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Abstract—This paper develops a technique for online approx-
imate optimization of tracking control policies for a family of
switched nonlinear dynamical systems. Optimization is realized
via approximate dynamic programming, and integral concurrent
learning is used for robustness to parametric uncertainties.
The family of switched systems is composed of finitely many
subsystems, which may have differing characteristics, such as
dynamics and cost functions. This paper develops a new result on
the analysis of switched systems comprised of locally practically
stable subsystems using multiple Lyapunov-like functions. Local
practical stability of the overall switched system and convergence
of the applied tracking control policies to a neighborhood of
the optimal tracking control policies is then proven for an
arbitrary switching sequence provided that a set of sufficient gain
conditions and a minimum dwell-time condition are satisfied.
Simulation results are presented for optimal control of an
autonomous underwater vehicle in the presence of a set of
discretely varying irrotational currents to show the efficacy of
the developed technique.

I. INTRODUCTION

Switched systems are dynamical systems that can operate
in various modes of operation (also referred to as subsystems)
in response to internal and external stimuli [1]. Switching
behaviors can result from changes in control objectives, system
parameters, actuator limitations including saturation and on/off
control, modeling choices where a complex system is com-
posed of several simpler models, and design choices including
gain scheduling, where a complex control design problem
is separated into multiple control design problems [2]–[6].
Solutions to optimal control problems provide a stabilizing
control policy, which can be used to facilitate a regulation
or tracking objective [7, Ch. 5]. This paper considers the
optimal control of a switched nonlinear system. The control
objective is to optimize the performance of each subsystem
and to schedule switching behaviors to ensure stability of the
overall switched system.

The performance objective for each subsystem is encoded
in terms of the minimization of a cost functional, which results
in a nonlinear optimal control problem (NOCP) corresponding
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to each subsystem. Solutions to a large classes of NOCPs can
be characterized using the Hamilton-Jacobi-Bellman (HJB)
equation, which is generally difficult to solve [7, Ch. 2]. HJB
equations can be solved numerically (e.g,. [8] and [9]) given a
dynamic model of the system; however, the resulting feedback
controllers may be rendered ineffective if the model includes
uncertainty.

Reinforcement learning (RL) has been used to approximate
solutions of optimal control problems [10] and [11]. Approxi-
mate dynamic programming (ADP) utilizes a RL-based actor-
critic framework to solve NOCPs in the presence of modeling
uncertainty via value function approximation [12]–[16]. For a
class of NOCPs that includes affine-quadratic NOCPs, once
the optimal value function is successfully approximated, a
stabilizing optimal control policy can be determined. The
optimal value function of each subsystem is approximated
with a separate single-layer linear-in-the-parameters neural
network (NN); the weights of the NN are updated according
to the Bellman error (BE), which is a performance metric
that indirectly measures the quality of the value function
approximation. If a system model is available, it can be
used to improve learning efficiency via simulation of ex-
perience [17]–[19]. If the system model includes uncertain
model parameters, they may be approximated in real-time
using techniques such as integral concurrent learning (ICL)
under finite excitation (FE) conditions [20]. Unlike standard
concurrent learning results [21], ICL circumvents the need
to compute state derivatives. In a switched systems context,
since ICL relies on historical input-output data, ICL facilitates
exponential identification of a subsystem’s uncertain parame-
ters regardless of the subsystem’s (in)activity. The identified
parameters enable simulation of experience (i.e., to calculate
the BE at off-trajectory locations in the state space) to facilitate
value function approximation. While ADP with simulation of
experience has proven to be an effective tool for approximate
optimal control of the subsystems (e.g., [15], [19], [22]–
[26]), optimal control of switched nonlinear systems remains
a challenge.

Numerical optimal control of switched systems has been
investigated in results such as [27]–[31]. Early results on
switched optimal control rely on a simplifying assumption
such as a fixed switching sequence [27], [31], [32] or a fixed
switching surface [33] and [34]. Methods to optimize the
switching sequence, under the assumption that the switching
times are fixed, are also developed in [29]. More recently,
methods based on mode insertion [30], dynamic programming
[31], and embedding [35] and [36] have been addressed



simultaneous offline optimization of switching sequences and
switching times. Results such as [37] and [38] also examine
the use of dynamic programming for offline optimization of
switched discrete-time nonlinear systems. Unlike the afore-
mentioned methods, the objective in this paper is online
optimization, where a Lyapunov-based framework establishes
convergence of the subsystem control policies to a neighbor-
hood of their respective optimal policies while maintaining
stability of the overall switched system. Optimization of the
switching logic relative to a system-wide performance metric
is not considered in this work (cf. [30], [31], [35], and [36])
and is a topic for future research.

