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Approximate Dynamic Programming: Combining
Regional and Local State Following Approximations

Patryk Deptula, Joel A. Rosenfeld, Rushikesh Kamalapurkar, and Warren E. Dixon

Abstract—An infinite-horizon optimal regulation problem for
a control-affine deterministic system is solved online using a
local state following (StaF) kernel and a regional model-based
reinforcement learning (R-MBRL) method to approximate the
value function. Unlike traditional methods such as R-MBRL that
aim to approximate the value function over a large compact
set, the StaF kernel approach aims to approximate the value
function in a local neighborhood of the state that travels within
a compact set. In this paper, the value function is approximated
using a state-dependent convex combination of the StaF-based
and the R-MBRL-based approximations. As the state enters a
neighborhood containing the origin, the value function transitions
from being approximated by the StaF approach to the R-MBRL
approach. Uniformly ultimately bounded (UUB) convergence of
the system states to the origin is established using a Lyapunov-
based analysis. Simulation results are provided for two, three, six,
and ten-state dynamical systems to demonstrate the scalability
and performance of the developed method.

Index Terms—data-driven control, nonlinear control, reinfor-
cement learning, optimal control, local estimation

I. INTRODUCTION

Solving the Hamilton Jacobi Bellman (HJB) equation yields
the value function, which is used to determine an optimal
controller. Because the HJB is a nonlinear partial differential
equation that is generally infeasible to solve analytically or in
real-time, an approximate solution is often used. For example,
by using parametric approximation methods, such as neural-
networks (NNs), the optimal value function can be estimated
and used to compute an approximate optimal policy. To
establish closed-loop stability, the error between the optimal
and estimated value function needs to decay to a small bound
sufficiently fast [1].

The rate at which the value function approximation error
decays is determined by the richness of the data utilized for
learning. In traditional adaptive dynamic programming (ADP)
methods such as [2] and [3] richness of the data correlates to
the amount of excitation in the system. Typically excitation
is introduced by adding an exploration signal to the control
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input (cf. [4]–[9]). Because the addition of the exploration
signal causes undesirable oscillations and noise, hardware
implementation of traditional ADP techniques such as [2],
[10]–[14], and [15] is challenging. In data-driven experience
replay-based techniques such as [16]–[20], data richness is
quantified by the eigenvalues of the recorded history stack.
However, the required amount of data storage grows exponen-
tially as the demand for richer data increases, making hardware
implementation challenging.

Approximating the value function over a large region typi-
cally requires a large number of basis functions. For general
nonlinear systems, generic basis functions, such as Gaussian
radial basis functions (RBF), polynomials, or universal kernel
functions are used to approximate the value function. One
limitation of these generic approximation methods is that
they only ensure approximation over a compact neighborhood
of the origin. Once outside the compact set, the approx-
imation tends to either grow or decay depending on the
selected functions. Consequently, in the absence of domain
knowledge, a large number of basis functions, and hence, a
large number of unknown parameters, is required for value
function approximation. Reduction in the number of unknown
parameters motivates the use of StaF basis functions such
as [21] which travel with the state to maintain an accurate
local approximation. However, the StaF approximation method
trades global optimality for computational efficiency since it
lacks memory. Since accurate estimation of the value function
results in a better closed-loop response and lower operating
costs, it is desirable to accurately estimate the value function
near the origin in optimal regulation problems.

In this paper, a novel framework is developed to merge
local and regional value function approximation methods to
yield an online optimal control method that is computationally
efficient and simultaneously accurate over a specified critical
region of the state-space. The ability of R-MBRL such as
[19] to approximate the value function over a predefined
region and the computational efficiency of the StaF method
[1] in approximating the value function locally along the
state trajectory motivates the following development. Instead
of generating an approximation of the value function over
the entire operating region, which would be computationally
expensive, the operating domain is separated into two regions:
a closed set A, containing the origin, where a regional approx-
imation method is used to approximate the value function,
and the complement of A, where the StaF method is used
to approximate the value function. Using a switching based
approach to combine regional and local approximations would
inject discontinuities to the system and result in a non-smooth
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value function which would introduce discontinuities in the
control signal. To overcome this challenge, a state varying
convex combination of the two approximation methods is
used to ensure a smooth transition from the StaF to the R-
MBRL approximation as the state enters the closed convex
set containing the origin. Once the state enters the this region,
R-MBRL regulates the state to the origin. The developed result
is generalized to allow for the use of any R-MBRL method.

While the StaF method is computationally efficient, it lacks
memory, i.e. the information about the value function in a
region is lost once the system state leaves that region. To
maintain an accurate approximation of the value function near
the goal state (i.e., the origin), the developed method uses
R-MBRL in A; the weights are learned based on selected
points in that set and the value function does not have to
be re-learned once the state leaves this neighborhood. The
developed architecture is motivated by the observation that
in many applications such as station keeping of marine craft,
like in [22], accurate approximation of the value function in a
neighborhood of the goal state can improve the performance
of the closed-loop system near the goal-state.

Since the StaF method uses state-dependent centers, the
unknown optimal weight are themselves also state-dependent,
which makes analyzing stability difficult. To add to the techni-
cal challenge, using a convex combination of R-MBRL and
StaF results in a complex representation of the value function
and resulting Bellman error. To provide insights into how to
combine StaF and R-MBRL while also preserving stability,
the estimates are designed using a Lyapunov-based stability
analysis. The analysis of the closed-loop systems with the
smoothly switching approximation guarantees uniformly ulti-
mately bounded (UUB) convergence. The performance of the
developed method is illustrated through numerical simulations.
Simulations are provided for a two state system with a known
value function as well as three, six, and ten-state systems with
unknown value functions to illustrate the scalability of the
method in terms of computational time, cost, and final RMS
error. Comparisons with [1] and [19] illustrate the advantage
of the developed method.

The paper is organized as follows. Section II introduces
the optimal control problem. The motivation for using a
combination of the StaF and R-MBRL methods is discussed
in Section III. The proposed value function approximation
scheme along with the derived Bellman error are presented
in Section IV, and Bellman error extrapolation for online
learning along with the actor and critic weight update laws
is discussed in Section V. Section VI presents a Lyapunov
stability analysis. Simulations are discussed in Section VII,
while conclusions are drawn in Section VIII.

Notation

In the following development, R denotes the set of real
numbers, Rn and Rn×m denote the sets of real n-vectors and
n × m matrices, and R≥a and R>a denote the sets of real
numbers greater than or equal to a and strictly greater than
a, respectively, where a ∈ R. The n × n identity matrix and
column vector of ones of dimension j are denoted by In and

1j , respectively. The partial derivative of h with respect to the
state x is denoted by ∇h(x, y, . . .). The notation (·)o denotes
an arbitrary variable of the set which the variable belongs
to, and (·)T denotes the transpose of a matrix or vector. The
notation G∇F , G∇F∇K , GF , GFK , and G∇FK is defined as
G∇F , ∇FgR−1gT∇FT , G∇F∇K , ∇FgR−1gT∇KT ,
GF , FgR−1gTFT , GFK , FgR−1gTKT , and G∇FK ,
∇FgR−1gTKT respectively, where F and K denote arbitrary
functions.

