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Abstract— This manuscript addresses the problem of the data
driven modeling of a dynamical system in the presence of
partially known dynamics using an operator theoretic dynamic
mode decomposition (DMD) approach. The method relies on
the linearity of the Liouville operator with respect to the
dynamics together with established relations between Liouville
operators and occupation kernels, which embed trajectory data
as a function within a reproducing kernel Hilbert space. The
linearity allows for the known portion of the dynamics to
be subtracted from the overall dynamics, and the Liouville
operator corresponding to the unknown dynamics may thus be
isolated. A model for the unknown portion of the dynamical
systems may then be obtained from observed trajectory data,
and this model may then be utilized for predicting future states.

I. INTRODUCTION

Koopman based methods for dynamic mode decomposi-
tions (DMD) have proven to be effective tools for mod-
eling unknown dynamical systems, when the system is
forward complete [1]. Forward completeness is necessary
for the discretization of continuous time dynamical systems,
and is frequently demonstrated by showing that continuous
time dynamics are globally Lipschitz continuous [3]. When
the forward completeness property is satisfied, each fixed
timestep, ∆t yields a Koopman operator that corresponds to
the discrete time dynamics obtained from the continuous time
system. The collection of Koopman operators parameterized
by ∆t, is called the Koopman semigroup, and as ∆t → 0,
the Koopman operators converge strongly to what is known
as the Koopman generator, Afg = ∇g(·)f(·).

Significantly, the Koopman generator is linear in the
continuous dynamics (also known as the symbol of the
operator). However, each Koopman operator is not linear
in the dynamics. Hence, Koopman operators are a collec-
tion of operators which are nonlinear in the symbols, that
approximate an operator that is linear with respect to its
symbol. Moreover, Koopman generators are a proper subset
of Liouville operators, where Liouville operators take the
same form, but the symbols are not necessarily restricted to
dynamics that are forward complete. In a series of works, the
authors introduced occupation kernels, which allow for direct
DMD analysis using Liouville operators that obviate the
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limiting process of Koopman operators [7, 6]. By removing
the necessity of discretization of the dynamical systems, the
occupation kernel based DMD method may be employed for
systems that are not forward complete, such as ẋ = 1 + x2.
Important to the present context, this perspective allows the
utilization of the linearity in the symbol of Liouville opera-
tors to take advantage of known portions of the dynamics.

In many learning contexts for dynamical systems, only
a portion of the dynamics are known. For example, when
an unknown second order dynamical system, ẍ = f(x),
is converted to a first order dynamical system as ż =(
z2 f(z1)

)T
through the augmentation of the state variable,

z =
(
x ẋ

)T
, the first coordinate of the dynamics are

known. Another example of partially known dynamics occurs
when a statefeedback controller, u : Rn → Rn, is used in
a control-affine system such as ẋ = f(x) + u(x). However,
the nonlinear nature of Koopman operators with respect to
the dynamics limit the effectiveness with which this partial
knowledge may be used when learning the unknown portion
of the dynamics.

The linearity of the symbols for Liouville operators can be
leveraged to isolate the unknown portions of the dynamics.
Indeed, this property has already been effectively utilized in
parameter identification in [7], where a second order system
found in [4] was converted to a first order dynamical system
with an augmented state variable. In this context, a collection
of basis functions were pre-selected and occupation kernels
in tandem with the Liouville operators corresponding to this
basis were used to identify the parameters for the system,
while also removing the known portions of the dynamics
from consideration. Significantly, the data was leveraged to
approximate the unknown dynamics without the interference
of the known portions of the dynamics.

This manuscript leverages the results from [6] and [7] to
provide a data driven method (i.e. without preselected basis
functions) for the modeling of only the unknown portions of
a dynamical system. As intimated above, this will utilize the
Liouville operators’ linearity with respect to their symbols,
and several additional results from [7] will be exploited for
computation.

