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Dynamic Neural Network-based Robust Observers
for Uncertain Nonlinear Systems

H. T. Dinh, R. Kamalapurkar, S. Bhasin, and W. E. Dixon

Abstract—A dynamic neural network (DNN) based robust
observer for uncertain nonlinear systems is developed. The
observer structure consists of a DNN to estimate the system
dynamics on-line, a dynamic filter to estimate the unmeasurable
state and a sliding mode feedback term to account for modeling
errors and exogenous disturbances. The observed states are
proven to asymptotically converge to the system states of
high-order uncertain nonlinear systems through Lyapunov-
based analysis. Simulations and experiments on a two-link
robot manipulator are performed to show the effectiveness
of the proposed method in comparison to several other state
estimation methods.

I. INTRODUCTION

Full state feedback is not available in many practical
systems. In the absence of sensors, the requirement of full-
state feedback for the controller is typically fulfilled by using
ad hoc numerical differentiation techniques, which are sen-
sitive to noise, leading to unusable state estimates. Observers
are an alternative method to numerical methods. Several
nonlinear observers are available in literature to estimate
unmeasurable states. For instance, sliding mode observers
were designed for nonlinear systems in [1]–[3] based on an
assumption that exact model knowledge of the dynamics is
available. Model-based observers are also developed in [4]
and [5] which require a high-gain to guarantee estimation
error regulation. The observers introduced in [6] and [7] are
both applied for Lagrangian dynamic systems to estimate the
velocity. Global exponential convergence to the true velocity
is obtained in [6], and a global asymptotic result is proven
in [7]. The result in [6] is based on the immersion and
invariance (I&I) approach to reconstruct the unmeasurable
state. The use of this approach requires the solution of
a partial differential equation (PDE). Given the challenge
of finding such a solution, an approximation technique is
employed that introduces error in the estimation, the effects
of which are dominated by high-gain terms introduced in
the observer dynamics. In [7], the system dynamics must be
expressed in a non-minimal model and feedback from force

This research is supported in part by NSF award numbers 0547448,
0901491, 1161260, and 1217908. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the sponsoring agency.

H. T. Dinh is with the Deparment of Mechanical Engi-
neering, University of Transport and Communications, Vietnam
Email:{huyendtt214@gmail.com}. R. Kamalapurkar, and W. E. Dixon
are with the Department of Mechanical and Aerospace Engineering,
University of Florida, Gainesville FL 32611-6250, USA Email:
{rkamalapurkar, wdixon}@ufl.edu. S. Bhasin is with the Department
of Electrical Engineering, Indian Institute of Technology, Delhi, India
Email: sbhasin@ee.iitd.ac.in.

sensors are used to develop a velocity estimate. In [8], a
constrained optimal observer is developed for a nonlinear
system under the assumption of exact model knowledge,
where a nonquadratic performance cost function is used to
impose magnitude constraints on an observer gain matrix.

The design of robust observers for uncertain nonlinear
systems is considered in [9]–[12]. In [9], a second-order
sliding mode observer for uncertain systems using a super-
twisting algorithm is developed, where a nominal model of
the system is assumed to be available and estimation errors
are proven to converge in finite-time to a bounded set around
the origin. In [10], the developed observer guarantees that
the state estimates exponentially converge to the actual state,
if there exists a vector function satisfying a complex set
of matching conditions. An asymptotic velocity observer is
developed in [11] for general second-order systems; however,
all nonlinear uncertainties in the system are damped out by
a sliding-mode term resulting in high-frequency state esti-
mates. In [12], a high-gain derivative estimator is developed
to estimate the derivative(s) of a signal in the presence of
measurement noise. In the absence of noise, the derivative
estimation error asymptotically converges as the observer
gain grows to infinity.

Neural networks (NN) and fuzzy logic systems provide
an effective approximation method that facilitates new ob-
server designs, improving and complementing the base of
conventional observer design approaches. For example, the
approachs in [13]–[17] use the universal approximation
property in adaptive observer designs. However, estimation
errors in [13]–[17] are only guaranteed to be bounded due
to function reconstruction errors resulting from the NN or
fuzzy system.

The challenge to obtain asymptotic estimation stems from
the fact that to robustly account for disturbances, feedback of
the unmeasurable error and its estimate is required. Typically,
feedback of the unmeasurable error is obtained by taking
the derivative of the measurable state and manipulating
the resulting dynamics (e.g., this is the approach used in
methods such as [11] and [13]). However, such an approach
provides a linear feedback term of the unmeasurable state.
Hence, a sliding mode term could not be simply added
to the NN structure of the result in [13], for example, to
yield an asymptotic result, because it would require the
signum of the unmeasurable state. It is unclear how such a
nonlinear function of the unmeasurable state can be injected
in the closed-loop error system using traditional methods.
Likewise, it is not clear how to simply add a NN-based
feedforward estimation of the nonlinearities in results such
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as [11] because of the need to inject nonlinear functions of
the unmeasurable state.

