
Compensating for Fatigue-induced
Time-varying Delayed Muscle Response in
Neuromuscular Electrical Stimulation Control

R.J. Downey, R. Kamalapurkar, N. Fischer, W.E. Dixon

Abstract Neuromuscular electrical stimulation (NMES), often called functional
electrical stimulation (FES), is a prescribed treatment for various neuromuscular
disorders. When applied to articulate a person’s limb, the respective skeletal muscle
groups are known to rapidly fatigue compared to muscles activated by the nervous
system. Recent results have shown that muscles have a delayed response to electrical
stimulation, and more recent results indicate that this delayed response increases as
the muscle fatigues. A NMES control method is developed in this chapter as a means
to compensate for the varying input delay for the uncertain nonlinear dynamics for
the lower limb. Experimental results are provided to demonstrate the performance
of the developed controller.

1 Introduction

Neuromuscular electrical stimulation (NMES) is the use of electric current to ac-
tivate skeletal muscle, typically applied by electrodes placed on the surface of the
skin. NMES is commonly used in rehabilitative settings where the goal is to increase
muscle size, strength, and function [1–4] and may also be used to produce functional
tasks (e.g., standing, stepping, reaching, grasping, cycling) [5–9] where it is termed
functional electrical stimulation (FES). Various feedback-based NMES controllers
have been developed [10–22]; however, results that consider the muscle’s delayed
response to electrical stimulation, known as electromechanical delay (EMD), are
not common. EMD may lead to degraded performance and instability, motivating
the need for control designs that compensate for delay.
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Time-delays are prevalent in many engineering systems and have been well doc-
umented in literature (cf. [23–26] and recent monographs such as [27–32]). Few
mathematical tools exist that can be used to develop controllers that compensate for
input delays. Of these tools (namely Smith predictors [33], Artstein model reduc-
tion [34], and finite spectrum assignment [35]), few variations have been developed
that can compensate for uncertain nonlinear systems. Methods which solve the input
delay problem for uncertain nonlinear systems with known and unknown constant
time-delays have been studied in [16, 36–43].

Based on the development in [41] for general Euler-Lagrange systems, the re-
sults in [16] developed a model-free robust controller that enabled the leg shank
of a healthy normal volunteer to track a desired angular trajectory about the knee
with a uniformly ultimately bounded error despite a known constant EMD. Mo-
tivated by [16], a state predictive hybrid control approach was developed in [43]
that considered sampled state measurements and limb constraints in addition to the
known constant EMD. Assuming exact knowledge of the limb dynamics, the result
in [43] yields exponential tracking. Although results such as [16] and [43] provide
insights on NMES in the presence of EMD, significant changes in muscle EMD
were reported in [44–47] during voluntary fatiguing exercises. Further, NMES is
well known to induce significant fatigue in contrast to volitional contractions. There
are a number of suggested causes of NMES-induced fatigue [48,49] and efforts have
been made to prevent or slow the onset of fatigue [50–64]. However, NMES-induced
fatigue and the resulting time-varying EMD is of key importance when developing
NMES controllers.

Control methods for time-varying input-delayed systems with linear plant mod-
els have been studied extensively. Discrete predictor-based techniques have been
developed for linear systems with time-varying input delay in [65], where small
bounded uncertainties in the system parameters, delay, and sampling instants are
considered. A delayed feedback controller was developed in [66] for uncertain lin-
ear systems with a time-varying input delay based on a reduction method. A ro-
bust control method for uncertain linear systems with time-varying input delays
was developed in [67], which combines a novel Lyapunov-Krasovskii (LK) func-
tional and a neutral transformation to obtain sufficient conditions for closed-loop
robustness. Predictive controllers have also been developed under the assumption
that input delay systems can be represented by hyperbolic partial differential equa-
tions (cf. [25, 28] and references therein). This fact is exploited in [68] to design
controllers for actuator delayed linear systems where the time delayed system is
modeled as an ordinary differential equation (ODE) - partial differential equation
(PDE) cascade using an infinite dimensional transformation where the non-delayed
input acts at the PDE boundary. Linearized controllers have been developed for non-
linear systems (cf. [69, 70]), but because the stability of the closed loop system is
only valid within a region around the point of linearization, a complete nonlinear
control solution to the time-varying input delay problem is still motivated.

