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Abstract—This paper considers a continuous control design
for second-order control affine nonlinear systems with time-
varying state delays. A neural network is augmented with a
robust integral of the sign of the error (RISE) control structure
to achieve semi-global asymptotic tracking in the presence of
unknown, arbitrarily large, time-varying delays, not linear-in-
the-parameters uncertainty and additive bounded disturbances.
By expressing unknown functions in terms of the desired
trajectories and through strategic grouping of delay-free and
delay-dependent terms, Lyapunov-Krasovskii functionals are
utilized to cancel the delayed terms in the analysis and obtain
delay-free neural network update laws.

I. INTRODUCTION

Stability and control of dynamical systems with time-
delays in the state and/or control has received considerable
attention for more than four decades [1]–[4]. Motivated
by performance and stability problems with time-delayed
systems, solutions typically use appropriate Lyapunov-
Razumikhin or Lyapunov-Krasovskii functionals to derive
bounds on the delay such that the closed loop system is
stable. Numerous methods have been developed through-
out literature for time-delayed linear systems and nonlinear
systems with known dynamics [1], [4]–[7]. For uncertain
nonlinear systems, techniques have also been developed to
compensate for both known and unknown constant state-
delays [8]–[15]. Extensions of these designs to systems with
nonlinear, bounded disturbances also exist [13], [15], [16].

For some applications, it is often more practical to con-
sider time-varying or state-dependent time-delays. Control
methods for uncertain nonlinear systems with time-varying
state delays have been studied in results such as [12], [17]–
[20]. However, compensation of time-varying state-delays in
systems with both uncertain dynamics and added exogenous
disturbances is explored in only a few results. A robust
integral sliding mode technique for stochastic systems with
time-varying delays and linearly state-bounded nonlinear
uncertainties is developed in [21] but depends on convex
optimization routines and an LMI feasibility condition. In
[22], an adaptive fuzzy logic control method yielding a
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semi-global uniformly ultimately bounded tracking result is
illustrated for a SISO system in Brunovsky form. The authors
of [23] utilize the circle criterion and an LMI feasibility
condition to design a nonlinear observer for neural-network-
based control of a class of uncertain stochastic nonlinear
strict-feedback systems. The design proposes a neural net-
work weight update law that directly cancels the bound on
the reconstruction error to yield a globally stable result. Dis-
continuous model reference adaptive controllers have been
designed in [24] and [25] for uncertain nonlinear plants with
time-varying delays to achieve asymptotic stability results;
however, the discontinuous nature of these results motivates
the design of continuous control techniques.

In this paper, a continuous controller for uncertain nonlin-
ear systems with an unknown, arbitrarily large, time-varying
state delay is developed. Motivated by our previous work in
[26], a continuous robust integral of the sign of the error
(RISE) control structure is augmented with a three-layer
neural network (NN) to compensate for time-varying state
delays which are arguments of uncertain nonautonomous
functions that contain not linear-in-the-parameters (non-LP)
uncertainty. Under the assumption that the time-delay can
be arbitrarily large, bounded and slowly varying, Lyapunov-
Krasovskii (LK) functionals are utilized to prove semi-global
asymptotic tracking. In comparison to our previous work
for constant state delays in [27], new efforts in this paper
required to compensate for time-varying state delays include:
strategic grouping of delay-dependent and delay-free terms
and a redesigned LK functional. In comparison to [27],
neural networks are used in the current work to compensate
for the non-LP disturbances, and new efforts are required
to design the online NN update laws in the presence of the
unknown time-varying delay.

II. DYNAMIC MODEL AND PROPERTIES

Consider a class of uncertain second-order control affine
nonlinear systems with an unknown time-varying state delay
described by

ẍ = f (x, ẋ, t)+g (x (t−τ) , ẋ (t−τ) , t)+d (t)+u (t) . (1)

In (1), f (x, ẋ, t) : R2n × [0,∞) → Rn is an unknown
function, g (x (t− τ) , ẋ (t− τ) , t) : R2n × [0,∞) → Rn
is an unknown time-delayed function, τ (t) ∈ R is an
unknown, time-varying, arbitrarily large time-delay, d (t) :
[0,∞) → Rn is a sufficiently smooth bounded disturbance
(e.g., unmodeled effects), u (t) ∈ Rn is the control input, and
x (t) , ẋ (t) ∈ Rn are measurable system states. Throughout



the paper, a time-dependent delayed function is denoted as
ζ (t− τ) or ζτ , and ‖·‖ denotes the Euclidean norm of a
vector. Additionally, the following assumptions are used.

