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Abstract—An upper motor neuron lesion (UMNL) can be
caused by various neurological disorders or trauma and leads
to disabilities. Neuromuscular electrical stimulation (NMES) is
a technique that is widely used for rehabilitation and restoration
of motor function for people suffering from UMNL. Typically,
stability analysis for closed-loop NMES ignores the modulated
implementation of NMES. However, electrical stimulation must
be applied to muscle as a modulated series of pulses. In this
paper, a muscle activation model with an amplitude modulated
control input is developed to capture the discontinuous nature
of muscle activation, and an identification-based closed-loop
NMES controller is designed and analyzed for the uncertain
amplitude modulated muscle activation model. Semi-global uni-
formly ultimately bounded (SUUB) tracking is guaranteed. The
stability of the closed-loop system is analyzed with Lyapunov-
based methods, and a pulse frequency related gain condition
is obtained. Experiments are performed with five able-bodied
subjects to demonstrate the interplay between the control gains
and the pulse frequency, and results are provided which indicate
that control gains should be increased to maintain stability if
the stimulation pulse frequency is decreased to mitigate muscle
fatigue. For the first time, this paper brings together an analysis
of the controller and modulation scheme.

I. INTRODUCTION

Upper motor neuron lesions (UMNL) cause disability and
paralysis in millions of people. UMNL is usually caused by
neural disorders such as stroke or cerebrovascular accident,
spinal cord injury, multiple sclerosis, cerebral palsy, or trau-
matic brain injury. The overall reported prevalence is 37,000
people/million/year for an UMNL [1]. Since the lower motor
neuron system and muscles are intact in those with UMNL,
muscle contractions can be evoked by directly applying elec-
trical stimulus to the muscles; this technique is widely used
for rehabilitation and restoration of motor function and is
referred to as neuromuscular electrical stimulation (NMES)
or functional electrical stimulation (FES) when applied to
produce a functional outcome. The development of an NMES
method to provide a desired outcome is challenging due to
the nonlinear response from muscle to electrical input, load
changes during functional movement, unexpected muscle
spasticity, time lag between muscle activation and muscle
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force output, and muscle fatigue. Closed-loop NMES control
is promising with regard to its ability to achieve precise
limb movement and disturbance rejection, both of which are
essential for functional rehabilitation.

Several PID (proportional–integral–derivative) based lin-
ear NMES controllers have been developed [2]–[5], but
these methods typically rely on a linear muscle model and
lack a stability analysis. Neural network (NN) based NMES
controllers [6]–[19] have been developed which utilize the
universal approximation property of NNs to approximate the
nonlinear (unstructured) dynamics. Robust NMES methods
have been developed in [20] and [21] that achieve guar-
anteed asymptotic limb tracking. In [22] and [23], inverse
and direct optimal NMES controllers were developed with
guaranteed stability, and the authors addressed the problem
of muscle fatigue from overstimulation by balancing the
performance and the control effort. In [5] and [24], muscle
contraction dynamics were modeled with known parameters
or with best estimates of the parameters, and nonlinear
controllers were developed which yielded asymptotically
stable closed-loop error systems. In [25], the control method
used model-free, adaptive pattern generator/pattern shapers
(PG/PS), but stability analysis of the closed-loop error system
was not analyzed. In [17], an adaptive, neuro-sliding-mode
controller was developed based on uncertain human knee-
joint dynamics, and it was demonstrated in able-bodied and
paralyzed individuals that the developed controller was able
to successfully track a desired knee-joint trajectory. In [26],
an adaptive robust control system for FES-induced ankle
dorsiflexion and plantarflexion was developed based on fuzzy
logic and sliding mode control methods that yielded accurate
tracking performance of an ankle trajectory in able-bodied
and paraplegic subjects without requiring a priori model
knowledge. In [27], the control system developed in [26]
was extended to the task of walker-assisted FES-walking with
FES controllers for the hip, knee, and ankle joints. Despite
the success of these previous approaches, controllers were
developed without accounting for how the control signal
is modulated during application to the muscle. Previous
approaches assumed that the stimulation applied across the
muscle groups is continuous. However, in practice, stimula-
tion is typically applied in the form of discrete pulses, and
the pulse amplitude, duration, and frequency is modulated
to control the muscle force output during FES. Since mod-
ulation strategies are not considered in any previous system
models, the developed controllers and subsequent stability
analyses, if performed, yield no insight into the interplay



between the controller and the modulation parameters.

NMES is delivered in the form of electrical pulses which
create a localized electric field to elicit action potentials in
the nearby neurons. Muscle force output is determined by
the pulse amplitude, duration, frequency, and the muscle
fatigue state. Pulse duration and amplitude determine the
activation region, i.e., how many motor units are recruited,
and are equivalent with regard to the total applied electric
charge. This effect is often referred to as spatial summation.
Each electric pulse causes a twitch in the muscle fibers. If
a second pulse is applied before the first twitch finishes, the
two twitches sum and a higher force output from the muscle
is achieved. This effect is often referred to as temporal sum-
mation. When the pulse frequency is higher than a threshold
called the fusion frequency, continuous muscle force output
is observed, and larger forces can be achieved with higher
frequencies. However, higher stimulation frequencies cause
the muscle to fatigue faster. In practice, muscle force is con-
trolled by modulating the pulse amplitude or pulse duration,
and the frequency is set to a constant value that is as low as
possible to maintain fused force output while avoiding fatigu-
ing the muscle prematurely [28]. Recent results demonstrated
that frequency-modulation can yield better performance for
both peak forces and force-time integrals than pulse-duration-
modulation, while producing similar levels of muscle fatigue
[29]. However, it is still unclear how different amplitude-
modulation strategies affect the performance of FES-induced
activities and what modulation strategy should be used to
maximize performance.

