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Abstract—This paper examines control of a general class of
uncertain nonlinear Euler-Lagrange systems with time-varying
input delay and additive bounded disturbances. A Lyapunov-
based stability analysis utilizing Lyapunov-Krasovskii func-
tionals is provided to prove semi-global uniformly ultimately
bounded tracking. Simulation results demonstrate the robust-
ness of the control design with respect to the delay.

I. INTRODUCTION

Time-delays are prevalent in nature and many engineering
systems and have been well documented in literature (cf.
[1]–[4] and relatively recent monographs such as [5]–[10]).
Delays in the control input can be found in many well-known
and documented applications such as digital implementation
of a continuous control signal, internal combustion engines,
computer controlled financial markets, chemical process con-
trol, automotive systems, traffic management and teleoper-
ated robotic systems, as well as biological processes such
as force production in muscle and control of cardiovascular
system.

Few mathematical tools exist that can be used to develop
predictive controllers that compensate for input delays. Of
these tools (namely Smith predictors [11], Artstein model
reduction [12], and finite spectrum assignment [13]), few
variations have been developed that can compensate for
uncertain nonlinear systems. Methods which solve the input
delay problem for uncertain nonlinear systems with known
and unknown constant time-delays have been studied in [14]–
[20]. However, due to uncertainties in the inherent nature of
real world systems, it is often more practical to consider
time-varying or state-dependent time-delays in the control.

Control methods for time-varying input-delayed systems
with linear plant models have been studied extensively.
Discrete predictor-based techniques have been developed for
linear systems with time-varying input delay in [21], where
small bounded uncertainties in the system parameters, delay,
and sampling instants are considered. A delayed feedback
controller was developed in [22] for uncertain linear systems
with a time-varying input delay based on a reduction method.
A robust control method for uncertain linear systems with
time-varying input delays was developed in [23], which
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combines a novel Lyapunov-Krasovskii (LK) functional and
a neutral transformation to obtain sufficient conditions for
closed-loop robustness. Predictive controllers have also been
developed under the assumption that input delay systems can
be represented by hyperbolic partial differential equations
(cf. [3], [6] and references therein). This fact is exploited in
[24] to design controllers for actuator delayed linear systems
where time delayed system is modeled as an ordinary differ-
ential equation (ODE) - partial differential equation (PDE)
cascade using an infinite dimensional transformation where
the non-delayed input acts at the PDE boundary.

Linearized controllers have been developed for nonlinear
systems (cf. [25], [26]), but because the stability of the closed
loop system is only valid within a region around the point
of linearization, a complete nonlinear control solution to the
time-varying input delay problem is still motivated.

A finite-time stabilizing controller developed in [27] com-
pensates for time-varying input delays in nonlinear systems
with triangular structures using an integrator backstepping
technique. More recently, Bekiaris-Liberis and Krstic [28]
extended the results in [24] and [18] to develop a control
method for forward complete nonlinear systems with time-
varying input delays. Under the assumption that the plant is
asymptotically stable in the absence of the input delay, an
invertible infinite dimensional backstepping transformation
is used to yield an asymptotically stable system. While
these results have been successful for certain classes of
nonlinear input-delayed systems, the applicability of the
methods to general uncertain Euler-Lagrange dynamics is not
clear. Motivated by this issue, [29] provided a transforma-
tion to convert an Euler-Lagrange system into a forward-
complete system, but such a transformation requires exact
model knowledge of the Euler-Lagrange dynamics; thus, the
technique is not applicable when the system parameters are
unknown or the dynamics are uncertain. This implies that
methods developed for forward-complete systems with input
delays may not be applicable to uncertain Euler-Lagrange
systems. Based on these findings, our previous work in
[19] developed a continuous controller for uncertain Euler-
Lagrange systems with constant input delays capable of
achieving semi-global uniformly ultimately bounded track-
ing.

In this paper, a control method is developed to compen-
sate for time-varying input delays in uncertain nonlinear
Euler-Lagrange systems with additive disturbances, under



the assumption that the time-delay is bounded and slowly
varying. As in our previous work, LK functionals are used
to facilitate the design and analysis of a control method that
can compensate for the input delay. Since the LK functionals
contain time-varying delay terms, additional complexities are
introduced into the analysis. Techniques used to compensate
for the time-varying delay result in new sufficient control
conditions that depend on the length of the delay as well
as the rate of delay. The developed controller achieves
semi-global uniformly ultimately bounded tracking despite
the time-varying input delay, parametric uncertainties and
additive bounded disturbances in the plant dynamics. A
numerical simulation for a two-link robot manipulator with
time-varying input delay is provided to examine performance
of the developed controller.