Assumption 1. The unknown time delay is bounded such
that 0 ≤ τ (t) ≤ ϕ1 and the rate of change of the delay is
bounded such that |τ̇ (t)| ≤ ϕ2 < 1 where ϕ1, ϕ2 ∈ R+ are
known constants.

Assumption 2. The functions f (·) , g (·) and their first
and second derivatives with respect to their arguments are
Lipschitz continuous.

Assumption 3. The nonlinear disturbance term and its first
two time derivatives (i.e., d (t) , ḋ (t) , d̈ (t)) exist and are
bounded by known constants [26]–[28].

Assumption 4. The desired trajectory is designed such that
x
(i)
d (t) ∈ Rn, ∀i = 0, 1, ..., 4 exist and are bounded.1

III. CONTROL DEVELOPMENT

The control objective is to design a continuous controller
that will ensure x (t) tracks a desired trajectory. To quantify
the control objective, a tracking error denoted e1 (x, t) ∈ Rn
is defined as

e1 , xd − x. (2)

To facilitate the subsequent analysis, two filtered track-
ing errors, denoted by e2 (e1, ė1, t) , r (e2, ė2, t) ∈ Rn, are
defined as

e2 , ė1 + α1e1 (3)
r , ė2 + α2e2 (4)

where α1, α2 ∈ R+ are known gain constants. The auxiliary
signal r (e2, ė2, t) is introduced to facilitate the stability
analysis and is not used in the control design since the
expression in (4) depends on the unmeasurable state ẍ (t).

An open-loop tracking error can be obtained by substitut-
ing for (1)-(4) to yield

r = α1e1 + α2e2 + ẍd − d
−f (x, ẋ, t)− g (xτ , ẋτ , t)− u. (5)

Using a desired compensation adaptation law (DCAL)-based
design approach [29], (5) can be written as

r = α1e1 + α2e2 + S1 + Sd + ẍd − d
+g (xd, ẋd)− g (xdτ , ẋdτ )− u (6)

where the auxiliary functions
S1 (x, xd, ẋ, ẋd, xτ , ẋτ , xdτ , ẋdτ , t) , Sd (xd, ẋd) ∈ Rn
are defined as

S1 ,−f (x, ẋ, t) + f (xd, ẋd)− g (xτ , ẋτ , t) + g (xdτ , ẋdτ ) ,

Sd,−f (xd, ẋd)− g (xd, ẋd) .

1Many guidance and navigation applications utilize smooth, high-order
differentiable desired trajectories. Curve fitting methods can also be used to
generate sufficiently smooth time-varying trajectories.

The grouping of terms in (5) is motivated by the desire
to segregate terms that can be upper bounded by state-
dependent terms (whether delayed or delay-free) from the
terms that can be upper bounded by constants.

The Universal Approximation Theorem can be used to
represent the auxiliary function Sd (·) by a three-layer NN
as

Sd ,WTσ
(
V Txnn

)
+ ε (7)

where V (t) ∈ R(N1+1)×N2 and W (t) ∈ R(N2+1)×n are
bounded constant ideal weights for the first-to-second and
second-to-third layers, respectively, N1 is the number of
neurons in the input layer, N2 is the number of neurons
in the hidden layer, n is the number of neurons in the
output layer, σ (·) ∈ RN2+1 is an activation function,
xnn (t) ∈ RN1+1 denotes the input to the NN defined
on a compact set containing the known bounded desired
trajectories as xnn =

[
1, xTd , ẋ

T
d

]T
, and ε (xnn) ∈ Rn

denotes the functional reconstruction errors.

Assumption 5. The ideal NN weights are assumed to exist
and be bounded by known positive constants, i.e. ‖V ‖2F ≤
VB , ‖W‖2F ≤ WB where ‖·‖F is the Frobenius norm for a
matrix.

Assumption 6. The functional reconstruction errors ε (·)
and their first derivative with respect to their arguments are
bounded such that ‖ε (xnn)‖ ≤ εb1, ‖ε̇ (xnn, ẋnn)‖ ≤ εb2,
where εb1 , εb2 ∈ R are known positive constants.

