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Abstract—This paper examines the use of reinforcement
learning-based controllers to approximate multiple value func-
tions of specific classes of subsystems while following an arbi-
trarily switching sequence. Each subsystem may have varying
characteristics, such as different cost function or system dynam-
ics. Stability of the overall switching sequence is proven using
Lyapunov-based analysis techniques. Specifically, Lyapunov-
based methods are developed to prove boundedness of indi-
vidual subsystems and to determine a minimum dwell-time
condition to ensure stability of the overall switching sequence.
Uniformly ultimately bounded regulation of the states, approxi-
mation of the value function, and approximation of the optimal
control policy is achieved for arbitrary switching sequences
provided the minimum dwell-time condition is satisfied.

I. INTRODUCTION

Gain scheduling has been shown to be a beneficial tool
in the control of nonlinear systems [1]–[3]. However, gain
scheduling control techniques often use a divide and conquer
strategy to decompose nonlinear control design tasks into
multiple linear design problems [1].

A motivating example is the work in [4], in which ac-
tive magnetic bearing motors (e.g., hard disk drive motors)
perform a tracking objective. In [4], three motor controllers
are synthesized and switched between depending on the
system state (e.g., motor revolutions per minute (RPM)).
The dynamics differ between RPM ranges since vibratory
disturbances are activated at varying RPMs (see [4]). In the
aforementioned design, each region has a distinct controller
with different gains to attenuate disturbances within each
respective region.

Reinforcement learning (RL)-based methods such as [5]–
[15] have been used to obtain online approximate solutions to
optimal control problems for systems with finite state-spaces
and stationary environments. Approximate dynamic pro-
gramming (ADP) uses RL to approximate the value function
(i.e., the solution) corresponding to optimal control problems
for deterministic autonomous control-affine systems (see [7],
[8], [16]–[18]). The optimal control policy is derived from
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the Hamilton-Jacobi-Bellman (HJB) equation and depends
on the optimal value function [19], [20]. However, obtaining
an analytical solution of the HJB (the optimal value function)
is, generally, not possible; hence, an approximate value
function is sought. ADP techniques use universal function
approximators, such as certain neural networks (NNs) (see
[21]–[23]), to approximate the value function by using the
state as the inputs. Obtaining a more accurate approximate
value function leads to a more accurate approximate optimal
control policy. ADP-based controllers do not use stabilizing
feedback gains and are defined by the estimated parameters
of the value function [15]. Because of the lack of traditional
feedback, gain tuning cannot be performed in the sense of
increasing and decreasing feedback gains.

Unlike gain scheduling, in which feedback gains are
varied, in ADP-based controllers costs are assigned to the
control input and states to achieve different tracking perfor-
mance. Altering the weights of the cost function in an ADP-
based controller affects system performance by modifying
the reward gained from system’s states or control input.
Drawing inspiration from the gain tuning’s strategy, this
paper proposes a method by which the weights of the
cost function and system dynamics can be varied. That is,
different controller properties can be achieved by varying the
weights of the cost of the states.

Considering the hard disk drive example again, suppose
that the speed error is weighted more than the position
error during startup. This cost would reward a faster ini-
tial dynamic response. Once the speed error is within a
certain tolerance, then the cost function could change to
more heavily weight the position error over the speed error.
Using each controller independently may provide undesir-
able performance (i.e., high overshoot or slow rise time,
respectively). Intuitively, switching between the two control
policies at appropriate times could provide improved overall
controller performance (i.e., fast rise time for speed tracking
and accurate position tracking).

Previous ADP results consider fixed state cost and control
cost matrices within the cost function, such as [14], [15],
[24], [25]. Works such as [26] and [27] examine the use
of ADP-based methods for switched discrete-time nonlinear
systems. Previous results such as [28]–[32] use optimal
control methods to minimize cost function(s) of a switched
system. These methods use a fixed mode sequence (see [28],
[31]–[33]) or fixed switching instances (see [30]). In com-
parison, the developed method uses an arbitrary switching
sequence that satisfies a dwell-time condition to approximate



the value functions of a finite number of continuous-time
subsystems. Unlike the aforementioned methods, this method
proposes a Lyapunov-based framework to prove convergence
of a control policy to the neighborhood of an optimal policy.
While this paper focuses on a framework for switching be-
tween multiple ADP-based controllers and modifying control
system performance by using different weighting matrices
and dynamical models, it does not address optimality of the
overall developed trajectory.