II. DYNAMIC MODEL AND PROPERTIES

Consider the following input-delayed Euler-Lagrange dy-
namics

M(q) q̈+Vm(q, q̇) q̇+G(q)+F (q̇)+d (t)=u (t− τ (t)) (1)

where M (q) ∈ Rn×n denotes a generalized inertia matrix,
Vm (q, q̇) ∈ Rn×n denotes a generalized centripetal-Coriolis
matrix, G (q) ∈ Rn denotes a generalized gravity vector,
F (q̇) ∈ Rn denotes generalized friction, d (t) ∈ Rn denotes
an exogenous disturbance, u (t− τ (t)) ∈ Rn represents the
generalized delayed input control vector, where τ (t) ∈ R is a
non-negative time-varying delay, and q (t) , q̇ (t) , q̈ (t) ∈ Rn
denote the generalized states.

The subsequent development is based on the assumption
that q (t) , q̇ (t) are measurable outputs, M (q), Vm (q, q̇),
G (q), F (q̇), d (t) are unknown, the time-varying input delay
is known and the control input vector and its past values
(i.e., u (t− θ)∀θ ∈ [0 τ (t)]) are measurable. Throughout
the paper, a time dependent delayed function is denoted as
ζ (t− τ (t)) or ζτ . Additionally, the following assumptions
and properties will be exploited.

Property 1. The inertia matrix M (q) is symmetric positive-
definite, and satisfies the following inequality:

m ‖ξ‖2 ≤ ξTMξ ≤ m̄ ‖ξ‖2 , ∀ξ ∈ Rn

where m, m̄ ∈ R+ are known constants and ‖·‖ denotes the
standard Euclidean norm.

Assumption 1. The nonlinear disturbance term and its first
time derivative (i.e., d (t) , ḋ (t)) exist and are bounded by
known constants [30]–[32].

Assumption 2. The time delay is bounded such that 0 ≤
τ (t) ≤ ϕ1 where ϕ1 ∈ R+ is a known constant and the rate
of change of the delay is bounded such that ‖τ̇ (t)‖ < 1.
Additionally, let τ̈ (t) be bounded such that ‖τ̈ (t)‖ ≤ ϕ2

where ϕ2 ∈ R+ is a known constant.

The implications of Assumptions 1 and 2 are that the
disturbance and delays are sufficiently smooth and that the

delay is sufficiently slow. The development of an input-
delayed controller for arbitrarily fast time-varying delays
remains an open problem.

III. CONTROL OBJECTIVE

The objective is to design a continuous controller that
will ensure the generalized state q (t) of the input-delayed
system in (1) tracks a desired trajectory despite uncertainties
and additive bounded disturbances in the dynamic model.
To quantify the control objective, a tracking error denoted
by e (q, t) ∈ Rn, is defined as

e , qd − q (2)

where qd (t) ∈ Rn denotes the desired trajectory and is
designed such that qd (t) , q̇d (t) , q̈d (t) ∈ L∞. To facilitate
the subsequent analysis, a measurable filtered tracking error,
denoted by r (e, ez, t) ∈ Rn, is defined as

r , ė+ αe−Bez (3)

where α ∈ R+ is a known gain constant, and B ∈ Rn×n
is a known symmetric, positive definite constant gain matrix
that satisfies the following inequality

‖B‖∞ ≤ b (4)

where b ∈ R+ is a known constant. In (3), ez (t) ∈ Rn is
an auxiliary signal containing the time-delays in the system,
defined as

ez ,
ˆ t

t−τ(t)
u (θ) dθ. (5)

The error between B and M−1 (q) is denoted by η (q) ∈
Rn×n and is defined as

η , B −M−1 (6)

and satisfies the following inequality

‖η‖∞ ≤ η̄ (7)

where η̄ ∈ R+ is a known constant.

