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Global Output Feedback Tracking Control for
Uncertain Second-Order Nonlinear Systems

H. T. Dinh, S. Bhasin, D. Kim, and W. E. Dixon

Abstract—A dynamic neural network (DNN) observer-based
output feedback controller for uncertain nonlinear systems with
bounded disturbances is developed. The DNN-based observer
works in conjunction with a dynamic filter for state estimation
using only output measurements during on-line operation. A
sliding mode term is included in the DNN structure to robustly
account for exogenous disturbances and reconstruction errors.
Weight update laws for the DNN, based on estimation errors,
tracking errors, and the filter output are developed which
guarantee global asymptotic regulation of the state estimation
error. A combination of a DNN feedforward term, along
with estimated state feedback and sliding mode terms yield a
global asymptotic tracking result. The developed method yields
the first output feedback technique simultaneously achieving
global asymptotic tracking and global asymptotic estimation of
unmeasurable states for the class of uncertain nonlinear systems
with bounded disturbances. A two-link robot manipulator is
used to investigate the performance of the proposed control
approach.

I. INTRODUCTION

The problem of output feedback (OFB) tracking control
for nonlinear dynamic systems has been a topic of con-
siderable interest over the past several decades. Motivation
arises from the fact that full access to system states is
sometimes impossible in many practical systems. An obvious
method to estimate the unmeasurable states is using ad hoc
numerical differentiation. The simplicity of this technique
makes it particularly useful for implementation. However, if
output measurements are noisy, such numerical techniques
will amplify the high frequency content which may pro-
duce undesired oscillations or even system instability. Other
solutions can be classified as observer-based or filter-based
techniques that utilize the output information for estimating
unmeasurable states. While observers estimate the output
derivative by approximating the system dynamics, filters
approximate the behavior of a differentiator over a range of
frequencies. Hence, observer designs need partial or exact
model knowledge of the system dynamics, whereas filters
can provide a model-free means of estimating unmeasurable
states.
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OFB controllers using model-based observers were devel-
oped in [1]–[3], based on the assumption of exact model
knowledge. OFB control for systems with parametric uncer-
tainties have been developed in [4]–[6]. However, a limitation
of such previous adaptive OFB control approaches is that
only linear-in-the-parameters (LP) uncertainties are consid-
ered. As a result, if uncertainties in the system do not satisfy
the LP condition or if the system is affected by disturbances,
the results will reduce to a uniformly ultimately bounded
result.

The condition of linear dependence upon unknown param-
eters can be relaxed by introducing a neural network (NN) or
fuzzy logic in the observer structure as in [7]–[12]; however,
both estimation and tracking errors are only guaranteed to be
bounded due to the existence of reconstruction errors. The
first semi-global asymptotic OFB tracking result for second-
order dynamic systems under the condition that uncertain
dynamics are first-order differentiable was introduced in [13]
with a novel filter design. All of the uncertain nonlinearities
in [13] are damped out by a sliding mode term, so the dis-
continuous controller requires high-gain. However, it is not
clear how to simply add a NN-based feedforward estimation
of the nonlinearities in results such as [13] to mitigate the
high-gain condition, because of the need to inject nonlinear
functions of the unmeasurable state. The approach used in
this paper avoids this issue by exploiting the recurrent nature
of a dynamic neural network (DNN) structure to inject terms
that cancel cross terms associated with the unmeasurable
state.

In this paper, and the preliminary work in [14], a DNN-
based observer-controller is proposed for uncertain nonlinear
systems affected by bounded disturbances, to achieve a two-
fold result: asymptotic estimation of the unmeasurable states
and asymptotic tracking control. The uncertain dynamics
are assumed to be first-order differentiable. The universal
approximation property of DNNs is utilized to approximate
the uncertain nonlinear system. A modified version of the
filter introduced in [13] is used to estimate the output
derivative. A combination of a NN feedforward term, along
with estimated state feedback and sliding mode terms are
designed for the controller. The DNN observer adapts on-line
for nonlinear uncertainties and should heuristically perform
better than a robust feedback observer. Weight update laws
for the DNN based on the estimation error, tracking error,
and filter output are proposed. Global asymptotic regulation
of the estimation error and global asymptotic tracking are
achieved. Experiments on a two-link robot manipulator show
the effectiveness of the developed method compared with a
PID controller and the approach in [13].
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II. SYSTEM MODEL AND OBJECTIVES