In [30], an identification-based controller was developed
for the muscle-limb model which includes an uncertain
first-order dynamic system that models muscle contraction
dynamics. The parameters of the limb dynamics and the
muscle contraction model are unknown. Since the NMES
control input is implemented as a series of pulses and the
modulation strategy has significant impact on the muscle
performance and fatigue, the ability to examine the impact
of the control signal and modulation strategy analytically
may yield new insights into the development of NMES
controllers. In this paper, a muscle activation model with
a amplitude-modulated control input is developed to cap-
ture the discontinuous nature of muscle activation, and an
identification-based closed-loop NMES controller is designed
and analyzed for the uncertain pulse muscle activation model.
Semi-global uniformly ultimately bounded (SUUB) tracking
is guaranteed through Lyapunov-based methods. A sufficient
condition for stability that relates the pulse frequency and
the control gains is obtained. Experiments are performed
with five able-bodied subjects to demonstrate the interplay
between the control gains and the pulse frequency, and results
are provided which indicate that control gains should be
increased to maintain tracking performance if the stimulation
pulse frequency is decreased to mitigate muscle fatigue.

II. DESCRIPTION OF THE DYNAMICS

A freely swinging lower limb with respect to the knee-joint
can be segregated into body segmental dynamics and muscle
activation and contraction dynamics. The body segmental
dynamics can be expressed as

MI (q̈) +Me (q) +Mg (q) +Mv (q̇) + τd = τm, (1)

where q, q̇, q̈ ∈ R denote the angular position, velocity,
and acceleration of the lower limb about the knee-joint,
respectively; τm : [0, ∞) → R denotes the active torque
at the knee-joint produced by muscle through electrical
stimulation; MI : R → R denotes the inertial effects of the
lower limb-foot complex about the knee-joint; Me : R→ R
denotes the elastic effects due to joint stiffness; Mg : R→ R
denotes the gravitational component; Mv : R → R denotes
the viscous effects due to damping in the musculotendon
complex [31]; and τd : [0, ∞) → R includes all other
unmodeled effects and disturbances such as external loads.
In (1) and in the subsequent development, the dependence
on time is suppressed, The inertial component MI in (1) is
defined as

MI (q̈) , JI q̈, (2)

where JI ∈ R is an unknown constant, denoted as the inertia
of the lower limb-foot complex about the knee-joint. The
total muscle torque τm generated at the knee-joint is consid-
ered as an unknown nonlinear function ζ : R→ R (which is
the moment arm) multiplied by the muscle contraction force
xf : R× R→ R generated by electric stimulation as

τm , ζ (q)xf (q, q̇) . (3)

The elastic effects are modeled on the empirical findings by
Ferrarin and Pedotti in [31] as

Me (q) = −K1(e−K2q)(q −K3),

where K1, K2, K3 ∈ R are unknown positive constants. As
in [5], the viscous moment Mv can be modeled as

Mv (q̇) = B1 tanh(−B2q̇)−B3q̇,

where B1, B2, B3 ∈ R are unknown positive constants. For
complete details of the dynamics in (1), see [21].

The following assumptions and properties are used to
facilitate the subsequent control development and stability
analysis.

Property 1. The moment arm ζ is a continuously differen-
tiable, nonzero, positive, monotonic, and bounded function
[32].

Assumption 1. The disturbance term τd and its time deriva-
tives τ̇d, τ̈d are bounded.

The model developed in (1)−(3) is used to examine the
stability of the subsequently developed controller, but the
controller does not explicitly depend on the model. After



substituting (2) and (3), and dividing both sides by ζ, the
expression in (1) can be written as

ζ−1 (q) JI q̈ + ζ−1 (q) (Me (q) +Me (q) +Mv (q̇))

+ζ−1 (q) τd = xf (q, q̇) .
(4)

Muscle activation and contraction dynamics can be mod-
eled as in [5], [24], [33], [34], which can be generalized as

ẋf (q, q̇, q̈)+Af (q, q̇)xf (q, q̇)+f1 (q, q̇, q̈)+τ1 = b(q, q̇)u,
(5)

where Af , f1 : R × R → R and b : R × R × R → R are
uncertain continuous functions, τ1 : [0, ∞) → R represents
disturbances in the muscle (e.g., muscle spasticity, fatigue,
and volitional muscle activation), and u : [0, ∞)→ R is the
applied electric stimulation voltage. The first-order, nonlinear
differential equation in (5) represents a generalization of the
relationship between the excitation input, u, and muscle fiber
force output, xf , which combines the muscle activation and
contraction dynamics based on the models in [24], [25],
[33]. The introduction of the unknown nonlinear functions
Af , f1 enables the muscle contraction to be considered under
general conditions in the subsequent control development.

Property 2. Based on the empirical data in [35] and [36],
the muscle gain (recruiting) function b is a bounded, positive
function with bounded, first-order time derivatives.

By substituting xf and ẋf into (5), the dynamics in (5)
can be expressed as

J (q, q̇, q̈)
...
q = −f2 (q, q̇, q̈)− τ2 + u, (6)

where J , f2 : R × R × R → R and τ2 : [0, ∞) → R are
defined as

J (q, q̇, q̈) ,b−1(q, q̇)ζ−1 (q) JI ,

f2 (q, q̇, q̈) ,b−1 (q, q̇)
(
−JIζ−2 (q) ζ̇ (q, q̇)

+Af (q, q̇) JIζ
−1 (q)

)
q̈ + b−1 (q, q̇)

× f1 (q, q̇, q̈) + b−1 (q, q̇) ζ−1 (q)Af (q, q̇)

× (Me (q) +Mg (q) +Mv (q̇))

+ b−1 (q, q̇) ζ−1 (q)
(
Ṁe (q, q̇)

+Ṁg (q, q̇) + Ṁv (q̇, q̈)
)

− b−1 (q, q̇) ζ−2 (q) ζ̇ (q, q̇)

× (Me (q) +Mg (q) +Mv (q̇)) , (7)

τ2 ,b−1 (q, q̇)
(
τ̇dζ
−1 (q)− τdζ−2 (q) ζ̇ (q, q̇)

+τ1 +Af (q, q̇) τdζ
−1 (q)

)
.