A finite-time stabilizing controller developed in [71] compensates for time-
varying input delays in nonlinear systems with triangular structures using an in-
tegrator backstepping technique. More recently, Bekiaris-Liberis and Krstic [72]
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extended the results in [68] and [40] to develop a control method for forward com-
plete nonlinear systems with time-varying input delays. Under the assumption of the
existence of a stabilizing controller in the absence of the input delay, an invertible
infinite dimensional backstepping transformation is used to yield an asymptotically
stable system in the presence of a time-varying input delay. While these results have
been successful for certain classes of nonlinear input-delayed systems, the applica-
bility of the methods to general uncertain Euler-Lagrange dynamics is not clear. Mo-
tivated by this issue, [73] provided a transformation to convert an Euler-Lagrange
system into a forward-complete system, but such a transformation requires exact
model knowledge of the Euler-Lagrange dynamics; thus, the technique is not appli-
cable when the system parameters are unknown or the dynamics are uncertain. This
implies that methods developed for forward-complete systems with input delays
may not be applicable to uncertain Euler-Lagrange systems.

In this chapter, a control method is developed to compensate for time-varying
EMD during NMES where the muscle dynamics are uncertain, nonlinear, and
contain additive disturbances, under the assumption that the known time-delay is
bounded and slowly varying. As in our previous work, LK functionals are used to
facilitate the design and analysis of a control method that can compensate for the
input delay. Since the LK functionals contain time-varying delay terms, additional
complexities are introduced into the analysis. Techniques used to compensate for
the time-varying delay result in new sufficient control conditions that depend on the
length of the delay as well as the rate of delay. The developed controller achieves
semi-global uniformly ultimately bounded tracking despite the time-varying input
delay, parametric uncertainties and additive bounded disturbances in the dynamics.
Experiments are provided to examine the performance of the developed controller.

2 Knee joint dynamics

The knee-joint dynamics are modeled as [15]

MI (q̈)+Me (q)+Mg (q)+Mv (q̇)+ d̄ = µ, (1)

where MI : R→ R denotes the inertial effects of the shank-foot complex about the
knee-joint, Me : R→R denotes the elastic effects due to joint stiffness, Mg : R→R
denotes the gravitational component, Mv : R→ R, denotes the viscous effects due
to damping in the musculotendon complex, d̄ ∈ R is an unknown bounded time-
varying disturbance from unmodeled dynamics, µ ∈R denotes the torque produced
at the knee-joint due to stimulation, and τ ∈ R denotes the EMD. The inertial and
gravitational effects in (1) are modeled as

MI (q̈), Jq̈, Mg (q), mgl sin(q), (2)

where J, m, g, l ∈ R are positive constants and q, q̇, q̈ ∈ R denote the angular posi-
tion, velocity, and acceleration of the shank about the knee-joint, respectively. The
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terms J, m, and l denote the unknown inertia of the combined shank and foot, the
unknown combined mass of the shank and foot, and the unknown distance between
the knee-joint and the lumped center of mass of the shank and foot, respectively,
while g denotes the gravitational acceleration. The elastic and viscous effects are
modeled as

Me (q), k1(exp(−k2q))(q− k3), (3)

where k1, k2, k3 ∈ R are unknown positive constants and

Mv (q̇),−B1 tanh(−B2q̇)+B3q̇, (4)

where B1, B2, B3 ∈R are unknown positive constants. The subsequent development
is based on the assumption that q and q̇ are measurable outputs. Throughout the
paper, a time-dependent delayed function is denoted as

(·)
τ
(t),

{
(·)(t− τ (t)) t− τ (t)≥ t0
0 t− τ (t)< t0

, (5)

where t0 ∈R is the initial time. Additionally, let ‖·‖ denote the Euclidean norm of a
vector.