Consider a control-affine second order Euler-Lagrange-like
nonlinear system of the form

ẍ = f(x, ẋ) +G(x)u+ d, (1)

where x(t) ∈ Rn is the measurable output with a finite
initial condition x(0) = x0, u(t) ∈ Rn is the control
input, f(x, ẋ) ∈ Rn, G(x) ∈ Rn×n are continuous functions,
and d(t) ∈ Rn is an exogenous disturbance. The following
assumptions about the system in (1) will be utilized in the
subsequent development.

Assumption 1. The time derivatives of the system output
ẋ(t), ẍ(t) are unmeasurable. Assumption 2. The unknown
function f(x, ẋ) is C1, and the function G(x) is known,
invertible and the matrix inverse G−1(x) is bounded. As-
sumption 3. The disturbance d(t) is differentiable, and
d(t), ḋ(t) ∈ L∞.

The universal approximation property of multilayer NNs
(MLNN) states that given any continuous function F : S→
Rn, where S is a compact set, there exist ideal weights θ =
θ∗, such that the output of the NN, F̂ (·, θ) approximates
F (·) to an arbitrary accuracy [15], [16]. Hence, the unknown
function f(x, ẋ) in (1) can be replaced by a multi-layer NN
(MLNN), and the system can be represented as

ẍ = WTσ(V T1 x+ V T2 ẋ) + ε (x, ẋ) +Gu+ d, (2)

where W ∈ RN+1×n, V1, V2 ∈ Rn×N are unknown ideal
weight matrices of the MLNN having N hidden layer neu-
rons, σ(t) , σ(V T1 x(t) +V T2 ẋ(t)) ∈ RN+1 is the activation
function (sigmoid, hyperbolic tangent etc.), and ε(x, ẋ) ∈ Rn
is a function reconstruction error. The following assumptions
will be used in the DNN-based observer and controller
development and stability analysis.

Assumption 4. The ideal NN weights are bounded by
known positive constants [17], i.e. ‖W‖ ≤ W̄ , ‖V1‖ ≤ V̄1,
‖V2‖ ≤ V̄2. Assumption 5. The activation function σ(·)
and its partial derivatives σ′(·), σ′′(·) are bounded [17]. This
assumption is satisfied for typical activation functions (e.g.,
sigmoid, hyperbolic tangent). Assumption 6. The function
reconstruction error ε(x, ẋ), and its first time derivative are
bounded [17], as ‖ε(x, ẋ)‖ ≤ ε̄1, ‖ε̇(x, ẋ, ẍ)‖ ≤ ε̄2, where
ε̄1, ε̄2 are known positive constants.

A contribution of this paper is the development of a
robust DNN-based observer such that the estimated states
globally asymptotically converge to the real states of the
system (1), and a discontinuous controller enables the system
state to globally asymptotically track a desired time-varying
trajectory xd(t) ∈ Rn, despite uncertainties and disturbances
in the system. To quantify these objectives, an estimation
error x̃(t) ∈ Rn and a tracking error e(t) ∈ Rn are defined
as

x̃ , x− x̂, e , x− xd, (3)

where x̂(t) ∈ Rn is the state of the DNN observer which
is introduced in the subsequent development. The desired
trajectory xd(t) and its derivatives x(i)d (t) (i = 1, 2), are
assumed to exist and be bounded. To compensate for the
lack of direct measurements of ẋ(t), a filtered estimation

error, res(t) ∈ Rn, and a filtered tracking error, rtr(t) ∈ Rn,
are defined as

res ,
·
x̃+ αx̃+ η, rtr ,

·
e+ αe+ η, (4)

where α ∈ R is a positive constant gain, and η(t) ∈ Rn is
an output of the dynamic filter

η = p− (k + α)x̃,

ṗ = −(k + 2α)p− ν + ((k + α)2 + 1)x̃+ e, (5)
ν̇ = p− αν − (k + α)x̃, p(0) = (k + α)x̃(0), ν(0) = 0,

where ν(t) ∈ Rn is another output of the filter, p(t) ∈ Rn
is used as an internal filter variable, and k ∈ R is a positive
constant control gain. The filtered estimation error res(t) and
the filtered tracking error rtr(t) are not measurable since the
expressions in (4) depend on ẋ(t).

