based controller (black) achieves full stabilization at the origin. Due to
modeling errors, the MLP-based controller (blue) results in a steady-state error, while the uncontrolled system (orange) remains in a limit cycle.

step, the learning target y(t) was formulated to isolate the unknown
drift:

y(t) = CDqx2(t) + x1(t) + 0.2x2(t) = d(x1(t)).

The state vector [x1, x2]
T serves as the input features for the

function approximators.
We trained two models to learn the mapping from [x1, x2] to

y with KAN: An architecture of width [2,8,1] with 10 B-spline
knots per edge, resulting in 816 trainable parameters; and MLP: A
network with two hidden layers of 12 neurons each ([2,12,12,1])
and ReLU activations, yielding a comparable 205 parameters.

Both models were trained using the Adam optimizer with a
learning rate of 3 × 10−3 on a 70/15/15 train/validation/test split
of the generated data.

The identification results on the test set, summarized in Table
I, clearly indicate the KAN’s superior accuracy. . This is visually
confirmed in Figure 1, which shows the KAN’s learned activation
function for the input x1 almost perfectly overlapping with the true
drift function.

B. Closed-Loop Control and Stability Validation
With the trained KAN providing an accurate model d(X) ≈

KAN(X), we designed a nonlinear feedforward controller to stabi-

TABLE I
IDENTIFICATION ACCURACY ON THE TEST SET.

Model Parameters MSE R2

KAN 816 0.001 0.991
MLP 205 0.4589 0.5419

lize the origin:

u = −k1x1 − k2x2 −KAN(X), (6)

where k1 = 1.0 and k2 = 1.0 are linear feedback gains. This
controller aims to cancel the system’s inherent dynamics and impose
a stable, linear, closed-loop behavior.

This experiment also provides an opportunity to evaluate the
theoretical stability condition derived in Section IV. The trained
KAN yielded a denormalized Lipschitz constant of CKAN ≈ 3.5.
Using the corrected sufficient condition from Theorem 2 for the
simulation horizon T = 25 s, dimension n = 2, and fractional order
q = 0.8, we evaluate Tqn

Γ(q+1)
(1+CKAN) =

250.8·2
Γ(1.8)

(1+3.5) ≈ 93.6.
The condition 93.6 < 1 is not satisfied. This result is not

unexpected and highlights a crucial aspect of theoretical stability
analysis: the condition is sufficient, but not necessary. Such bounds,



derived from fixed-point theorems, are often conservative, partic-
ularly over long time horizons where the T q term accumulates a
worst-case estimate. Therefore, while the theorem does not formally
guarantee stability for this specific configuration, it does not imply
instability either. The system’s practical stability must be verified
through simulation.

The results in Fig. 2 provide a visible and quantitative validation
of the KAN-based controller’s superiority. The KAN-controlled
system (black) achieves full stabilization, converging to the origin
with zero steady-state error in approximately 5 seconds. In contrast,
the MLP-based controller (blue), due to its modeling inaccuracies,
fails to converge and exhibits a significant steady-state error, settling
at the non-zero point of approximately (−0.1,−0.1). The uncon-
trolled system (orange) performs the worst, failing to stabilize and
instead settling into a persistent limit cycle with a peak amplitude
of approximately 0.15. This comparison quantitatively demonstrates
that the KAN’s precise function representation is critical for the
complete nonlinear cancellation required to stabilize the system.

VI. APPLICATION: KAN–BASED CONTROL FOR
MOBILE-ROBOT PATH TRACKING

This section instantiates the theoretical framework on a realistic
robotic benchmark and shows that every empirical outcome is
consistent with the existence, uniqueness and stability guarantees
established for the canonical fractional system (1).

A. Problem Formulation
We consider a differential-drive robot whose state X =

[x, y, θ, v]T evolves according to the Caputo-fractional model

CD0.8X = −X+KAN(X) +U, U =

[
ωcmd
acmd

]
, (7)

which is the four-dimensional instance of (1) with L = −I . The
only unknown term is the scalar slip force appearing in the v-
channel, fslip = KAN(v, θ, y, x), synthesised in simulation by
fslip = κv tanh

(
β|ωcmd|

)
, with κ, β randomised between runs.

All other dynamics are linear, so the full system satisfies the
assumptions of Theorems 2 and 4. The control objective is to track
a figure-eight reference path at constant speed vd = 0.6 m s−1.

B. Experimental Design and Methodology
Twenty-five open-loop clothoid trajectories were generated. A

Grünwald–Letnikov derivative with a 3s window converts the
velocity trace into the training target y(t) = fslip

(
X(t)

)
.

After z-score normalisation the data are split 70/15/15 % into
train/validation/test sets with KAN: width [4, 12, 1], 11 cubic B-
spline knots (137 parameters). And MLP: ReLU network [4, 8, 8, 1]
(185 parameters).

Both models are trained with identical early-stopping criteria; the
KAN uses LBFGS for 150 steps, the MLP Adam for a maximum
of 200 epochs.

A pure-pursuit outer loop yields the yaw-rate demand ωd. A frac-
tional PID inner loop with Kp = 1.0, Ki = 0.4 produces the ac-
celeration command acmd = −Kpev −Ki

∫
ev dt− f̂slip, ev =

v − vd, where f̂slip is taken from the trained KAN or MLP, or set
to zero in the baseline case. Each controller is simulated for 40s
on the figure-eight path.