II. REVIEW OF RKHSS, OCCUPATION KERNELS, AND
LIOUVILLE OPERATORS

Definition 1: A reproducing kernel Hilbert space (RKHS),
H over a set X is a Hilbert space of real valued functions over
the set X such that for all x ∈ X the evaluation functional,
Ex : H → R, given as Exg := g(x) is bounded.

Since Ex is a bounded linear functional on a Hilbert space,
the Riesz representation theorem guarantees that for all x ∈



X there exists kx ∈ H such that Exg := g(x) = 〈g, kx〉H ,
where 〈·, ·〉H is used to denote the inner product on H
[5]. The kernel function corresponding to H is K(x, y) =
〈ky, kx〉 where kx is referred to as the reproducing kernel
centered at x. By working in the native space of the kernel
function, each kernel function is associated with a feature
map, Ψ : X → l2(N) such that K(x, y) = 〈Ψ(y),Ψ(x)〉l2(N)

[8].
In [7], Liouville operators, defined below, were introduced

in order to relate nonlinear dynamical systems to RKHSs.
Definition 2: Let ẋ = f(x) be a dynamical system with

the dynamics, f : Rn → Rn, locally Lipschitz continuous,
and suppose that H is a RKHS over a set X , where X ⊂ Rn.
The Liouville operator with symbol f , Af : D(Af ) → H ,
is given as

Afg := ∇xg · f ∈ H, (1)

where

D(Af ) := {g ∈ H : ∇xg · f ∈ H}. (2)
The existence of densely defined Liouville operators was
established in [7] and each densely defined Liouville operator
is closed. Sufficient conditions were given that established
when the adjoint of the Liouville operator with domain
D(Af ) := {g ∈ H : ∇g · f ∈ H} is densely defined.

After establishing a link between RKHSs and nonlinear
dynamical systems via the Liouville operator, [7] showed it
was possible to establish a connection between the Liouville
operator and the trajectories of a dynamical system via the
occupation kernel.

Definition 3: Let X ⊂ Rn, H be a RKHS of continuous
functions over X , and γ : [0, T ] → X be a continuous tra-
jectory. The functional g 7→

∫ T
0
g(γ(τ))dτ is bounded over

H , and can be represented as 〈g,Γγ〉H =
∫ T

0
g(γ(τ))dτ ,

for some Γγ ∈ H by the Riesz representation theorem. The
function Γγ is called the occupation kernel corresponding to
γ in H .

Proposition 1: Let H be a RKHS of continuously differ-
entiable functions over a compact set X and suppose that
f : Rn → Rn is Lipschitz continuous corresponding to a
densely defined Liouville operator. If γ : [0, T ] → X is a
trajectory as in Definition 3 that satisfies γ̇ = f(γ), then
Γγ ∈ D(A∗f ), and A∗fΓγ = K(·, γ(T ))−K(·, γ(0)).

It was shown in [7] that for every continuous signal, θ :
[0, T ] → Rn, the corresponding occupation kernel, Γθ ∈
D(A∗f ), and

A∗fΓθ(x) =

∫ T

0

∇2K(x, θ(t))f(θ(t))dt (3)

where ∇2 indicates that the gradient is performed with
respect to the second variable, θ. Equation (3) will be
used in the following sections in order to calculate A∗eΓγi .
Additionally, it will be important to recall that

〈Γγj ,Γγi〉 =

∫ Ti

0

∫ Tj

0

K(γi(τ), γj(t))dtdτ. (4)

III. PROBLEM STATEMENT

Consider the dynamical system

ẋ = h(x) + e(x) (5)

with h : Rn → Rn known and e : Rn → Rn unknown. The
objective is to determine a finite rank representation of Ae
using a collection of trajectories, {γi : [0, T ]→ Rn}Mi=1 that
satisfy (5). In the sequel, the fact that A∗h+eΓγi = A∗hΓγi +
A∗eΓγi will be pivotal in the analysis.