The approach used in this paper circumvents the challenge
of injecting feedback to yield as asymptotic result by using
nonlinear (sliding-mode) feedback of the measurable state,
and then exploiting the recurrent nature of a dynamic neural
network (DNN) structure to inject terms that cancel cross
terms associated with the unmeasurable state. The approach
is facilitated by using the filter structure inspired by [11] and
a novel stability analysis. The stability analysis is based on
the idea of segregating the nonlinear uncertainties into terms
which can be upper-bounded by constants and terms which
can upper-bounded by states. The terms upper-bounded by
states can be canceled by the linear feedback of the mea-
surable errors, while the terms upper-bounded by constants
are partially rejected by the sliding mode feedback (of the
measurable state) and partially eliminated by the novel DNN-
based weight update laws.

The contribution of this paper (and its preliminary version
in [18]) is that the observer is designed for N th order uncer-
tain nonlinear systems, where the output of the N th order
system is assumed to be measurable up to N−1 derivatives.
The on-line approximation of the unmeasurable uncertain
nonlinearities via the DNN structure should heuristically
improve the performance of methods that only use high-
gain feedback. Asymptotic convergence of the estimated
states to the real states is proven using a Lyapunov-based
analysis. The developed observer can be used separately
from the controller even if the relative degree between the
control input and the output is arbitrary. Simulation and
experiment results on a two-link robot manipulator, a second-
order system, indicate the effectiveness of the proposed
observer when compared with the standard numerical central
differentiation algorithm, along with the high-gain observer
proposed in [12] and the observer in [11].

II. DNN-BASED OBSERVER DEVELOPMENT

Consider an N th order control affine nonlinear system
given in MIMO Brunovsky form as

ẋ1 = x2,

...
ẋN−1 = xN , (1)
ẋN = f(x) +G(x)u+ d,

y = x1,

where x =
[
xT1 x

T
2 . . . xTN

]T∈ RNn is the generalized state
of the system, u ∈ Rm is the control input, f : RNn → Rn,
G : RNn → Rn×m are unknown continuous functions, d ∈
Rn is an external disturbance, the system output y ∈ Rn is
measurable up to N−1th derivatives, i.e. xi, i = 1, 2.., N−1
are measurable and xN is unmeasurable with the finite initial
condition y(0) = y0. The following assumptions about the
system in (1) will be utilized in the observer development.

Assumption 1. The state x is bounded, i.e, xi ∈ L∞, i =
1, 2.., N , and is partially unmeasurable, i.e, only xN is
unmeasurable.

Assumption 2. The unknown functions f and G, and the
control input u is C1, and u, u̇ ∈ L∞.

Assumption 3. The disturbance d is differentiable, and
d, ḋ ∈ L∞.

The universal approximation property states that given any
continuous function F : S→ Rn, where S is a compact set,
there exist ideal weights θ = θ∗, such that the output of
the NN, F̂ (·, θ) approximates F (·) to an arbitrary accuracy
[19]. Hence, the unknown functions f and G in (1) can be
replaced by multi-layer NNs (MLNN) as

f(x) = WT
f σf (

N∑
j=1

V Tfjxj) + εf (x) ,

gi(x) = WT
giσgi(

N∑
j=1

V Tgijxj) + εgi (x) , (2)

where Wf ∈ RLf+1×n, Vfj ∈ Rn×Lf are unknown ideal
weight matrices of the MLNN having Lf hidden layer neu-
rons, gi is the ith column of the matrix G, Wgi ∈ RLgi+1×n,
Vgij ∈ Rn×Lgi are unknown ideal weight matrices of
the MLNN having Lgi hidden layer neurons, i = 1...m,
j = 1, 2.., N , σf : RNn → RLf+1 and σgi : RNn → RLgi+1

defined as σf , σf (
∑N
j=1 V

T
fj
xj), σgi , σgi(

∑N
j=1 V

T
gij
xj)

are activation functions (sigmoid, hyperbolic tangent etc.),
and εf , εgi : RNn → Rn, i = 1...m are the function recon-
struction errors. Using (2) and Assumption 2, the system in
(1) can be represented as

ẋ1 = x2,

...
ẋN−1 = xN , (3)

ẋN = WT
f σf + εf + d+

m∑
i=1

[
WT
giσgi + εgi

]
ui

where ui ∈ R is the ith element of the control input vector
u. The following assumptions will be used in the observer
development and stability analysis.

Assumption 4. The ideal NN weights are bounded by known
positive constants [20], i.e. ‖Wf‖ ≤ W̄f ,

∥∥Vfj∥∥ ≤ V̄fj ,
‖Wgi‖ ≤ W̄gi, and

∥∥Vgij∥∥ ≤ V̄gij , i = 1...m, j = 1, 2.., N ,
where ‖·‖ denotes the Frobenius norm for a matrix and
Euclidean norm for a vector.

Assumption 5. The activation functions σf , σgi and their
partial derivatives, σ′f , σ

′
gi, σ

′′
f , σ

′′
gi, i = 1...m, are bounded

[20].

Assumption 6. The function reconstruction errors εf , εgi,
and the respective first partial derivatives are bounded, with
i = 1...m [20].