Based on Properties 1-2, the following inequalities can be
developed

ξ0 ≤ J (q, q̇, q̈) ≤ ξ1, |τ2| ≤ ξ2, (8)

where ξi ∈ R, i = 0, 1, 2 are known positive constants.

The electrical pulse input u can be modeled as

u =

{
v, nT ≤ t < nT + d

vb, otherwise
, (9)

n = 0, 1, 2, . . .

where v : [0, ∞)→ R and d, T ∈ R denote pulse amplitude,
width, and period1, respectively, and vb : [0, ∞) → R is a
stimulation signal for the balanced charged purpose and vb is
bounded by |vb| ≤ v̄b ∈ R≥0. In other words, the controller
is modulated in the sense that u = v when t satisfies nT ≤
t ≤ nT + d, whereas u = 0 at nT + d < t < (n+ 1)T.
The pulse frequency is defined as f , 1

T . Based on (9) the
system in (6) can be expressed as

J
...
q =

{
−f2 (q, q̇, q̈)− τ2 + v, nT ≤ t < nT + d

−f2 (q, q̇, q̈)− τ2 + vb, otherwise
,

(10)
n = 0, 1, 2, 3...

III. CONTROLLER DEVELOPMENT

The control objective is to ensure the knee angle q tracks
a desired trajectory, denoted by qd : [0, ∞) → R, which
is an essential task in many rehabilitative exercises and
function restoration tasks. To quantify the tracking objective,
a lower limb angular position tracking error, denoted by
e : [0, ∞)→ R, is defined as

e , qd − q, (11)

where qd is a known trajectory, designed such that qd,
qid ∈ L∞, where qid denotes the ith derivative of qd for
i = 1, 2, 3. To facilitate the subsequent control design
and stability analysis, filtered tracking errors denoted by e1,
e2 : [0, ∞)→ R, are also defined as

e1 , ė+ α1e, (12)
e2 , ė1 + α2e1, (13)

where α1, α2 ∈ R are positive constant control gains. Using
(11)−(13), e2 can be expressed as

e2 = q̈d − q̈ + (α1 + α2) (q̇d − q̇) + α1α2e. (14)

The subsequent development is based on the assumption that
q and q̇ are measurable. The error dynamics in (14) depend
on the unmeasurable limb acceleration. To compensate for
the acceleration dependency, an acceleration estimation error
ê2 : [0, ∞)→ R is designed based on (14) as

ê2 , q̈d − ¨̂q + (α1 + α2) (q̇d − ˙̂q) + α1α2e, (15)

where ˙̂q, ¨̂q : [0, ∞) → R denote the subsequently designed
observer outputs.

1In this paper, monophasic stimulation pulses were considered for sim-
plicity, but the proposed method could be extended to variable frequency and
n-let pulse trains, including biphasic, charge-balanced pulse trains, which are
typically used in FES applications.



To facilitate the subsequent analysis, let f2d :
R× R×R→ R be defined as

f2d(qd, q̇d, q̈d) ,f2(qd, q̇d, q̈d) (16)

where f2d is the same function as f2, except that its
arguments q, q̇, and q̈ are replaced by the desired arguments
qd, q̇d, and q̈d. Using the bounded desired arguments en-
sures that the domain of f2d is a compact set, which is a
requirement for neural network approximation. Based on the
universal function approximation property [37], the unknown
function in (16) can be approximated by a multi-layer NN
as

f2d(qd, q̇d, q̈d) = WTσ
(
V TXd

)
+ ε(qd, q̇d, q̈d), (17)

where Xd ∈ R4 is defined as

Xd , [1, qd, q̇d, q̈d]
T

;

σ : Rn0 → Rn0+1 denotes the activation function; W ∈
Rn0+1, V ∈ R4×n0 denote the bounded constant ideal
weights for the hidden layer neurons and the input layer
neurons, respectively, where the number of hidden layer
neurons is selected as n0; and ε : R× R×R → R denotes
the reconstruction error.

Assumption 2. The activation function σ and its first order
derivative with respect to its arguments σ′ are bounded by
known constants [38].

Property 3. The reconstruction error ε and its first order
partial derivative ε′ are bounded by known constants [38].

For notational brevity the dependence of all the functions
on the states is suppressed hereafter.

After multiplying the time derivative of (14) by J , and
using (6), (11)-(13), (16), and (17), the open-loop error
system for e2 is

Jė2 = −1

2
J̇e2 + f2 − f2d +WTσ

(
V TXd

)
(18)

+
1

2
J̇e2 − Jα2

1ė+ J (α1 + α2) ė1

+J
...
q d + τ2 + ε− u.

Let Ŵ : [0, ∞)→ Rn0+1, V̂ : [0, ∞)→ R4×n0 denote the
estimated weights for W, V , and let σ, σ̂, σ̂′, σ̃, W̃ ∈ Rn0 ,
Ṽ ∈ R4×n0 be defined as

σ , σ(V TXd), (19)
σ̂ , σ(V̂ TXd), (20)

σ̂′ ,
∂
(
σ(V̂ TX)

)
∂
(
V̂ TX

) ∣∣∣∣∣
V̂ TX=V̂ TXd

, (21)

σ̃ , σ − σ̂, (22)
W̃ , W − Ŵ , (23)
Ṽ , V − V̂ . (24)

By using a Taylor series approximation, σ̃ can be expressed
as σ̃ = σ̂′Ṽ TXd + o(Ṽ TXd)

2, where o(·)2 ∈ Rn0 denotes

higher order terms. By using (19)−(24), WTσ can be
expressed as

WTσ = ŴT σ̂′Ṽ TXd +WT σ̂ (25)
+W̃T σ̂′Ṽ TXd +WT o(Ṽ TXd)

2.