The torque produced about the knee is controlled through muscle forces that are
elicited by NMES/FES. For simplicity (and without loss of generality), the subse-
quent development focuses on producing knee torque through muscle tendon forces
generated by electrical stimulation of the quadriceps. The total muscle force is a net
sum of active force generated by contractile, elastic, and viscous elements [15]. The
muscle force generated at the tendon is the projection of net sum of these elements
along the line parallel to the tendon. The force development in the muscle is delayed
due to the finite propagation time of chemical ions such as Ca2+ and action poten-
tial along the T-tubule system, cross-bridge formation between actin and myosin
filaments, the subsequent tension development, and the stretching of the series elas-
tic components by the contractile components in the muscle [46, 74, 75]. The EMD
is influenced by factors such as fatigue, rate of force production, and types of mus-
cle contractions. The total muscle force generated at the tendon, denoted by F ∈ R,
is defined as

F , ξ (q, q̇)uτ . (6)

In (6), ξ : R×R→ R denotes an unknown nonlinear function of the muscle length
and velocity, and the applied voltage potential across the quadriceps muscle, denoted
by uτ ∈R, includes the time-delay to capture the latency that is present between the
application of voltage and force production [13, 76]. The introduction of the un-
known nonlinear function ξ enables the muscle contraction to be considered under
general dynamic conditions in the subsequent control development. The uncertain
and unknown function ξ captures the dynamic characteristics of muscle recruit-
ment (approximated by a continuously differentiable function), muscle force-length
and muscle force-velocity relationships, and active and passive muscle characteris-
tics [15]. The knee torque is related to the muscle tendon force as
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µ = ζ (q)F, (7)

where ζ : R→ R denotes a positive moment arm that changes with the extension
and flexion of the leg [77, 78].

The model developed in (1)-(7) is used to examine the stability of the subse-
quently developed controller, but the controller does not explicitly depend on these
models. The following assumptions and notations are used to facilitate the subse-
quent control development and stability analysis.

Assumption 1. The moment arm ζ is assumed to be a non-zero, positive, bounded
function [77, 78] whose first two time derivatives exist and are bounded. Based on
the empirical data [79,80], the function ξ is assumed to be a non-zero, positive, and
bounded function with bounded first and second time derivatives.

For notational brevity, an auxiliary non-zero unknown scalar function Ω : R×R→
R is defined as

Ω (q, q̇), ζ (q)ξ (q, q̇) . (8)

From Assumption 1, the first and second time derivatives of Ω exist and are
bounded.

Assumption 2. The unknown disturbance d̄ is bounded and its first and second
derivatives with respect to time exist and are bounded. Based on Assumption 1,
the ratio d̄/Ω(q, q̇) denoted by d is also bounded and its first and second derivatives
with respect to time exist and are bounded.

Assumption 3. The time delay and its first and second time derivatives are bounded
such that 0 ≤ τ (t) ≤ ϕ1, |τ̇ (t)| < ϕ2 < 1, and |τ̈ (t)| ≤ ϕ3, for all t ∈ R≥0, where
ϕ1,ϕ2,ϕ3 ∈ R are known positive constants.

The implications of Assumptions 2 and 3 are that the disturbance and delay are
sufficiently smooth and that the delay is sufficiently slow. The development of an
input-delayed controller for arbitrarily fast time-varying delays remains an open
problem for NMES with unknown dynamics.

Combining (1)-(8), the knee joint dynamics can be expressed as

M (q, q̇) q̈+ f (q, q̇)+d = uτ , (9)

where f : R×R→ R , Me+Mg+Mv
Ω

, M : R×R→ R , J
Ω

, and d , d̄
Ω

. Based on
Assumption 1, M can be bounded as

m≤ |M (x1,x2)| ≤ m (10)

for all x1,x2 ∈ R, where m,m ∈ R are known positive constants.
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3 Control objective

The objective is to design a continuous controller that will ensure the generalized
state q of the input-delayed system in (9) tracks a desired trajectory despite uncer-
tainties and additive bounded disturbances in the dynamic model. To quantify the
control objective, a tracking error denoted by e ∈ R, is defined as

e , qd−q, (11)

where qd ∈ R denotes the desired trajectory and is designed such that qd , q̇d , q̈d ∈
L∞. To facilitate the subsequent analysis, a measurable auxiliary tracking error,
denoted by r ∈ R, is defined as

r , ė+αe−Bez, (12)

where α ∈ R+ is a known constant control gain, and B ∈ R+ is a known constant
best guess estimate of M−1. In (12), ez ∈ R is an auxiliary signal containing the
time-delay in the system, defined as

ez ,
ˆ t

t−τ(t)
u(θ)dθ . (13)

The error between B and M−1 is denoted by η : R×R→ R and is defined as

η (q, q̇), B− 1
M (q, q̇)

(14)

and satisfies
|η (x1,x2)| ≤ η (15)

for all x1,x2 ∈ R, where η ∈ R+ is a known constant.