The following multi-layer dynamic neural network
(MLDNN) architecture is proposed to observe the system
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in (1)

˙̂x1 = x̂2,

...
˙̂xN−1 = x̂N , (4)

˙̂xN = ŴT
f σ̂f +

m∑
i=1

ŴT
giσ̂giui + v,

where x̂=[x̂1 x̂2 . . . x̂
T
N ]T ∈ RNn is the state of the DNN

observer, Ŵf ∈ RLf+1×n, V̂fj ∈ Rn×Lf , Ŵgi ∈ RLgi+1×n,

V̂gij ∈ Rn×Lgi , i = 1...m, j = 1, 2.., N are the weight
estimates, σ̂f ∈ RLf+1, and σ̂gi ∈ RLgi+1 are defined
as σ̂f , σf (

∑N
j=1 V̂

T
fj
x̂j), σ̂gi , σgi(

∑N
j=1 V̂

T
gij
x̂j), and

v ∈ Rn is a function that is subsequently designed to provide
robustness to function reconstruction errors and external
disturbances.
Remark 1. In (4), the feedforward NN terms Ŵf σ̂f , Ŵgiσ̂gi
use internal feedback of the observer states x̂: a DNN
structure. The recurrent feedback loop in a DNN enables
it to approximate dynamic systems with any arbitrary degree
of accuracy [21], [22]. This property motivates the DNN-
based observer design. The DNN is automatically trained
to estimate the system dynamics by the weight update laws
based on the state, weight estimates, and the filter output.

The objective is to prove that the estimated state x̂
converges to the system state x. To facilitate the subsequent
analysis, the estimation error x̃1 ∈ Rn is defined as

x̃1 , x1 − x̂1. (5)

To facilitate the subsequent stability analysis and compensate
for the lack of direct measurements of xN , the following
filtered estimation errors are defined as

x̃2 , ˙̃x1 + α1x̃1,

x̃j , ˙̃xj−1 + αj−1x̃j−1 + x̃j−2, j = 3, . . . , N − 1

r , ˙̃xN−1 + αx̃N−1 + η, (6)

where α, α1, . . . , αN−2 ∈ R are positive constant control
gains, and η ∈ Rn is an output of the dynamic filter [11]

η = p− (k + α)x̃N−1,

ṗ = −(k + 2α)p− x̃f + ((k + α)2 + 1)x̃N−1,
·
x̃f = p− αx̃f − (k + α)x̃N−1, (7)

p(0) = (k + α)x̃N−1(0), x̃f (0) = 0,

where x̃f ∈ Rn is an auxiliary output of the filter, p ∈
Rn is used as an internal filter variable, and k ∈ R is a
positive constant gain. The filtered estimation error r is not
measurable, since the expression in (6) depends on ẋ.
Remark 2. The second order dynamic filter to estimate the
system velocity was first proposed for the output feedback
controller in [11]. The filter in (7) admits the filtered es-
timation error x̃N−1 as its input and produces two signal
outputs x̃f and η. The auxiliary signal p is utilized to only
generate the signal η without involving the derivative of the

estimation error
·
x̃N−1 which is unmeasurable. Hence, the

filter can be physically implemented. A difficulty to obtain
asymptotic estimation is that the filtered estimation error r
is not available for feedback. A relationship between the two

filter outputs is η =
·
x̃f+αx̃f , and this relationship is utilized

to generate the feedback of r. By taking the time derivative
of r, the term ẍf appears implicitly inside η̇. Consequently,

the unmeasurable term
·
x̃N is introduced in a way that it can

be replaced by r.

Remark 3. Several observer designs (cf. [7], [23], [24]) ex-
ploit a strictly positive real (SPR) condition to show conver-
gence, typically exploiting the Meyer-Kalman-Yakubovich
lemma. Designs based on the SPR condition require the
dynamic order of the observer to be large. The developed
observer avoids this condition by using a dynamic filter to
inject the negative feedback of r(t), yielding convergence of
the observer.

Taking the derivative of η and using (6) and (7) yields

η̇ = −(k + α)r − αη + x̃N−1 − x̃f . (8)

The closed-loop dynamics of the derivative of the filtered
estimation error r in (6) is determined from (3)-(6) and (8)
as

ṙ = WT
f σf − ŴT

f σ̂f +

m∑
i=1

[WT
giσgi − ŴT

giσ̂gi]ui + εf

+

m∑
i=1

εgiui + d− v + α(r − αx̃N−1 − η)

− (k + α)r − αη + x̃N−1 − x̃f . (9)

Based on the subsequent analysis, the robust disturbance
rejection term v is designed to inject cross terms to account
for related terms in the stability analysis and a sliding mode
term to deal with the disturbances in the system as

v = −[γ(k + α) + 2α]η + (γ − α2)x̃N−1

+ β1sgn(x̃N−1 + x̃f ), (10)

where γ, β1 ∈ R are positive constant control gains.
By adding and subtracting WT

f σf (
∑N
j=1 V̂

T
fj
xj) +

ŴT
f σf (

∑N
j=1 V̂

T
fj
xj) +

∑m
i=1[WT

giσgi(
∑N
j=1 V̂

T
gij
xj) +

ŴT
giσgi(

∑N
j=1 V̂

T
gij
xj)]ui and substituting v from (10), the

expression in (9) can be rewritten as

ṙ = Ñ +N − kr − β1sgn(x̃N−1 + x̃f )