Remark 1. The basic structure of the second order dynamic
filter in (5) was first proposed in [13]. The filter in (5) admits
the estimation error x̃(t) and the tracking error e(t) as its
inputs and produces two signal outputs ν(t) and η(t). An
interesting point is that there is a virtual filter inside the
introduced filter where η(t) is the filtered signal of ν(t)
since η(t), ν(t) are related as η = ν̇ + αν. The auxiliary
signal p(t) is utilized to only generate the signal η(t) without
involving the unmeasurable state

·
x(t). Hence, the filter can

be physically implemented since it depends only on the
estimation error x̃(t) and the tracking error e(t) which are
measurable.

III. DNN-BASED ROBUST OBSERVER

The following multi-layer dynamic neural network
(MLDNN) architecture is proposed to observe the system
in (1)

··
x̂ = ŴT σ̂ +Gu− (k + 3α)η + β1sgn(x̃+ ν), (6)

where
[
x̂(t)T

·
x̂(t)T

]T
∈ R2n are the states of the DNN

observer, Ŵ (t) ∈ RN+1×n, V̂1(t), V̂2(t) ∈ Rn×N are the

weight estimates, σ̂(t) , σ(V̂1(t)T x̂(t) + V̂2(t)T
·
x̂(t)) ∈

RN+1 and β1 ∈ R is a positive constant control gain.

Remark 2. The term (k + 3α)η(t) in the DNN observer
in (6) is a cross-term which is cancelled in the stability
analysis. The sliding mode term sgn(x̃(t) + ν(t)) is added
to the observer structure to provide robustness against NN
reconstruction errors and external disturbances. The NN
term Ŵ (t)T σ̂(t) receives feedback of the observer states

x̂(t),
·
x̂(t) as inputs; hence the observer exploits a DNN

structure. Motivation for the DNN-based observer design is
that the DNN is proven to approximate nonlinear dynamic
systems with any degree of accuracy [15], [18], and the DNN
includes state feedback yielding computational advantages
over a static feedforward NN [19].
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The weight update laws for the DNN in (6) are developed
based on the subsequent stability analysis as

·
Ŵ = Γwproj[σ̂d(x̃+ e+ 2ν)T ],
·
V̂ 1 = Γv1proj[xd(x̃+ e+ 2ν)T ŴT σ̂′d], (7)
·
V̂ 2 = Γv2proj[ẋd(x̃+ e+ 2ν)T ŴT σ̂′d],

where Γw ∈ R(N+1)×(N+1), Γv1,Γv2 ∈ Rn×n, are
constant symmetric positive-definite adaptation gains, the
terms σ̂d(t), σ̂′d(t) are defined as σ̂d(t) , σ(V̂1(t)Txd(t) +
V̂2(t)T ẋd(t)), σ̂

′
d(t) , dσ(ς)/dς|ς=V̂ T

1 xd+V̂ T
2 ẋd

, and proj(·)
is a smooth projection operator [20], [21] used to guarantee
that the weight estimates Ŵ (t), V̂1(t), V̂2(t) remain bounded.