IV. DMD ROUTINE FOR PARTIAL UNCERTAINTY

Suppose that {γi : [0, Ti] → X}Mi=1 is a collection
of trajectories satisfying (5). The subscript in Ti indicates
that every trajectory is allowed to have a different terminal
time and therefore a different length. Thus, by Proposi-
tion 1, A∗h+eΓγi = K(·, γi(Ti)) − K(·, γi(0)) for each
i = 1, . . . ,M . Moreover, A∗hΓγi is computed as in (3).
Consequently, for each trajectory, γi, corresponding to (5),
the following holds

A∗eΓγi = K(·, γi(Ti))−K(·, γi(0))−A∗hΓγi . (6)

Similar to the DMD procedure of [6], a finite rank
representation of A∗e is then determined by exploiting lin-
earity and via the occupation kernel ordered basis, α =
{Γγ1 , . . . ,ΓγM }. Let f represent the dynamics for the system
and let f = h + e. Then from [6], [PαA

∗
f ]αα = G−1B

where Pα is the projection onto span(α) and the notation [·]αα
emphasizes that the domain and range of PαA∗f are restricted
to span(α). Recall that

G =

 〈Γγ1 ,Γγ1〉 · · · 〈ΓγM ,Γγ1〉
...

. . .
...

〈Γγ1 ,ΓγM 〉 · · · 〈ΓγM ,ΓγM 〉

 (7)

and

B =

 〈A
∗
fΓγ1 ,Γγ1〉 · · · 〈A∗fΓγM ,Γγ1〉

...
. . .

...
〈A∗fΓγ1 ,ΓγM 〉 · · · 〈A∗fΓγM ,ΓγM 〉

 . (8)

The linearity of the Liouville operator’s symbol, implies that
B can also be written as follows:

〈A∗hΓγ1 ,Γγ1 〉 ··· 〈A
∗
hΓγM ,Γγ1 〉

...
. . .

...
〈A∗hΓγ1 ,ΓγM 〉 ··· 〈A

∗
hΓγM ,ΓγM 〉

+
〈A∗eΓγ1 ,Γγ1 〉 ··· 〈A

∗
eΓγM ,Γγ1 〉

...
. . .

...
〈A∗eΓγ1 ,ΓγM 〉 ··· 〈A

∗
eΓγM ,ΓγM 〉

.
Therefore, after some manipulation, the following is ob-

tained:

[PαA
∗
e]
α
α = G−1

B −
 〈A∗hΓγ1 ,Γγ1 〉 ··· 〈A

∗
hΓγM ,Γγ1 〉

...
. . .

...
〈A∗hΓγ1 ,ΓγM 〉 ··· 〈A

∗
hΓγM ,ΓγM 〉


(9)

However, the goal is to obtain a finite rank representation
of [PαAe]

α
α. Similar to the case presented above with the

adjoint of the Liouville operator, the linearity of the symbols
for Liouville operators implies that [PαAe]

α
α = [PαAf ]

α
α −



[PαAh]
α
α. By assuming that the occupation kernels are in the

domain of the Liouville operator, it was shown in [6] that
for any q ∈ span(α) and {θj}Mj=1 ⊂ R a set of coefficients,
it follows that

〈Afq,Γγi〉H =

M∑
j=1

θj〈AfΓγj ,Γγi〉H

=
(
〈Γγ1 , A∗fΓγi〉H , . . . , 〈ΓγM , A∗fΓγi〉H

) θ1

...
θM

 .

Proposition 1 and the properties of occupation kernels de-
scribed in [7] then imply that

〈Γγj , A∗fΓγi〉H = Γγj (γi(T ))− Γγj (γi(0)).

The above leads to the statement that [PαAf ]
α
α = G−1BT .

In addition, the finite rank representation for [PαAh]
α
α is

[PαAh]
α
α = G−1

 〈AhΓγ1 ,Γγ1 〉 ··· 〈AhΓγM ,Γγ1 〉
...

. . .
...