A complication in Lyapunov-based analyses for switched
systems is the growth and discontinuity of Lyapunov func-
tions at switching instances [34]. To overcome this issue,
a dwell-time analysis is performed to prove stability of the
overall switching sequence. The included dwell-time analysis
accounts for the worst-case growth and discontinuity between
Lyapunov functions during switching instances by explicitly
determining the minimum time required before the system
can switch to a different subsystem. In doing so, overall
stability of the system for an arbitrary switching sequence
is established.

This paper develops a continuous-time ADP-based con-
troller that follows an arbitrary switching sequence between
multiple dynamical systems and cost functions based on
environmental conditions or at the user’s discretion, given
that certain conditions are satisfied. Section II describes the
framework of a general ADP-based controller. Section III
presents the stability analysis for one subsystem and behavior
of the overall system for an arbitrary switching sequence by
developing a dwell-time condition. Simulation results for a
three state dynamical system are presented in Section IV to
demonstrate the performance of the developed technique.

II. APPROXIMATE OPTIMAL CONTROLLER
DEVELOPMENT

Let k ∈ S, where S ⊂ N and |S| < ∞, represent a
family of switched subsystems. Consider the continuous-
time control-affine nonlinear dynamical subsystem of the kth

mode,

ẋ = fk (x (t)) + gk (x (t))u (t) , (1)

with initial condition x (0) = x0 ∈ Rn, where x : R≥0 →
Rn denotes the system state, u : R≥0 → Rm denotes the
control input, fk : Rn → Rn denotes the drift dynamics, and
gk : Rn → Rn×m is the control effectiveness. The consid-
ered class of functions satisfy the following assumptions.1

Assumption 1. The drift dynamics fk are locally Lipschitz,
f ′k : Rn → Rn×n is continuous,2 and fk (0) = 0.

Assumption 2. The control effectiveness gk is a locally
Lipschitz function and bounded such that 0 < ‖gk (x)‖ ≤ gk
where gk ∈ R>0.

1Throughout this paper, the subscript k defines the quantity or function
belonging to the kth mode of the overall system.

2The notation (·)′ denotes the partial derivative with respect to the first
argument.

The control objective is to solve the infinite-horizon opti-
mal regulation problem for each subsystem, i.e., determine
a control policy u that minimizes the infinite horizon cost
function, Jk : Rn × Rm → R≥0, defined as

Jk (x, u) ,
ˆ ∞
t0

r (x (τ) , u (τ)) dτ, (2)

subject to (1) while regulating the system states of the kth

mode to the origin (i.e., x = 0), where rk : Rn×Rm → R≥0

is the instantaneous cost defined as rk (x, u) , xTQkx +
uTRku, Qk ∈ Rn×n is a constant user-defined symmetric
positive definite (PD) matrix, and Rk ∈ Rm×m is a constant
PD symmetric matrix.

Property 1. The state cost matrix Qk satisfies q
k
In ≤ Qk ≤

qkIn where q
k
, qk ∈ R>0, and In represents the n × n

identify matrix.

The infinite horizon value function (i.e., the cost to go)
for the optimal solution of the kth mode is denoted by V ∗k :
Rn → R≥0 and given by

V ∗k (x) = min
u(τ)∈U, τ∈R≥t

ˆ ∞
t

rk (x (τ) , u (τ)) dτ, (3)

where U ⊆ Rm denotes the action space. Provided an opti-
mal control policy exists, the value function is characterized
by the corresponding HJB

0 = min
u(τ)∈U

(
V ∗′k (x) (fk (x) + gk (x)u) + xTQkx (4)

+ uTRku
)
,

with the boundary condition V ∗k (0) = 0.

Assumption 3. The value function V ∗k is continuously
differentiable.

Provided the HJB in (4) admits a continuously differ-
entiable PD solution, then the optimal closed-loop control
policy u∗k : Rn → Rm is

u∗k (x) = −1

2
R−1
k gk (x)

T
(V ∗′k (x))

T
. (5)

A. Value Function Approximation

The HJB in (4) requires knowledge of the optimal value
function, which, generally, is an unknown function for non-
linear systems. Parametric methods can be used to approxi-
mate the value function over a compact domain. To facilitate
the solution of (4), let Ω ⊂ Rn be a compact set containing
the origin with x ∈ Ω. The universal function approximation
property of single-layer NNs is used to represent the value
function of the kth mode V ∗k as

V ∗k (x) = WT
k φ (x) + εk (x) , (6)

where Wk ∈ RL is an unknown bounded vector of weights,
φ : Rn → RL is a user-defined vector of basis functions,3

3There is no subscript k for the basis function because each mode uses
the same basis function.



and εk : Rn → R is the bounded function approximation
error. Substituting (6) into (5), the optimal control policy of
the kth mode, u∗k, can be expressed in terms of the gradient
of the value function V ∗k as

u∗k (x) = −1

2
R−1
k gk (x)

(
φ′ (x)