The update laws ˙̂
W ∈ Rn0+1, ˙̂

V ∈ R4×n0 can be arbitrarily
selected as

˙̂
W , proj(·), ˙̂

V , proj(·), (26)

where proj(·) is a smooth projection operator (e.g., see
Section 4.3 of [39]). Gradient-based update laws were used
in the following experiments. Since proj (·) guarantees Ŵ , V̂
are bounded, ∣∣∣ŴT σ̂

∣∣∣ ≤ a1, (27)

where a1 ∈ R is a known positive constant.
The error system in (18) can be expressed as

Jė2 = −1

2
J̇e2 + f3 + ŴT σ̂ − u, (28)

where the auxiliary function f3 ∈ R is defined as

f3 , f2 − f2d + W̃T σ̂

+ŴT σ̂′Ṽ TXd + W̃T σ̂′Ṽ TXd

+WT o(Ṽ TXd)
2

−Jα2
1ė+ J (α1 + α2) ė1

+
1

2
J̇e2 + J

...
q d + ε+ τ2.

Since W, V, σ, and ε are bounded, using the Mean Value
Theorem, (26), and the assumption that

...
q d is bounded, f3

can be bounded as

|f3| ≤ a2 + ρ1 (‖zf‖) ‖zf‖ , (29)

where a2 ∈ R is a positive constant, zf ∈ R3 is defined as
zf , (e, e1, e2)

T
, and ρ1 : [0, ∞) → [0, ∞) is a positive,

strictly increasing, and radially unbounded function2. Based
on (26), (28), and the subsequent stability analysis, the
control input is designed as

v = kf ê2 + ŴT σ̂, (30)

where kf ∈ R is a positive control gain.
After substituting (9) and (30) into (28), the closed-loop

error system can be obtained as

Jė2 =

{
− 1

2 J̇e2 + f3 − kf ê2, nT ≤ t < nT + d

− 1
2 J̇e2 + f3 + ŴT σ̂ + vb, otherwise

,

(31)
n = 0, 1, 2, 3....

2For some classes of systems, the bounding function ρ1 could be selected
as a constant, and a global uniformly ultimately bounded result can be
obtained.



IV. OBSERVER DESIGN

The objective of this section is to design an ob-
server/identifier to generate estimations of ¨̂q and ˙̂q, which
are used to generate ê2 in (15), so that the controller in (30)
can be implemented with only measurements of q and q̇.

To facilitate the observer design, let x, x̂, x̃, r ∈ R2,
z ∈ R4 be defined as

x , [q, q̇]
T
, (32)

x̂ ,

[
q̂,
·
q̂

]T
, (33)

x̃ , x− x̂, (34)

r , [r1, r2]
T (35)

= ˙̃x+ αx̃, (36)

z ,
[
x̃T , rT

]T
, (37)

where α , α1 + α2. By using (13) and (15), the difference
between e2 and ê2 is

r2 = ê2 − e2. (38)

After substituting (2) and (3), the dynamics in (1) can be
expressed as

JI q̈ +Me +Mg +Mv + τd = ζxf , (39)

which can be rewritten as

ẋ = −αx+ g1 (q, q̇) + h, (40)

where x is defined in (32), and g1 : R × R → R2 and
h : [0, ∞)→ R2 are defined as

g1 (q, q̇) , αx+

(
q̇

−J−1I (Me +Mg +Mv − ζxf )

)
,

h ,

(
0

−J−1I τd

)
.

Let g1d : R × R → R2 be defined as g1d (qd, q̇d) ,
g1 (qd, q̇d) . The unknown function g1d can be approxi-
mated by a multi-layer NN with a reconstruction error as
g1d (qd, q̇d) = WT

1 σ1
(
V T1 xd

)
+ε1 (qd, q̇d) , where xd ∈ R2

is defined as xd , [qd, q̇d]
T , and W1 ∈ R(n1+1)×2,

V1 ∈ R2×n1 denote the ideal constant weights for the hidden
layer neurons and the input layer neurons, respectively, where
the number of hidden layer neurons is selected as n1, and
ε1 : R× R→ R denotes the reconstruction error.

Assumption 3. The activation function σ1 : Rn1 → Rn1+1

and its first order derivative with respect to its arguments σ′1
are bounded by known constants [38].

Property 4. The reconstruction error ε1 and its first order
derivative ε′1 are bounded by known constants [38].

The dynamics in (40) can be rewritten as

ẋ = −αx+ g1 − g1d +WT
1 σ1d + ε1 + h, (41)

where σ1d , σ1
(
V T1 xd

)
. Based on (41), a multi-layer

dynamic NN observer is designed as

˙̂x = −αx̂+ ŴT
1 σ̂1 + µ, (42)

where σ̂1 , σ1

(
V̂ T1 x̂

)
, and Ŵ1 : [0, ∞) → R(n1+1)×2,

V̂1 : [0, ∞)→ R2×n1 denote the estimated weights for W1,
V1, and µ ∈ R2 is defined as

µ (x̃) , kx̃− kx̃ (0) +

tˆ

0

kαx̃dτ, (43)

where k ∈ R is a positive control gain.
Based on (41) and (42), the observer error dynamics can

be written as

˙̃x = −αx̃+ ε1 + ε2 + g1 − g1d + h− µ, (44)

where ε2 ∈ R2 is defined as

ε2 , WT
1 σ1d − ŴT

1 σ̂1. (45)

After some algebraic manipulation, the time derivative of
(45) can be written as

ε̇2 = WT
1 σ

′

1dV
T
1 ẋd −

˙̂
WT

1 σ̂1

−ŴT
1 σ̂

′

1

·
V̂

T

1 x̂−WT
1 σ̂

′

1V
T
1

·
x̂

+W̃T
1 σ̂

′

1Ṽ
T
1

·
x̂+ ŴT

1 σ̂
′

1Ṽ
T
1

·
x̂

+W̃T
1 σ̂

′

1V̂
T
1

·
x̂, (46)

where W̃1 ,W1−Ŵ1, Ṽ1 , V1− V̂1 denote the mismatches
for the ideal weight estimates, σ′1d ,

∂(σ1(V
T
1 xd))

∂(V T
1 xd)

, and σ̂′1 ,

∂(σ1(V̂
T
1 x̂))

∂
(
V̂1

T
x̂
) . The update laws ˙̂

W1 ∈ R(n1+1)×2,
˙̂
V1 ∈ R2×n1

are designed as

˙̂
W1 , proj(Γw1σ̂

′

1V̂
T
1

˙̂xx̃T ), (47)
˙̂
V1 , proj(Γv1 ˙̂xx̃T ŴT

1 σ̂
′

1), (48)

where Γw1 ∈ R(n1+1)×(n1+1), Γv1 ∈ R2×2 are positive
definite gain matrices. The update laws in (47) and (48)
ensure that

αx̃T
(
ŴT

1 σ̂
′

1Ṽ
T
1

˙̂x+ W̃T
1 σ̂

′

1V̂
T
1

˙̂x
)

+ Ġ = 0, (49)

where G : [0, ∞)→ R is defined as

G ,
α

2
tr
(
W̃1

T
Γ−1w1W̃1

)
+
α

2
tr
(
Ṽ T1 Γ−1v1 Ṽ1

)
.