To facilitate the subsequent analysis, (4) and (5) can be
used to express the time derivative of η(t) as

η̇ = −(k + α)res − αη + x̃+ e− ν. (8)

The closed-loop dynamics of the filtered estimation error in
(4) can be determined by using (2)-(4), (6) and (8) as

ṙes = WTσ − ŴT σ̂ + ε+ d+ (k + 3α)η − β1sgn(x̃+ ν)

+ α(res − αx̃− η)− (k + α)res − αη + x̃+ e− ν.
(9)

Adding and subtracting WTσd + WT σ̂d + ŴT σ̂d, where
σd(t) , σ(V T1 xd(t) + V T2 ẋd(t)), the expression in (9) can
be rewritten as

ṙes = Ñ1 +N −kres−β1sgn(x̃+ν) + (k+α)η− x̃, (10)

where the auxiliary function
Ñ1(e, x̃, ν, res, rtr, Ŵ , V̂1, V̂2, t) ∈ Rn is defined as

Ñ1 ,WT (σ−σd)−ŴT (σ̂− σ̂d)−(α2−2)x̃−ν+e, (11)

and N(xd,
·
xd, Ŵ , V̂1, V̂2, t) ∈ Rn is segregated into two

parts as
N , ND +NB . (12)

In (12), ND(t), NB(Ŵ , V̂1, V̂2, t) ∈ Rn are defined as

ND , ε+ d, NB , NB1
+NB2

. (13)

In (13), NB1
(Ŵ , V̂1, V̂2, t), NB2

(Ŵ , V̂1, V̂2, t) ∈ Rn are
defined as

NB1
,WTO(Ṽ T1 xd + Ṽ T2 ẋd)

2 + W̃T σ̂′d(Ṽ
T
1 xd + Ṽ T2 ẋd),

NB2 , W̃T σ̂d + ŴT σ̂′d(Ṽ
T
1 xd + Ṽ T2 ẋd), (14)

where W̃ (t) ,W −Ŵ (t) ∈ RN+1×n, Ṽ1(t) , V1− V̂1(t) ∈
Rn×N , Ṽ2(t) , V2 − V̂2(t) ∈ Rn×N are the estimate mis-
matches for the ideal NN weights, and O(Ṽ T1 xd+Ṽ T2 ẋd)

2 ∈
RN+1 is the higher order term in the Taylor series of the
vector functions σd(·) in the neighborhood of V̂ T1 xd+ V̂ T2 ẋd
as

σd = σ̂d + σ̂′d(Ṽ
T
1 xd + Ṽ T2 ẋd) +O(Ṽ T1 xd + Ṽ T2 ẋd)

2. (15)

Motivation for segregating the terms in (10), (12) and (13)
is derived from the fact that different terms have different
bounds. The term Ñ1(·) includes all terms which can be

upper bounded by states, whereas N(·) includes all terms
which can be upper bounded by constants. The difference
between the terms ND(·) and NB(·) in (12) is that the first
time derivative of ND(·) is upper-bounded by a constant,
whereas the term ṄB(·) is state dependent. The term NB(·)
is further segregated as (13) to aid in the weight update
law design for the DNN in (7). In the subsequent stability
analysis, the term NB1(·) is cancelled by the error feedback
and the sliding mode term, while the term NB2

(·) is partially
compensated for by the weight update laws and partially
cancelled by the error feedback and the sliding mode term.

Using (3), (4), Assumptions 4, 5, the proj(·) algorithm in
(7) and the Mean Value Theorem [22], the auxiliary function
Ñ1(t) in (11) can be upper-bounded as∥∥∥Ñ1

∥∥∥ ≤ ζ1 ‖z‖ , (16)

where ζ1 ∈ R is a computable positive constant, and
z(x̃, e, res, rtr, ν, η) ∈ R6n is defined as

z , [x̃T eT rTes r
T
tr ν

T ηT ]T . (17)

Based on Assumptions 3− 6, the Taylor series expansion in
(15), and the weight update laws in (7), the following bounds
can be developed

‖ND‖ ≤ ζ2, ‖NB1‖ ≤ ζ3, ‖NB2‖ ≤ ζ4, (18)∥∥∥ṄD∥∥∥ ≤ ζ5, ∥∥∥ṄB∥∥∥ ≤ ζ6 + ζ7 ‖z‖ ,

where ζi ∈ R, i = 2, 3, ..., 7, are computable positive
constants.