T
Wk + ε′k (x)

T
)
. (7)

Assumption 4. [10], [35], [36] There exists a set of
constants that bound the unknown weight vector Wk, the
user-defined basis vector φ, and approximation error εk,
from above such that ‖Wk‖ ≤ W̄k, supx∈Ω ‖φ (x)‖ ≤
φ̄, supx∈Ω ‖φ′ (x)‖ ≤ φ̄′, supx∈Ω ‖εk (x)‖ ≤ ε̄k,
supx∈Ω ‖ε′k (x)‖ ≤ ε̄′k for all k, where W̄k, φ̄, φ̄

′, ε̄k, ε̄
′
k ∈

R>0.

Since the ideal weights are unknown, a parametric es-
timate, called a critic weight vector Ŵc,k ∈ RL, is sub-
stituted to calculate the optimal value function estimate
V̂k : Rn × RL → R, where

V̂k

(
x, Ŵc,k

)
= ŴT

c,kφ (x) . (8)

An actor weight vector Ŵa,k ∈ RL, is used to provide an
approximate version of (7), the approximate optimal control
policy ûk : Rn × RL → R is given by

ûk

(
x, Ŵa,k

)
= −1

2
R−1
k gk (x)

T
(
φ′ (x)

T
Ŵa,k

)
. (9)

B. Bellman Error
The HJB in (4) is equal to zero under optimal conditions;

however, substituting (8) and (9) into (4) results in a residual
term δ̂k : Rn × RL × RL → R, which is referred to as the
Bellman Error (BE), defined as

δ̂k

(
x, Ŵc,k, Ŵa,k

)
,

V̂ ′k

(
x, Ŵc,k

)(
fk (x) + gk (x) ûk

(
x, Ŵa,k

))
+ ûk

(
x, Ŵa,k

)T
Rkûk

(
x, Ŵa,k

)
+ xTQkx, (10)

where V̂ ′k

(
x, Ŵc,k

)
= ŴT

c,kφ
′ (x) denotes the gradient of

the value function estimate. The BE is indicative of how close
the actor and critic weight estimates are to the ideal weights.
By defining the mismatch between the estimates and the ideal
values as W̃c,k , Wk − Ŵc,k and W̃a,k , Wk − Ŵa,k,
substituting (6) and (9) in (4), and subtracting from (10)
yields

δ̂k =
1

4
W̃T
a,kGφ,kW̃a,k − ωTk W̃c,k +Ok (x) , (11)

where ωk : Rn × RL → Rn is defined as

ωk

(
x, Ŵa,k

)
, φ′ (x)

(
fk (x) + gk (x) û

(
x, Ŵa,k

))
,

and Ok (x) , 1
2W

T
k φ
′ (x)Gkε

′T
k + 1

4Gε,k − ε
′
kfk (x) . 4

Remark 1. The expressions in (10) and (11) are equivalent
for the BE. However, (10) is used in implementation, while
(11) is used in the stability analysis in Section III.

4Gk , Gφ,k , and Gε,k are defined as Gk = Gk (x) ,
gk (x)R−1

k gk (x)T , Gφ,k = Gφ,k (x) , φ′ (x)Gk (x)φ′ (x)T , and
Gε,k = Gε,k (x) , ε′k (x) gk (x) ε′k (x)T , respectively.

C. Switched Subsystems

Let the switching signal σ (t) : R≥0 → {k} indicate
the active subsystem. Let tON

k ∈ [0, t] denote the time
instant when the kth subsystem in the switching sequence
is activated. Similarly, let tOFF

k ∈ [0, t] denote the time
instant when the kth subsystem in the switching sequence
is deactivated. The dwell-time in any active mode of a
subsystem is denoted by τ ∈ R≥0. Similarly, let τ∗ ∈ R≥0

denote the minimum dwell-time for any active mode of a
subsystem.

D. Bellman Error Extrapolation

At each time instant, the BE in (10) is calculated us-
ing the control policy given by (9) evaluated using the
current system state, critic weight estimates, and actor
weight estimates to obtain the instantaneous BE denoted by
δ̂k

(
x (t) , Ŵc,k (t) , Ŵa,k (t)

)
.

A classical problem in learning-based control is explo-
ration versus exploitation. Results such as [12], [37], [38]
add an exploration signal to sufficiently explore the operating
domain. However, no analytical methods exist to compute the
appropriate exploration signal. Alternatively, results such as
[14] evaluate the BE along the system trajectory and at any
desired point in the state space (i.e., so-called BE extrapo-
lation). The BE extrapolation technique provides simulation
of experience to avoid using an exploration signal.