Assumption 7. The activation function σ (·) and its deriva-
tive, σ′ (·) are bounded.

Remark 1. Assumptions 5-6 are standard assumptions in
NN control literature (cf. [30]). The ideal weight upper
bounds are assumed to be known to facilitate the use of
the projection algorithm to ensure the weight estimates are
always bounded. There are numerous activations functions
which satisfy Assumption 7, e.g., sigmoidal or hyperbolic
tangent functions.

The controller is designed using a three-layer NN feedfor-
ward term augmented by a RISE feedback term as

u , Ŝd + µ. (8)

The RISE feedback term µ (e2, υ) ∈ Rn is defined as [31],
[32]

µ , (ks + 1) e2 − (ks + 1) e2 (0) + υ (9)

where υ (e2) ∈ Rn is the generalized Filippov solution to
the following differential equation

υ̇ , (ks + 1)α2e2 + βsgn (e2) , (10)

β, ks ∈ R are positive, constant control gains, and sgn (·)
is defined ∀ξ ∈ Rn =

[
ξ1 ξ2 ... ξn

]T
as sgn (ξ) ,[

sgn (ξ1) sgn (ξ2) ... sgn (ξn)
]T
.2

2The initial condition for v (0) is selected such that u (0) = 0.



Using Filippov’s theory of differential inclusions [33]–
[36], the existence of solutions can be established for
υ̇ ∈ K [h1] (e2), where h1 (e2) ∈ Rn is defined
as the right-hand side of υ̇ in (10) and K [h1] ,⋂
δ>0

⋂
µSm=0

coh1 (B (e2, δ)− Sm), where
⋂

µSm=0

denotes

the intersection over all sets Sm of Lebesgue mea-
sure zero, co denotes convex closure, and B (e2, δ) =
{ς ∈ Rn| ‖e2 − ς‖ < δ} [37], [38]. The differential equation
given in (10) is continuous except for the Lebesgue measure
zero set of times t ∈ [t0, tf ] when e2 (e1, ė1, t) = 0. Hence,
the set of time-instances for which υ̇ (e2) is not defined
is Lebesgue negligible. The absolutely continuous solution
υ (e2) = υ (e2 (t0)) +

´ t
t0
υ̇dt does not depend on the value

of υ̇ on a Lebesgue negligible set of time-instances [39].
The NN feedforward term Ŝd (t) ∈ Rn in (8) is designed

as
Ŝd , ŴTσ

(
V̂ Txnn

)
(11)

where V̂ (t) ∈ R(N1+1)×N2 and Ŵ (t) ∈ R(N2+1)×n are
estimates of the ideal weights. Based on the subsequent
stability analysis, the DCAL-based weight update laws for
the NN in (11) are generated online as

·
Ŵ , proj

(
Γ1σ̂

′V̂ T ẋnne
T
2

)
(12)

·
V̂ , proj

(
Γ2ẋnn

(
σ̂′T Ŵe2

)T)
, (13)

where Γ1 ∈ R(N2+1)×(N2+1) and Γ2 ∈ R(N1+1)×(N1+1) are
positive-definite, constant symmetric control gain matrices,
and σ̂′ (·) ∈ RN2+1 denotes the partial derivative of σ̂ ,

σ
(
V̂ Txnn

)
.

The closed-loop dynamics are developed by substituting
(8)-(11) into (6), taking the time derivative, and adding and
subtracting WT σ̂′V̂ T ẋnn + ŴT σ̂′Ṽ T ẋnn to yield

ṙ= α1ė1 + α2ė2 + Ṡ1 +
...
xd − ḋ

−ġ (xdτ , ẋdτ , ẍdτ ) + ġ (xd, ẋd, ẍd)

− (ks + 1) r − βsgn (e2) + ŴT σ̂′Ṽ T ẋnn

+W̃T σ̂′V̂ T ẋnn +WTσ′V T ẋnn −WT σ̂′V̂ T ẋnn

−ŴT σ̂′Ṽ T ẋnn − ˙̂
WT σ̂ − ŴT σ̂′

˙̂
V Txnn + ε̇ (14)

where estimate mismatches for the ideal weights, denoted
Ṽ (t) ∈ R(N1+1)×N2 and W̃ (t) ∈ R(N2+1)×n, are defined as
Ṽ (t) = V (t)− V̂ (t) and W̃ (t) = W (t)−Ŵ (t). Using the
NN weight update laws from (12) and (13), the expression
in (14) can be rewritten as