〈AhΓγ1 ,ΓγM 〉 ··· 〈AhΓγM ,ΓγM 〉


The assumption that the occupation kernels are in the domain
of the Liouville operator allows for the use of the definition
of the Liouville operator instead of relying on its adjoint
when evaluating 〈AhΓγj ,Γγi〉H . This simplification results
in

〈AhΓγi ,Γγj 〉 =

∫ Tj

0

∫ Ti

0

∇1K(γj(t), γi(τ))h(γj(t))dτdt

(10)

Ultimately, the following finite rank representation of
[PαAe]

α
α is obtained:

[PαAe]
α
α = G−1

BT −
 〈AhΓγ1 ,Γγ1 〉 ··· 〈AhΓγM ,Γγ1 〉

...
. . .

...
〈AhΓγ1 ,ΓγM 〉 ··· 〈AhΓγM ,ΓγM 〉


(11)

In equation (10), ∇1 indicates that the gradient is per-
formed with respect to the first variable, γj .

It should be noted that the operators Ae and A∗e are
generally unbounded (cf. [7]), so with respect to convergence
this is a strictly heuristic method for these operators. This is
also a heuristic method for Koopman operators, which are
also modally unbounded over RKHSs (e.g. [2]).

The DMD procedure aims to decompose the full state
observable, gid(x) := x, by projecting each coordinate pro-
jection function, πi(x) = xi, onto an eigenbasis, {ϕm}∞m=1,
with eigenvalues {λm}∞m=1 of Ae. Consequently,

x = gid(x) =

∞∑
m=1

ξmϕm(x).

The vector ξm ∈ Rn is called a Liouville mode, and will be
referred to as a partial Liouville mode in this context.

Assuming that [PαAe]
α
α is diagonalizable, let {νi}Mi=1 be

the eigenvectors for [PαAe]
α
α with eigenvalues {λi}Mi=1. Then

the functions obtained as

ϕ̂i(x) =
1√
ν†iGνi

(
Γγ1(x) · · · ΓγM (x)

)
νi

are the normalized eigenfunctions for [PαAe]
α
α within the

Hilbert space, and stand as a proxy for the eigenfunctions
of Ae. For the basis α, G =

(
〈Γγi ,Γγj 〉H

)M
i,j=1

is the Gram
matrix for the span of the occupation kernels. Furthermore,

V =
(

ν1√
ν†1Gν1

· · · νM√
ν†MGνM

)
,

is a matrix containing the normalized eigenvectors for
[PαAe]

α
α and † represents the conjugate transpose.

Let

ξ̂ = ( ξ̂1···ξ̂M ) = (
∫ T1
0 γ1(t)dt···

∫ TM
0 γM (t)dt ) (V TG)−1

be the partial Liouville modes determined by the approxima-
tion. The above notation for ξ is presented in equation (9)
of [6].

Thus, a data driven model for ẋ(t) is obtained by using the
linearity of the symbols of the Lioville operator as follows:

ẋ = ∇gid(x(t)) (h(x(t)) + e(x(t)))

= Ah+ex(t) = Ahx(t) +Aex(t), (12)

where the left side of the equality can be shown to be ẋ(t)
when the dynamical system is as described in equation (5)
and the right side may be estimated as

h(x(t)) +

M∑
i=1

λiξ̂iϕ̂i(x(t)).

Therefore,

x(t) ≈ x(0)+

∫ t

0

(
h(x(τ)) +

M∑
i=1

λiξ̂iϕ̂i(x(τ))

)
dτ. (13)

Hence, predictions for the state variable x(t) may be
computed using this model obtained from the trajectory data
of the dynamical system with partial unknowns.

V. NUMERICAL EXPERIMENT

The following two subsections show the results of using
the POKeDMD algorithm on two different dynamical sys-
tems: the Duffing Oscillator and the two-link robot manipu-
lator.