Specifically, BE is extrapolated from a user-
specified number and location of off-trajectory points
{xi,k : xi,k ∈ Ω}Nki=1 , where Nk ∈ N denotes a user-
specified number of points in the compact set Ω. The
data is represented by the tuple (Σc,k,Σa,k,ΣΓ,k) ,

defined as Σc,k , 1
Nk

∑Nk
i=1

ωi,k(t)
ρi,k(t) δ̂i,k (t) , Σa,k ,

1
Nk

∑Nk
i=1

GTσi,kŴa,k(t)ωTi,k(t)

4ρi,k(t) , ΣΓ,k , 1
Nk

∑Nk
i=1

ωi,k(t)ωTi,k(t)

ρi,k(t) ,

where δ̂i,k (t) , δ̂k

(
xi,k (t) , Ŵc,k (t) , Ŵa,k (t)

)
,

ωi,k (t) , ωk

(
xi,k (t) , Ŵa,k (t)

)
, and ρi,k (t) =

1 + νkω
T
i,k (t) Γk (t)ωi,k (t) , νk ∈ R>0 is a user-defined

gain, and Γk : R → RL×L is a time-varying least-squares
gain matrix. Each subsystem, k, must have distinct sets of
data, gain values, and update laws.

Assumption 5. Over the compact set, Ω, a finite set of
off-trajectory points {xi,k : xi,k ∈ Ω}Nki=1 exists such that
0 < ck , inf

t∈R≥0
λmin {ΣΓ,k (t)} for all t ∈ R≥0, where

λmin {·} is the minimum eigenvalue.

Remark 2. The constant ck is a scalar lower bound of the
value of each input-output data pair’s minimum eigenvalues.

E. Update Laws for Actor and Critic Weights

Using the instantaneous BE δ̂k (t), policy u (t),
and extrapolated BEs δ̂i,k (t), the critic and actor
weights are updated according to the following policies
while t ∈

[
tON
k , tOFF

k

)
. In the following definitions,

ηc1,k, ηc2,k, ηa1,k, ηa2,k, λk ∈ R are positive constant



learning gains, and Ŵ c,k, Ŵ c,k, Ŵ a,k, Ŵ a,k, Γk, Γk ∈ R
are upper and lower bound constants of subsystem k.5

For the development of the weight update laws, define the
following convex sets as

Πc,k ,
{
Ŵc,k ∈

[
Ŵ c,k, Ŵ c,k

]
| hc,k

(
Ŵc,k

)
≤ ξc,k

}
,

Πa,k ,
{
Ŵa,k ∈

[
Ŵ a,k, Ŵ a,k

]
| ha,k

(
Ŵa,k

)
≤ ξa,k

}
,

where hc,k : RL → R and ha,k : RL → R are smooth
functions and ξc,k, ξa,k > 0. Denote the interior of a set Π
by Π̊ and the boundary of Π by ∂Π. Observe that h′c,k and
h′a,k represent outward normal vectors at ∂Πc,k and ∂Πa,k,

respectively. The critic update law of the kth mode, ˙̂
Wc,k :

R≥0 → RL, is defined as

˙̂
Wc,k (t) , proj {Φc,k (t)}

=

{
Φc,k, Ŵc,k ∈ Π̊c,k orh′Tc,kΦc,k ≤ 0

Cc,kΦc,k, Ŵc,k ∈ ∂Πc,k andh′Tc,kΦc,k > 0,

(12)

where Cc,k : R≥0 → RL is defined as Cc,k , 1 −
min

(
1,

hc,k
ξc,k

)
h′c,kh

′T
c,k

‖h′c,k‖2
, and Φc,k (t) , −ηc1,kΓk

ωk
ρk
δ̂k −

ηc2,kΣc,k. The actor update law of the kth mode, ˙̂
Wa,k :

R≥0 → RL, is defined as

˙̂
Wa,k (t) , proj {Φa,k (t)}

=

{
Φa,k, Ŵa,k ∈ Π̊a,k orh′Ta,kΦa,k ≤ 0

Ca,kΦa,k, Ŵa,k ∈ ∂Πa,k andh′Ta,kΦa,k > 0,

(13)

where Ca,k : R≥0 → RL is defined as

Ca,k , 1 − min
(

1,
ha,k
ξa,k

)
h′a,kh

′T
a,k

‖h′a,k‖2
, and

Φa,k , −ηa1,k

(
Ŵa,k − Ŵc,k

)
− ηa2,kŴa,k +

ηc1,kG
T
σ,kŴa,kω

T
k

4ρk
Ŵc,k + ηc2,kΣa,kŴc,k. The least-squares

gain matrix update law of the kth mode, Γ̇k : R≥0 → RL×L,
is expressed as

Γ̇k (t) ,

(
λkΓk − ηc1,k

Γkωkω
T
k Γk

ρ2
k

− ηc2,kΓkΣΓ,kΓk

)
· 1{Γk≤‖Γk‖≤Γk}, (14)

where 1{·} denotes the indicator function.6 While the kth

mode is inactive, (i.e., t /∈
[
tON
k , tOFF

k

)
) :

˙̂
Wc,k (t) = 0L×1

Γ̇k (t) = 0L×L, and ˙̂
Wa,k (t) = 0L×1.