The Lyapunov-like function for each subsystem includes
its respective optimal value function. Since the optimal value
function is generally different for each subsystem [39, Ch.
3], the switched system is analyzed using multiple Lyapunov-
like functions [1, Ch. 3.1]. A complication in Lyapunov-based
analyses of switched systems is the growth and discontinuity
of Lyapunov-like functions at the switching instances [40].
To overcome this complication, a minimum dwell-time anal-
ysis is utilized. A minimum dwell-time is a lower bound
on the time required before the scheduler can switch to a
different subsystem. While the value of one Lyapunov-like
function may decrease while the corresponding subsystem is
active, its value may increase when the subsystem becomes
inactive. The minimum dwell-time accounts for the worst-
case growth between multiple Lyapunov-like functions at
switching instances [1, Sec. 3.1]. In doing so, overall system
stability, when following an arbitrary switching sequence of
subsystems (i.e., the sequence of active subsystems is arbitrary,
but the timing between switching instances is not arbitrary),
can be established provided the switching time instances
satisfy the minimum dwell-time condition. This paper de-
velops a continuous-time ADP-based tracking controller for
an arbitrary switching sequence between multiple dynamical
subsystems with a time-varying switching signal, which may
be based on environmental conditions or the user’s discretion.

Online optimal regulation of uncertain linear and nonlinear
switched systems is studied in [41]–[43]. In [42], algorithms
for learning the optimal feedback gains in each subsystem are
developed, but stability of the switched system is analyzed
assuming fixed learned feedback gains, and as such, stability
during the learning phase is not analyzed. The result in [43]
concerns safe ADP-based control within a hybrid systems
framework; however, it does not analyze multiple subsystems
that are intermittently activated. In [41], the trajectory tracking
problem is not considered, quadratic bounds on the optimal
value function are assumed, projection operators are required,
and the adaptive parameters (solely the actor-critic weights)
of a subsystem are only updated while that subsystem is
active. As such, the state of each subsystem only includes
its respective state. This approach results in a concatenated
state vector that is unique to each subsystem. Since dwell-
time analysis typically relies on continuity of the state vector
at the switching instance, the absence of a common state
vector between subsystems makes the analysis challenging,

resulting in overly conservative assumptions on the Lyapunov-
like functions and overly conservative dwell-time bounds.
Another issue noticed in [41] is that the actor-critic weights
only update while their respective subsystem is active, result-
ing in piecewise continuous trajectories. Similar sample-and-
hold strategies have been analyzed using a hybrid systems
framework [44, Ch. 3] but they do not consider subsystems
that are locally practically stable or have uniformly ultimately
bounded (UUB) or locally practically stable trajectories.

Unlike [41], the method developed in this paper relaxes
the assumptions on the optimal value function, removes the
projection operators on the update policies, considers the
optimal trajectory tracking problem, performs online system
identification of each subsystem simultaneously, and simul-
taneously updates every subsystem’s value function weight
estimates. Furthermore, this paper uses model-based ADP to
continuously learn the value functions and system parameters
of one subsystem while another subsystem is active. Model-
based ADP relies on simulation of experience, which enables
policy updates while a subsystem is inactive. The advantage
of this simultaneous online learning technique is that it results
in a common state that remains continuous at the switching
instance (i.e., no reset map is needed [1, Ch. 1.1.1]). Having
a common and continuous state enables quantification of
the convergence rate and the ultimate bound of the active
Lyapunov-like function and also the change in value of the
active Lyapunov-like functions before and after a switch. Such
quantification enables computation of the minimum dwell-time
needed to maintain local practical stability (see [45] and [46])
of the switched system. This paper develops a new result
on the relationship between local practical stability of the
subsystems and local practical stability of the switched system,
which can be applied to general switching problems with
locally practically stable subsystems that must be analyzed
using multiple Lyapunov-like functions.