II. PROBLEM FORMULATION

Consider a control affine nonlinear dynamical system

ẋ(t) = f
(
x(t)

)
+ g
(
x(t)

)
u(t), (1)

where x : R≥t0 → Rn denotes the system state, f : Rn → Rn
denotes the drift dynamics, g : Rn → Rn×m denotes the
control effectiveness, and u : R≥t0 → Rm denotes the control
input.

Assumption 1. Both f and g are assumed to be locally
Lipschitz continuous. Furthermore, f(0) = 0, and ∇f : Rn →
Rn×n is continuous.

In the following, the notation φu(t; t0, x0) denotes the
trajectory of the system in (1) under the controller u with
initial condition x0 ∈ Rn and initial time t0 ∈ R≥0. The
objective is to solve the infinite-horizon optimal regulation
problem, i.e. find a control policy u online to minimize the
cost functional

J(x, u) ,

∞̂

t0

r(x(τ), u(τ))dτ, (2)

while regulating the system states to the origin under the
dynamic constraint (1). In (2), r : Rn × Rm → R≥0 denotes
the instantaneous cost defined as

r(xo, uo) , xoTQxo + uoTRuo, (3)

for all xo ∈ Rn and uo ∈ Rm, where R ∈ Rm×m and Q ∈
Rn×n are constant positive definite matrices and the matrix Q
can be bounded as q‖xo‖2 ≤ xoTQxo ≤ q‖xo‖2.

The infinite-horizon scalar value function for the optimal
solution, i.e. the function which maps each state to the total
cost-to-go, denoted by V ? : Rn → R≥0, can be expressed as

V ?(xo) = inf
u(τ)∈U |τ∈R≥t

∞̂

t

r (φu (τ ; t, xo) , u (τ)) dτ, (4)

where U ⊂ Rm is the action space. The optimal value function
is characterized by the corresponding HJB equation

∇V ?(xo)
(
f(xo) + g(xo)u?(xo)

)
+ r
(
xo, u?(xo)

)
= 0, (5)

with the boundary condition V (0) = 0, where u? : Rn → Rm
is the optimal control policy which can be determined from
(5) as

u?(xo) , −1

2
R−1gT (xo)

(
∇V ?(xo)

)T
. (6)

Using (6), the open-loop HJB in (5) can be expressed in a
closed-loop form as
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− 1

4
∇V ? (xo) g (xo)R−1gT (xo) (∇V ∗ (xo))

T

+∇V ? (xo) f (xo) + xoTQxo = 0. (7)

The analytical expression in (6) requires knowledge of the
optimal value function which is the solution to the HJB in
(5), but since the analytical solution for the HJB is generally
infeasible to compute, an approximation of the solution is
sought.

III. COMBINING REGIONAL AND LOCAL STATE
FOLLOWING APPROXIMATIONS

Traditional approaches to approximating the value function
establish the approximation over the entire state-space. When
implementing the approximation online, traditional met-
hods spend computational resources approximating the value
function in regions where the state may not enter. The StaF
method reduces the computational efforts of the approximation
problem by approximating the value function in a moving
neighborhood of the state.

A drawback of the StaF method is that it does not establish
an approximation of the value function in regions where the
state will travel in the future; the StaF method only approxi-
mates the value function at the current position of the state.
In general, it is difficult to provide a perfect prediction of the
future state of an uncertain nonlinear system. However, since
convergence to the origin is the goal of regulation problems,
approximating the function in a neighborhood around the
origin is well motivated.

The operating domain χ of the state is segregated into two
sets, the set A, which is a closed compact set containing the
the origin, and the set B = χ\A. Two different approximation
strategies will be used over A and B. Various R-MBRL
methods can be used to approximate the value function inside
A. For the set B, the StaF method is employed since there
are large regions of B that the state does not visit for the
regulation problem. Thus, the value function is approximated
by the StaF method when the state is in B and some R-
MBRL method is used when the state is in A. A regional
approximation method is also used to approximate the value
function in the set A′ = {x ∈ χ : d(x,A) ≤ `} (also known as
an inflation of A), where d(x,A) = inf{d(x, y) : y ∈ A} and
` ∈ R>0 is a constant, and approximation of the value function
over the transition region A′ \ A will be a state dependent
convex combination of the two controllers.

Let V̂1(x) denote the approximation of the value function
over A′ using the R-MBRL method, and denote V̂2(x) as
the StaF approximation of the value function over B. The
resulting approximation of the value function over χ will then
be V̂ (x) = λ(x)V̂1(x)+(1−λ(x))V̂2(x), where λ : χ→ [0, 1]
such that λ(x) = 1 when x ∈ A and λ(x) = 0 when
x ∈ χ \ A′ ⊂ B. If ε > 0 and |V̂1(x) − V ?(x)| < ε over
A′ and |V̂2(x)−V ?(x)| < ε over B, then |V̂ (x)−V ?(x)| < ε
for all x ∈ χ, since V̂ is a convex combination of V̂1 and V̂2

over the transition region A′ \A ⊂ B.
The following analysis is agnostic with respect to the

compact set A and the transition function λ. However, the
transition function λ should be a continuously differentiable

compactly supported function such that ‖∇λ(xo)‖ ≤ ∇λ,
where ∇λ ∈ R>0. An example of such a function is

λ(x) =


1, x ∈ A,

1
2

[
1 + cos(π d(x,A)

` )
]
, x ∈ A′ \A,

0, x 6∈ A′.
(8)

Examples of A for which λ is continuously differentiable
include [−1, 1]n as well as B1(0) = {y ∈ Rn : ‖y‖ ≤ 1}.

IV. VALUE FUNCTION APPROXIMATION

The value function V ? evaluated at xo using StaF kernels
centered at yo ∈ Br(xo) can be represented using a convex
combination as

V ?(xo) =λ(xo)WT
1 σ(xo)+(

1− λ(xo)
)
WT

2 (yo)φ
(
xo, c(yo)

)
+ ε(xo, yo). (9)

In (9), σ : χ → RP is a bounded vector of
continuously differentiable nonlinear basis functions such
that σ(0) = 0 and ∇σ(0) = 0, φ

(
xo, c(yo)

)
=[

k(xo, c1(yo), k(xo, c2(yo), . . . , k(xo, cL(yo)
]T

where k :
χ × χL → RL is a strictly positive definite continuously
differentiable kernel, W1 ∈ RP is a constant ideal R-
MBRL weight vector which is upper-bounded by a known
positive constant W 1 such that ‖W1‖ ≤ W 1 (cf., [19],
[20], [23]–[25]). Furthermore, W2 : χ → RL is the
continuously differentiable ideal local StaF weight function
which changes with the state dependent centers, and ε :
χ → R is the continuously differentiable function recon-
struction error such that sup

xo∈χ, yo∈Br(xo)
|ε(xo, yo)| ≤ ε and

sup
xo∈χ, yo∈Br(xo)

|∇ε(xo, yo)| ≤ ∇ε.
The subsequent analysis is based on an approximation of

the value function and optimal policy, evaluated at xo using
StaF kernels centered at yo ∈ Br(xo), expressed as