7

5The arguments of each function have been omitted for notional brevity.
6Each ‖Γk (t)‖ is bounded from above and below by some user-defined

saturation gains, Γk and Γk , respectively. Using (14) ensures that Γk ≤
‖Γk (t)‖ ≤ Γk for all t ∈ R>0 and k ∈ S, where Γk ∈ R>0. Ŵc,k and
Ŵa,k are updated according to an orthogonal projection operator.

7The update laws will not update a subsystem k’s weight estimates or
least-squares matrix unless subsystem k is active.

III. STABILITY ANALYSIS

Generally, the trajectory of a switched system can diverge
even when all the subsystems that compose the switched
system are stable. Hence, the switching signal must be
properly designed to keep the overall system stable. Before
the switching signal is designed, the stability of each sub-
system must be analyzed. In the following development, k
subsystems, each with a class of dynamics in (1), will be
analyzed with the control policy and update laws outlined in
(9), (12), (13), and (14).

A. Subsystem Stability Analysis

To facilitate the analysis, let zk ,
[
xT , W̃T

c,k, W̃
T
a,k

]T
denote a concatenated state, and let VL,k : Rn+2L ×R≥0 →
R be a candidate Lyapunov function for the kth mode be
defined as

VL,k (zk, t) = V ∗k (x) +
1

2
W̃T
c,kΓ−1

k (t) W̃c,k +
1

2
W̃T
a,kW̃a,k,

(15)

where k represents the active subsystem mode. Define the se-
quence of times instants at which a switching event occurs as
{tNσ} , such that 0 < t1 < t2 < · · · < tNσ < t < tNσ+1 and
Nσ ∈ N>0 denotes the number of switching events. Using
the positive definiteness of V ∗k and [39, Lemma 4.3], (15)
can generally be bounded as vl,k (‖zk‖) ≤ VL,k (zk, t) ≤
vl,k (‖zk‖) using class K functions vl,k, vl,k : R≥0 → R≥0.
For the subsequent analysis, the following more restrictive
assumption is required.

Assumption 6. The optimal value function V ∗k (x) can be
bounded by the square of the norm of its argument times a
positive constant, i.e.,

β1,k ‖x‖2 ≤ V ∗k (x) ≤ β2,k ‖x‖2 , ∀k ∈ S, β1,k, β2,k ∈ R≥0.
(16)

Remark 3. It is known that the value function of a classical
linear-quadratic-regulator problem is quadratic and can be
bounded from above and below by a quadratic function, as in
(16) [40]. Assumption 6 may not be valid for some nonlinear
systems. Future efforts will seek to generalize the following
development without requiring this assumption.

Using Assumption 6, (15) can be bounded as α1,k ‖zk‖2 ≤
VL,k (zk, t) ≤ α2,k ‖zk‖2 , where α1,k, α2,k ∈ R≥0 are
positive constants. To facilitate the analysis, the notation (·)
is defined as (·) , supx∈Ω (·). Using (14), the normalized
regressors ωk

ρk
and ωi,k

ρi,k
can be bounded as supt∈R≥0

∥∥∥ωkρk ∥∥∥ ≤
1

2
√
νkΓk

for all x ∈ Ω and supt∈R≥0

∥∥∥ωi,kρi,k

∥∥∥ ≤ 1

2
√
νkΓk

for all xi ∈ Ω and k ∈ S. The matrices Gk and Gφ,k
can be bounded as supx∈Ω ‖Gk‖ ≤ λmax

{
R−1
k

}
g2
k and

supx∈Ω ‖Gφ,k‖ ≤
(
φ′gk

)2
λmax

{
R−1
k

}
, respectively, for all

k ∈ S, where λmax {·} denotes the maximum eigenvalue.
Remark 4. Using the projection operator from the
critic update law in (12) and [41, Lemma E.1],
−W̃T

c,k (t) Γ−1
k (t)

˙̂
Wc,k (t) is bounded from above as



− W̃T
c,k (t) Γ−1

k (t)
˙̂
Wc,k (t)

= −W̃T
c,k (t) Γ−1

k (t) proj {Φc,k (t)}
≤ −W̃T

c,k (t) Γ−1
k (t) Φc,k (t) .