IV. ROBUST ADAPTIVE TRACKING CONTROLLER

The control objective is to force the system state to
asymptotically track the desired trajectory xd(t), despite
uncertainties and disturbances in the system. Quantitatively,
the objective is to regulate the filtered tracking controller
rtr(t) to zero. Using (2)-(4) and (8), the open-loop dynamics
of the tracking error in (4) are expressed as

ṙtr = WTσ +Gu+ ε+ d− ẍd + α(rtr − αe− η)

− (k + α)res − αη + x̃+ e− ν. (19)

The control input u(t) is now designed as a composition of

the DNN term, the estimated states x̂(t),
·
x̂(t), and the sliding

mode term as

u(t) = G−1[ẍd−ŴT σ̂d− (k+α)(
·
ê+αê)−β2sgn(e+ν)],

(20)
where β2 ∈ R is a positive constant control gain, and the
tracking error estimate ê(t) ∈ Rn is defined as ê , x̂− xd.
Based on the fact that the estimated states are measurable,
the tracking error estimate ê(t) and its derivative

·
ê(t) are

measurable; moreover, rtr(t) is related to res(t) as

rtr = res +
·
ê+ αê. (21)

Adding and subtracting WTσd+WT σ̂d and using (19)-(21),
the closed-loop error system becomes

ṙtr = Ñ2 +N − krtr − β2sgn(e+ ν)− e, (22)
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where the auxiliary function Ñ2(e, x̃, η, ν, rtr, t) ∈ Rn is
defined as

Ñ2 ,WT (σ − σd)− (α2 − 2)e− ν + x̃− 2αη, (23)

and the function N(·) is introduced in (12). Similarly, using
(3), (4), Assumptions 4, 5, the proj(·) algorithm in (7), and
Mean Value Theorem [22], the auxiliary function Ñ2(·) in
(23) can be upper-bounded as∥∥∥Ñ2

∥∥∥ ≤ ζ8 ‖z‖ , (24)

where ζ8 ∈ R is a computable positive constant.
To facilitate the subsequent stability analysis, let

y(z, P,Q) ∈ R6n+2 be defined as y , [zT
√
P
√
Q]T ,

where the auxiliary function P (x̃, e, ν,
·
x̃, ė, ν̇, t) ∈ R is the

Filippov solution to the differential equation

Ṗ , L, (25)

P0 = β1

n∑
j=1

∣∣x̃
j
(0) + ν

j
(0)
∣∣+ β2

n∑
j=1

∣∣e
j
(0) + ν

j
(0)
∣∣

− (x̃(0) + e(0) + 2ν(0))TN (0) ,

where the subscript j = 1, 2, .., n denotes the jth ele-
ment of x̃(0), e(0) or ν(0), and the auxiliary function

L(x̃, e, ν,
·
x̃, ė, ν̇, t) ∈ R is defined as

L , −rTes(ND +NB1
− β1sgn(x̃+ ν))

− rTtr(ND +NB1
− β2sgn(e+ ν))

− (
·
x̃+ ė+ 2ν̇)TNB2

+ β3 ‖z‖2 , (26)

where β1, β2 are introduced in (6) and (20), and β3 ∈ R
is a positive constant. The control gains βi, i = 1, 2, 3 are
selected according to the sufficient conditions

β1, β2 > max(ζ2 + ζ3 + ζ4, ζ2 + ζ3 +
ζ5
α

+
ζ6
α

), (27)

β3 > 2ζ7,

where ζi, i = 1, 2, ..., 7 are introduced in (16) and (18).
Provided the sufficient conditions in (27) are satisfied, the
following inequality can be obtained P (·) ≥ 0 (see [23]).
The auxiliary function Q(W̃ , Ṽ1, Ṽ2) ∈ R is defined as

Q ,
α

2

[
tr(W̃TΓ−1w W̃ ) + tr(Ṽ T1 Γ−1v1 Ṽ1) + tr(Ṽ T2 Γ−1v2 Ṽ2)

]
,

(28)

where tr(·) denotes the trace of a matrix. Since the
gains Γw,Γv1,Γv2 are symmetric, positive-definite matrices,
Q(·) ≥ 0.