ṙ = Ñ +N + e2 − (ks + 1) r − βsgn (e2) (15)

where Ñ
(
Ŵ , V̂ , e1, e2, ė1, ė2, t

)
∈ Rn and N

(
Ŵ , V̂ , t

)
∈

Rn are defined as

Ñ , α1ė1 + α2ė2 + Ṡ1 − e2 − proj
(

Γ1σ̂
′V̂ T ẋnne

T
2

)T
σ̂

−ŴT σ̂′proj

(
Γ2ẋnn

(
σ̂

′T Ŵe2

)T)
, (16)

N ,ND +NB . (17)

In (17), ND (xd, ẋd, ẍd,
...
xd, t) ∈ Rn is defined as

ND , WTσ′V T ẋnn + ε̇+
...
xd − ḋ

−ġ (xdτ , ẋdτ , ẍdτ ) + ġ (xd, ẋd, ẍd) (18)

and NB
(
Ŵ , V̂ , xd, ẋd, ẍd, t

)
∈ Rn is separated such that

NB , NB1 +NB2 (19)

where NB1

(
Ŵ, V̂, xd, ẋd, ẍd, t

)
, NB2

(
Ŵ, V̂, xd, ẋd, ẍd, t

)
∈

Rn are defined as

NB1
, −WT σ̂′V̂ T ẋnn − ŴT σ̂′Ṽ T ẋnn,

NB2 , ŴT σ̂′Ṽ T ẋnn + W̃T σ̂′V̂ T ẋnn.

Separating the terms in (17) is motivated by the fact that the
different components have different bounds [26].

Using Assumptions 3-7, ND (·) from (18) and NB (·) from
(19) and their time derivatives can be upper bounded as

‖ND‖ ≤ ζ1, ‖NB‖ ≤ ζ2,
∥∥∥ṄD∥∥∥ ≤ ζ3,∥∥∥ṄB∥∥∥ ≤ ζ4+ζ5 ‖e2‖ ,

where ζi ∈ R+, ∀i = 1, ..., 5 are known constants. Addition-
ally, Ñ (·) from (16) can be upper bounded as∥∥∥Ñ∥∥∥ ≤ ρ1 (‖z‖) ‖z‖+ ρ2 (‖zτ‖) ‖zτ‖ (20)

where z (e1, e2, r) ∈ R3n denotes the vector z =[
eT1 eT2 rT

]T
and ρ1 (·) , ρ2 (·) : R → R are positive,

globally invertible functions. The upper bound for the aux-
iliary function Ñ (·) is segregated into delay-free and delay-
dependent bounding functions to eliminate the delayed terms
with the use of an LK functional in the stability analysis.
Specifically, let RLK (z, t) ∈ R denote an LK functional
defined as

RLK ,
γ

2ks

ˆ t

t−τ(t)
ρ22 (‖z (σ)‖) ‖z (σ)‖2dσ (21)

where γ ∈ R+ is an adjustable constant, and ks and ρ2 (·)
were introduced in (9) and (20), respectively.

IV. STABILITY ANALYSIS

Theorem 1. The controller proposed in (8) and the weight
update laws designed in (12)-(13) ensure that the states and
controller are bounded and the tracking errors are regulated
in the sense that

‖e1‖ → 0 as t→∞

provided the control gain ks introduced in (9) is selected
sufficiently large based on the initial conditions of the states,
and the remaining control gains are selected based on the
following sufficient conditions

α1 >
1

2
, α2 > β2 +

1

2
, β2 > ζ5,

β > ζ1 + ζ2 +
1

α2
ζ3 +

1

α2
ζ4, (1− ϕ2) γ > 1 (22)



where α1, α2, β, γ were introduced in (2), (3), (10) and (21),
ϕ2 was introduced in Assumption 1 and β2 is a subsequently
defined gain constant.