IV. CONTROL DEVELOPMENT

The open-loop error system can be obtained by multiply-
ing the time derivative of (3) by M (q) and utilizing the
expressions in (1), (2), (5) and (6) to yield

Mṙ = Mq̈d + Vmq̇ +G+ F + d−Mη (u− uτ + uτ τ̇)

−u− uτ τ̇ + αMė. (8)

Based on the error system formulation in (3) and (5), the
open-loop error system in (8) contains a delay-free control
input. From (8) and the subsequent stability analysis, the
control input is designed as

u = kbr (9)

where kb ∈ R+ is a known constant control gain. To
facilitate the subsequent stability analysis, an auxiliary signal,
Nd (qd, q̇d, q̈d) ∈ Rn, is defined as

Nd ,Mdq̈d + Vmdq̇d +Gd + Fd



where Md, Vmd, Gd, Fd denote M (qd) ∈ Rn×n,
Vm (qd, q̇d) ∈ Rn×n, G (qd) ∈ Rn, F (q̇d) ∈ Rn, respec-
tively.

The closed-loop error system is obtained by adding and
subtracting Nd (qd, q̇d, q̈d, t) and e (t) to (8) and utilizing (3)
and (9) to yield

Mṙ = −1

2
Ṁr + χ+ S − kbr − kbMη [r − rτ + rτ τ̇ ]

−kbrτ τ̇ − e (10)

where the auxiliary terms χ (e1, r, ez), S (qd, q̇d, q̈d, t) ∈ Rn
are defined as

χ ,
1

2
Ṁr +Mq̈d + Vmq̇ +G+ F −Nd + αMr

−α2Me+ αMBez + e, (11)

S , Nd + d. (12)

Using Assumption 1, the following inequality can be devel-
oped based on the expression in (12)

‖S‖ ≤ s̄ (13)

where s̄ ∈ R+ is a known constant. The structure of (10) is
motivated by the desire to segregate terms that can be upper
bounded by state-dependent terms and terms that can be
upper bounded by constants. Using the Mean Value Theorem,
Property 1, and (4), the expression in (11) can be upper
bounded as

‖χ‖ ≤ ρ (‖z‖) ‖z‖ (14)

where ρ (‖z‖) is a positive globally invertible nondecreasing
function and z (e, r, ez) ∈ R3n is defined as

z ,
[
eT rT eTz

]T
. (15)

To facilitate the subsequent stability analysis, let
y (e, r, P,Q) ∈ R2n+2 be defined as

y ,
[
eT rT

√
P
√
Q
]T

(16)

where P (u, t, τ) , Q (r, t, τ, τ̇) ∈ R denote LK functionals
defined as

P , ω

ˆ t

t−τ(t)

(ˆ t

s

‖u (θ)‖2 dθ

)
ds (17)

Q ,
kb (2m̄η̄ + 1)

2 (1− τ̇)

ˆ t

t−τ(t)
‖r (θ)‖2 dθ (18)

and ω ∈ R+ is a known constant. Additionally, let kb,
introduced in (9), be defined as

kb , k1 + k2 + k3 (19)

where k1, k2, k3 ∈ R+.
Based on the result of the subsequent stability analysis,

the control gains α, γ, k1, k2, k3 are selected according to
the following sufficient conditions

α >
b2ψ2

4
, kb > sup

τ,τ̇

(
ϕ2 (2m̄η̄ + 1)

2 (1− τ̇)
2

(ψ2ω (1− τ̇) + τ)

)
,

k3 > sup
τ,τ̇

(
k2bωτ +

2kbm̄η̄

1− τ̇

)
(20)

where ψ ∈ R+ is a known constant. Let the auxiliary
constant β ∈ R+ be defined as

β = inf
τ,τ̇

[
α− b

2ψ2

4
, k3−k2bωτ−

kb (2m̄η̄ (2τ̇−3)+τ̇−2)

2 (τ̇ − 1)
,

1

τ

(
ω (1− τ̇)− ϕ2 (2m̄η̄ + 1)

2kb (1− τ̇)
2 −

2τ

ψ2

)]T
. (21)

If the sufficient conditions in (20) are satisfied and τ (t) , τ̇ (t)
are sufficiently small, then β > 0.