V. LYAPUNOV STABILITY ANALYSIS FOR DNN-BASED
OBSERVATION AND CONTROL

Theorem 1. The DNN-based observer and controller pro-
posed in (6) and (20), respectively, along with the weight
update laws in (7) ensure global asymptotic estimation and
tracking in sense that∥∥∥∥ ·x̃(t)

∥∥∥∥→ 0 as t→∞, and ‖e(t)‖ → 0 as t→∞,

provided the gain conditions in (27) are satisfied, and the
control gains α and k = k1 + k2 introduced in (4)-(5) are
selected as

λ , min(α, k1) >
ζ21 + ζ28

4k2
+ β3, (29)

where ζ1, ζ8, β3 are introduced in (16), (24), and (26),
respectively.

Proof: Consider the Lyapunov candidate function
VL(y, t) : D×(0,∞) → R, which is a Lipschitz continuous
positive definite function defined as

VL ,
1

2
x̃T x̃+

1

2
eT e+

1

2
νT ν +

1

2
ηT η +

1

2
rTesres

+
1

2
rTtrrtr + P +Q, (30)

which satisfies the following inequalities:

U1(y) ≤ VL(y, t) ≤ U2(y). (31)

In (31), U1(y), U2(y) ∈ R are continuous positive definite
functions defined as U1(y) , 1

2 ‖y‖
2
, and U2(y) , ‖y‖2 .

Let ẏ = h(y, t) represent the closed-loop differential
equations in (4)-(7), (8), (10), (22), and (25), where h(y, t) ∈
R6n+2 denotes the right-hand side of the closed-loop error
signals. Using Filippov’s theory of differential inclusions
[24]–[27], the existence of solutions can be established for
ẏ ∈ K[h](y, t), where K[h] , ∩

δ>0
∩

µM=0
coh(B(y, δ)−M, t),

where ∩
µM=0

denotes the intersection of all sets M of

Lebesgue measure zero, co denotes convex closure, and
B(y, δ) =

{
w ∈ R6n+2| ‖y − w‖ < δ

}
. The right hand side

of the differential equation, h(y, t), is continuous except
for the Lebesgue measure zero set of times t ∈ [t0, tf ]
when x̃(t) + ν (t) = 0 or e(t) + ν(t) = 0. Hence,
the set of time instances for which ẏ(t) is not defined
is Lebesgue negligible. The absolutely continuous solution
y(t) = y(t0) +

´ t
t0
ẏ(t)dt does not depend on the value

of ẏ(t) on a Lebesgue negligible set of time-instances
[28]. Under Filippov’s framework, a generalized Lyapunov
stability theory can be used (see [27], [29]–[31] for further
details) to establish strong stability of the closed-loop system
ẏ = h(y, t). The generalized time derivative of (30) exists
almost everywhere (a.e.), i.e. for almost all t ∈ [t0, tf ],

and V̇L(y) ∈a.e.
·
Ṽ L(y), where

·
ṼL = ∩

ξ∈∂VL(y)
ξTK [Ψ]

T
,

∂VL is the generalized gradient of VL(y) [29], and Ψ ,[
·
x̃
T

ėT ν̇T η̇T ṙTes ṙ
T
tr

1
2P
− 1

2 Ṗ 1
2Q
− 1

2 Q̇

]
. Since VL(y) is a

locally Lipschitz continuous regular function that is smooth

in y,
·
Ṽ L(y) can be simplified as [30]

·
ṼL = ∇V TKΨT =

[
x̃T eT νT ηT rTes r

T
tr 2P

1
2 2Q

1
2

]
KΨT .