V̂ (xo, yo, Ŵ1c, Ŵ2c) = λ(xo)ŴT
1cσ(xo)

+ (1− λ(xo))ŴT
2cφ(xo, c(yo)), (10)

and

û(xo, yo, Ŵ1a, Ŵ2a) = −1

2
R−1gT (xo)

×
(
λ(xo)∇σT (xo)Ŵ1a + (1− λ(xo))∇φT (xo, c(yo))Ŵ2a

+∇λT (xo)
(
σT (xo)Ŵ1a − φT (xo, c(yo))Ŵ2a

))
. (11)

In (10) and (11), Ŵ1a, Ŵ1c ∈ RP and Ŵ2a, Ŵ2c ∈ RL are
weight estimates for the ideal weight vectors W1 and W2(yo)
respectively, and λ denotes the transition function introduced
in Section III. In an approximate actor-critic based solution,
the optimal value function V ? and control policy u? in (5) are
replaced by their respective estimates V̂ : χ×RL ×RP → R
and û : χ× RL × RP → Rm. This results in a residual error
δ : Rn ×RL ×RL ×RP ×RP → R called the Bellman error
(BE) which is defined as
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δ
(
xo, yo, Ŵ1c, Ŵ2c, Ŵ1a, Ŵ2a

)
, ∇V̂

(
xo, yo, Ŵ1c, Ŵ2c)

×
(
f(xo) + g(xo)û(xo, yo, Ŵ1a, Ŵ2a)

)
+ r
(
xo, û(xo, yo, Ŵ1a, Ŵ2a)

)
. (12)

Motivated by classical ADP solutions which aim to find a set
of weights so that the BE is zero ∀xo ∈ Rn, to solve the
optimal control problem, the critics and actors aim to find a
set of weights that minimize the BE ∀xo ∈ Rn.

V. ONLINE LEARNING

At a given time instant t, the Bellman error δt : R≥0 → R
is evaluated as

δt(t) , δ
(
x(t), x(t), Ŵ1c(t), Ŵ2c(t), Ŵ1a(t), Ŵ2a(t)

)
, (13)

where Ŵ1c, Ŵ1a, and Ŵ2c, Ŵ2a, denote estimates of the critic
and actor weights for the R-MBRL approximation method and
StaF approximation method, respectively, at time t. Further-
more, x(t) denotes the state of the system in (1) when starting
from initial time t0 and initial state x0 under the influence of
the state feedback controller

u(t) = û
(
x(t), x(t), Ŵ1a(t), Ŵ2a(t)

)
. (14)

The BE is extrapolated to unexplored areas of the state
space to learn via simulation of experience (cf. [1], [19]). The
critic Ŵ1c selects sample points {xi ∈ A′|i = 1, · · · , N}
based on prior information about the desired behavior of the
system, i.e. selected about the origin, and evaluates a form
of the BE, δ1t,i : R≥t0 → R. Similarly, sample trajectories
{xj(x(t), t) ∈ Br(x(t))

∣∣j = 1, 2, . . . ,M} that follow the cur-
rent state x(t) are selected so that the StaF critic Ŵ2c evaluates
another extrapolated form of the BE δ2t,j : R≥t0 → R. The
extrapolated BEs are expressed as

δ1t,i(t) = ŴT
1c(t)ω∇σi(t) + r

(
xi, ûi(t)

)
, (15)

δ2t,j(t) = ŴT
2c(t)ω∇φj(t) + r

(
xj(x(t), t), ûj(t)

)
, (16)

where

ω∇σi(t) ,∇σ(xi)
(
f(xi) + g(xi)ûi(t)

)
,

ω∇φj(t) ,∇φ
(
xj(x(t), t), c(x(t))

)(
f(xj(x(t), t))

+ g(xj(x(t), t))ûj(t)
)
,

and

ûi(t) =− 1

2
R−1gT (xi)∇σ(xi)

T Ŵ1a(t),

ûj(t) =− 1

2
R−1gT

(
xj(x(t), t)

)
×∇φ

(
xj(x(t), t), c(x(t))

)T
Ŵ2a(t).

A. Regional Update Laws

The BE and extrapolated BE in (13) and (15), respectively,
contain R-MBRL actor and critic estimates, Ŵ1a and Ŵ1c.
Various approximation methods could be used to evaluate the
BE in A. See [1], [19], [23], [26], [27] for examples of R-
MBRL actor and critic update laws.

B. Local Update Laws

While the state is not in the local domain of A′, the StaF
critic uses the BEs in (13) and (16) to improve the estimate
of Ŵ2c. Specifically, the StaF critic can be designed using the
recursive least-squares update law

˙̂
W2c(t) = −kc1Γ2(t)

ω∇φ(t)

ρ2(t)
δt(t)

− kc2
M

Γ2(t)

M∑
j=1

ω∇φj(t)

ρ2j(t)
δ2t,j(t), (17)

Γ̇2(t) = β2Γ2(t)− kc1Γ2(t)
ω∇φ(t)ωT∇φ(t)

ρ2
2(t)

Γ2(t)

− kc2
M

Γ2(t)

M∑
j=1

ω∇φj(t)ω
T
∇φj(t)

ρ2
2j(t)

Γ2(t) (18)

where Γ2(t0) = Γ2o and Γ2(t) is the least-squares lear-
ning gain matrix, kc1, kc2,∈ R≥0 are constant adaptation
gains, β2 ∈ R≥0 is a constant forgetting factor, ρ2(t) ,
1 + γ2ω

T
∇φ(t)ω∇φ(t), ρ2j(t) , 1 + γ2ω

T
∇φj(t)ω∇φj(t), and

γ2 ∈ R≥0 is a constant positive gain. In (18)

ω∇φ(t) ,
((

1− λ(x(t))
)
∇φ
(
x(t), c(x(t))

)
+ φ

(
x(t), c(x(t))

)
∇λ(x(t))

)(
f(x(t))

+ g(x(t))û
(
x(t), x(t), Ŵ1a(t), Ŵ2a(t)

))
(19)

is an instantaneous regressor matrix. The StaF actor update
law is given by

˙̂
W2a(t) = −ka1

(
Ŵ2a(t)− Ŵ2c(t)

)
− ka2Ŵ2a(t)

+
kc1G

T
∇φ(t)Ŵ2a(t)ωT∇φ(t)

4ρ2(t)
Ŵ2c(t)

+
kc2
4M

M∑
j=1

GT∇φj(t)Ŵ2a(t)ωT∇φj(t)

ρ2j(t)
Ŵ2c(t), (20)

where ka1, ka2 ∈ R are positive con-
stant adaptation gains and G∇φ(t) ,
∇φ
(
x(t), c(x(t))

)
g(x(t))R−1gT (x(t))∇φT

(
x(t), c(x(t))

)
.