+ γ(k + α)η − γx̃N−1, (11)

where the auxiliary function Ñ ∈ Rn is defined as

Ñ , ŴT
f [σf (

N∑
j=1

V̂ Tfjxj)− σ̂f ] + x̃N−1 − x̃f

+

m∑
i=1

ŴT
gi[σgi(

N∑
j=1

V̂ Tgijxj)− σ̂gi]ui, (12)

and N ∈ Rn is segregated into two parts as

N , N1 +N2. (13)
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In (13), N1 ∈ Rn, and N2 ∈ Rn are defined as

N1 , W̃T
f σ
′
f [

N∑
j=1

Ṽ Tfjxj ] +WT
f O(

N∑
j=1

Ṽ Tfjxj)
2

+

m∑
i=1

W̃T
giσ
′
gi[

N∑
j=1

Ṽ Tgijxj ]ui + εf + d

+

m∑
i=1

WT
giO(

N∑
j=1

Ṽ Tgijxj)
2ui +

m∑
i=1

εgiui,

N2 , W̃T
f σf (

N∑
j=1

V̂ Tfjxj) + ŴT
f σ
′
f [

N∑
j=1

Ṽ Tfjxj ]

+

m∑
i=1

W̃T
giσgi(

N∑
j=1

V̂ Tgijxj)ui

+

m∑
i=1

ŴT
giσ
′
gi[

N∑
j=1

Ṽ Tgijxj ]ui, (14)

where W̃f , Wf − Ŵf ∈ RLf+1×n, Ṽfj , Vfj − V̂fj ∈
Rn×Lf , W̃gi , Wgi − Ŵgi ∈ RLgi+1×n, Ṽgij , Vgij −
V̂gij ∈ Rn×Lgi , i = 1...m, j = 1, 2.., N are the estimate
mismatches for the ideal NN weights; O(

∑N
j=1 Ṽ

T
fj
xj)

2 ∈
RLf+1, O(

∑N
j=1 Ṽ

T
gij
xj)

2 ∈ RLgi+1 are the higher order
terms in the Taylor series of the vector functions σf , σgi in
the neighborhood of

∑N
j=1 V̂

T
fj
xj and

∑N
j=1 V̂

T
gij
xj , respec-

tively, as

σf = σf (

N∑
j=1

V̂ Tfjxj) + σ′f [

N∑
j=1

Ṽ Tfjxj ] +O(

N∑
j=1

Ṽ Tfjxj)
2,

σgi = σgi(

N∑
j=1

V̂ Tgijxj) + σ′gi[

N∑
j=1

Ṽ Tgijxj ] +O(

N∑
j=1

Ṽ Tgijxj)
2,

(15)

where the terms σ′f , σ′gi are defined as σ′f ,

σ′f (
∑N
j=1 V̂

T
fj
xj) = dσf (θ)/dθ|θ=∑N

j=1 V̂
T
fj
xj

and σ′gi ,

σ′gi(
∑N
j=1 V̂

T
gij
xj) = dσgi(θ)/dθ|θ=∑N

j=1 V̂
T
gij

xj
. To fa-

cilitate the subsequent analysis, an auxiliary function
N̂2(x̂j , Ŵf , V̂fj , Ŵgi, V̂gij , t) ∈ Rn is defined by replacing
the terms xj in N2 by x̂j , j = 1, 2.., N , respectively.

The weight update laws for the DNN in (4) are developed
based on the subsequent stability analysis as
·
Ŵ f = proj[Γwf σ̂f (x̃N−1 + x̃f )T ],
·
V̂ fj = proj[Γvfj x̂j(x̃N−1 + x̃f )T ŴT

f σ̂
′
f ], j = 1..N

·
Ŵ gi = proj[Γwgiσ̂giui(x̃N−1 + x̃f )T ], i = 1...m
·
V̂ gij = proj[Γvgij x̂jui(x̃N−1 + x̃f )T ŴT

giσ̂
′
gi], i = 1...m,

(16)

where Γwf ∈ R(Lf+1)×(Lf+1), Γwgi ∈ R(Lgi+1)×(Lgi+1),
Γvfj ,Γvgij ∈ Rn×n, are constant symmetric positive-
definite adaptation gains, the terms σ̂′f , σ̂

′
gi are defined as

σ̂′f , σ′f (
∑N
j=1 V̂

T
fj
x̂j) = dσf (θ)/dθ|θ=∑N

j=1 V̂
T
fj
x̂j

, σ̂′gi ,

σ′gi(
∑N
j=1 V̂

T
gij
x̂j)= dσgi(θ)/dθ|θ=∑N

j=1 V̂
T
gij

x̂j
, and proj(·)

is a smooth projection operator [25], [26] used to guarantee
that the weight estimates Ŵf , V̂fj , Ŵgi, and V̂gij remain
bounded.