Using the calculus for K [·] from [31] (Theorem 1, Properties
2, 5, 7), and substituting the dynamics from (4), (5), (8), (10),
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(22), (25), (26) and (28),
·
Ṽ L(y) can be rewritten as

·
ṼL ⊂ x̃T (res − αx̃− η) + eT (rtr − αe− η)

+ ηT [−(k + α)res − αη + x̃+ e− ν]

+ νT (η − αν) + rTes{(k + α)η − x̃}
+ rTes{Ñ1 +N − kres − β1K[sgn(x̃+ ν)]}
+ rTtr{Ñ2 +N − krtr − β2K[sgn(e+ ν)]− e}
− rTes{ND +NB1

− β1K[sgn(x̃+ ν)]}
− rTtr{ND +NB1 − β2K[sgn(e+ ν)]}+ β3 ‖z‖2

− (
·
x̃+ ė+ 2ν̇)TNB2

− αtr(W̃TΓ−1w

·
Ŵ )

− αtr(Ṽ T1 Γ−1v1

·
V̂ 1)− αtr(Ṽ T2 Γ−1v2

·
V̂ 2). (32)

The set in (32) reduces to a scalar inequality, since the RHS
is continuous except for the Lebesgue measure zero set of
times when x̃(t) + ν (t) = 0 or e(t) + ν(t) = 0. Substituting
the weight update laws in (7) and canceling common terms,
(32) can be upper bounded as

·
ṼL

a.e.
≤ −αx̃T x̃− αeT e− ανT ν − αηT η − krTesres
− krTtrrtr + rTesÑ1 + rTtrÑ2 + β3 ‖z‖2 . (33)

Using (16) and (24), substituting k = k1+k2, and completing
the squares, the expression in (33) can be further bounded
as
·
ṼL

a.e.
≤ −α ‖x̃‖2 − α ‖e‖2 − α ‖ν‖2 − α ‖η‖2 − k1 ‖res‖2

− k1 ‖rtr‖2 +

(
ζ21 + ζ28

4k2
+ β3

)
‖z‖2

a.e.
≤ −(λ− ζ21 + ζ28

4k2
− β3) ‖z‖2

a.e.
≤ −U(y), (34)

where U(y) = c ‖z‖2, for some positive constant c, is a
continuous positive semi-definite function, and λ is defined
in (29). The inequalities in (31) and (34) show that VL(y) ∈
L∞; hence, x̃(t), e(t), ν(t), η(t), res(t), rtr(t), P (t) and

Q(t) ∈ L∞. Using (4) and (4), it can be shown that
·
x̃(t),

ė(t) ∈ L∞. Based on the assumption that xd(t), ẋd(t) ∈ L∞,
and e(t), ė(t) ∈ L∞, x(t), ẋ(t) ∈ L∞ by (3); moreover,

using (3) and x̃(t),
·
x̃(t) ∈ L∞, x̂(t),

·
x̂(t) ∈ L∞. Based

on Assumptions 2 and 5, the projection algorithm in (7), the
boundedness of the sgn(·) and σ(·) functions, and xd(t),

ẋd(t), x̂(t),
·
x̂(t) ∈ L∞, the control input u(t) is bounded

from (20). Similarly, ν̇(t), η̇(t), ṙes(t), ṙtr(t) ∈ L∞ by using
(5), (8), (9), (22); hence ż(t) ∈ L∞, using (17); hence, U(y)
is uniformly continuous. It can be concluded that c ‖z‖2 →
0 as t → ∞. Using the definition of z(t) in (17), it can be
shown that ‖x̃‖ , ‖e‖ , ‖res‖ , ‖rtr‖ , ‖ν‖ , ‖η‖ → 0 as t →
∞. Using (4), and standard linear analysis, it can be further

shown that
∥∥∥∥ ·x̃∥∥∥∥→ 0 as t→∞.