The remainder of this paper is structured as follows. Section
II formulates the tracking ADP problem and objectives. Sec-
tion III outlines the ICL-based system identifier, which is used
to estimate the system dynamics online. Section IV introduces
BE extrapolation, which requires the parametric model from
Section III. Section V defines the update laws that facilitate
the ADP algorithm and subsequent stability analysis. Section
VI outlines the simultaneous learning that facilitates the sub-
sequent stability analysis. Section VII presents a Lyapunov-
based stability analysis and dwell-time analysis. Section VIII
presents a simulation result to illustrate the effectiveness of
the developed technique.

Notation
For notational brevity, time-dependence is omitted while

denoting trajectories of the dynamical systems. For example,
the trajectory x (t) , where x : R≥0 → Rn, is denoted as
x ∈ Rn and referred to as x instead of x (t) . For example,
an equation of the form f + h (y, t) = g (x) should be
interpreted as f (t) + h (y (t) , t) = g (x (t)) ∀t ∈ R≥0. The

gradient
[
∂f(x,y)
∂x1

, . . . , ∂f(x,y)∂xn

]T
, where x ∈ Rn, y ∈ Rp,



f : Rn × Rp → Rm and ∂f(x,y)
∂xk

∈ Rm is denoted by
∇xf (x, y). ∥·∥ denotes both the Euclidean norm for vectors
and Frobenius norm for matrices. The cardinality of a set A is
denoted by |A|. 1n×m and 0n×m denote matrices of ones and
zeros with n rows and m columns, respectively. In×n denotes
an n×n identity matrix. Generally, the subscript p defines the
quantity or function belonging to the pth mode of the overall
system.

II. PROBLEM FORMULATION

Let ẋ = fp (x) + gp (x)u denote a family of finitely many
dynamical systems, indexed by p ∈ P ⊂ N with |P| < ∞,
where x ∈ Rn denotes the system state and u ∈ Rm denotes
the control input. The function fp : Rn → Rn models the
drift dynamics, and the function gp : Rn → Rn×m models
the control effectiveness of the pth subsystem. The control
objective is to track a time-varying piecewise continuously
differentiable signal xd : R≥t0 → Rn. To quantify the
tracking objective, the tracking error is defined as e ≜ x−xd.
Using the technique in [19] to transform the time-varying
tracking problem into an infinite horizon regulation problem,
the control-affine dynamics are rewritten as

ζ̇ = Fp (ζ) +Gp (ζ)µp, (1)

where ζ ∈ R2n is the concatenated state vector ζ ≜[
eT , xTd

]T
, µp ≜ u − ud,p (xd) is the feedback portion of

the controller, ud,p : Rn → Rm is the subsequently-defined
feedforward component of the controller that facilitates the
trajectory tracking objective, Fp : R2n → R2n is defined as

Fp (ζ) ≜

[
fp (e+ xd)− hd,p (xd) + gp (e+ xd)ud,p (xd)

hd,p (xd)

]
,

(2)

where hd,p : Rn → Rn is a user-selected desired trajectory
generation function and subsequently-defined in Assumption
4, and Gp : R2n → R2n×m is defined as

Gp (ζ) ≜
[
gp (x)

T
,0m×n

]T
. (3)

The following assumptions facilitate the development of the
approximate optimal tracking controller (see [19]).

Assumption 1. The function fp is continuously differentiable
and fp (0) = 0 for all p ∈ P .

Assumption 2. The function gp is locally Lipschitz, gp (x)
has full column rank for all (x, p) ∈ Rn ×P , and there exists
a known constant gp ∈ R>0 such that ∥gp (x)∥ ≤ gp, for
all (x, p) ∈ Rn × P . It follows that there exists a known
constant Gp ∈ R>0 such that 0 < ∥Gp (ζ)∥ ≤ Gp for all
(ζ, p) ∈ R2n × P .

Assumption 3. The desired trajectory is bounded from
above by a positive constant xd ∈ R≥t0 such that
supt∈R≥0

∥xd(t)∥ ≤ xd.

Assumption 4. The desired trajectory of the pth system is
a solution of ẋd = hd,p (xd), starting from xd(0), where

hd,p : Rn → Rn are user-selected locally Lipschitz continuous
trajectory generation functions that satisfy hd,p(0) = 0 and
gp (xd) g

+
p (xd) (hd,p (xd)− fp (xd)) = hd,p (xd)−fp (xd) for

all xd ∈ Rn, and p ∈ P , where g+p : Rn → Rm×n is defined
as g+p (x) ≜

(
gTp (x) gp (x)

)−1
gTp (x) .