V. STABILITY ANALYSIS

Theorem 1. Given the dynamics in (1), the controller in (9)
ensures semi-global uniformly ultimately bounded tracking
in the sense that

‖e (t)‖ ≤ ε0exp (−ε1t) + ε2 (22)

where ε0, ε1, ε2 ∈ R+ denote constants, provided the suf-
ficient conditions in (20) are satisfied, and τ (t) , τ̇ (t) are
sufficiently small (see (20) and Assumption 2).

Proof: Let VL (y, t) : D×[0,∞)→ R be a continuously
differentiable, positive-definite functional on a domain D ⊆
R2n+2, defined as

VL ,
1

2
eT e+

1

2
rTMr + P +Q (23)

which can be bounded as

φ1 ‖y‖2 ≤ VL ≤ φ2 ‖y‖2

where the constants φ1, φ2 ∈ R are defined as

φ1 ,
1

2
min [m, 1] , φ2 , max

[
1

2
m̄, 1

]
. (24)

After utilizing (3) and (10), applying the Leibniz Rule to
determine the time derivative of (17) and (18), and by
canceling similar terms, the time derivative of (23) can be
expressed as

V̇L = −αeT e− kbrT r
+BeT ez − kbMηrT r + kbMη (1− τ̇) rT rτ

−kbτ̇ rT rτ + rTχ+ rTS

+ωτ ‖u‖2 − ω (1− τ̇)

ˆ t

t−τ(t)
‖u (θ)‖2 dθ

+
kb (2m̄η̄ + 1)

2 (1− τ̇)
‖r‖2 − kb (2m̄η̄ + 1)

2
‖rτ‖2

+
kb (2m̄η̄ + 1) τ̈

2 (1− τ̇)
2

ˆ t

t−τ(t)
‖r (θ)‖2 dθ. (25)



By utilizing Assumption 2, (4), (7), (9), (13), and (14), (25)
can be expanded, regrouped and upper bounded as

V̇L ≤ −α ‖e‖2 − kb ‖r‖2 + b ‖e‖ ‖ez‖+ kbm̄η̄ ‖r‖2

+kb (2m̄η̄ + 1) ‖r‖ ‖rτ‖
+ρ (‖z‖) ‖z‖ ‖r‖+ ‖r‖ s̄

+k2bωτ ‖r‖
2 − ω (1− τ̇)

ˆ t

t−τ(t)
‖u (θ)‖2 dθ

+
kb (2m̄η̄ + 1)

2 (1− τ̇)
‖r‖2 − kb (2m̄η̄ + 1)

2
‖rτ‖2

+
ϕ2 (2m̄η̄ + 1)

2kb (1− τ̇)
2

ˆ t

t−τ(t)
‖u (θ)‖2 dθ. (26)

Young’s Inequality can be used to upper bound select terms
in (26) as

b ‖e‖ ‖ez‖ ≤
b2ψ2

4
‖e‖2 +

1

ψ2
‖ez‖2 ,

‖r‖ ‖rτ‖ ≤
1

2
‖r‖2 +

1

2
‖rτ‖2 (27)

where ψ was introduced in (20). Using (27), (26) can be
upper bounded as

V̇L ≤ −α ‖e‖2 − kb ‖r‖2 +
b2ψ2

4
‖e‖2

+
τ

ψ2

ˆ t

t−τ(t)
‖u (θ)‖2 dθ + kbm̄η̄ ‖r‖2 (28)

+
kb (2m̄η̄ + 1)

2
‖r‖2 +

kb (2m̄η̄ + 1)

2 (1− τ̇)
‖r‖2

+ρ (‖z‖) ‖z‖ ‖r‖+ ‖r‖ s̄+ k2bωτ ‖r‖
2

−

(
ω (1− τ̇)− ϕ2 (2m̄η̄ + 1)

2kb (1− τ̇)
2

)ˆ t

t−τ(t)
‖u (θ)‖2 dθ.