Using (5)-(7), Assumptions 1-5, the proj(·) algorithm in
(16) and the Mean Value Theorem, the auxiliary function Ñ
in (12) can be upper-bounded as∥∥∥Ñ∥∥∥ ≤ ζ1 ‖z‖ , (17)

where z(x̃1, . . . , x̃N−1, x̃f , η, r) ∈ R(N+2)n is defined as

z , [x̃T1 . . . x̃
T
N−1 x̃

T
f ηT rT ]T . (18)

Based on (5)-(7), Assumptions 1-6, the Taylor series expan-
sion in (15) and the weight update laws in (16), the following
bounds can be developed

‖N1‖ ≤ ζ2, ‖N2‖ ≤ ζ3,
∥∥∥Ñ2

∥∥∥ ≤ ζ5 ‖z‖ ,∥∥∥Ṅ∥∥∥ ≤ ζ4 + ρ(‖z‖) ‖z‖ , (19)

where ζi ∈ R, i = 1...5, are computable positive constants,
ρ ∈ R is a positive, globally invertible, non-decreasing
function, and Ñ2 , N2 − N̂2.

To facilitate the subsequent stability analysis, let y ∈
R(N+2)n+2 be defined as

y , [zT
√
P
√
Q]T , (20)

and let D ⊂ R(N+2)n+2 be the open and connected set

D ,

{
y ∈ R(N+2)n+2| ‖y‖ < ρ−1(λ− ζ21

4
√

2k2
)

}
.

In (20), the auxiliary function P ∈ R is a generalized
Filippov solution to the differential equation

Ṗ , −rT (N1 − β1sgn(x̃N−1 + x̃f ))

− (
·
x̃N−1 +

·
x̃f )TN2,+

√
2ρ(‖z‖) ‖z‖2 ,

P (0) , β1

n∑
i=1

∣∣∣x̃N−1i(0) + x̃
fi

(0)
∣∣∣

− (x̃N−1(0) + x̃f (0))TN (0) , (21)

where the subscript i = 1, 2, .., n denotes the ith element of
x̃N−1(0) or x̃f (0), and β1 ∈ R is a positive constant chosen
according to the sufficient condition

β1 > max(ζ2 + ζ3, ζ2 +
ζ4
α

), (22)

where ζi, i = 2, 3, 4 are introduced in (19). Provided the
sufficient condition in (22) is satisfied, P ≥ 0 (see [27]).
The auxiliary function Q ∈ R in (20) is defined as

Q ,
α

2

 m∑
i=1

tr(W̃T
giΓ
−1
wgiW̃gi) +

N∑
j=1

tr(Ṽ Tfj Γ−1vfj Ṽfj )

+tr(W̃T
f Γ−1wfW̃f ) +

N∑
j=1

m∑
i=1

tr(Ṽ TgijΓ−1vgij Ṽgij )

 (23)
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where tr(·) denotes the trace of a matrix. Since the gains
Γwf ,Γwgi,Γvfj ,Γvgij are symmetric, positive-definite ma-
trices, Q ≥ 0.

III. LYAPUNOV STABILITY ANALYSIS FOR DNN-BASED
OBSERVER

Theorem 1. The DNN-based observer proposed in (4) along
with its weight update laws in (16) ensures semi-global
asymptotic estimation in sense that

‖x̃j(t)‖ → 0 and ‖xN (t)− x̂N (t)‖ → 0 as t→∞,

with j = 1 . . . (N−1), provided the control gain k = k1+k2
introduced in (7) is selected sufficiently large based on the
initial conditions of the states1, the gain condition in (22) is
satisfied, and the following sufficient conditions are satisfied

αj , α, k1 >
1

2
, γ >

2α2ζ25 + 1

2α− 1
, and λ >

ζ21
4
√

2k2
(24)

where

λ ,
1√
2

[
min(αγ − γ

2
− α2ζ25 , γ(αj −

1

2
), k1)− 1

2

]
,

(25)
and ζ1, ζ5 are introduced in (17) and (19), respectively.

Proof: Consider the Lyapunov candidate function VL :
D → R, which is a Lipschitz continuous positive definite
function defined as

VL ,
γ

2

N−1∑
j=1

x̃Tj x̃j+
γ

2
x̃Tf x̃f+

γ

2
ηT η+

1

2
rT r+P+Q, (26)

which satisfies the following inequalities:

U1(y) ≤ VL(y) ≤ U2(y), (27)

where U1, U2 : R(N+2)n+2 → R are continuous positive def-
inite functions defined as U1(y) , min(γ2 ,

1
2 ) ‖y‖2 , U2(y) ,

max(γ2 , 1) ‖y‖2 .
Let ẏ = h(y, t) represent the closed-loop differential

equations in (6)-(8), (11), (16) and (21), where
h(y, t) ∈ R(N+2)n+2 denotes the right-hand side of
the closed-loop error signals. Using Filippov’s theory
of differential inclusions [28]–[31], the existence of
solutions can be established for ẏ ∈ K[h](y, t),
where K[h] , ∩

δ>0
∩

µM=0
coh(B(y, δ) \ M, t), where

∩
µM=0

denotes the intersection of all sets M of

Lebesgue measure zero, co denotes convex closure,
and B(y, δ) =

{
w ∈ R(N+2)n+2| ‖y − w‖ < δ

}
.