Based on Assumptions 2-4, the controller u can be separated
into two components: a feedback component µp, which is
subsequently defined, and a feedforward component ud,p (xd) ,
defined as ud,p (xd) ≜ g+p (xd) (hd,p (xd)− f (xd)) .

A. Control Objectives

Solutions to optimal control problems provide control po-
lices that facilitate tracking objectives [7, Ch. 11]. Tracking
objectives prescribe the system states to follow a specific, often
user-defined, function of time. The control design problem
under consideration has three objectives. The first objective
is to solve the infinite-horizon optimal tracking problem for
each subsystem online and in real time. That is, for each fixed
p ∈ P , the aim is to determine a feedback control policy µp

that minimizes the infinite horizon cost functional, Jp, defined
as

Jp (ζ (·) , µp (·)) ≜
� ∞

t0

Qp (ζ (τ)) + µT
p (τ)Rpµp (τ) dτ,

(4)

subject to (1) while tracking the desired trajectory output by
the pth subsystem’s desired trajectory generator, where Qp ∈
R2n → R≥0 is a positive semidefinite (PSD) user-selected
state cost function of the pth subsystem, and Rp ∈ Rm×m

is a user-selected positive definite (PD) symmetric input cost
matrix for the pth subsystem. The second objective is to
generate an online estimate of the feedforward controllers
ud,p (xd) by learning the uncertain parameters in the drift
models of the subsystems. The third objective is to characterize
the class of allowable switching signals σ : R≥0 → P and
estimate a set of initial conditions such that the dynamics
of the error between the trajectories of the switched desired
trajectory generator ẋd = hd,σ(t)(xd) and the switched system
ẋ = fσ(t) (x)+gσ(t) (x)u, under the developed controller, are
practically stable.1

To ensure that the optimal controllers in each subsystem
are stabilizing, it is assumed that the state cost function is
of the form Qp (ζ) ≜ Qp (e) , where Qp : Rn → R≥0 is a
PD function that is independent of xd. By [47, Lemma 4.3],
Qp satisfies q

p
(∥e∥) ≤ Qp (ζ) ≤ qp (∥e∥) for all (ζ, p) ∈

R2n × P , where q
p
, qp : R≥0 → R≥0 are class K functions.

For example, let Qp (ζ) = eT e+ xTd 0n×nxd.

1In this problem formulation we consider the case in which xd is continuous
through the switching instances, but owing to different desired behaviors
in different modes of operation, modeled by the functions hd,p, the time
derivative ẋd may be piecewise continuous at the switching instances.



B. Exact Solution of Subsystem Optimal Control Problems

The infinite horizon value function (i.e., the cost-to-go) for
the pth subsystem V ∗

p : R2n → R≥0 is defined as

V ∗
p (ζ0) ≜ min

µp

� ∞

t

Qp (ζ (τ)) + µT
p (ζ (τ))Rpµp (ζ (τ)) dτ,

(5)

where ζ (·) is the trajectory of (1) starting from some initial
state ζ0 under the feedback policy µp and the minimization is
over the set of admissible feedback policies [15, Chapter 1].
If the optimal value function V ∗

p is continuously differentiable

and (e, t) 7→ V ∗
p

([
e

xd(t)

])
is PD, then V ∗

p is the unique

stabilizing solution of the corresponding HJB equation (e.g.,
[48, Chapter 5])

0 = Qp (ζ) + µ∗T
p (ζ)Rpµ

∗
p (ζ) (6)

+∇ζV
∗
p (ζ)

(
Fp (ζ) +Gp (ζ)µ

∗
p (ζ)

)
,

where the optimal feedback policy µ∗
p : R2n → Rm is given

by

µ∗
p (ζ) = −1

2
R−1

p Gp (ζ)
T (∇ζV

∗
p (ζ)

)T
. (7)

C. Value Function Approximation

Parametric NN-based methods can be used to approximate
the optimal value function over a compact domain. To facilitate
solving the HJB equation in (6), let Ωp ⊂ R2n be a compact set
and consider the approximation of the optimal value function
in (5) over the set Ωp given by2

V ∗
p (ζ) =WT

p ϕp (ζ) + ϵp (ζ) , (8)

where Wp ∈ RL is an unknown bounded vector of weights,
ϕp : R2n → RL is a user-selected vector of basis functions,
and ϵp : R2n → R is the bounded function approximation
error.3 Substituting (8) into (7), the transient optimal control
policy of the pth subsystem µ∗

p can be expressed as

µ∗
p (ζ) = −1

2
R−1

p Gp (ζ)
T
(Wp∇ζϕp (ζ) +∇ζϵp (ζ))