By using the Mean Value Theorem, Assumptions 3-4, (47),
and (48), the following inequalities can be obtained

N1 ≤ ρ2 (‖ϕ‖) ‖ϕ‖+ a3, (50)
N2 ≤ a4 ‖z‖+ a5 ‖zf‖+ a6, (51)



where N1, N2 ∈ R are defined as

N1 (ϕ) , WT
1 σ

′

1V
T
1 ẋd −

˙̂
WT

1 σ1(V̂ T1 x̂) + ε̇1 + ḣ

−ŴT
1 σ̂

′

1
˙̂
V T1 x̂−WT

1 σ̂
′

1V
T
1

˙̂x+ W̃T
1 σ̂

′

1Ṽ
T
1

˙̂x

+ġ1 (q, q̇, q̈)− ġ1 (qd, q̇d, q̈d) , (52)

N2 (ϕ) , ŴT
1 σ̂

′

1Ṽ
T
1

˙̂x+ W̃T
1 σ̂

′

1V̂
T
1

˙̂x; (53)

a3, a4, a5, a6 ∈ R are positive constants; ρ2 : [0, ∞) →
[0, ∞) is a positive, strictly increasing, and radially un-
bounded function3; and ϕ ∈ R7 is defined as ϕ ,[
zT , zTf

]T
. By using (32), (35), (46), (52), and (53), the

observer error system in (44) can be rewritten as

ṙ = −kr +N1 +N2. (54)

V. STABILITY ANALYSIS

The stability of the overall system, depicted in Fig. 1,
is subsequently analyzed based on Lyapunov methods for
switched systems.

Theorem 1: The controller defined by (9) and (30), along
with the estimates in (15) and (20), the update laws in
(26), (47) and (48), and the observer in (42) ensure that
all closed-loop signals are bounded, and the tracking error
is semi-global uniformly ultimately bounded (SUUB) in the
sense that ‖ϕ‖ uniformly converges to a ball with a constant
radius, provided the control gains are selected sufficiently
large based on the initial conditions of the states (see the
subsequent stability analysis) and the following sufficient
conditions are satisfied:

α, α1 >
1

2
, (55)

α2 > 1, (56)
kf > 4, (57)

min(α1 −
1

2
, α2 − 1,

1

8
kf −

1

2
) >

ε

2
a5, (58)

min(α− 1

2
,
k

4
− 1 + kf

2
− a5

2ε
) >

a24
k
, (59)

γ3 (T − d)− γ1d < ln

(
β1
β2

)
, (60)

where ε ∈ R is an arbitrary positive constant; a4, a5 are
introduced in (51); T , d are introduced in (9); γ3 ∈ R
is a known, positive bounding constant; γ1 ∈ R is a
constant gain that can be made arbitrarily large by selecting
α, α1, α2, kf , and k in (12), (13), (30), and (43) arbitrarily
large; and β1, β2 ∈ R are positive constants defined as
β1 , 1

2 min(1, ξ0), β2 , 1
2 max(1, ξ1).

Proof: Consider the Lyapunov candidate function V :
R7→ R, which is a continuously differentiable, positive
definite function defined as

V (ϕ, t) ,
1

2
e2 +

1

2
e21 +

1

2
Je22 +

1

2
x̃T x̃+

1

2
rT r, (61)

3For some classes of systems, the bounding function ρ2 could be selected
as a constant, and a global uniformly ultimately bounded result can be
obtained.

which satisfies the following inequalities

β1 ‖ϕ‖2 ≤ V ≤ β2 ‖ϕ‖2 . (62)

Taking the time derivative of (61), substituting the dynamics
in (28) and (54), and using (35) and (38) yields

·
V (ϕ, t) =ee1 − α1e

2 + e1e2 − α2e
2
1 + e2f3 + e2Ŵ

T σ̂

− e2u+ rTN1 + rTN2 − krT r + x̃T r − x̃Tαx̃.

The function V can be expressed in segments Vn (ϕ, τ),
where Vn (ϕ, τ) ∈ R is defined as

Vn (ϕ, τ) , V (ϕ(nT + τ)) , (63)

where τ , t − nT, n , bt/T c . Using (29), (50), and (51)
on the interval 0 ≤ τ < d (i.e., u = v) yields

·
V n (ϕ, τ) = ee1 − α1e

2 + e1e2 − α2e
2
1

+e2ρ1 (‖zf‖) ‖zf‖+ a2e2 + e2Ŵ
T σ̂

+rT (ρ2 (‖ϕ‖) ‖ϕ‖+ a3)

−e2
(
kf ê2 + ŴT σ̂

)
− krT r + x̃T r

+rT (a4 ‖z‖+ a5 ‖zf‖+ a6)− x̃Tαx̃.

Applying Young’s Inequality yields

·
V n (ϕ, τ) ≤ −

(
α1 −

1

2

)
e2 − (α2 − 1) e21

−
(
kf
8
− 1

2

)
e22 −

(
k

4
− 1 + kf

2

)
‖r‖2

−
(
α− 1

2

)
‖x̃‖2 − kf

4
e22

+e2ρ1 (‖zf‖) ‖zf‖+
εa5
2
‖zf‖2

+
a5
2ε
‖r‖2 − 3k

4
‖r‖2 + rT ρ2 (‖ϕ‖) ‖ϕ‖

+rTa4 ‖z‖+ rT (a3 + a6)− kf
8
e22 + a2e2.