Remark 1. In typical BE extrapolation approaches, the extra-
polated BEs δ1t,i, δ2t,j and controls ûi(t), ûj(t) take similar
forms to the actual BE δt and control u (t) , respectively,
with the exception of using extrapolated states. However, the
extrapolated BEs and extrapolated inputs in this work take
a different form compared to the true BE and control. The
goal is to approximate the ideal weight W1 irrespective of the
system state and W2 in a region around the state, therefore
the extrapolated BEs do not rely on a convex combination in
the transition region A′ \A. Furthermore, when the state is in
B = χ\A, only BE extrapolation is used in A′ to approximate
the weight W1. Hence, the developed method is fundamentally
different from the approach in [1] and [19].
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VI. STABILITY ANALYSIS

For notational brevity, time dependence of all signals is sup-
pressed hereafter. The approach in this paper was generalized
to allow the use of any model-based approximation method
in A. However, to facilitate the following analysis a certain
structure is given to the R-MBRL update laws. Without a loss
of generality, let the R-MBRL update laws take a similar form
to the StaF update laws in (17), (18), and (20). The R-MBRL
update laws contain the extrapolated regressor ω∇σi defined
in Section V, where the regressor ω∇σ is defined as

ω∇σ ,
(
λ (x)∇σ (x) + σ (x)∇λ (x)

)(
f (x) + g (x)u

)
,

(21)

where the BE δt is defined in (22), and the extrapolated
BE δ1t,i is defined in (23). The constant gains for the R-
MBRL update laws are ηc1, ηc2 ∈ R≥0. The R-MBRL
least-squares learning gain matrix is Γ1(t) with a forgetting
factor β1 ∈ R≥0, and with normalizing factors ρ1(t) ,
1 + γ1ω

T
∇σ(t)ω∇σ(t), ρ1i(t) , 1 + γ1ω

T
∇σi(t)ω∇σi(t) where

γ1 ∈ R≥0 is a constant positive gain.
To facilitate the analysis, let W̃1a , W1 − Ŵ1a, W̃1c ,

W1 − Ŵ1c, W̃2a ,W2 − Ŵ2a, and W̃2c ,W2 − Ŵ2c denote
the weight estimation errors. Unmeasurable forms of the BEs
in (13), (15), and (16) can be written as

δt = δt1 + δt2 + δt3, (22)

where

δt1 = −ωT∇σW̃1c +
1

4
λ2W̃T

1aG∇σW̃1a + ∆1,

δt2 = −ωT∇φW̃2c +
1

4
(1− λ)2W̃T

2aG∇φW̃2a + ∆2,

δt3 =
1

2
(1− λ)

(
λW̃T

2aG∇φ∇σW̃1a + W̃T
1aσG∇λ∇φW̃2a

− 1

2
W̃T

2aφG∇λ∇φW̃2a

)
+

1

4

(
W̃T

1aσG∇λσ
T W̃1a

− 2W̃T
2aφG∇λσ

T W̃1a + W̃T
2aφG∇λφ

T W̃2a

)
+

1

2
λ
(
W̃T

1aσG∇λ∇σW̃1a − W̃T
2aφG∇λ∇σW̃1a

)
+ ∆3

and

δ1t,i = −ωT∇σiW̃1c +
1

4
W̃T

1aG∇σiW̃1a + ∆1i

δ2t,j = −ωT∇φjW̃2c +
1

4
W̃T

2aG∇φjW̃2a + ∆2j , (23)

where the functions ∆1,∆2,∆3,∆1i,∆2j : Rn → R are
uniformly bounded over χ such that the bounds

{
‖∆k‖

∣∣k =

1, 2, 3
}

, ‖∆1i‖, and ‖∆2j‖ decrease with decreasing ‖∇ε‖
and ‖∇W‖.

Using the R-MBRL and StaF update laws, the system states
x and selected states xi and xj are assumed to satisfy the
following inequalities.

Assumption 2. There exists a positive constant T ∈ R≥0 such
that

c1IP ≤
t+Tˆ

t

(
ω∇σ (τ)ωT∇σ (τ)

ρ2
1 (τ)

)
dτ, ∀t ∈ R≥t0 ,

c2IP ≤ inf
t∈R≥t0

(
1

N

N∑
i=1

ω∇σi (t)ωT∇σi (t)

ρ2
1i (t)

)
,

c3IP ≤
1

N

t+Tˆ

t

(
N∑
i=1

ω∇σi (τ)ωT∇σi (τ)

ρ2
1i (τ)

)
dτ, ∀t ∈ R≥t0 ,

b1IL ≤
t+Tˆ

t

(
ω∇φ (τ)ωT∇φ (τ)

ρ2
1 (τ)

)
dτ, ∀t ∈ R≥t0 ,

b2IL ≤ inf
t∈R≥t0

 1

M

M∑
j=1

ω∇φj (t)ωT∇φj (t)

ρ2
2j (t)

 ,

b3IL ≤
1

M

t+Tˆ

t

 M∑
j=1

ω∇φj (τ)ωT∇φj (τ)

ρ2
2j (τ)

 dτ, ∀t ∈ R≥t0 ,

where {ck|k = 1, 2, 3}, {bk|k = 1, 2, 3} ∈ R≥0 are nonnega-
tive constants, and at least one of the constants from each set
is strictly positive.

Remark 2. Assumption 2 requires the regressors ω∇σ, ω∇φ
or ω∇σi, ω∇φj to be persistently exciting. The regressors ω∇σ
and ω∇φ are completely determined by the state x and weights
Ŵ1a and Ŵ2a. Typically, to ensure that c1, b1 > 0, meaning
ω∇σ and ω∇φ are persistently excited, a probing signal is
added to the control input. However, this introduces undesired
oscillations in the system and produces noisy signals in the
response. In addition, as the system and state converge to the
origin, excitation will usually vanish. Hence, it is difficult to
ensure that c1, b1 > 0. On the other hand, ω∇σi and ω∇φj
are dependent on xi and xj , which are designed independent
of the system state x. In fact, ω∇σi is designed based on the
desired behavior of the system, i.e. regulate the states to the
origin. Therefore, without the need of a probing signal, c2
and b2 can be made strictly positive by selecting a sufficient
number of extrapolated sample states in both regions of the
state space, or if xi and xj contain enough frequencies then
c3, b3 become strictly positive.1

Let a candidate Lyapunov function VL : Rn+2L+2P ×
R≥0 → R be defined as

VL(Z, t) = V ?(x) +
1

2
W̃T

1cΓ
−1
1 (t)W̃1c +

1

2
W̃T

2cΓ
−1
2 (t)W̃2c

+
1

2
W̃T

1aW̃1a +
1

2
W̃T

2aW̃2a,

where V ? is the unknown, positive, continuously differentiable
optimal value function, and

Z =

[
xT , W̃T

1a, W̃
T
1c, W̃

T
2a, W̃

T
2c

]T
.