T
. (9)

Assumption 5. There exist constants
Wp, ϕp,∇ζϕp, ϵp,∇ζϵp ∈ R>0 such that the unknown
weights W , user-defined vector of basis functions ϕp (·) ,
and function approximation error ϵp, can be bounded
such that ∥Wp∥ ≤ Wp, supζ∈Ωp

∥ϕp (ζ)∥ ≤ ϕp,
supζ∈Ωp

∥∇ζϕp (ζ)∥ ≤ ∇ζϕp, supζ∈Ωp
∥ϵp (ζ)∥ ≤ ϵp,

and supζ∈Ωp
∥∇ζϵp (ζ)∥ ≤ ∇ζϵp [13, Assumptions 9.1.c-e].4

2The subsequent stability analysis in Theorem 1 proves that if ζ is initialized
within an appropriately-sized subset of Ωp, then it will remain in Ωp for all
t ∈ R≥0.

3Each subsystem p can have finitely many neurons. The number of neurons
in each subsystem’s ϕp can be different (e.g., L for subsystem 2 need not
be the same as L in subsystem 1). However, to focus the subject of this
manuscript and to minimize the amount of notation, generally, L represents
the number of neurons in ϕp for all p ∈ P .

4Assumption 5 can be satisfied by selecting ϕp to be a polynomial basis
function [49, Theorem 1.5].

The ideal weights Wp in (8) and (9) are unknown; hence, an
approximation of Wp is sought. Specifically, the critic weight
estimate, Ŵc,p ∈ RL is substituted to approximate the optimal
value function V̂p : R2n × RL → R denoted as

V̂p

(
ζ, Ŵc,p

)
≜ ŴT

c,pϕp (ζ) . (10)

Similarly, another estimate for Wp, called the actor weight
estimate Ŵa,p ∈ RL, is used to provide an approximate
version of (9), the approximate optimal control policy µ̂p :
Rn × RL → R is

µ̂p

(
ζ, Ŵa,p

)
= −1

2
R−1

p Gp (ζ)
T
(
∇ζϕp (ζ)

T
Ŵa,p

)
. (11)

III. IDENTIFICATION OF THE FEEDFORWARD COMPONENT

If the drift dynamics contain parametric uncertainties then
online system identification is needed to learn the unknown
feedforward component ud,p of the controller and for model-
based learning of the unknown feedback component µp of
the controller. To facilitate system identification objective, let
f̂p : Rn × Rs → Rn be a parametric estimate of the drift
dynamics fp.

5 Assume that the drift dynamics are linearly
parameterizable, i.e., fp (x) ≜ Yp (x) θp, where Yp : Rn →
Rn×s is a known regression matrix and θp ∈ Rs denotes the
unknown constant parameters of fp.6 Using an approximation
of the unknown parameter vector θ̂p ∈ Rs, an approximation
of the pth uncertain drift dynamics f̂p : Rn × Rs → Rn is
defined as f̂p

(
x, θ̂p

)
≜ Yp (x) θ̂p. The parameter estimates

are updated using the ICL-based update policy

˙̂
θp ≜ −kp,θΓp,θ

·
Mp∑
j=1

YT
p,j

(
x (tj)− x (tj −∆t)− Up,j − Yp,j θ̂p

)
(12)

based on the result in [20], where kp,θ ∈ R>0

and Γp,θ ∈ Rs×s are PD learning gains, Mp ∈
Z+ is the user-defined number of elements in the
subsequently-defined history stacks, Yp,j ≜ Yp (tj) , Up,j ≜
Up (tj) , Yp (t) ≜

� t

max{t−∆t, t0} Yp (x (τ)) dτ, Up (t) ≜� t

max{t−∆t, t0} gp (x (τ))u (τ) dτ , where τ is the integration
variable, and tj ∈ R≥t0 is the time when the state-input pairs
are recorded.

Assumption 6. History stacks containing recorded values of
state and control signals {x (tj) , x (tj −∆t) , u (tj)}Mp

j=1 that

satisfy Yp ≜ λmin

{∑Mp

j=1 YT
p,jYp,j

}
> 0 are available a

priori for all subsystems p ∈ P [20, Assumption 1].