Similarly, from the actor update law in (13) and [41, Lemma
E.1], −W̃T

a,k (t)
˙̂
Wa,k (t) is bounded from above as

−W̃T
a,k (t)

˙̂
Wa,k (t) = −W̃T

a,k (t) proj {Φa,k (t)}
≤ −W̃T

a,k (t) Φa,k (t) .

To facilitate the subsequent analysis, let
lk ∈ R>0 be defined as lk , 2ā2

k

ηa1,k+ηa2,k
+

3(ηc1,k+ηc2,k)2

8νkΓkηc2,kck
‖Ok (x)‖

2
+ 1

4‖Gε,k‖ + 1
2ηa2,k‖Wk‖

2
,where

āk , 1
2λmax

{
R−1
k

}
‖φ′‖‖Gk‖‖Wk‖

(
‖φ′‖‖Gk‖ +

‖ε′k‖ +
ηc1,k+ηc2,k

4
√
νkΓk

‖φ′‖‖Gk‖‖Wk‖
)
, and Λk ,

inf
k∈S

{
1
2 q̄k,

1
16 (ηa1,k + ηa2,k) , 1

12ηc2,kck
}
, where q̄k is

defined in Property 1. Furthermore, define R ∈ R>0 as the
radius of a ball BR centered at the origin, where BR ⊂ Ω.

Theorem 1. Provided Assumptions 1-6 hold, the weight
update laws in (12)-(14) are used, and the gain conditions

ηa1,k + ηa2,k >
1√
νkΓk

(ηc1,k + ηc2,k) ‖Wk‖ ‖Gφ,k‖,

(17)

ck >
3 (ηc1,k + ηc2,k)

2 ‖Wk‖2 ‖Gφ,k‖
2

16νkΓk (ηa1,k + ηa2,k) ηc2,k
+

3ηa1,k

ηc2,k
, (18)

α2,k

α1,k

√
2lk
Λk

< R, (19)

are satisfied, the system state x (t) , the value function
weight estimate error W̃c,k (t) , and the control policy weight
estimate error W̃a,k (t) , are uniformly ultimately bounded
(UUB). Hence, the error between the stabilizing control
policy for each mode ûk (t) in (9) and its respective optimal
control policy u∗k (t) in (5) is UUB.

Proof: Taking the time derivative of the Lyapunov
function in (15) yields

V̇L,k (zk (t) , t) = V ∗′k ẋ− W̃T
c,kΓ−1

k
˙̂
Wc,k

− W̃T
a,k

˙̂
Wa,k −

1

2
W̃T
c,kΓ−1

k Γ̇kΓ−1
k W̃c,k,

where the fact d
dtΓ
−1 = Γ−1Γ̇Γ−1 is used. Using the given

class of dynamics, update laws, Assumptions 1-6 and the
sufficient conditions in (17)-(19) yields

V̇L,k (zk (t) , t) ≤ − Λk
α2,k

VL,k (zk (t) , t) + lk,

for all k ∈ S and t ∈
[
tON
k , tOFF

k

)
.

Remark 5. The condition in (17) can be satisfied by increas-
ing ηa2,k and νk, and selecting a penalty weight matrix Rk

such that λmax

{
R−1
k

}
is small. Selecting a Rk with a large

minimum eigenvalue and a large gain νk will also help satisfy
the gain condition in (18). The condition in (18) can be
satisfied by selecting off-trajectory points that increase the
minimum eigenvalue of each ck , inft∈R≥0

{ΣΓ,k (t)} .8

B. Dwell-Time Analysis

Theorem 1 indicates that each subsystem is UUB. How-
ever, this does not account for switching between subsystems.
To ensure that the system is stable, a dwell-time must
be designed to switch between subsystems. Furthermore,
switching between control policies may result in instanta-
neous growth when switching between Lyapunov functions.9

Hence, continuity is not guaranteed between Lyapunov func-
tions VL,k, across all subsystems.

Theorem 2. The system consisting of a family of subsystems
with the dynamics in (1) with a properly designed dwell-time,
τ ∈ R ensures that the states, critic estimate errors, and
actor estimate errors will converge to a neighborhood of the
origin in the sense that VL,σ(t)

(
zσ(t) (t) , t

)
≤ VL,B for all

t ≥ T, where VL,B ∈ R is the maximum ultimate bound for
all subsystems, and T ∈ R≥0 is the time required to reach
the ultimate bound VL,B , provided a minimum dwell-time τ∗

is satisfied.