The generalized time derivative of (26) exists almost
everywhere (a.e.), i.e. for almost all t ∈ [t0, tf ], and

V̇L(y (t)) ∈a.e.
·
Ṽ L(y (t)), where

·
ṼL = ∩

ξ∈∂VL(y)
ξTK [Ψ]

T
,

∂VL is the generalized gradient of VL [32], and

Ψ ,

[
·
x̃
T

1 . . .
·
x̃
T

N−1
·
x̃
T

f η̇T ṙT 1
2P
− 1

2 Ṗ 1
2Q
− 1

2 Q̇

]
.

Since VL is continuously differentiable,
·
Ṽ L can

1See the subsequent proof

be simplified as [33]
·
ṼL = ∇V TL K [Ψ]

T
=[

γx̃T1 . . . γx̃
T
N−1 γx̃

T
f γηT rT 2P

1
2 2Q

1
2

]
K [Ψ]

T
. Using

the calculus for K [·] from [34] (Theorem 1, Properties
2, 5, 7), and substituting the dynamics from (6)-(8), (11),
(21), and (23) and adding and subtracting α(x̃N−1+x̃f )T N̂2

and using (14),
·
ṼL can be rewritten as

·
ṼL ⊂ γx̃T1 (x̃2 − α1x̃1) + γx̃TN−1(r − αx̃N−1 − η)

+ γ

N−2∑
j=2

x̃Tj (x̃j+1 − αj x̃j − x̃j−1) + γx̃Tf (η − αx̃f )

+ γηT [−(k + α)r − αη + x̃N−1 − x̃f ]

− krT r − γrT x̃N−1 − α(x̃N−1 + x̃f )T N̂2 + rT Ñ

+ rT [N − β1K [sgn(x̃N−1 + x̃f )] + γ(k + α)η]

− rT (N1 − β1K [sgn(x̃N−1 + x̃f )])

+ α(x̃N−1 + x̃f )T

W̃T
f σ̂f + ŴT

f σ̂
′
f [

N∑
j=1

Ṽ Tfj x̂j ]

+

m∑
i=1

W̃T
giσ̂giui +

m∑
i=1

ŴT
giσ̂
′
gi[

N∑
j=1

Ṽ Tgij x̂j ]ui


− α

 m∑
i=1

tr(W̃T
giΓ
−1
wg

·
Ŵ gi) +

N∑
j=1

tr(Ṽ Tfj Γ−1vfj

·
V̂ fj )

+tr(W̃T
f Γ−1wf

·
Ŵ f ) +

m∑
i=1

N∑
j=1

tr(Ṽ TgijΓ−1vgij

·
V̂ gij )


− (
·
x̃N−1 +

·
x̃f )TN2 +

√
2ρ(‖z‖) ‖z‖2 . (28)

Using the fact that K[sgn(x̃N−1+x̃f )] = SGN(x̃N−1+x̃f )
[34], such that SGN(x̃N−1i+x̃fi) = 1 if (x̃N−1i+x̃fi) > 0,
[−1, 1] if (x̃N−1i + x̃fi) = 0, and −1 if (x̃N−1i + x̃fi) < 0
(the subscript i denotes the ith element), the set in (28)
reduces to the scalar inequality, since the RHS is continuous
a.e., i.e., the RHS is continuous except for the Lebesgue mea-
sure zero set of times when2 rTSGN (x̃N−1 (t) + x̃f (t))−
rTSGN (x̃N−1 (t) + x̃f (t)) = 0. Substituting the weight
update laws in (16) and canceling common terms yields

·
ṼL

a.e.
≤ −γ

N−2∑
j=1

αj x̃
T
j x̃j − γαx̃TN−1x̃N−1 + γx̃TN−2x̃N−1

− γαx̃Tf x̃f − γαηT η − krT r + rT Ñ

+ α(x̃N−1 + x̃f )T Ñ2 +
√

2ρ(‖z‖) ‖z‖2 . (29)

2Let Φ , x̃N−1 + x̃f . The set of times Λ ,{
t ∈ [0,∞) : r (t)T K [sgn (Φ (t))]− r (t)T K [sgn (Φ (t))] 6= {0}

}
⊂

[0,∞) is equal to the set of times {t : Φ (t) = 0 ∧ r (t) 6= 0}. Using
the fact that η = ˙̃xf + αx̃f , r can be expressed as r = Φ̇ + αΦ. Thus,
the set Λ can also be represented by

{
t : Φ (t) = 0 ∧ Φ̇ (t) 6= 0

}
. Since

φ : [0,∞) → Rn is continuously differentiable, it can be shown that the
set of time instances

{
t : Φ (t) = 0 ∧ Φ̇ (t) 6= 0

}
is isolated, and thus,

measure zero; hence, Λ is measure zero.
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Using (17), (19), the facts that

γx̃TN−2x̃N−1 ≤
γ

2
‖x̃N−1‖2 +

γ

2
‖x̃N−2‖2

αζ5 ‖x̃N−1 + x̃f‖ ‖z‖ ≤ α2ζ25 ‖x̃N−1‖
2

+ α2ζ25 ‖x̃f‖
2

+
1

2
‖z‖2 ,

substituting k = k1 + k2, and completing the squares, the
expression in (29) can be further bounded as

·
ṼL

a.e.
≤ −γ

N−2∑
j=1

(
αj −

1

2

)
‖x̃j‖2 − α(γ − αζ25 ) ‖x̃f‖2

− (αγ − γ

2
− α2ζ25 ) ‖x̃N−1‖2 − αγ ‖η‖2 − k1 ‖r‖2

+

(
1

2
+

ζ21
4k2

+
√

2ρ(‖z‖)
)
‖z‖2 .