5s ∈ N represents the number of uncertain parameters for each subsystem
p. Each subsystem p may have a different number of uncertainties and,
therefore, different value of s. However, to focus the subject of this manuscript
and to simplify the notation, let s = sp represent the number of parametric
uncertainties for each subsystem.

6Linear parameterizations of the drift dynamics fp require partial knowl-
edge of a system’s dynamics. The developed technique can be extended to
include a larger class of nonlinear systems by using NNs to approximate the
drift dynamics. To focus the scope of this manuscript on switched systems,
the drift dynamics are assumed to be linear-in-the-parameters.



Remark 1. For systems without finite escape behaviors and
tuning of the initial values of Ŵc,p and Ŵa,p, the availability
of the history stack a priori is not necessary [19]. Assumption
6 is used to focus the scope of this manuscript and simplify
the subsequent stability analysis.
Remark 2. To relax the common persistence of excitation (PE)
condition [50, Def. 4.3.1], the update law in (12) uses a history
stack comprised of recorded state and input data. Assumption
6, also known as the finite excitation (FE) condition, facilitates
parameter convergence in the subsequent stability analysis.
Assumption 6 requires excitation of the system states and
is significantly less restrictive than the typical PE condition.
The advantage of FE over PE is not due to which mech-
anism yields the excitation, but rather the interval of time
concerned (finite versus persistent/infinite) and the verifiability
of the condition: FE can be verified online and PE cannot
generally be verified a priori or online for general nonlinear
systems. Unlike the typical PE condition, which assumes that
α1I ≥ 1

T0

� t+T0

t
ϕ (τ)ϕ⊤ (τ) dτ ≥ α0I ∀t ≥ t0 over any time

interval [t, t+ T0], the FE condition uses data that is collected
online the provide excitation [50, Def. 4.3.1].

With the parameter estimation error defined as θ̃p ≜ θp−θ̂p,
the update law in (12) can be rewritten in an analytical
form as ˙̃

θp = −kp,θΓp,θ

∑Mp

j=1 YT
p,jYp,j θ̃p. If fp is unknown,

then the feedforward control component is approximated us-
ing ûd,p : Rn × Rs → Rm, defined as ûd,p

(
xd, θ̂

)
≜

g+p (xd)
(
hd,p (xd)− f̂p

(
x, θ̂
))

. Hence, the applied control
policy is given by

u ≜ µ̂p

(
ζ, Ŵa,p

)
+ ûd,p

(
xd, θ̂p

)
. (13)

IV. BELLMAN ERROR

The right-hand side of (6) is equal to zero under optimal
conditions; however, substituting (10) and (11) into (6) results
in a residual term δ̂p : R2n × Rs × RL × RL → R, which is
referred to as the Bellman Error (BE), defined as

δ̂p

(
ζ, θ̂p, Ŵc,p, Ŵa,p

)
≜ µ̂p

(
ζ, Ŵa,p

)T
Rpµ̂p

(
ζ, Ŵa,p

)
+Qp (ζ) +∇ζ V̂p

(
ζ, Ŵc,p

)(
Fθ,p

(
ζ, θ̂p

)
+F1,p (ζ) +Gp (ζ) µ̂p

(
ζ, Ŵa,p

))
, (14)

where

Fθ,p

(
ζ, θ̂p

)
≜

[
f̂p

(
x, θ̂p

)
− gp (x) g

+
p (xd) f̂p

(
xd, θ̂p

)
0n×1

]
,

(15)

and

F1,p (ζ) ≜

[
−hd,p (xd) + gp (x) g

+
p (xd)hd,p (xd)

hd,p (xd)

]
. (16)

The BE is an indirect measure of the proximity of the actor
and critic weight estimates to the ideal weights. By defining
the mismatch between the estimates and their ideal values as
W̃c,p ≜ Wp − Ŵc,p and W̃a,p ≜ Wp − Ŵa,p, substituting

(10) and (11) in (6), and subtracting from (14) yields the
analytical form of the BE, which is used in the subsequent
stability analysis,

δ̂p

(
ζ, θ̂p, Ŵc,p, Ŵa,p

)
= −WT

p ∇ζϕp (ζ)