1Typical results in ADP require excitation along the system trajectory (cf.
[3], [7]–[9], [11], [23], [28]), which may potentially cause the system to
go unstable. However, in this result, virtual excitation can be used without
injecting destabilizing dither signals into the system. The sample trajectories
xi and xj can be designed to contain enough frequencies if they are selected
to follow a highly oscillatory trajectory or are chosen from a sampling
distribution such as a normal or uniform distribution.
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The least-squares update laws which take the form of
(18) ensure that the least-squares gain matrices satisfy [29,
Corollary 4.3.2]

Γ1IP ≤ Γ1(t) ≤ Γ1IP (24)

Γ2IL ≤ Γ2(t) ≤ Γ2IL, (25)

provided the minimum eigenvalues λmin

{
Γ−1

1o

}
,

λmin

{
Γ−1

2o

}
> 0 and Assumption 2 holds (see [1]).

Since the optimal value function V ? is positive definite,
using [30, Lemma 4.3], the candidate Lyapunov function VL
can be bounded as

νl (‖Zo‖) ≤ VL (Zo, t) ≤ νl (‖Zo‖) (26)

for all t ∈ R≥t0 and for all Zo ∈ Rn+2L+2P , where νl, νl :
R≥0 → R≥0 in (26) are class K functions. To facilitate the
analysis, let c, b ∈ R>0 be constants defined as

c ,
β1

2Γ1ηc2
+
c2
2
, b ,

β2

2Γ2kc2
+
b2
2
. (27)

Let νl : R≥0 be a class K function such that

νl(||Z||) ≤
q

2
‖x‖2 +

(ka1 + ka2)

8

∥∥∥W̃2a

∥∥∥2

+
kc2b

8

∥∥∥W̃2c

∥∥∥2

+
(ηa1 + ηa2)

8

∥∥∥W̃1a

∥∥∥2

+
ηc2c

8

∥∥∥W̃1c

∥∥∥2

. (28)

Theorem 1. Provided Assumption 2 is satisfied and the control
gains are selected sufficiently large (see the Appendix), then
the controller in (11) along with the R-MBRL and StaF update
laws taking the form of (17)-(20) ensure that the state x
and weight estimation errors W̃1a, W̃1c, W̃2a, and W̃2c are
uniformly ultimately bounded.2

Proof: The time-derivative of the Lyapunov function is

V̇ = V̇ ? − W̃T
1cΓ
−1
1

˙̂
W1c + W̃T

2cΓ
−1
2 (Ẇ2 − ˙̂

W2c)

− W̃T
1a

˙̂
W1a + W̃2a(Ẇ2 − ˙̂

W2a)

+
1

2
W̃T

1cΓ̇
−1
1 W̃1c +

1

2
W̃T

2cΓ̇
−1
2 W̃2c. (29)

Using the chain rule, the time derivative of the ideal weights
Ẇ2 can be expressed as

Ẇ2 = ∇W2(f (x) + g (x)u). (30)

Provided the sufficient conditions in the Appendix are met,
substituting for (13), (15)-(20), and (30), using the bounds in
(24), (25), and (28), completing the squares, and using Young’s
inequality, the time derivative in (29) can be upper bounded
as

V̇L ≤ −νl(‖Z‖), ∀‖Z‖ > ν−1
l (ι). (31)

After using (26), (31), and (38), [30, Theorem 4.18] can be
invoked to conclude that Z is uniformly ultimately bounded
such that lim supt→∞ ‖Z (t)‖ ≤ vl

−1
(
vl
(
v−1
l (ι)

))
. Since

Z ∈ L∞, it follows that x, W̃1a, W̃1c, W̃2a, W̃2c ∈ L∞. The
function W2 is a continuous function of x and x ∈ L∞ which
implies W2 (x) ∈ L∞. Hence, Ŵ1a, Ŵ1c, Ŵ2a, Ŵ2c ∈ L∞,
and u ∈ L∞.

2Results such as [31] could potentially be used to achieve an asymptotic
convergence to the origin, but the additional feedback to eliminate the residual
error would deviate from the optimal policy.

VII. SIMULATION

A. Two-State Dynamical System

To demonstrate the performance of the developed ADP
method for a nonlinear system with a known value function,
simulation results for a two-state dynamical system are provi-
ded. The simulation is performed for the control affine system
given in (1) where xo = [xo1, x

o
2]T ,

f(xo) =

[
−xo1 + xo2

− 1
2x

o
1 − 1

2x
o
2

(
1− (cos (2xo1) + 2)

2
) ]

, and

g(xo) =

[
0

cos (2xo1) + 2

]
. (32)

The control objective is to minimize the cost functional in (2)
with the instantaneous cost in (3) and the weighting matrices
being Q = I2 and R = 1. The optimal value function, V ?(xo),
and optimal control policy, u?(xo), for these particular dyna-
mics and cost function are known to be V ?(xo) = 1

2x
o2
1 +xo22

and u?(xo) = −
(
cos(2xo1) + 2

)
xo2 respectively (cf. [3]). The

regions A and A′ are selected as circles around the origin such
that A = B1.5(0) , {xo : ‖xo‖ ≤ 1.5} and A′ = B2.5(0) ,
{xo : ‖xo‖ ≤ 2.5} , respectively. The transition function λ(xo)
is selected to be (8) with ` = 1.0 as discussed in Section III.

To simulate the developed technique, the MBRL approach
from [19] is used to learn the value function in A. The
MBRL basis function vector for value function approximation
in the set A′ is selected as σ(xo) = [xo21 , x

o
1x
o
2, x

o2
2 ]T , with

thirteen uniformly distributed points selected in A′ for BE
extrapolation. To approximate the value function in B = χ\A,
the StaF basis function vector is selected as φ

(
xo, c(xo)

)
=[

xoT c1(xo), xoT c2(xo), xoT c3(xo)
]T

where ci (xo) = xo+di
for i = 1, 2, 3. The centers of the StaF kernels are selected
as d1 = 0.25 · [0, 1]

T , d2 = 0.25 · [−0.886,−0.5]
T , and

d2 = 0.25 · [−0.886, 0.5]
T . To ensure sufficient excitation

in B, a single trajectory xoj : Rt≥t0 → Rn is selected
for BE extrapolation such that at each time instant t, xoj (t)
is selected at random from a uniform distribution over a
ν(xo (t))×ν(xo (t)) square centered at the current state xo(t)
where ν(xo (t)) = xoT xo+0.01

1+xoT xo
. The initial conditions for the

system at t0 = 0 are

x (0) = [−10, 10]
T
,

Ŵ1c (0) = Ŵ1a (0) = 2× 13,

Ŵ2c (0) = Ŵ2a (0) = 0.3× 13,

Γ1 (0) = 350× I3, Γ2 (0) = 50× I3.

The gains for the MBRL update laws are selected as

ηc1 = 0.001, ηc2 = 2, ηa1 = 25,

ηa2 = 0.1, β1 = 0.5, γ1 = 2,

and the gains for the StaF update laws (17), (18), and (20) are
selected as

kc1 = 0.001, kc2 = 0.09, ka1 = 1.5

ka2 = 0.01, β1 = 0.003, and γ2 = 0.05.
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Time (s)
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-20
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-10
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0

5

û(x(t); Ŵa1(t); Ŵa2(t))
u$(x(t))

Figure 1: The optimal control policy and estimate for the
two-state system in (32).