Provided the sufficient conditions in (24) are satisfied, the
above expression can be rewritten as
·
ṼL

a.e.
≤ −

√
2(λ− ζ21

4
√

2k2
−ρ(‖z‖)) ‖z‖2

a.e.
≤ −U(y) ∀y ∈ D,

(30)
where λ is defined in (25), and U(y) = c ‖z‖2, for some
positive constant c, is a continuous positive semi-definite
function which is defined on D. The inequalities in (27)
and (30) show that VL ∈ L∞; hence, x̃j , x̃f , η, r, P and
Q ∈ L∞, with ∀j = 1 . . . N − 1; (6)-(8) are used to show
that

·
x̃j ,

·
x̃f , η̇ ∈ L∞, with ∀j = 1 . . . N − 1. Since xj ∈ L∞

by Assumption 1, x̂j ∈ L∞ using (5). Since x̃j , x̃f , η ∈ L∞,
using (10), v ∈ L∞. Since Wf ,Wgi, σf , σgi, εf , εgi ∈
L∞, i = 1...m, by Assumptions 4-6, the control input u
and the disturbance d are bounded by Assumptions 2-3,
and Ŵf , Ŵgi ∈ L∞, i = 1...m, by the use of the proj(·)
algorithm, from (9), ṙ ∈ L∞; then ż ∈ L∞, by using (18).
Let S ⊂ D denote a set defined as

S ,

{
y ∈ D|U2(y) < ε1(ρ−1(λ− ζ21

4
√

2k2
))2
}
. (31)

From (30), [35, Corollary 1] can be invoked to show that
c ‖z‖2 → 0 as t → ∞, ∀y(0) ∈ S. Based on the definition
of z the following result can be proven

‖x̃j(t)‖ , ‖η(t)‖ , ‖r(t)‖ → 0 as t→∞
∀y(0) ∈ S, ∀j = 1 . . . N − 1.

From (6), it can be further shown that

‖xN (t)− x̂N (t)‖ → 0 as t→∞ ∀y(0) ∈ S.

Note that the region of attraction in (31) can be made
arbitrarily large to include any initial condition by increasing
the control gains k, γ, αj and α (i.e., a semi-global type of
stability result).

IV. EXPERIMENT AND SIMULATION RESULTS

Experiments and simulations on a two-link robot manip-
ulator, a second-order system, are performed to compare
the proposed method with several other estimation methods.
The testbed is composed of a two-link direct drive revolute

robot consisting of two aluminum links. The motor encoders
provide position measurements with a resolution of 614400
pulses/revolution. The following dynamics of the testbed are
considered for the simulations and experiments:

M(x)ẍ+ Vm(x, ẋ)ẋ+ Fdẋ+ Fs(ẋ) = u, (32)

where x =
[
x1 x2

]T
are the angular positions (rad) and

ẋ =
[
ẋ1 ẋ2

]T
are the angular velocities (rad/s) of the

two links respectively. In (32), M is the inertia matrix and
Vm is the centripetal-Coriolis matrix, defined as

M (x) ,

[
p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2

]
,

Vm (x, ẋ) ,

[
−p3s2ẋ2 −p3s2 (ẋ1 + ẋ2)
p3s2ẋ1 0

]
. (33)

In (32) and (33), parameters for simulation are chosen as
the best-guess of the testbed model as p1 = 3.473 kg ·m2,
p2 = 0.196 kg · m2, p3 = 0.242 kg · m2, c2 = cos(x2),
s2 = sin(x2). Fd = diag {5.3, 1.1}Nm · sec and F s(ẋ) =
diag {8.45tanh(ẋ1), 2.35tanh(ẋ2)}Nm are the models for
dynamic and static friction, respectively. The system in (32)
can be rewritten as

ẍ = f(x, ẋ) +G(x, ẋ)u+ d,

where d ∈ R2 is the additive exogenous disturbance and
f : R4 → R2, and G : R4 → R4 are defined as

f(x, ẋ) = M−1 (−Vm − Fd) ẋ− Fs, G(x, ẋ) = M−1.

The control input is chosen as a PD controller to track
a desired trajectory xd(t) = [0.5sin(2t) 0.5cos(2t)]

T , as
u = 20(x− xd) + 10(ẋ− ẋd), where the angular velocity ẋ
used only in the control law is determined numerically by a
standard backwards difference algorithm.

The objective is to design an observer ˙̂x to asymptotically
estimate the angular velocities ẋ using only the measure-
ments of angular positions x. The control gains for the
experiment are selected as k = 7, α = 7, γ = 8, β1 = 6,
and Γwf = Γwg1 = Γwg2 = 3I8×8, Γvf = Γvg1 =
Γvg2 = 3I2×2, where In×n denotes an identity matrix of
appropriate dimensions. The NNs are designed to have seven
hidden layer neurons and the NN weights are initialized as
uniformly distributed random numbers in the interval [−1, 1].
The initial conditions of the system and the identifier are
chosen as x0 = [0 0]T , ẋ0 = [0 0]T and x̂0 = ˙̂x0 = [0, 0]T ,
respectively.