A. Duffing Oscillator

In this section the developed method is applied to data
generated by the Duffing oscillator which is a second order
dynamical system of the form ẍ = δẋ+αx+βx3+ρcos(wt).
In this experiment data was simulated based on the following
dynamics: ẍ = x − x3 which corresponds to δ = 0, α = 1,
β = −1, and ρ = 0 . Through state augmentation the second
order dynamical system may be written as a first order



Algorithm 1: Pseudocode for the partial knowledge
occupation kernel DMD (POKeDMD) routine of Sec-
tion IV. Upon obtaining the partial Liouville modes,
the normalized eigenvectors, and the eigenvalues (13)
are used to compute x(t).

Input: Sampled trajectories {γi : [0, Ti]→ Rn}Mi=1

Input: Kernel function K : Rn × Rn → R of an RKHS
Input: A numerical integration routine
Input: Some known dynamics for the system

Step 1 Compute the Gram matrix, G, found in (7) using a
numerical integration routine and (4).

Step 2 Compute the interaction matrix, B, found in (8)
using a numerical integration routine and
Proposition 1.

Step 3 Compute the matrix of 〈AhΓγi ,Γγj 〉 values using
(10), an integration routine, and the known
dynamics for the system.

Step 4 Compute eigenvalues, λi, and eigenvectors, vi, of
[PαAe]

α
α

Step 5 Compute the matrix of partial Liouville modes, ξ
Output: partial Liouville modes, ξi
Output: normalized eigenvectors, vi√

ν†iGνi
Output: eigenvalues λi for i = 1, . . . ,M

dynamical system, ż = f(z). In the first order dynamical
system created above, z = (z1 z2)

T
= (x ẋ)

T and
therefore ż = (ẋ ẍ)

T . The first coordinate will be the
known portion of the dynamics and is represented as h(z) =
(z2 0)

T
= (ẋ 0)

T , where as the second coordinate will
take the place of the unknown portion of the dynamics
and will be represented by e(z) = (0 ż2)

T
= (0 ẍ)

T .
Therefore, the dynamical system may also be written as
ż = h(z) + e(z).

The initial values for each trajectory were obtained by
sampling at every 0.5 interval in a grid of points that was
[−3, 3] × [−3, 3]. This produced 169 initial value pairs.
The first number in the pair represents the initial value for
the first state dimension and the second number represents
the initial value for the second state dimension. The initial
values, the dynamics, a time step of h = 0.01, and the
Runge-Kutta 4 algorithm were then used to produce the 169
Duffing oscillator trajectories. Each trajectory has two state
dimensions, is 99 snapshots in length, and is a signal over
[0, 1]. Figure 1 displays the 169 trajectories created by using
the above techniques. The trajectories in figure 1 will be
referred to as the true trajectories.

The left most plot in figures 2, 3, and 4 displays the abso-
lute point-wise error between the true trajectories that were
created using the method described above and trajectories
created using the model described in (13). The rightmost
plot in each of the above mentioned figures displays the log
absolute point-wise error between the true trajectories and
trajectories created using the modeling technique described
in [6] which is referred to here as OKDMD. The right

Fig. 1: This figure presents the 169 trajectories that were
generated using the Duffing Oscillator dynamics, 169 initial
values, a time step of h = 0.01, and the Runge-Kutta 4
algorithm. Each curve in this figure represents a different
trajectory. Each trajectory has a different initial value.

most plots also display the log absolute point-wise error
between the true trajectories and trajectories created using
the POKeDMD algorithm. In this way, the right most plots
are used to compare the performance of our new algorithm,
POKeDMD, to its predecessor, OKDMD. The 32nd, 130th,
and 161st trajectories were randomly selected from the 169
trajectories in order to show examples of model performance
over time. In these figures, the results of the POKeDMD
algorithm are referred to as x̂ whereas the results of the
OKDMD algorithm are referred to as x̃. OKDMD is a
previous method that does not use the known portion of the
dynamics in order to produce a model. The exponential dot
product kernel, K(x, y) = exp

(
1
µx

T y
)