4 Control development

The open-loop error system can be obtained by multiplying the time derivative of
(12) by M and utilizing the expressions in (9), (11), (13) and (14) to yield

M (q, q̇) ṙ = M (q, q̇) q̈d + f (q, q̇)+d +αM (q, q̇) ė.

−M (q, q̇)η (q, q̇)(u−uτ +uτ τ̇)−u−uτ τ̇. (16)

For notational brevity, the dependance of M and η on q and q̇ is omitted henceforth.
Based on the error system formulation in (12) and (13), the open-loop error system
in (16) contains a delay-free control input. From (16) and the subsequent stability
analysis, the control input is designed as
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u = kbr, (17)

where kb ∈R is a known positive constant control gain. To facilitate the subsequent
stability analysis, an auxiliary signal Nd ∈ Rn is defined as

Nd , Md q̈d + fd , (18)

where Md , M (qd , q̇d) and fd , f (qd , q̇d).
The closed-loop error system is obtained by adding and subtracting Nd and e to

(16) and utilizing (12) and (17) to yield

Mṙ =−1
2

Ṁr+χ +S− kbr− kbMη (r− rτ + rτ τ̇)

− kbrτ τ̇− e, (19)

where the auxiliary terms χ , S ∈ Rn are defined as

χ ,
1
2

Ṁr+ e+(M−Md) q̈d + f (q, q̇)− fd

+αM (r−αe+Bez) . (20)

S , Nd +d. (21)

Using Assumption 2, the following inequality can be developed based on the ex-
pression in (21)

‖S‖ ≤ s̄, (22)

where s̄∈R+ is a known constant. The structure of (19) is motivated by the desire to
segregate terms that can be upper bounded by state-dependent terms and terms that
can be upper bounded by constants. Using the Mean Value Theorem, the expression
in (20) can be upper bounded as

‖χ‖ ≤ ρ (‖z‖)‖z‖ , (23)

where ρ (‖z‖) is a positive and strictly increasing function and z ∈ R3 is defined as

z ,
[

e r ez
]T

. (24)

5 Stability analysis

To facilitate the subsequent stability analysis, let y ∈ R4 be defined as

y ,
[

e r
√

P
√

Q
]T

, (25)

where the signals P,Q ∈ R are defined as
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P , ω

ˆ t

t−τ(t)

(ˆ t

s
u2 (θ)dθ

)
ds, (26)

Q ,
kb (2mη +ϕ2)

2(1− τ̇)

ˆ t

t−τ(t)
‖r (θ)‖2 dθ , (27)

where ω ∈ R is a known positive constant. Let the auxiliary constants σ , δ , and γ

be defined as

σ = min
{

α

4
,

kb

8
,

ω (1−ϕ2)

8ϕ1

}
, (28)

δ = min

{
α

4
,

kb

8
,
(1−ϕ2)

4ϕ1
,

ωkb (1−ϕ2)
2

(4mη +2ϕ2)

}
, (29)

γ = max

{
1,

√
4kbϕ1

2mη +ϕ2

}
, (30)

and let

D ,

{
x ∈ R4 | ‖x‖ ≤ 1

γ
inf
{

ρ
−1
[√

kbσ ,∞
)}}

,

SD ,

{
x ∈D |‖x‖<

√
φ1

γ2φ2
inf
{

ρ
−1
[√

kbσ ,∞
)}}

.