Utilizing the Cauchy-Schwarz inequality and (5) yields

‖ez‖2 ≤ τ
ˆ t

t−τ(t)
‖u (θ)‖2 dθ. (29)

After adding and subtracting τ
ψ2

´ t
t−τ ‖u (θ)‖2 dθ, utilizing

(20) and (29), and canceling terms, (28) can be expressed as

V̇L ≤ −α ‖e‖2 − kb ‖r‖2

+
b2ψ2

4
‖e‖2 + kbm̄η̄ ‖r‖2 +

kb (2m̄η̄ + 1)

2
‖r‖2

+ρ (‖z‖) ‖z‖ ‖r‖+ ‖r‖ s̄+ k2bωτ ‖r‖
2

−1

τ

(
ω (1− τ̇)− ϕ2 (2m̄η̄ + 1)

2kb (1− τ̇)
2 −

2τ

ψ2

)
‖ez‖2

+
kb (2m̄η̄ + 1)

2 (1− τ̇)
‖r‖2 − τ

ψ2

ˆ t

t−τ(t)
‖u (θ)‖2 dθ. (30)

Inserting k1, k2, k3 from (19) and regrouping terms, (30) can

be upper bounded as

V̇L ≤ −
(
α− b2ψ2

4

)
‖e‖2

−k1 ‖r‖2 + ρ (‖z‖) ‖z‖ ‖r‖ − k2 ‖r‖2 + ‖r‖ s̄
−
(
k3 − kbm̄η̄ − k2bωτ

)
‖r‖2

+
kb (2m̄η̄ + 1)

2

(
1 +

1

(1− τ̇)

)
‖r‖2

−1

τ

(
ω (1− τ̇)− ϕ2 (2m̄η̄ + 1)

2kb (1− τ̇)
2 −

2τ

ψ2

)
‖ez‖2

− τ

ψ2

ˆ t

t−τ(t)
‖u (θ)‖2 dθ. (31)

After completing the squares, the expression in (31) can be
upper bounded as

V̇L ≤ −
(
β − ρ2 (‖z‖)

4k1

)
‖z‖2

− τ

ψ2

ˆ t

t−τ(t)
‖u (θ)‖2 dθ +

s̄2

4k2
(32)

where β was defined in (21). The inequality [19]ˆ t

t−τ(t)

(ˆ t

s

‖u (θ)‖2 dθ

)
ds ≤

τ sup
s∈[t, t−τ ]

[ˆ t

s

‖u (θ)‖2 dθ

]
= τ

ˆ t

t−τ(t)
‖u (θ)‖2 dθ

can be used to upper bound (32) as

V̇L ≤ −
(
β − ρ2 (‖z‖)

4k1

)
‖z‖2+

s̄2

4k2
(33)

− 1

2ψ2

ˆ t

t−τ(t)

(ˆ t

s

‖u (θ)‖2 dθ

)
− τ

2ψ2

ˆ t

t−τ(t)
‖u (θ)‖2 dθ.

Using the definitions of u (r, t) in (9), z (t) in (15), and y (t)
in (16), the expression in (33) can be upper bounded as

V̇L ≤ −β2 ‖y‖2 −
(
β − ρ2 (‖z‖)

4k1

)
‖ez‖2 +

s̄2

4k2
(34)

where β2 (‖z‖) ∈ R+ is defined as

β2 = inf
τ,τ̇

[
β − ρ2 (‖z‖)

4k1
,

1

2ωψ2
,
kbτ (1− τ̇)

ψ2 (2m̄η̄ + 1)

]T
.

By further utilizing (24), the inequality in (34) can be written
as

V̇L ≤ −
β2
φ2
VL +

s̄2

4k2
. (35)

Consider a set S defined as

S ,
{
z (t) ∈ R3n | ‖z‖ < ρ−1

(
2
√
βk1

)}
.

In S, β2 (‖z‖) can be lower bounded by a constant δ ∈ R+

as δ ≤ β2 (‖z‖). Thus, the linear differential equation in (35)
can be solved as

VL ≤ VL (0) e−
δ
φ2
t +

s̄2φ2
4k2δ

[
1− e−

δ
φ2
t
]
, (36)



RMS Errors (deg)
Time-Delay τ (t) (ms) Link 1 Link 2

Fast, Small 2 · sin
(
t
2

)
+ 3 0.0524o 0.0363o

Fast, Large 20 · sin
(
t
2

)
+ 30 0.4913o 0.5687o

Slow, Small 2 · sin
(

t
10

)
+ 3 0.0521o 0.0341o

Slow, Large 20 · sin
(

t
10

)
+ 30 0.5179o 0.6970o

Table I
RMS ERRORS FOR TIME-VARYING TIME-DELAY RATES AND

MAGNITUDES.

provided ‖z‖ < ρ−1
(
2
√
βk1

)
. From (36), given z (0), k1

can be selected such that z (0) ∈ S (i.e. a semi-global result)
to yield the result in (22).