, was used for in
the POKeDMD algorithm and the OKDMD algorithm. For
the POKeDMD algorithm, a kernel width of µ = 100 was
chosen whereas for the OKDMD algorithm a kernel width
of µ = 50, and a regularization value of .001 was chosen.
The model created by OKDMD looks as follows:

x̃(t) =

M∑
i=1

ξiϕi(x(0))eλit (14)

B. Two Link Robot Manipulator

In this section the developed method is applied to data
generated by the dynamical system associated with the two-
link robot manipulator. Let q = (q1 q2)T ∈ R2, q̇ = (q̇1 q̇2)T,

M (q) :=

(
p1 + 2p3c2 (q) p2 + p3c2 (q)
p2 + p3c2 (q) p2

)
,

and

Vm (q, q̇) =

(
p3s2 (q) q̇2 −p3s2 (q) (q̇1 + q̇2)
p3s2 (q) q̇1 0

)
,

where p1 = 3.473, p2 = 0.196, p3 = 0.242,
c2 (q) = cos(q2), s2 (q) = sin(q2). Also, let E(q̇) =



Fig. 2: The figure on the left presents the absolute point-
wise error between the 32nd true trajectory and the 32nd

trajectory generated by the POKeDMD algorithm. This figure
also presents how the absolute point-wise error is progressing
in time. Each curve in this figure represents a different state
dimension. The figure on the right presents a comparison
between the log absolute point-wise error for the 32nd

trajectory when using OKDMD and the log absolute error for
the 32nd trajectory when using POKeDMD. This figure also
presents how the log absolute point-wise error is progressing
in time. The OKDMD algorithm is the prior method that
was used in [6] and it does not use the known portion of the
dynamics in order to produce a model.

Fig. 3: The figure on the left presents the absolute point-
wise error between the 130th true trajectory and the 130th

trajectory generated by the POKeDMD algorithm. This figure
also presents how the absolute point-wise error is progressing
in time. Each curve in this figure represents a different state
dimension. The figure on the right presents a comparison
between the log absolute point-wise error for the 130th

trajectory when using OKDMD and the log absolute error for
the 130th trajectory when using POKeDMD. The figure also
presents how the log absolute point-wise error is progressing
in time. The OKDMD algorithm is the prior method that
was used in [6] and it does not use the known portion of the
dynamics in order to produce a model.

(ed1q̇1 + es1 tanh(q̇1) ed2q̇2 + es2 tanh(q̇2))
T, where ed1 =

5.3, ed2 = 1.1, es1 = 8.45, and es2 = 2.35. The
dynamical system for this data is of the form ẋ =

e(x) + g(x) × u(x) where x =
(
qT q̇T

)T
, u(x) =

Kx, e(x) =
(
q̇T

(
M−1(q)(−Vm(q, q̇)q̇ + E(q̇))

)T), and

g(x) =
(
02×2 (M−1(q))T

)T
, where 02×2 denotes a 2x2

matrix of zeros and K =

(
−5 −5
−15 −15

)
.

In the above dynamical system u(x) is known because
it represents a feedback controller chosen by the user. Ad-
ditionally, g(x) is known because it represents the masses,

Fig. 4: The left figure presents the absolute point-wise error
between the 161st trajectory created by using the dynamics
of the Duffing oscillator and the 161st trajectory created
by using the model described in (13). This figure also
presents how the absolute point-wise error is progressing in
time. Each curve in this figure represents a different state
dimension. The figure on the right presents a comparison
between the log absolute point-wise error for the 161st

trajectory when using OKDMD and the log absolute error for
the 161st trajectory when using POKeDMD. The figure also
presents how the log absolute point-wise error is progressing
in time. The OKDMD algorithm is the prior method that
was used in [6] and it does not use the known portion of the
dynamics in order to produce a model.

lengths, and moments of inertia of the robot’s links.
A Halton sequence was used to generate the initial values

for the 200 trajectories that were used in this experiment.
The sampling was conducted over the hypercube defined by
[−1, 1] × [−1, 1] × [−1, 1] × [−1, 1]. All of the trajectories
were 101 snapshots in length where the time step was set
to 0.01. Each trajectory has four state dimensions, is 101
snapshots in length, and is a signal over [0, 1]. Due to
the dimensionality of this system, the trajectories for this
experiment are not displayed in a plot below. However, the
32nd and 161st trajectories were randomly selected from the
200 true trajectories in order to show examples of model
performance over time.