Proof: Let D ⊂ R3n+3 be a domain containing
y (e1, e2, r, P,Q,RLK) ∈ R3n+3, defined as

y ,
[
z
√
P
√
Q
√
RLK

]
. (23)

In (23), the auxiliary function P (e2, t) ∈ R is defined as
the generalized Filippov solution to the following differential
equation

Ṗ , −rT (NB1
+ND − βsgn (e2))− ėT2NB2

+ β2 ‖e2‖2 ,

P (e2 (t0) , t0) , β

n∑
i=1

|e2i (t0)| − e2 (t0)
T
ND (t0) (24)

where the subscript i = 1, 2, ..., n denotes the ith element
of the vector. Similar to the development in (10), existence
of solutions for P (e2, t) can be established using Filippov’s
theory of differential inclusions for Ṗ ∈ K [h2] (r, ė2, e2, t),
where h2 (r, ė2, e2, t) ∈ R is defined as the right-hand side
of Ṗ . Provided the sufficient conditions in (22) are satisfied,
P (e2, t) ≥ 0 (See [26] for proof). Additionally, the auxiliary
function Q

(
W̃ , Ṽ , t

)
∈ R in (23) is defined as

Q ,
α2

2
tr
(
W̃TΓ−11 W̃

)
+
α2

2
tr
(
Ṽ TΓ−12 Ṽ

)
(25)

where Q ≥ 0 since Γ1 and Γ2 are constant, symmetric, and
positive definite matrices and α2 ∈ R+.

Let V (y, t) : D × [0,∞) → R be a positive-definite,
Lipschitz continuous, regular function defined as

V ,
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
rT r + P +Q+RLK (26)

which satisfies the following inequalities

φ1 (y) ≤ V (t) ≤ φ2 (y) (27)

where the continuous positive-definite functions
φ1 (y) , φ2 (y) ∈ R are defined as φ1 (y) , λ1 ‖y‖2,
φ2 (y) , λ2 ‖y‖2 and λ1, λ2 ∈ R+ are known constants.
Under Filippov’s framework, a generalized Lyapunov
stability theory can be used to establish strong stability of the
closed-loop system ẏ = h3 (y, t), where h3 (y, t) ∈ R3n+3

denotes the right-hand side of the closed-loop error signals.
The time derivative of (26) exists almost everywhere (a.e.),
i.e., for almost all t ∈ [t0, tf ], and V̇ (y, t)

a.e.
∈ ˙̃V (y, t)

where
˙̃V =

⋂
ξ∈∂V (y,t)

ξTK [%]

where % ∈ R3n+4 is defined as % ,[
ėT1 ėT2 ṙT 1

2P
− 1

2 Ṗ 1
2Q
− 1

2 Q̇ 1
2R
− 1

2

LKṘLK 1

]T
,

and ∂V is the generalized gradient of V (y, t) [40]. Since
V (y, t) is a Lipschitz continuous regular function,

˙̃V ⊂ ∇V K [·]T (28)

where

∇V ,
[
eT1 eT2 rT 2P

1
2 2Q

1
2 2R

1
2

LK

]
.

Using the calculus for K [·] from [38], and substituting
(2)-(4), and (15), (24), the time derivatives of (21), and (25)
into (28), yields

˙̃V ⊂ eT1 (e2 − α1e1) + eT2 (r − α2e2)

+rT
(
Ñ +ND +NB1 +NB2 + e2 − (ks + 1) r

)
+rT (−βK [sgn (e2)]) + β2 ‖e2‖2

−rT (NB1 +ND − βK [sgn (e2)])− ėT2NB2

+
γ

2ks
ρ22 (‖z‖) ‖z‖2 − γ (1− τ̇)

2ks
ρ22 (‖zτ‖) ‖zτ‖2

+tr
(
α2W̃

TΓ−11
˙̃W
)

+ tr
(
α2Ṽ

TΓ−12
˙̃V
)

(29)

where K [sgn(e2)] = SGN (e2) [38] such that
SGN (e2i) = 1 if e2i (·) > 0, [−1, 1] if e2i (·) = 0,
and −1 if e2i (·) < 0. Canceling terms and utilizing the
bounds from (20) and Assumption 1, we can upper bound
(29) as

V̇
a.e.
≤ ‖e1‖ ‖e2‖ − α1 ‖e1‖2 − α2 ‖e2‖2

+ ‖r‖ ρ1 (‖z‖) ‖z‖+ ‖r‖ ρ2 (‖zτ‖) ‖zτ‖
− (ks + 1) ‖r‖2 + β2 ‖e2‖2 +

γ

2ks
ρ22 (‖z‖) ‖z‖2

−γ (1− ϕ2)