Proof: From Theorem 1, the derivative of the Lyapunov
function of the kth subsystem can be bounded from above
by

V̇L,k (zk (t) , t) ≤ − Λk
α2,k

VL,k (zk (t) , t) + lk, ∀k ∈ S, t ≥ 0.

(20)

Based on (20), the region Dk, which represents the re-
gion within the ultimate bound of the Lyapunov func-
tion of the kth subsystem, is defined as Dk ,{
zk : ‖zk‖ ≤ α2,k

α1,k

√
2lk
Λk

}
. The union of the individual re-

gions, Dk, is denoted as Dk ,
⋃
k∈S Dk.The value of

VL,k (zk (t) , t) due to switching inside of the region Dk is
bounded from above by

VL,k (zk (t) , t) ≤ VL,B , sup
k∈S

{
2lkα

3
2,k

Λkα2
1,k

}
.

Generally, switching between control policies may re-
sult in instantaneous growth of the Lyapunov function.
In this case, there is instantaneous growth between Lya-
punov functions at the switching instances. Following [34]
and [42], the scalar multiple that defines the maximum
ratio of the discontinuities in the Lyapunov function is

defined as µ ,

{
sup
k∈S
{β2,k}‖x(0)‖2+sup

k∈S
{∆k}

inf
k∈S
{∆k}

}
, where ∆k ,

8The minimum eigenvalue of each ΣΓ,k (t) can be increased by collecting
redundant data, i.e., selecting N � L for each subsystem.

9V ∗k+1 (x) , corresponding to mode k + 1, may be larger than V ∗k (x)
corresponding to mode k. Similarly, the actor and critic weight errors could
be larger in magnitude while in mode k + 1 than in mode k.



Γ−1
k

∥∥∥Ŵ c,k − Ŵ c,k

∥∥∥2

+
∥∥∥Ŵ a,k − Ŵ a,k

∥∥∥2

, such that the
inequalities VL,i ≤ µVL,j VL,j ≤ µVL,i, ∀i 6= j hold,
where i, j ∈ S index any two subsystems. Note that ∆k

can be calculated for each mode since Ŵ c,k, Ŵ c,k, Ŵ a,k,

Ŵ a,k, and Γk are user-selected. From Assumption 6, β2,k

can be selected sufficiently large to satisfy Assumption 6.
Since the initial condition of the state x (0) is known, µ can
be calculated.

Starting with (20) and following the development from
[42] and [43], the magnitude of VL,k (zk (t) , t) for any k
can be expressed as

VL,k
(
zk
(
t− tON

k

)
, t− tON

k

)
≤ max

{
VL,k

(
zk
(
tON
k

)
, tON
k

)
e
−

Λkα1,k
2α2,k

(t−tON
k )

, VL,B

}
,

(21)

for all t ≥ tON
k . Accounting for switching, by induction, (21)

can be rewritten as

VL,k (zk (t) , t) ≤ max
{
VL,1 (z1 (0) , 0)µNσe−ζ0t, VL,B

}
,

(22)

where Nσ ∈ N>0 is the total number of switches during
[0, t) , and ζ0 , inf

k∈S

{
Λkα1,k

2α2,k

}
∈ R>0 is a constant. The

inequality in (22) is true for an arbitrary sequence of switches
provided that the subsequently defined minimum dwell-time
condition is satisfied. A desired decay rate, ζ∗, can be
determined such that

VL,k (zk (t) , t) ≤ max
{
VL,1 (z1 (0) , 0) e−ζ

∗t, VL,B

}
,

where ζ∗ ∈ (0, ζ0) is an arbitrarily selected decay rate that
satisfies the inequality

µNσe−ζ0t ≤ e−ζ
∗t. (23)

A minimum dwell-time (i.e., the minimum amount of time
required to converge low enough that the subsequent poten-
tial jump in the Lyapunov functions at the next mode will
decrease) can be determined from (23) as

τ∗ =
ln
(
µNσ

)
ζ0 − ζ∗

. (24)

Since ζ∗ ∈ (0, ζ0) , then ζ0−ζ∗ > 0. Since µ ≥ 1, ζ0−ζ∗ >
0, Nσ ∈ N>0, and Nσ < ∞ then τ∗ > 0, i.e., the dwell-
time will always be positive. Since the number of switches
is finite, the number of switches is bounded from above by
Nσ ≤ t

τ∗ , t ∈
[
tONNσ , t

ON
Nσ+1

)
, hence, τ∗ is a minimum dwell-

time. The time, T ∈ R≥0, required to reach the region Dk
for the initial condition VL (z1 (0) , 0) is

T =

T ≥ ln

(
VL,B

VL,1(zk(0),0)

)
ζ∗ if VL,1 (z1 (0) , 0) > VL,B

T = 0 if VL,1 (z1 (0) , 0) ≤ VL,B .