Theorem 1. Given the dynamics in (9), provided the control gains are selected
based on the sufficient conditions

α > B, ω >
4Bϕ1

(1−ϕ2)
, (31)

and the input delay τ , its time derivatives τ̇ and τ̈ , and the inertia estimate mismatch
η are small enough so that there exists a positive gain kb ∈ R that satisfies

kb >
2ϕ3 (2mη +ϕ2)

ω (1−ϕ2)
3 , (32)

ϕ1 <
1

ωkb

(
1
4
− (2ηm+ϕ2)

1−ϕ2

)
, (33)

φ2s̄2γ2

φ1δkb
<
(

inf
{

ρ
−1
[√

kbσ ,∞
)})2

, (34)

the controller in (17) ensures uniformly ultimately bounded tracking in the sense

that limsupt→∞ ‖y(t)‖ ≤
√

φ2 s̄2

φ1δkb
, for all y(t0) ∈ SD , and the convergence to the

ultimate bound is exponential.

Proof. Let VL : D × [0, ∞)→ R be a continuously differentiable, positive-definite
function defined as
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VL ,
1
2

eT e+
1
2

rT Mr+P+Q, (35)

which can be bounded as

φ1 ‖y‖2 ≤VL ≤ φ2 ‖y‖2 (36)

where the constants φ1,φ2 ∈ R are defined as

φ1 ,
1
2

min [m,1] , φ2 , max
[

1
2

m,1
]
. (37)

After utilizing (12) and (19), applying the Leibniz Rule to determine the time deriva-
tive of (26) and (27), and by canceling similar terms, the time derivative of (35) can
be expressed as

V̇L =−αe2− kbr2 +Beez + rχ + rS− kbηMr2

+ kb (1− τ̇)ηMrrτ − kbrrτ τ̇ +ωτk2
br2

−ω (1− τ̇)

ˆ t

t−τ(t)
u2 (θ)dθ

+
τ̈ (2mη +ϕ2)

2kb (1− τ̇)2

ˆ t

t−τ(t)
u2 (θ)dθ

+
kb (2mη +ϕ2)

2(1− τ̇)
r2− kb (2mη +ϕ2)

2
r2

τ . (38)

By utilizing Young’s inequality, Assumption 3, (15), (17), (22), and (23), (38) can
be expanded, regrouped and upper bounded as

V̇L ≤−αe2− kbr2 +ρ (‖z‖)‖z‖|r|+ |r|s

+ kb
(2ηm+ϕ2)

1−ϕ2
r2 +ωϕ1k2

br2

+
B
2

e2 +
B
2

e2
z −ω (1−ϕ2)

ˆ t

t−τ(t)
u2 (θ)dθ

+
ϕ3 (2mη +ϕ2)

2kb (1−ϕ2)
2

ˆ t

t−τ(t)
u2 (θ)dθ . (39)

Utilizing the Cauchy-Schwartz inequality and (13) yields

‖ez‖2 ≤ τ

ˆ t

t−τ(t)
‖u(θ)‖2 dθ . (40)

Using (40) and the inequality [41]
ˆ t

t−τ(t)

(ˆ t

s
‖u(θ)‖2 dθ

)
ds≤ τ

ˆ t

t−τ(t)
‖u(θ)‖2 dθ
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the expression in (39) can be bounded as

V̇L ≤−
α

4
e2− kb

8
r2− ω (1−ϕ2)

8ϕ1
e2

z +
ρ2 (‖z‖)

kb
‖z‖2

− α

4
e2− kb

8
r2− (1−ϕ2)

4ϕ1
P− ωkb (1−ϕ2)

2

(4mη +2ϕ2)
Q+

s2

kb

−

(
ω (1−ϕ2)

4
− ϕ3 (2mη +ϕ2)

2kb (1−ϕ2)
2

)ˆ t

t−τ(t)
u2 (θ)dθ

−
(

α

2
− B

2

)
e2−

(
ω (1−ϕ2)

8ϕ1
− B

2

)
e2

z

− kb

(
1
4
− (2ηm+ϕ2)

1−ϕ2
−ωϕ1kb

)
r2. (41)

Provided the sufficient gain conditions in (31)-(33) are satisfied, the inequality ‖z‖≤
γ ‖y‖ can be used to bound the expression in (41) as