Time (s)
0 2 4 6 8 10

V
$
(x

(t
))
!

V̂
! x

(t
);

Ŵ
c1
(t

);
Ŵ

c2
(t

)"

-30

-20

-10

0

10

20

Figure 2: The value function estimation error for the two-state
system in (32).

Results: Figure 1 indicates that the control policy estimate
converges to the optimal controller, while regulating the states
to the origin, as seen in Figure 3. Figure 2 shows the value
function approximation error, from which it is clear that the
value function estimate V̂ converges to the optimal value
function. Figure 4 shows that the estimated value function
and policy weights for both the StaF (Figures 4b and 4d) and
MBRL (Figures 4a and 4c) methods converge to steady-state
values and remain bounded. The MBRL weights converge
close to their optimal weights W1 = [0.5, 0, 1]

T
; however,

the approximate StaF weights cannot be compared to their
ideal weights because the optimal StaF weight are unknown.

B. Ten-State Dynamical System

To demonstrate the performance of the developed ADP
method on a higher dimensional system, consider a centralized

Time (s)
0 2 4 6 8 10

x
(t

)

-10

-5

0

5

10
x1

x2

(a) State trajectory for the two-state
system in (32).

x1(t)
-10 -5 0 5

x
2
(t

)

-4

-2

0

2

4

6

8

10

(b) Phase-space portrait for the two-
state system in (32).

Figure 3: State regulation and state-space portrait for the two-
state dynamical system. In Figure 3b, the region A′ is the
represented by the larger dashed circle while A is represented
via the smaller circle.
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Ŵ
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(t

)

-0.5
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1
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2
Ŵc1;1

Ŵc1;2

Ŵc1;3

(a) R-MBRL critic approximations.
Time (s)

0 5 10

Ŵ
c2
(t

)

0.2

0.25

0.3

0.35 Ŵc2;1

Ŵc2;2

Ŵc2;3

(b) StaF critic approximations.

Time (s)
0 5 10

Ŵ
a
1
(t

)

-0.5

0

0.5

1

1.5

2
Ŵa1;1

Ŵa1;2

Ŵa1;3

(c) R-MBRL actor approximations.
Time (s)

0 5 10

Ŵ
a
2
(t

)

0.2

0.25

0.3

0.35

0.4
Ŵa2;1

Ŵa2;2

Ŵa2;3

(d) StaF actor approximations.

Figure 4: Value function and policy weight approximations
for the two-state system in (32). The StaF actor and critic
weights are updated using (17), (18), and (20). The R-MBRL
actor and critic weights are updated using adaptation schemes
which take a similar form to the StaF update laws, as discussed
in Section VI.

controller computing the control policies for a network of ten
one-state dynamical systems where each system is in control
affine form with dynamics represented as

fi (xoi ) =
(
θa,ix

o
i + θb,i (xoi )

2
)
,

gi (xoi ) = (cos (2xi) + 2) , ∀i = 1, . . . , 10,

where θa,i = 2, 5, 0.1, 0.5, 2.5, 0.3, 0.5, 0.15, 3.5, 2 and
θb,i = 1, 0.5, , 1, 1, 1, 0.3, 1.1, 0.7, 0.9, 0.8 for i = 1, . . . , 10,
respectively. The agent dynamics are combined to form one
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large dynamical system given by

f (x) =

 θa,1x
o
1 + θb,1 (xo1)

2

...
θa,10x

o
6 + θb,10 (xo6)

2

 ,
g (x) = diag [(cos (2x1) + 2) , . . . , (cos (2x10) + 2)] . (33)

The transition function is selected to be the same as in (8)
with A = B1(0) , {xo : ‖xo‖ ≤ 1} and A′ = B2(0) ,
{xo : ‖xo‖ ≤ 2} and ` = 1.0. The control objective is to
minimize the cost functional in (2) with the instantaneous cost
in (3) using the weighting matrices Q = I10 and R = I10.

The MBRL basis is selected to be a vector of twenty
polynomials, and for BE extrapolation, twenty-one equally
distributed points are selected in A′. The StaF basis is selected
to be φ

(
xo, c(xo)

)
=
[
xoT c1(xo), . . . , xoT c11(xo)

]
, where

ci (xo) = xo+di for i = 1, . . . , 11. The centers di are selected
to be the vertices of a 10-simplex. For BE extrapolation in B, a
single point is selected at random from a uniform distribution
over a [2ν (xo (t))]

10 hypercube centered at the current state,
where ν(xo (t)) = 0.0003xoT xo

1+0.5xoT xo
. When the states converge to A,

the StaF update laws are turned off to reduce computational
burden. The initial conditions for the system at t0 = 0 are
selected as

x (0) = [1.2,−0.3, 3,−2.4,−2.1,−2.7,−1.2, 1.2, 0.3,−1.8]
T
,

Ŵ1c (0) = Ŵ1a (0) = 5× 120,

Ŵ2c (0) = Ŵ2a (0) = 0.25× 111,

Γ1 (0) = 350× I20, Γ2 (0) = 100× I11.

The gains for the MBRL update laws are selected as

ηc1 = 0.0005, ηc2 = 30, ηa1 = 25,

ηa2 = 0.01, β1 = 0.06, γ1 = 3,

and for the StaF update laws in (17), (18), and (20) the gains
are selected as

kc1 = 0.001, kc2 = 0.8, ka1 = 0.4

ka2 = 0.001, β1 = 0.0001, and γ2 = 0.9.

Results: Figure 5 and Figure 7 show that the control policy
and the system states converge to the origin. The oscillation-
like effect between 0 and 1 seconds in Figure 5 comes from
StaF approximation in B. Figure 6 indicates that the BE
converges to zero. The transition of the BE between 0 and
1 second in Figure 6 is attributed to the transition of the
value function approximation wight approximation as the state
enters A′. Figure 8 shows that the approximate MBRL weights
converge to steady-state values, and the StaF weights remain
bounded.

C. Comparison

The developed technique is compared to the R-MBRL
approximation technique in [19] and the StaF approximation
technique in [1] via MATLABr Simulinkr running at 1000
Hz on an Intelr Core™ i5-2500K CPU at 3.30GHz. All
systems are simulated for 100 seconds and the total cost,

Time (s)
0 0.5 1 1.5 2

û
! x

(t
);

Ŵ
a
1
(t

);
Ŵ

a
2
(t

)"

-15

-10
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0

5

10

15

0 50 100

-10

0

10

Figure 5: Optimal control policy estimate for the ten-state
dynamical system.
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Ŵ
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Ŵ
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);
Ŵ

a
2
(t

)"

-50

-40
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-10
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10

0 50 100
-10

0

10

Figure 6: Bellman Error using the developed method for a
ten-state dynamical system.

steady-state root-mean square (RMS) error, and running time
are compared. The approximation method from [1] is imple-
mented using polynomial StaF basis functions with centers
at the vertices of an n-simplex for each n-dimensional pro-
blem.3 The approximation method from [19] is implemented
using polynomial basis functions selected via trial-and-error.
Furthermore, the sets A and A′ are selected via trial-and-error
to demonstrate the effect of selecting different regions.4 It is
seen that the developed technique converges similar to the R-

3At a minimum n + 1 kernels need to be used with an n-dimensional
system. The choice of kernel is only governed a few rules imposed by the
StaF method, which can be found in [1], [21], [27]. Dot product kernels
work well for the StaF application; examples include polynomial kernels and
exponential kernels.