Completing the squares and upper-bounding the result yields

·
V n (ϕ, τ) ≤ −

(
λ1 −

ρ21
kf

)
‖zf‖2 − λ2 ‖z‖2

+
ρ22
k
‖ϕ‖2 +

(a3 + a6)
2

k
+

2a22
kf

, (64)

where λ1, λ2 ∈ R are positive constants, provided the
sufficient conditions in (55)−(59) are satisfied, defined as

λ1 , min
{
α1 −

1

2
, α2 − 1,

kf
8
− 1

2

}
− εa5

2
,

λ2 , min
{
k

4
− 1 + kf

2
− a5

2ε
, α− 1

2

}
− a24

k
.



Figure 1. System block diagram.

Let two sets D and SD be defined as

D ,

{
ϕ⊂R7 | ‖ϕ‖ ≤ min

(
inf
{
ρ−1 ([λ1kkf , ∞))

}
,

inf
{
ρ−12

([√
λ2k, ∞

))})}
, (65)

SD ,

{
ϕ⊂D | ‖ϕ‖ ≤

√
β1
β2

min

(
inf
{
ρ−1 ([λ1kkf , ∞))

}
,

inf
{
ρ−12

([√
λ2k, ∞

))})}
, (66)

where, for a set A ⊂ R, the inverse image ρ−1 (A) ⊂ R is
defined as ρ−1 (A) , {a ∈ R | ρ (a) ∈ A} , and the function
ρ (·) is defined as ρ (·) , kρ21 (·) + kfρ

2
2(·). Using (62), (64)

can be rewritten as

V̇n (ϕ, τ) ≤ −γ1Vn + γ2, ∀ϕ ∈ D, (67)

where γ1, γ2 ∈ R are defined as

γ1 ,
1

β2
min

{
λ1 −

ρ21 (‖ϕ (0)‖)
kf

− ρ22 (‖ϕ (0)‖)
k

,

λ2 −
ρ22 (‖ϕ (0)‖)

k

}
,

γ2 ,
(a3 + a6)

2

k
+

2a22
kf

.

The region of attraction D in (65) can be made arbitrarily
large to include any initial condition by increasing the
control gains α, α1, α2, k and kf (i.e., a semi-global result).
Likewise, on the interval d ≤ τ < T (i.e., u = 0),

V̇n(ϕ, τ) ≤ γ3Vn(ϕ, τ) + γ4, (68)

where γ3, γ4 ∈ R are constants defined as

γ3 , max {λ3, λ4} , γ4 ,
(a3 + a6)

2

k
,

where λ3, λ4 ∈ R are constants defined as

λ3 ,max

{
−
(
α1 −

1

2

)
,− (α2 − 1) ,

(
3

4
+ a2 + a1 + v̄b

)}
+
a25
k

+
ρ21 (‖ϕ (0)‖)

4
+
ρ22 (‖ϕ (0)‖)

4
,

λ4 ,max

{
−(α− 1

2
),−(

k

8
− 1

2
)

}
+

2a24
k

+
ρ22 (‖ϕ (0)‖)

4
.

Using (61) and (63), V̇n (ϕ, τ) can be upper-bounded as

V̇n (ϕ, τ) ≤

{
−γ1Vn (ϕ, τ) + γ2, 0 ≤ τ < d

γ3Vn (ϕ, τ) + γ4, d ≤ τ < T
,

which can be solved to obtain upper bounds for Vn (ϕ, d)
and Vn (ϕ, T ) as

Vn (ϕ, d) ≤
(
Vn (ϕ, 0)− γ2

γ1

)
e−γ1d +

γ2
γ1
, (69)

Vn (ϕ, T ) ≤
(
Vn (ϕ, d) +

γ4
γ3

)
eγ3(T−d) − γ4

γ3
. (70)

By using (69) and (70), and the fact that Vn+1 (z, 0) =
Vn (z, T ) , the change in V across a pulse can be defined
and upper-bounded as

Ṽn , Vn+1(ϕ, 0)− Vn(ϕ, 0),

≤ Vn(ϕ, d)eγ3(T−d) − Vn(ϕ, 0)

+
γ4
γ3

(eγ3(T−d) − 1),

≤ Vn(ϕ, 0)(e−γ1deγ3(T−d) − 1)

+
γ2
γ1

(1− e−γ1d)eγ3(T−d)

+
γ4
γ3

(eγ3(T−d) − 1). (71)

To ensure that ‖ϕ (nT )‖ > ‖ϕ ((n+ 1)T )‖, Ṽn must satisfy
the following condition:

Ṽn < Vn(ϕ, 0)
β1 − β2
β2

. (72)

To satisfy (72), it is sufficient to demonstrate that (71)
satisfies

Ṽn ≤ Vn(ϕ, 0)(e−γ1deγ3(T−d) − 1) (73)

+
γ2
γ1

(1− e−γ1d)eγ3(T−d)

+
γ4
γ3

(eγ3(T−d) − 1)

< Vn(ϕ, 0)
β1 − β2
β2

.

If the condition in (60) is satisfied and V (ϕ(nT )) > β1d̄
2,

where d̄ ∈ R is defined as

d̄ ,

√√√√ γ4
γ3

(1− e−γ3(T−d)) + γ2
γ1

(1− e−γ1d)
β1(β1

β2
e−γ3(T−d) − e−γ1d)

, (74)



then V (ϕ(nT )) < V (ϕ((n+ 1)T )), i.e.,

V (ϕ(0)) > V (ϕ(T )) > V (ϕ(2T )) > . . . (75)

The size of d̄ is based on the period, pulse width, and control
gains.