V̇L ≤−
(

σ − ρ2 (γ ‖y‖)
kb

)
‖z‖2−2δ ‖y‖2 +

s2

kb
,

≤−δ ‖y‖2 , ∀y ∈D , ‖y‖> s̄√
δkb

, (42)

where σ and δ were introduced in (28) and (29), respectively. Using (34)-(37) and
(42), Theorem 4.18 in [81] can be invoked to conclude that

y(t) ∈D , ∀t ∈ [t0,∞) ∀y(t0) ∈SD ,

lim sup
t→∞

‖y(t)‖ ≤

√
φ2s̄2

2φ1δkb
, ∀y(t0) ∈SD . (43)

Thus, e,r,P,Q ∈ L∞, hence, using ‖z‖ ≤ γ ‖y‖, ‖z‖ ∈ L∞, and hence, eu ∈ L∞.
The closed-loop error system can be used to conclude that the remaining signals are
bounded.
Using (37), for all y(t0) ∈SD , the Lyapunov derivative in (42) can be bounded as

V̇L ≤−
2δ

φ2
VL +

s2

kb
. (44)

Solving the differential inequality, (44), the Lyapunov function can be bounded as

VL (y(t) , t)≤
(

VL (y(t0) , t0)−
φ2s2

2δkb

)
e−

2δ(t0−t)
φ2 +

φ2s2

2δkb
. (45)

Substituting for the Lyapunov function in (45) using the bound (37) yields
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‖y(t)‖2 ≤

(
φ2 ‖y(t0)‖2

φ1
− φ2s2

2φ1δkb

)
e−

2δ(t0−t)
φ2 +

φ2s2

2φ1δkb
,

establishing exponential convergence of the tracking error to the ultimate bound.

6 Experiments

One able-bodied male (age 26) participated in the study to examine the performance
of the developed delay compensation controller. The electrical stimulation responses
of healthy subjects have been reported to be similar to those of paraplegic subjects
[13, 17, 82, 83]. Therefore, a healthy subject was used as a substitute for affected
individuals. Prior to participation, written informed consent was obtained from the
individual, as approved by the institutional review board at the University of Florida.

All testing was performed using an apparatus that consists of a custom computer-
controlled stimulation circuit and a leg extension machine (LEM; Fig. 1). The LEM
includes optical encoders to measure the angle between the femur and the tibia.
The LEM allows seating adjustments to ensure that the rotation of the knee is about
the encoder axis and a mechanical stop was used to prevent hyperextension. A com-
puter was used to collect data from the encoders and execute the closed-loop control
algorithms. Voltage was applied with a pair of 3” by 5” oval PALS® Platinum sur-
face electrodes placed over the distal–medial and proximal–lateral portions of the
quadriceps femoris muscle group. Surface electrodes for the study were provided
compliments of Axelgaard Manufacturing Co.

Fig. 1 The experimental setup includes a leg extension exercise machine, encoders to determine
the subject’s leg angle, q(t), and a computer to control stimulation and gather data.

To better understand the effect of the delay compensation term Bez in (12) the
developed proportional-derivative delay compensation (PDDC) controller was com-
pared to a controller of similar form that did not include the delay compensa-
tion term. In other words, the PDDC controller was compared to a proportional-
derivative (PD) controller. During testing, the individual was instructed to relax as
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much as possible and to allow the stimulation to control the limb motion (i.e., the
subject was not supposed to influence the leg motion voluntarily and was not al-
lowed to see the desired trajectory). The desired trajectory was selected as a sinusoid
ranging from 10° to 45° with a period of 2.5 seconds.

The desired trajectory also included a smooth step function (0° to 30° lasting
1 second) at equally spaced intervals to measure the EMD during the course of
the experiment. The EMD was calculated as the difference between the time at the
onset of stimulation and the time at which the leg angle increased by 0.005 radians.
Measurement of the EMD during the PD controller trials allowed for modeling of
the delay during the PDDC controller trials. As such, the PD trials were always
performed prior to the PDDC trials. The EMD measurements were curve-fit as a
function of time with a model of the form τ(t) = aexp(bt) + cexp(dt) and this
model was used to calculate the control term ez in (12).

A total of eight trials were conducted where the PD and PDDC controllers were
examined twice for each leg. The PD controller was first examined where the control
gains were tuned in short pretrial tests to reduce the tracking error. After gain tuning,
two PD trials were completed where 5 minutes of rest was allowed between the trials
and the same control gains were used in each of the trials. The individual was then
allowed to rest for one hour before two PDDC trials were completed, where the
same gain tuning and resting procedures were followed as in the PD trials.