4The performance of the proposed method depends on the choice of A and
A′. Hence, if the initial conditions are far from the origin then larger sets may
be used, otherwise the sets A and A′ should be smaller to provide enough
time for the R-MBRL weights to be learned.
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Two-State Dynamical System Three-State Dynamical System
Controller R-MBRL + StaF StaF controller in [1] R-MBRL controller in [19] R-MBRL + StaF StaF controller in [1] R-MBRL controller in [19]
Total cost 150.55 150.62 150.50 24.85 25.57 24.55

RMS steady-
0 1.66× 10−2 0 0 1.19× 10−4 0state error

Running time (sec) 4.91 2.95 4.11 11.49 3.40 15.57

(a) Two and three-state simulation results.

Six-State Dynamical System Ten-State Dynamical System
Controller R-MBRL + StaF StaF controller in [1] R-MBRL controller in [19] R-MBRL + StaF StaF controller in [1] R-MBRL controller in [19]
Total cost 37.72 39.56 59.12 60.22 65.43 88.30

RMS steady-
0 1.81× 10−8 1.7× 10−3 0 2.76× 10−10 0state error

Running time (sec) 28.12 5.57 73.6 84.34 9.77 217.98

(b) Six and ten-state simulation results.

Table I: Simulation results. Steady-state RMS errors below 1× 10−16 are considered to be zero.

Three-State Dynamical System
x (0) = [−3, 3,−2.5]T

Controller
R-MBRL + StaF R-MBRL + StaF R-MBRL + StaF StaF controller in R-MBRL controller in

A = {xo : ‖xo‖ ≤ 0.25} A = {xo : ‖xo‖ ≤ 1.5} A = {xo : ‖xo‖ ≤ 3.0} [1] [19]
A′ = {xo : ‖xo‖ ≤ 1.25} A′ = {xo : ‖xo‖ ≤ 2.75} A′ = {xo : ‖xo‖ ≤ 4.5}

Total cost 24.85 23.98 23.27 25.57 24.55
RMS steady-

0 0 0 1.19× 10−4 0state error
Running time (sec) 11.49 11.49 11.59 3.40 9.82

Table II: Three-state simulation results with different sets A and A′. Steady-state RMS errors below 1×10−16 were considered
to be zero.

Two-State Three-State Six-State Ten-State
Dynamical System Dynamical System Dynamical System Dynamical System

Controller R-MBRL + StaF StaF in [1] R-MBRL + StaF StaF in [1] R-MBRL + StaF StaF in [1] R-MBRL + StaF StaF in [1]
Total cost 150.55 150.62 24.85 25.57 37.72 39.56 60.22 65.43
Local cost 1.71 1.76 0.11 0.27 0.46 1.97 0.75 1.58

Table III: Local cost when the system enters the set A for the developed method and the StaF-based method in [1].

Six-State Dynamical System
‖x (0)‖ = 6.61 ‖x (0)‖ = 13.23

Controller
R-MBRL + StaF StaF controller in R-MBRL + StaF StaF controller in

A = {xo : ‖xo‖ ≤ 4} [1] A = {xo : ‖xo‖ ≤ 10} [1]
A′ = {xo : ‖xo‖ ≤ 5} A′ = {xo : ‖xo‖ ≤ 10.5}

Total cost 21.59 27.78 83.55 111.57
Local cost 6.95 11.98 39.75 70.14

RMS steady-
0 1.61× 10−9 0 1.90× 10−9

state error
Running time (sec) 26.46 5.35 26.86 5.16

Table IV: Six-state simulation results with different sets A and A′ under different initial conditions using the same gains for
the update laws (17), (18), and (20). Steady-state RMS errors below 1× 10−16 were considered to be zero.

MBRL technique in [19] but at a smaller cost and running
time as the dimension of the system increases. In theory,
the R-MBRL method should be closest to optimal because it
provides an approximation over the entire operating domain.
However, the choice of basis functions and the number of
basis functions used for approximation has a major influence
on the approximation. Hence, when the exact parameterization
is known such as in the case of the two-state system, R-
MBRL provides the smallest cost, but this is not necessarily
true when the basis is not known a priori. The basis function
used is directly correlated to the cost through the input;
hence, basis functions with larger gradients will exhibit higher
control efforts which can increase cost. An examination of the
correlation between the type of basis function used and total

cost for the R-MBRL method is out of the scope of this paper.
The increase in running time for the R-MBRL method in [19]
for the six and ten-state systems occurs because the value
function is approximated over the entire domain of operation
instead of just a local region around the origin, requiring a
large number of basis functions. The RMS error is practically
zero since all of the methods provide a sufficiently accurate
approximation of the value function, resulting in a stabilizing
feedback.

The StaF-only approximation and the developed approxi-
mation technique results in a similar cost for the two, three,
and six-state simulation when using difference gains. But for
the ten-state simulation, the cost is smaller for the developed
approximation technique. The StaF method in [1] also results
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Figure 7: The states for the ten-state dynamical system con-
verge to the origin.
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(a) R-MBRL critic approximations.
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(c) R-MBRL actor approximations.
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Figure 8: Value function and policy weight approximations
using the R-MBRL and StaF critic and actor update laws for
the ten-state dynamical system in (33).

in a slightly higher steady-state RMS error compared to the
developed method. When increasing to a higher dimensional
system such as the six and ten-state systems, the StaF method
in [1] results in a much shorter running time when compared
to the developed method because the developed method still
requires stationary basis functions around the origin, which
increases the running time.

In many applications such as station keeping of marine craft,
the local cost or the cost which starts being calculated once the
marine craft reaches a goal region is more important than the
total cost for regulating to that region and staying there. Table

III displays the local cost once the system enters the set A for
the developed and StaF-based methods. The developed method
results in a smaller local cost compared to the StaF method in
[1]. Since the R-MBRL method contains a larger number of
basis functions over A′ compared to the StaF method, a better
approximation over A is learned, resulting in a reduced local
cost.

Table IV provides a comparison of the developed method
compared to the StaF method in [1] when the same gains
are used and a large region A is selected with respect to the
initial conditions. The results show that the StaF method has
a smaller running time compared to the developed method;
however, the developed method yields a lower cost compared
to the StaF-only method. The developed method is capable of
quickly learning the value function via BE extrapolation in the
neighborhood A while the state still has not A.