VI. EXPERIMENT RESULTS

The performance of the proposed output feedback control
method is tested on a two-link robot manipulator, where

two aluminum links are mounted on a 240 Nm (first link)
and a 20 Nm (second link) switched reluctance motor. The
motor resolvers provide rotor position measurements with a
resolution of 614400 pulses/revolution. Data acquisition and
control implementation were performed in real-time using
QNX at a frequency of 1.0 kHz. The two-link revolute robot
is modeled with the following dynamics

M(x)ẍ+ Vm(x, ẋ)ẋ+ F (ẋ) + τd(t) = u(t), (35)

where x =
[
x1 x2

]T
are the angular positions (rad),

ẋ =
[
ẋ1 ẋ2

]T
are the angular velocities (rad/s) of

the two links respectively, M(x) ∈ R2×2 is the inertia
matrix, Vm(x, ẋ) ∈ R2×2 denotes the centripetal-Coriolis
matrix, F (ẋ) ∈ R2 denotes friction, and τd(t) ∈ R2 is the
external disturbance. The system in (35) can be rewritten as
ẍ = f(x, ẋ)+G(x, ẋ)u+d, where f(x, ẋ) ∈ R2 and G(x) ∈
R2×2 are defined as f(x, ẋ) = −M−1 (Vmẋ+ F ) , G(x) =
M−1. The desired trajectory for each link of the manip-
ulator is given as (in degrees) x1d = 30 sin(1.5t)(1 −
exp(−0.01t3)), x2d = 30 sin(2.0t)(1 − exp(−0.05t3)). The
control gains are chosen as k = diag(25, 90), α =
diag(22, 30), β1 = β2 = 0.2, and Γw = 0.2I8×8,
Γv1 = Γv2 = 0.2I2×2, where In×n denotes an identity matrix
of appropriate dimensions. The NNs was implemented with
7 hidden layer neurons and the neural network weights are
initialized as uniformly distributed random numbers in the
interval [0.1, 0.3]. The initial conditions of the system and
the observer were selected as x(t) = ẋ(t) = [0 0]T , and
x̂(t) = ˙̂x(t) = [0 0]T , respectively.

The performance of the proposed output feedback con-
troller is compared with two controllers: a classical PID
controller, and the discontinuous OFB controller in [13].
A standard backwards difference algorithm is used to nu-
merically determine velocity from the encoder readings to
implement the PID controller. Control gains for the dis-
continuous controller in [13] were selected as K1 = 0.2,
K2 = diag(410, 38), and control gains for the PID controller
were selected as Kd = diag(120, 30), Kp = diag(750, 90),
and Ki = diag(650, 100). Table I shows the RMS and peak
errors and torques of Links 1 and 2 at steady-state for all
methods. The developed controller is shown to exhibit lower
tracking errors with less control authority than the compar-
ative controllers. Moreover, the DNN-based observer yields
better velocity estimation in comparison with the high fre-
quency content results from a backwards difference method
as depicted in Fig. 1. Hence, the experiments illustrate that
using the velocity estimation from a DNN-based observer,
which adaptively compensates for unknown uncertainties in
the system, results in improved control performance with
lower frequency content than the compared methods.

VII. CONCLUSION

A DNN observer-based output feedback control of a class
of second-order nonlinear uncertain systems is developed.
The DNN-based observer works in conjunction with a dy-
namic filter to estimate the unmeasurable state. The DNN is
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Fig. 1. Velocity estimation ẋ(t) using (a) DNN-based observer and (b) numerical backwards difference.

TABLE I
STEADY-STATE RMS ERRORS AND TORQUES FOR EACH OF THE ANALYZED CONTROL DESIGNS.

SSRMS e1 SSRMS e2 Max |e1| Max |e2| SSRMS τ1 SSRMS τ2 Max |τ1| Max |τ2|
Classical PID 0.4538 0.2700 0.7371 0.5267 6.5805 2.4133 14.5871 9.0015

Robust OFB [13] 0.3552 0.2947 0.5819 0.6429 8.6509 1.2585 56.5796 4.6107
Proposed 0.1743 0.1740 0.3100 0.3760 6.3484 0.6944 12.5562 2.2122

updated on-line by weight update laws based on the estima-
tion error, tracking error, and filter output. The controller is a
combination of the NN feedforward term, and the estimated
state feedback and sliding mode terms. Global asymptotic
estimation of the unmeasurable state and global asymptotic
tracking results are achieved, simultaneously. Results from an
experiment using a two-link robot manipulator demonstrate
the performance of the proposed output feedback controller.
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