Hence, the system state, actor weight estimates, and critic
weight estimates will converge to a neighborhood of the
origin in the sense that VL,σ(t) (zk (t) , t) ≤ VL,B for all

t ≥ T provided that the minimum dwell-time condition in
(24) is met.

Remark 6. Under Assumptions 1-3, the optimal value func-
tion can be shown to be the unique positive definite solution
of the HJB equations. In this paper, the approximation of
the positive definite solution to the HJB is guaranteed by ap-
propriately selecting initial weight estimates and Lyapunov-
based update laws [44].

IV. SIMULATION

To demonstrate the performance of the developed method,
the ADP controller is applied to a family of dynamical
systems. The simulation is performed on the control-affine
systems in (25)-(27). The dynamic models are based on the
continuous-time F-16 longitudinal dynamics from [45]. Since
the dynamics are linear, the value functions are quadratic,
hence Assumption 6 is satisfied. The dynamics of the first
mode are

ẋ =

 −1 0.9 −0.002
0.8 −1.1 −0.2
0 0 −1

x+

 0
0
1

u, (25)

the dynamics of the second mode are

ẋ =

 −0.8 0.2 −0.01
0.6 −1.3 −0.1
0 0 −1

x+

 0
0

0.5

u, (26)

and the dynamics of the third mode are

ẋ =

 −1 0.5 −0.02
0.9 −0.8 −0.4
0 0 −1

x+

 0
0
1

u, (27)

where x =
[
x1, x2, x3

]T
, x ∈ R is measured

in radians, and u ∈ R. The initial condition is x (0) =[
0.35 0.26 −0.35

]T
.

The mode described by (25) is the closest to the dy-
namic model given in [45]. (26) and (27) vary from
(25). A different mode was arbitrarily selected every
5 second as the active subsystem to highlight this
method’s ability to switch between different dynamical
systems. A switching time of 5 seconds was chosen be-
cause it is larger than the calculated minimum required
dwell-time for each system. The simulated switching se-
quence is {1, 2, 3, 1, 3, 2} . The basis function is φ (x) =[
x2

1, x1x2, x1x3, x2
2, x2x3, x2

3

]T
.

Modes 1-3 have different cost matrices and gains, which
alters V ∗k ,and hence, the performance. The simulation pa-
rameters for each mode are listed in Table I.



Table I
SIMULATION PARAMETERS

Parameter Mode 1 Mode 2 Mode 3
Q diag([1, 1, 1]) diag([5, 5, 5]) diag([3, 3, 3])
R 0.5 2 1
Γ 103 103 103

Γ 500 500 50
λ 0.4 0.5 0.5
ν 0.005 0.005 0.005
ηc1 3 1 1
ηc2 5 2.5 5
ηa1 20 10 5
ηa2 1 0.75 1
N 10 10 10

Figure 1 illustrates that the system states are driven to the
origin with an arbitrary switching sequence and sufficiently
long dwell-time.

0 5 10 15 20 25 30

-20

-10

0

10

20

Figure 1. System states. The vertical dashed lines represent the time
instances at which the mode was switched.

Since the dynamic systems are linear, the analytical value
function can be determined by solving the Algebraic Riccati
Equation (ARE). Solving the ARE provides a matrix which
corresponds to the value function weights Wk, and, hence,
the value functions V ∗k (x) . Figure 2 compares the value of
the approximate value function to analytical value function
while switching between modes.
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Figure 2. Comparison of the analytical value functions, V ∗k (x) , and
the approximate value functions, V̂k

(
x, Ŵc,k

)
. The vertical dashed lines

represent the time instances at which the mode was switched.

Figure 3 presents the evolution of the critic weights Ŵc,k,
while switching. A mode’s weights only update while that
mode is active. If the mode is not active, the weight values
do not change. Note that the weights of mode 1 and 2
converge before switching to another mode for the first time,
while mode 3 is switched before it finishes learning. This
illustrates that the weights do not need to be learned before
the switching occurs.
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Figure 3. Critic weight estimates of each mode, Ŵc,k. The vertical dashed
lines represent the time instances at which the mode was switched.

V. CONCLUSION

A set of online approximate optimal controllers are devel-
oped for an arbitrary sequence of subsystems. Each controller
is proven to regulate the state to within a neighborhood of
the origin. Furthermore, the control policies are shown to
converge to the neighborhood of the optimal policy using a
Lyapunov-based analysis, while switching between different
dynamic models and cost matrices. Simulation results show
that switching according to an arbitrary sequence yields
different performance. Future research will focus on gen-
eralizing the result to broader classes of systems.
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