VI. SIMULATION RESULTS

The controller developed in (9) was simulated for a two-
link planar manipulator. The dynamics of the manipulator
are given as[

τ1
τ2

]
=

[
p1 + 2p3c2 p2 + p3c2
p2 + p3c2 p2

] [
q̈1
q̈2

]
+

[
−p3s2q̇2 −p3s2 (q̇1 + q̇2)
p3s2q̇1 0

] [
q̇1
q̇2

]
+

[
fd1 0
0 fd2

] [
q̇1
q̇2

]
+

[
τd1
τd2

]
where p1 = 3.473 kg · m2, p2 = 0.196 kg · m2, p3 =
0.242 kg · m2, fd1 = 5.3 Nm sec, fd2 = 1, 1 Nm sec,
c2 denotes cos (q2), and s2 denotes sin (q2). An additive
exogenous disturbance was applied as τd1 = 0.2sin

(
t
2

)
, and

τd2 = 0.1sin
(
t
4

)
. The desired trajectories for links 1 and 2

for all simulations were selected as

qd1 (t) = 20sin (1.5t)
(

1− e−0.01t
3
)
deg,

qd2 (t) = 10sin (1.5t)
(

1− e−0.01t
3
)
deg.

The initial conditions for the manipulator were selected as
stationary at q1, q2 = 0 deg. Because the controller in (9)
assumes that the inertia matrix is unknown, a best guess
estimate of the constant matrix B is selected as

B =

[
4.0 0.4
0.4 0.2

]
.

To illustrate robustness to the input delay, simulations were
completed using various time-varying delays. For each case,
the root mean square (RMS) errors are shown in Table I.
The results show that the performance of the system appears
to be independent of delay frequency but is affected when
the delay magnitude increases. This outcome agrees with
previous input delay results which showed that tracking
performance is reduced as larger constant time-delays are
applied to the system [19].

Analysis was also conducted to examine the robustness of
the controller with respect to unknown variances in the the
time-delay. In each case, the input delay entering the plant
was varied from the delay used in the controller feedback.

RMS Errors (deg)
Time-Delay Variance in Plant Link 1 Link 2

-30% magnitude 0.0633o 0.0766o

-10% magnitude 0.0497o 0.0662o

0% magnitude 0.0394o 0.0605o

+10% magnitude 0.0495o 0.0764o

+30% magnitude 0.0628o 0.1069o

+10% phase 0.0393o 0.0605o

+30% phase 0.0394o 0.0604o

+50% phase 0.0405o 0.0619o

Table II
RMS ERRORS FOR CASES OF UNCERTAINTY IN TIME-VARYING

TIME-DELAY SEEN BY THE PLANT AS COMPARED TO THE DELAY
ASSUMED BY THE CONTROLLER.

The controller assumes a sinusoidal time-delay with a peak
magnitude of 10 ms. The results are presented in Table II.
The results suggest that the controller is robust to variances in
delay magnitude and phase shift. Specifically, the uncertainty
in phase of the delay exhibits negligible degradation on the
tracking performance. Figure 1 illustrates the time-delay and
the tracking errors associated with the +50% phase variance
case.

Additional results show that the performance/robustness
of the developed controller with respect to the mismatch
between B and M−1 (q) indicates an insignificant amount
of variation in the performance even when each element of
M−1 (q) is overestimated by as much as 100%.
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Figure 1. +50% phase variance in input-delay with peak magnitude of
10 ms. (a) Time-delay in seconds vs time. (b) Tracking error in degrees vs
time.

VII. CONCLUSION

A continuous controller is developed for uncertain non-
linear Euler-Lagrange systems which include time-varying
input delays and additive bounded disturbances. The con-
troller assumes that the time-delay is bounded and slowly
varying and is shown to guarantee uniformly ultimately
bounded tracking in the presence of model uncertainty and/or
unmodeled effects. Numerical simulations demonstrate the



robustness of the control design with respect to delay varia-
tion and uncertainty. Extending the result to include uncertain
time-delays will enhance the applicability of the controller,
and is the focus of on-going efforts.
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