Table II provides a comparison of the developed method
with StaF and R-MBRL when the sets A and A′ and the tran-
sition region A′\A are increased for the three-state dynamical
system using different gains. As the sets get larger, a smaller
total cost results. The lower cost is because the R-MBRL
method is approximating the value function over a larger area,
and hence, provides a more accurate approximation compared
to the local approximations of the StaF method. As the sets
A and A′ are increased, the developed method produces a
smaller total cost compared to the R-MBRL method in [19],
this is partially attributed to the fact that implementation of
R-MBRL over a large region is challenging when an exact
basis for value function approximation is not available. As the
transition region A′ \A increases, the gradient of λ decreases,
possibly contributing to the smaller cost. Also in [19], the
least-squares learning gain matrix Γ1 (t) was updated without
using recorded data, while the developed R-MBRL update law
similar to (18) includes recorded data to improve the selection
of Γ1 (t) .

The results in Tables I-IV indicate that the optimal choice
of the approximation method depends on the circumstance,
and several advantages and disadvantages need to be taken
into consideration when selecting which method to use. The
StaF method is best suited for a high dimensional application
requiring real-time performance where global optimality is
not required. However, Table IV shows that there are circum-
stances in which the developed method outperforms the StaF
method in [1] in terms of total and local cost. Moreover, since
the StaF method in [1] lacks memory, the weights need to be
relearned every time the system passes through the predefined
area of interest in the operating domain, whereas the developed
uses the R-MBRL method to learn to static weights in that
region and doesn’t need to relearn the weights when the system
leaves the neighborhood. The R-MBRL method in [19] is
best suited for lower dimensional applications where global
optimality is a premium. However, approximating the value
function over the entire state-space requires a large number
of basis functions, and hence, a large computational burden.
Since the developed method reduces the area of interest,
which reduces the number of basis functions required, it is
computationally efficient when compared to R-MBRL in [19].
Applications with large operating domains may benefit from
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the developed method since the value function can be learned
in desired areas of the state-space, e.g., around the origin,
independent of where the state is, using R-MBRL, while StaF
keeps the system stable by approximating the value function
around the state trajectory. Although the developed method
shows a slight improvement over [1] in terms of cost and
RMS error, more tuning parameters and an overall larger
number of unknown parameters are required; hence, increasing
the computational complexity of the tuning process and the
computations.

VIII. CONCLUSION

An infinite horizon optimal control problem was solved
using a novel approximation methodology utilizing the StaF
kernel method and a R-MBRL method. The operating domain,
χ, of the system was segregated into two parts; a neighbor-
hood, A ⊂ χ, containing the origin where R-MBRL was
employed, and the set B = χ \ A where the StaF method
was employed. For a state initialized in B, the StaF method
ensured stable and computationally efficient operation while a
R-MBRL method achieved a sufficiently accurate estimate of
the value function over the set A. When the state entered A,
the R-MBRL technique was used to regulate the state to the
origin.

Under specific conditions, Theorem 1 established that the
developed control strategy results in uniform ultimate boun-
dedness of the state trajectory. Simulation examples for two,
three, six, and ten-state dynamical systems showed that the
developed approximation method outperforms previous met-
hods. As the dimension of the system increases, the developed
method is able to estimate the value function sufficiently to
reduce the local cost and the RMS error.

To ensure smooth transition between the two approximate
optimal controllers as the state transitioned from B to A,
a state varying convex combination of the two controllers
was used based on the distance from set A. However, the
convex combination in the approximation approach resulted
in the need for large gains. A possible subject for future
research would be a switched-systems based modification to
the developed method which employs a buffer to allow for a
sufficient dwell time in the transition region B to A.

In the developed method, the sets A and A′ were selected by
trial and error to demonstrate the difference in performance.
The rate at which the optimal value function is learned in A
depends on the size and location of A′ in the state-space. A
possible investigation into how to find the optimal sets A and
A′ remains an open question for future research.
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APPENDIX A
SUFFICIENT CONDITIONS

In the following, the notation ‖(·)‖ is defined as ‖h‖ ,
supξ∈Bζ ‖h(ξ)‖, for some continuous function h : Rn → Rk,
where Bζ ⊂ Rn+2L+2P denotes a closed ball with radius ζ
centered at the origin. The sufficient conditions that facilitate
the stability analysis are given by

(ka1 + ka2)

2
≥
(
(
kc1√
γ2

+
ηc1√
γ1

)ϑ5 +
kc1√
γ2
ϑ6

)
νl (‖Z(t0)‖)

+2ϑ1 + ϑ2 +
ϑ4‖W2‖√

γ2
, (34)

(ηa1 + ηa2)

2
≥ (

ηc1√
γ1
ϑ6 + (

ηc1√
γ1

+
kc1√
γ2

)ϑ7)νl (‖Z(t0)‖)

+
( 1

Γ2
+ 1
)
ϑ2 +

ϑ3W1√
γ1

, (35)

kc2b

4
≥ max

{
ϑ2

2Γ2
+
kc1(ϑ5 + ϑ6 + ϑ7)

4
√
γ2

+
ϑ10

2
,(

ka1 + ϑ9

)2
(ka1 + ka2)

}
, (36)

ηc2c

4
≥ max

{
ηc1(ϑ5 + ϑ6 + ϑ7)

4
√
γ1

+
ϑ10

2
,(

ηa1 + ϑ3

2
√
γ1
W1

)2
(ηa1 + ηa2)

}
, (37)

and

ν−1
l (ι) < νl

−1(νl(ζ)). (38)

In (34)-(38), the constants ι, {ϑi|i = 1, . . . 12} ∈ R>0 are
defined as

ϑ1 =
‖G∇W2∇φ‖

2
+
‖G∇W2∇λφ

T ‖
2

,

ϑ2 =
‖G∇W2∇σ‖

2
+
‖G∇W2∇λσ

T ‖
2

,

ϑ3 =
ηc1 + ηc2

4
‖G∇σ‖, ϑ4 =

kc1 + kc2
4

‖G∇φ‖,
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2
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‖φG∇λ∇φ‖

4
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‖φG∇λ∇λφT ‖

4
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The sufficient condition in (34) can be satisfied by increa-
sing the gain ka2. This will not affect the sufficient conditions
in (35) and (37) and it may decrease the sufficient condition in
(36). The sufficient condition in (35) can be satisfied without
affecting the sufficient conditions (34) and (36) by increasing
the gain ηa2. The sufficient condition in (36) can be satisfied
by selecting points for BE extrapolation in B ⊂ χ \ A
so that the minimum eigenvalue b in (27) is large enough
and by increasing the gain ka2. By selecting points for BE
extrapolation in A ⊂ χ such that the minimum eigenvalue,
c, is large enough, and a large ηa2, the sufficient condition
in (37) can be satisfied. Provided the transition function λ is
selected such that ∇λ is small, the basis functions used for
approximation are selected such that ‖ε‖, ‖∇ε‖ , and ‖∇W2‖
are small, and ka2, ηa2, c, and b are selected to be sufficiently
large, then the sufficient condition in (38) can be satisfied. 5

5The minimum eigenvalue of 1
N

∑N
i=1

ω∇σi(t)ω
T
∇σi(t)

ρ21i(t)
can be increased

by collecting redundant data, i.e. selecting N � P in the area of interest.
The bound on the gradient of λ, i.e. ∇λ, can be decreased by selecting larger
transition regions A′ \A.
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