A global asymptotic velocity observer for uncertain non-
linear systems was developed by Xian et al. [11] as

˙̂x = p+K0x̃, ṗ = K1sgn(x̃) +K2x̃,

and a high gain (HG) observer that is asymptotic as the gain
goes to infinity was developed in [12] as

˙̂x = zh +
αh1
εh1

x̃, żh =
αh2
εh2

x̃.

Both these designs are based on a purely robust feedback
strategy. One of the contributions of this work is the addition
of a feed-forward adaptive component to compensate for the
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Fig. 1. Velocity estimate ˙̂x using (a) [11], (b) [12], (c) the proposed method,
and (d) the center difference method on a two-link experiment testbed (solid
line: Link 1, dashed line: Link 2).
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Fig. 2. The steady-state velocity estimate ˙̂x using (a) [11], (b) [12], (c)
the proposed method, and (d) the center difference method on a two-link
experiment testbed (solid line: Link 1, dashed line: Link 2).
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Fig. 3. Frequency analysis of velocity estimation ˙̂x using (a) [11], (b)
[12], (c) the proposed method, and (d) the center difference method on a
two-link experiment testbed (solid line: Link 1, dashed line: Link 2).

uncertain dynamics. To gauge the benefit of this approach,
the proposed observer is compared with the observers in [11]
and [12]. Control gains for the observer in [11] are chosen
as K0 = 10, K1 = 6, and K2 = 10, and control gains
for the HG observer are chosen as α1 = 0.6, α2 = 25,
ε1 = 0.01, and ε2 = 0.015. To make the comparison feasible,
the gains of all observers are tuned to get the steady state
RMS of position estimation errors to be approximately equal
to 0.17 for a settling time of 1 second. The experiment results
for the velocity estimators in [11], [12], and the proposed
method are compared with the central difference algorithm.
The results are shown in Figs. 1 and 2. It is observed that the
velocity estimates of the proposed observer and observer in
[12] look similar, but the transient response of the proposed
method is improved over the observer in [12]; moreover, both
methods have lower frequency content than the observer in
[11] and the central difference method. To illustrate the lower
frequency response of the proposed method compared to [11]
and the central difference method, the frequency analysis
plots of the experiment results are shown in Fig. 3. Fig. 3
illustrates that the velocity estimation using [11] and central
difference methods include higher frequency signals than the
proposed method or the approach in [12].

Given the lack of velocity sensors in the two-link experi-
ment testbed to verify the velocity estimates, a simulation
was performed using the dynamics in (32). To examine
the effect of noise, white Gaussian noise with SNR 60 dB
is added to the position measurements. Fig. 4 shows the
simulation results for the steady-state velocity estimation
errors and the respective frequency analysis for the velocity
estimate of the observer in [11], the observer in [12], the
developed method, and the central difference method. Table
I gives a comparison of the transient and steady state RMS
velocity estimation errors for these different methods. Results
of the standard numerical central differentiation algorithm are
significantly worse than the other methods in the presence of
noise as seen from Fig. 4 and Table I. Although, simulation
results for [12] and the developed method are comparable,
differences exist in the structure of the observers and proof
of convergence of the estimates. The observer in [12] is a
purely robust feedback technique and the estimation result is
proven to be asymptotic as the gains tend to infinity. On the
other hand, the proposed method is a robust adaptive observer
with a DNN structure to learn the system uncertainties, com-
bining a dynamic filter and a robust sliding mode structure,
thus guaranteeing asymptotic convergence with finite gains.
Further, the observer in [11] is also a purely robust feedback
method, where all uncertainties are damped out by a sliding
mode term resulting in higher frequency velocity estimates
than the developed observer, as seen from both experiment
and simulation results.

V. CONCLUSION

A novel design of an adaptive observer using DNNs for
high-order uncertain nonlinear systems is proposed. The
DNN works in conjunction with a dynamic filter without
an off-line training phase. A sliding feedback term is added
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Fig. 4. The steady-state velocity estimation error ˙̃x using (a) [11], (b) [12], (c) the proposed method, and (d) the center difference method on simulations,
in presence of sensor noise (SNR 60dB). The right figures (e)-(h) indicate the respective frequency analysis of velocity estimation ˙̂x (solid line: Link 1,
dashed line: Link 2).

TABLE I
TRANSIENT (t = 0− 1 SEC) AND STEADY STATE (t = 1− 10 SEC) VELOCITY ESTIMATION ERRORS ˙̃x FOR DIFFERENT VELOCITY ESTIMATION

METHODS IN PRESENCE OF NOISE 50DB.

Central difference Method in [11] Method in [12] Proposed
Transient RMS Error 66.2682 0.1780 0.1040 0.1309
Steady State RMS Error 8.1608 0.0565 0.0538 0.0504

to the DNN structure to account for reconstruction errors
and external disturbances. The observation states are proven
to asymptotically converge to the system states. Simulations
and experiments on a two-link robot manipulator show the
improvement of the proposed method in comparison to
several other estimation methods.
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