One-way, paired t-tests were used to determine statistical differences between
the two controllers in terms of the measured RMS and peak errors. The level of
significance was set at α = 0.05 for the t-tests.

7 Results

The RMS error and peak error were calculated during steady state and are listed in
Tables 1 and 2, respectively. Steady state was defined by removing the first period
of the desired sinusoid to be tracked (i.e., the transient period). T-tests indicate that
the mean RMS and peak errors are statistically less for the PDDC controller with
P-values of 0.001 and 0.009, respectively. An example trial run which compares
the PD and PDDC controllers is shown in Figure 2 with a more detailed view in
Figure 3. Example measurements and curve fit of the time-varying EMD are shown
in Figure 4.

8 Discussion

The experimental results indicate that the developed PDDC controller results in
statistically improved tracking performance when compared to the PD controller.
Overall, the PDDC controller resulted a 47% reduction in RMS error and a 46%
reduction in peak error (see Tables 1 and 2). While delay compensation was able to



NMES time-varying delay compensation 13

Table 1 Steady state RMS error (degrees) of the two examined controllers. PD indicates a
proportional-derivative controller while PDDC indicates the developed proportional-derivative
controller with delay compensation.

Leg - Trial PD PDDC
Left - 1st 7.22 4.61
Left - 2nd 7.84 4.10
Right - 1st 7.40 3.01
Right - 2nd 6.91 3.70
MEAN 7.34 3.86∗

SD 0.39 0.68
∗ Indicates statistically significant difference in the means (P-value = 0.001)

Table 2 Peak steady state errors (degrees) of the two examined controllers. PD indicates a
proportional-derivative controller while PDDC indicates the developed proportional-derivative
controller with delay compensation.

Leg - Trial PD PDDC
Left - 1st 18.78 10.17
Left - 2nd 24.30 9.68
Right - 1st 18.93 14.22
Right - 2nd 19.32 9.40
MEAN 20.33 10.86∗

SD 2.65 2.26
∗ Indicates statistically significant difference in the means (P-value = 0.009)
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Fig. 2 Example tracking performance of the PD and PDDC controllers.
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Fig. 3 Cropped example of the tracking performance of the PD and PDDC controllers.
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Fig. 4 Example of the time-varying EMD and curve fit.

improve the tracking performance, there are some limitations to the controller. The
primary limitation to the PDDC controller is that it requires the time-varying EMD
to be known. In the present experiments, an estimate of the time-varying EMD was
computed by periodically placing step functions throughout the desired trajectory. In
practice, if the controller is implemented during a functional activity (e.g., walking
or cycling), an estimate of the delay would need to be calculated without interrupt-
ing the desired trajectory. One potential solution may be to use electromyography to
estimate muscle fatigue as stimulus pulses are being delivered [84] and subsequently
estimate the EMD as a function of fatigue. Another potential solution is to develop a
controller which does not require knowledge of the time-varying EMD. RISE-based
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and neural network-based NMES controllers have demonstrated better performance
without considering the EMD [15, 21] for short duration experiments; however, it
is presently unclear how these controllers can be modified to compensate for EMD.
In conclusion, future efforts should examine methods to estimate the time-varying
EMD, methods to compensate for known time-varying EMD in alternative control
structures, and methods to compensate for unknown time-varying EMD.
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frequency functional electrical stimulation delays muscle fatigue compared to conventional
stimulation,” Muscle Nerve 42(4), pp. 556–562, 2010.

53. R. Nguyen, K. Masani, S. Micera, M. Morari, and M. R. Popovic, “Spatially distributed se-
quential stimulation reduces fatigue in paralyzed triceps surae muscles: A case study,” Artif.
Organs 35(12), pp. 1174–1180, 2011.

54. R. J. Downey, E. Ambrosini, S. Ferrante, A. Pedrocchi, W. E. Dixon, and G. Ferrigno, “Asyn-
chronous stimulation with an electrode array reduces muscle fatigue during FES cycling,” in
Proc. Int. Func. Elect. Stimul. Soc., pp. 154–157, (Banff, Canada), September 2012.
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