Fig. 5: The figure on the left shows the predicted and the
true 32nd trajectory. The predicted trajectory is shown using
a dashed line and the true trajectory is displayed with a solid
line. The figure on the right displays the absolute point-
wise error between the true trajectories and the predicted
trajectories.

The true trajectories in the left most plot of Figures 5
and 6 are represented by a solid line and were created by
the above described method for simulating the data. The
predicted trajectories in the left most plot of Figures 5



and 6 are represented by a dashed line and were created
using the model described in (13). For the purposes of
the POKeDMD algorithm the Gaussian radial basis kernel
function, K(x, y) = exp

(
−1
µ ‖x− y‖

2
2

)
, with a kernel width

of µ = 10000 was used. Additionally, a regularization value
of 0.0008 was used.

Fig. 6: The figure on the left shows the predicted and the true
161st trajectory. The predicted trajectory is shown using a
dashed line and the true trajectory is displayed with a solid
line. The figure on the right displays the absolute point-
wise error between the true trajectories and the predicted
trajectories.

The right most plots of Figures 5 and 6 display the
absolute point-wise error between the true trajectories and
the predicted trajectories.

VI. DISCUSSION

In the Duffing Oscillator example, the POKeDMD method
isolates h(z) from the rest of the dynamics, which are
considered unknown. This methodology is uniquely suited
to Liouville operators and occupation kernels because the
Liouville operator is linear with respect to the dynamics. This
linearity property is not present in Koopman based methods.
Importantly, through the removal of the known portion of the
dynamics, accurate reconstruction is made feasible, where
previous iterations of Liouville based DMD methods have
struggled to maintain accurate reconstruction of trajectories
stemming from this dynamical system. By checking the
absolute point-wise error between the trajectories generated
for the numerical experiment and the trajectories created
using the model described in (13), it is possible to see that the
model is adequately approximating the unknown dynamics
of the Duffing Oscillator. It is easiest to see the truth in
the above statement by looking over figures 2, 3, and 4.
Furthermore, it can be said that leveraging known dynamics
in the way done by the POKeDMD algorithm produces a
better model than would otherwise be created by OKDMD.
For evidence of the above, the reader should again turn to
the aforementioned figures in which it can be seen that the
log absolute point-wise error is much greater in the case of
the previous algorithm (OKDMD) as opposed to the error
for the new algorithm (POKeDMD). In figures 2, 3, and 4
it is evident that the absolute point-wise error is increasing
over time. This behavior is to be expected because by using
numerical methods to approximate the solution to the initial
value problem, one introduces an error that accumulates over
time.

Figures 5 and 6 serve as an additional example of the
effectiveness of the POKeDMD algorithm on a control-affine
system with a statefeedback controller. The experiments
conducted on the two link robot manipulator further highlight
the way in which the developed algorithm may be used by
the control community. Using limited knowledge about the
system the POKeDMD algorithm is able to construct a model
that performs well when evaluating the absolute point-wise
error between the model predictions and the true trajectories.

VII. CONCLUSION

Liouville operators have been presented as a way to model
continuous time dynamical systems without discretization
and methods that use Liouville operators have been shown to
be more flexible in learning contexts for dynamical systems
than their Koopman generator counterparts [7]. This paper
expanded on the usefulness of applying Liouville operators to
continuous time dynamical systems by leveraging the linear-
ity of the Liouville operators with respect to their symbols.
This allowed for the isolation of the unknown portion of the
dynamics and more efficiently leveraged the data to learn
only this unknown portion of the dynamics. The theoretical
framework established in this paper is further bolstered by
the results obtained from the numerical experiments, which
highlight the capabilities of this method.
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