2ks
ρ22 (‖zτ‖) ‖zτ‖2 (30)

where the set in (29) reduces to the scalar inequality in
(30) since the RHS is continuous a.e., i.e, the RHS is
continuous except for the Lebesgue negligible set of times
when e2 (e1, ė1, t) = 0 [37], [39]. Young’s inequality can
be used to show that ‖e1‖ ‖e2‖ ≤ 1

2 ‖e1‖
2

+ 1
2 ‖e2‖

2 and
‖r‖ ρ2 (‖zτ‖) ‖zτ‖ ≤ ks

2 ‖r‖
2

+ 1
2ks

ρ22 (‖zτ‖) ‖zτ‖2, which
allows for the following upper bound for (30)

V̇
a.e.
≤ 1

2
‖e1‖2 +

1

2
‖e2‖2 − α1 ‖e1‖2 − α2 ‖e2‖2

−ks
2
‖r‖2 − ‖r‖2 + β2 ‖e2‖2 + ‖r‖ ρ1 (‖z‖) ‖z‖

+
1

2ks
ρ22 (‖zτ‖) ‖zτ‖2 +

γ

2ks
ρ22 (‖z‖) ‖z‖2

−γ (1− ϕ2)

2ks
ρ22 (‖zτ‖) ‖zτ‖ . (31)

If (1− ϕ2) γ > 1, and by completing the squares for
r (e2, ė2, t), (31) becomes

V̇
a.e.
≤ −

(
α1 −

1

2

)
‖e1‖2 −

(
α2 − β2 −

1

2

)
‖e2‖2 − ‖r‖2

+
1

2ks
ρ21 (‖z‖) ‖z‖2 +

γ

2ks
ρ22 (‖z‖) ‖z‖2 . (32)

Regrouping similar terms, the expression can be upper
bounded by

V̇
a.e.
≤ −

(
λ3 −

ρ2 (‖z‖)
2ks

)
‖z‖2 (33)



where ρ2 (‖z‖) , ρ21 (‖z‖) + γρ22 (‖z‖) and λ3 ,
min

{
α1 − 1

2 , α2 − β2 − 1
2 , 1

}
. The bounding function

ρ (‖z‖) : R → R is a positive-definite, globally invert-
ible function. The expression in (33) can be further upper
bounded by a continuous, positive semi-definite function

V̇
a.e.
≤ −φ3 (y) = −c ‖z‖2 ∀y ∈ D (34)

for some positive constant c ∈ R+ and domain D ={
y ∈ R3n+3 | ‖y‖ < ρ−1

(√
2λ3ks

)}
. Larger values of ks

will expand the size of the domain D . The inequalities in
(27) and (34) can be used to show that V ∈ L∞ in D .
Thus, e1 (·) , e2 (·) , r (·) ∈ L∞ in D . The closed-loop error
system can be used to conclude that the remaining signals
are bounded in D , and the definitions for φ1 (·) and z (·) can
be used to show that φ1 (·) is uniformly continuous in D .
Let SD ⊂ D denote a set defined as

SD ,

{
y ∈ D | φ2 < λ1

(
ρ−1

(√
2λ3ks

))2}
. (35)

The region of attraction in (35) can be made arbitrarily large
to include any initial conditions by increasing the control
gain ks. From (34), [41, Corollary 1] can be invoked to show
that c ‖z‖2 → 0 as t → ∞ ∀y (0) ∈ SD . Based on the
definition of z (·) in (20), ‖e1‖ → 0 as t→∞∀y (0) ∈ SD .

V. CONCLUSION

A continuous, neural network augmented, RISE controller
is utilized for uncertain nonlinear systems which include
unknown, arbitrarily large, time-varying state delays and
additive bounded disturbances. The controller assumes the
time-delay is bounded and slowly varying. Time-varying
LK functionals are utilized to prove semi-global asymptotic
tracking of the closed-loop system in the presence of time-
varying and non-LP functions and sufficiently smooth un-
modeled dynamic effects. Future goals include investigating
methods to eliminate the assumption on the rate of the change
of the delay and experimental demonstration of the developed
controller.
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