Given (61), (62), (65), and (75), e is SUUB [40, Theorem
4.18] in the sense that

|e| ≤ ‖ϕ‖ < d̄, ∀t ≥ T
(
d̄, ‖ϕ (0)‖

)
,∀ ‖ϕ(0)‖ ∈ SD,

where T
(
d̄, ‖ϕ (0)‖

)
∈ R is a positive constant that denotes

the ultimate time to reach the ball.

Remark 1. Based on (60) and (74), the interplay between the
modulation strategy and the controller can be determined.
To minimize muscle fatigue, one is motivated to decrease
the stimulation frequency (i.e., increase T; see [41]–[43]).
From (60) and (74), decreasing the stimulation frequency
indicates that the control gains should be selected larger
(making γ1 larger) to maintain a similar level of steady state
tracking performance. If the frequency is increased (leading
to accelerated muscle fatigue), then the control gains may
be selected lower to maintain a similar level of tracking
performance.

VI. EXPERIMENTS

The controller defined by (9) and (30), along with the
estimates in (15) and (20), the update laws in (26), (47)
and (48), and the observer in (42) was implemented on
five able-bodied volunteers with written informed consent
approved by the University of Florida Institutional Review
Board. The purpose of the experiments was to evaluate the
control performance and to investigate the interplay between
stimulation frequency and control gains described in Remark
1. In the experiments, each subject was instructed to sit on
a customized leg extension machine, described in [21], with
an additional free swinging rigid arm which was attached
to the subject’s shank. The arm’s center of rotation was
aligned with the subject’s lateral femoral condyle for each
trial, allowing the angular position of the arm to coincide
with the knee angle. An optical encoder was used to measure
the angular position q of the rigid arm at a sampling rate of
1 kHz. The angular velocity q̇ was obtained using backward
differencing methods without filtering. Bipolar, self-adhesive
3” × 5” PALSr oval electrodes4 were used to deliver the
electrical stimulus. One electrode was placed over the distal-
medial portion of the quadriceps femoris muscle group and
the other was placed over the proximal-lateral portion. The
electrical stimulation was delivered through a custom built
stimulator as monophasic, rectangular pulses with a constant
pulse width of d = 400µs and pulse frequency (f = 1

T )
of 25Hz and 60Hz. The controller was implemented with a
neural network (i.e., five sigmoid neurons) along with two
sets of parameters: low frequency with high gains (LFHG)
and high frequency with low gains (HFLG). First, the control

4Surface electrodes for the study were provided compliments of Axel-
gaard Manufacturing Co., Ltd.

gains were tuned for each subject at a frequency of 60
Hz (high frequency) until a set of gains were found that
yielded satisfactory performance (high gains). The gain tun-
ing adopted was based on a trial-and-error approach, where
γ1 was increased by simultaneously increasing k, kf , α1,
and α2. Then, LFHG was defined as using the controller
with the high gains implemented at a frequency of 25 Hz
(low frequency). Finally, HFLG was defined as using the
controller with low gains, defined as 20% less than the high
gains, implemented at high frequency (60 Hz). The amplitude
of the electrical pulses was modulated by the output of the
controller.

For each trial, the subjects were instructed to relax as
much as possible to reduce voluntary participation in the
tracking task, and they were given no indication of their
tracking performance during the experiment. Each session
was 20 seconds long and between sessions the subjects were
given at least five minutes of rest to minimize the effect of
muscle fatigue on the results.

Remark 2. Able-bodied subjects and subjects with upper
motor neuron lesions can both fit the developed model.
However, specific disease or injury conditions can lead to
differences in performance (e.g., rapid fatigue, spasticity,
etc.). The developed controller is analyzed in the presence
of general disturbance terms that can be used to model such
effects. While the experiments only demonstrate the con-
troller’s performance in able-bodied individuals, and hence
demonstrate efficacy of the controller and relationships be-
tween the controller and modulation parameters, results will
potentially vary when the controller is applied to specific
disease or injury populations.

Without loss of generality, the desired trajectory was
designed to be sinusoidal5 with a period of 2.5 seconds,
ranging from 5° to 60° from the subject’s rest position, where
the angle between the shank and the vertical line is 0°. Each
subject performed eight repetitions over the course of the
20 second trial. To validate the interplay between control
gains and stimulation frequencies stated in Remark 1, two
different control strategies were employed: low frequency
with high gains (LFHG) and high frequency with low gains
(HFLG). The neural network used is constructed based on
five sigmoid neurons (i.e., n0 = 5) with one hidden layer,
and the control gain tuning adopted is based on a trial-and-
error approach. A pulse frequency of 25 Hz was used for
LFHG, and 60 Hz was used for HFLG. For LFHG, γ1 was
increased by simultaneously increasing k, kf , α1, and α2

until satisfactory performance was achieved (i.e., until the
steady-state tracking error response was approximately five
degrees RMS or less, similar to the results such as [44], [45]).
For HFLG, low gains were defined as 15-20% less than the
gains used for LFHG.

Representative results for one individual are presented in

5The tracking performance of the closed-loop system with different de-
sired trajectories, including multiple frequencies, remains the same provided
that Assumption 1 is satisfied.



Figures 2, which illustrates the tracking errors, desired and
measured angles from the representative subject’s trial using
HFLG and LFHG approaches, and the control inputs. The
RMS and normalized root mean square (NRMS) tracking
errors of all five subjects are summarized in Table I-III. The
range of voltages applied to all five subjects is 15-34 Volts.
(b)-(c) of Figure 2 depict the tracking errors and desired
versus measured angles from a representative subject’s trial.
During the transient period (i.e., 0-10 seconds), the tracking
errors are bounded, oscillating trajectories, implying that the
system is stable. However, the oscillations make comparison
of HFLG and LFHG approaches difficult so that the RMS
tracking errors were calculated over each 2.5 seconds period
of the desired trajectory. For all subjects, the HFLG strategy
consistently resulted in higher transient error when compared
to LFHG strategy, but the steady state RMS tracking errors
of both strategies behaved similarly, reflecting the predicted
interplay between the stimulation frequencies and control
gains derived in (74). Control inputs from the two approaches
for the representative subject is given in (d). For all subjects,
the LFHG approach yielded a higher control input voltage,
but the tracking errors of the two approaches were similar.
One interpretation of the results is that the high frequency
input generates more muscle force output than the lower
frequency, thereby requiring less control input voltage to
achieve similar tracking performance.
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Figure 2. (a) Tracking errors errors from the two protocols with the
representative subject. (b) Desired vs. measured joint angles with the
representative subject using LFHG strategy. (c) Desired vs. measured joint
angles with the representative subject using HFLG strategy. (d) Comparison
of control inputs for the two protocols with the representative subject.