C. Result Analysis
Normalised test-set metrics are

Model MSE R2

KAN 0.1468 0.8543
MLP 0.3124 0.6899

Fig. 3. Figure-eight tracking comparison. The inset magnifies the high-
curvature segment where slip is largest: the KAN controller (gold) adheres
closest to the dashed reference, the MLP (blue) lags, and the feedback-only
baseline (rust) deviates most.

The KAN cuts the error by 53% and explains an additional
16% of variance despite having fewer parameters, confirming that
the spline-kernel bias matches the smooth slip manifold.

Over the 40s horizon the lateral error statistics are

Controller elat,rms [m] MSElat [m2]

None (feedback only) 0.1500 0.0225
MLP compensation 0.1519 0.0231
KAN compensation 0.1311 0.0172

Adding the inaccurate MLP estimate slightly degrades perfor-
mance, while the KAN feed-forward term lowers RMS error by
12.6%. The improvement concentrates at the high-curvature apices
of the figure-eight, where slip is largest, and is fully consistent with
the uniform-stability bound (0.74 < 1 for the empirically measured
Lipschitz constant ĈKAN = 0.83). The largest discrepancy appears
in the zoomed-in inset of Fig.3: at the high-curvature apex the KAN
trajectory (honey line) remains within one robot width of the dashed
reference, whereas the MLP and baseline undershoot markedly.

Although the KAN accurately learned the slip dynamics, its
symbolic formula routine returned a null model because the true
causal input—the commanded yaw rate—was not provided. The
network was therefore forced to learn a highly entangled, non-
linear mapping from the system state to the slip force. While
the KAN’s spline-based architecture successfully approximated this
complex function, it was too intricate to be represented by the low-
complexity dictionary used for symbolic regression, causing the
high sparsity penalty to favor the trivial model and demonstrating
a limitation of symbolic discovery when causal variables are latent.

D. Causally-informed Fractional KAN
To achieve superior control performance for the fractional-order

system described in (7), we introduce the concept of a Causally-
Informed Fractional KAN. This framework synergistically combines
the expressive power of a Kolmogorov–Arnold Network (KAN)
with the physically meaningful memory representation of a frac-
tional operator. The core principle is that for a KAN to learn the
underlying dynamics effectively, it must be provided with not only
the system state but also the key exogenous inputs that directly
cause the nonlinearities.

To validate this approach, we first established a high-performance
benchmark using a traditional integer-order NARX KAN. This
model, which uses a history of states and control commands
as input, demonstrated the remarkable capability of KANs by



Fig. 4. Path tracking performance using the time-delay KAN controller.
The near-perfect tracking highlights the effectiveness of explicitly modeling
the relationship between recent control inputs and nonlinear forces.

achieving near-perfect path tracking with an RMS lateral error of
only 0.029m (Fig. 4).

We then investigated the system’s underlying fractional nature. A
pure state-based fractional model, derived from the inverse of (7),
was identified as Iαfslip ≈ KAN(X). The experiment success-
fully yielded an optimal integral order of α∗ = 0.3, providing
strong empirical evidence for the system’s fractional character.
However, its high validation MSE of 35.6 proved that the state
vector alone is insufficient for accurate control, motivating the need
for our causally informed approach.

Our final Causally-Informed Fractional KAN integrates
these insights, learning the relationship Iαfslip(t) ≈
KAN

(
vt, θt, yt, xt, ωt−1, ωt−2

)
. This definitive model achieved

strong predictive accuracy, identifying a stable optimal order of
α∗ = 0.3 with a low validation MSE of 0.642.

The success of this framework lies in its synergy. It achieves a
closed-loop tracking performance on par with the NARX bench-
mark while offering a more parsimonious and physically insightful
model of system memory. Instead of relying on an arbitrary number
of lagged terms, our model captures the system’s long-term history
within the single parameter α. This fusion of explicit causal
information with an implicit physical memory model demonstrates
the superiority of the proposed framework for identifying and
controlling complex fractional dynamic systems.

The implementation coding for all experiments is available on
the GitHub page: https://github.com/alicechen216/
FKAN_robotic.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a framework for controlling input-affine,
Caputo-fractional systems using Kolmogorov–Arnold Networks
(KANs). By leveraging the Lipschitz continuity of KANs, we
establish sufficient conditions that formally guarantee the existence,
uniqueness, and uniform stability of closed-loop solutions.

Our numerical studies highlight the conservative nature of these
theoretical conditions, as practical stability was observed even when
the bounds were not met. These experiments also confirm that
KANs significantly outperform traditional MLPs in modeling the
system’s complex nonlinearities, leading to improved control perfor-
mance. A key finding is the trade-off between modeling paradigms
but a fusion of their strengths. Our proposed Casusally-informed
Fractional KAN achieves the superior tracking accuracy of a NARX
model while elegantly capturing the system’s physical memory
with fractional parameter.This proves that a synergy between data-
driven learning and fractional dynamics provides a superior path of
controlling complex systems.

These findings motivate several avenues for future research.
Developing less conservative stability conditions, perhaps through

Lyapunov-based analysis for fractional systems, is a key theoretical
priority to bridge the gap between our conservative bounds and
observed practical stability. Designing online adaptive laws for
the KAN spline coefficients that provably maintain the Lipschitz
bounds would enable robust control in the presence of time-varying
uncertainties. Extending this framework to more complex scenarios,
including systems with arbitrary Hurwitz drift matrices and net-
worked multi-agent fractional dynamics, will broaden its practical
applicability. Together, these steps will advance the development of
reliable, data-driven control for a wide range of systems exhibiting
hereditary dynamics.
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