Table I
COMPARISON OF AVERAGE RMS TRACKING ERRORS FOR ALL FIVE
SUBJECTS WITH MEAN VALUES, MEDIAN VALUES, AND STANDARD

DEVIATIONS, AND NRMS TRACKING ERRORS.

0-20 seconds

Subject RMS (deg.) NRMS (%)
LFHG HFLG LFHG HFLG

1 6.3 6.7 19 17
2 9.5 12.7 15 15
3 7.3 8.3 13 12
4 6.9 7.6 16 11
5 6.1 5.7 16 17

Mean 7.22 8.2 N/A N/A
Median 6.9 7.6 N/A N/A

SD 1.36 2.70 N/A N/A

Table II
COMPARISON OF TRANSIENT RMS TRACKING ERRORS FOR ALL FIVE

SUBJECTS WITH MEAN VALUES, MEDIAN VALUES, AND STANDARD
DEVIATIONS, AND TRANSIENT NRMS TRACKING ERRORS.

0-10 seconds

Subject RMS (deg.) NRMS (%)
LFHG HFLG LFHG HFLG

1 7.1 8.7 22 23
2 15.5 21.3 25 25
3 10 12.4 19 21
4 9.4 14.3 23 22
5 7.2 7.2 20 20

Mean 9.84 12.78 N/A N/A
Median 9.4 12.4 N/A N/A

SD 3.41 5.54 N/A N/A

Table III
COMPARISON OF STEADY STATE RMS TRACKING ERRORS FOR ALL FIVE

SUBJECTS WITH MEAN VALUES, MEDIAN VALUES, AND STANDARD
DEVIATIONS, AND STEADY STATE NRMS TRACKING ERRORS.

10-20 seconds

Subject RMS (deg.) NRMS (%)
LFHG HFLG LFHG HFLG

1 5.4 3.7 23 20
2 8.7 12.1 24 25
3 6.0 6.1 21 22
4 4.8 4.9 24 24
5 4.8 3.7 20 22

Mean 5.94 6.1 N/A N/A
Median 5.4 4.9 N/A N/A

SD 1.62 3.5 N/A N/A

Tables I-III summarize the experimental results for the
LFHG and HFLG protocols by the RMS and NRMS track-
ing errors calculated over the entire trials (0-20 seconds),
transient period (0-10 seconds), and during steady state (10-
20 seconds), respectively. While HFLG appears to have a
greater RMS error over the entire trial (see Tables I-III),
a Wilcoxon Signed-Rank test on the paired data resulted
in a P -value of 0.138. Thus, one cannot conclude at a



significance level of 0.05 that there is a significant difference
between the the HFLG and LFHG protocols in terms of the
median RMS tracking errors over the entire duration of the
trials (see Table I). In Table II, the transient performances
of both protocols are compared with a Wilcoxon Signed-
Rank test on the paired data resulted in a P -value of 0.10,
which one cannot conclude at a significance level of 0.05
that there is a significant difference between the the HFLG
and LFHG protocols. Similarly, both protocols resulted in
similar steady state RMS tracking errors (see Table III). A
Wilcoxon Signed-Rank test on the paired data during steady
state resulted in a P -value of 1.0, further indicating that
the LFHG and HFLG protocols result in statistically similar
steady state performance, as concluded in Remark 1. The
control gains implemented in the experiments are listed in
Table IV, and the peak, mean, and median values of the
control efforts are summarized in Table V.

Table IV
CONTROL GAINS USED FOR THE TWO STRATEGIES WITH THE FIVE

SUBJECTS.

Subject Strategy α α1 α2 kf k

1 LFGH 10 20 20 0.026 50
HFLG 8 16 16 0.021 40

2 LFGH 10 9 9 0.013 25
HFLG 8 7.2 7.2 0.01 20

3 LFGH 10 22 22 0.019 40
HFLG 8 18 18 0.015 35

4 LFGH 10 22 22 0.019 40
HFLG 8 15 15 0.015 30

5 LFGH 10 27 27 0.021 30
HFLG 8 22 22 0.019 40

Table V
PEAK, MEAN, AND MEDIAN VALUE OF THE CONTROL INPUTS OF THE

TWO STRATEGIES WITH THE FIVE SUBJECTS.

Subject Strategy Peak (Volts) Mean (Volts) Median (Volts)

1 LFGH 30 24.6 24
HFLG 26.7 23.2 22.9

2 LFGH 22.8 20.7 20.6
HFLG 21.4 19.9 18.9

3 LFGH 33.3 24 23.5
HFLG 27.3 23 23

4 LFGH 30 26 27.5
HFLG 26.2 22.6 22.6

5 LFGH 34 26.5 26.1
HFLG 29.4 24.6 24.6

VII. CONCLUSION

An identification-based closed-loop NMES controller was
designed based on an uncertain muscle activation model with
a amplitude-modulated control input. Based on Lyapunov
stability analysis methods for switched systems, the con-
troller is proven to ensure SUUB tracking, provided sufficient
conditions on the control gains and stimulation modulation
parameters are satisfied. To support the main result of

this paper, experiments on five able-bodied volunteers are
implemented. The theoretical link between frequency and
the control gains was demonstrated in the sense that, as
discussed in Remark 1, higher control gains paired with a low
frequency modulation strategy yielded similar tracking per-
formance to a high frequency modulation scheme with lower
control gains. Future work will seek to extend these results
to functional activities involving multiple muscle groups and
several degrees of freedom (e.g., cycling, walking).
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