·
(
Fθ,p (ζ, θp)− Fθ,p

(
ζ, θ̂p

))
− ωT

p W̃c,p

+
1

4
W̃T

a,pGϕ,pW̃a,p +Op (ζ) , (17)

where ωp : R2n × RL × Rs →
R2n is defined as ωp

(
ζ, Ŵa,p, θ̂p

)
≜

∇ζϕp (ζ)
(
Fp,θ

(
ζ, θ̂p

)
+ F1,p (ζ) +Gp (ζ) µ̂p

(
ζ, Ŵa,p

))
,

Op (ζ) ≜ 1
2∇ζϵp (ζ)GR,p∇ζϕp (ζ)

T
Wp +

1
4Gϵ,p − ∇ζϵp (ζ)Fp,θ (ζ, θp) − ∇ζϵp (ζ)F1,p (ζ) ,

GR,p = GR,p (ζ) ≜ Gp (ζ)R
−1
p Gp (ζ)

T
,

Gϕ,p = Gϕ,p (ζ) ≜ ∇ζϕp (ζ)GR,p (ζ)∇ζϕp (ζ)
T , and

Gϵ,p = Gϵ,p (ζ) ≜ ∇ζϵp (ζ)Gp (ζ)∇ζϵp (ζ)
T
. Unlike BE

definitions in typical tracking model-based ADP results
[19], the definitions in (14)-(17) differ because the BE δ̂p is
specific to each subsystem. The definitions in (14)-(17) are
switched-system analogs of BE definitions in typical tracking
model-based ADP results such as [19].

A. Bellman Error Extrapolation

In this section, the concept of BE extrapolation, developed
for model-based reinforcement learning results (see [22]) is
adapted to the switched ADP problem. At each time in-
stant, the BE in (14) is calculated using the current system
state, critic weight estimates, and actor weight estimates.
A classical problem in learning-based control is exploration
versus exploitation. Results such as [51] require an explo-
ration signal to sufficiently explore the operating domain.
However, no analytical methods exist to compute the appro-
priate exploration signal. Alternatively, results such as [22]
evaluate the BE along the system trajectory and other desired
points in the state space to avoid using an exploration signal.
Specifically, the BE is computed at a user-specified num-
ber and location of off-trajectory points {ζi : ζi ∈ Ωp}Np

i=1 ,
where Np ∈ N denotes a user-specified number of points
in the compact set Ωp. The BE extrapolation data is rep-
resented by the tuple (Σc,p,Σa,p,ΣΓ,p) , defined as Σc,p ≜
1
Np

∑Np

i=1
ωi,p

ρi,p
δ̂i,p, Σa,p ≜ 1

Np

∑Np

i=1

GT
σi,pŴa,pω

T
i,p

4ρi,p
, ΣΓ,p ≜

1
Np

∑Np

i=1

ωi,pω
T
i,p

ρi,p
, where δ̂i,p ≜ δ̂p

(
ζi, θ̂p, Ŵc,p, Ŵa,p

)
,

ωi,p ≜ ωp

(
ζi, Ŵa,p, θ̂p

)
, and ρi,p = 1 + νpω

T
i,pΓpωi,p,

νp ∈ R>0 is a user-defined gain, and Γp : R → RL×L

is a time-varying least-squares gain matrix. Generally, each
subsystem, p, has distinct sets of data, history stacks, gain
values, and update laws.7

Assumption 7. A finite set of points {ζi,p}Np

i=1 ⊂ Ωp ex-
ists along with known constants cp such that 0 < cp ≜

7Since each subsystem has respective data and parameters, they are treated
as unique to that subsystem, which is similar to [52].



Figure 1. This diagram describes the overall switched actor-critic control architecture. The stacked boxes represent the subsystems that are simultaneously
online (i.e., always active). The ICL-based system identification update policy ˙̂

θp, BE extrapolation trajectories, BE evaluation, critic update policy ˙̂
Wc,p,

least-squares gain update policy Γ̇p, and actor update policy ˙̂
Wa,p are simultaneously active for all p ∈ P .

inf
t∈R≥0

λmin {ΣΓ,p} for all t ∈ R≥0 and each p ∈ P [22,
Assumption 3].

Remark 3. Assumption 7 states that BE extrapolation must
provide a sufficiently exciting data. This assumption facilitates
convergence of the weight approximation error term in the
subsequent Lyapunov-based analysis. In practice, Assumption
7 is satisfied by selecting a large number of BE extrapolation
trajectories (i.e., Np ≫ L [22, Assumption 3]). Assumption 7
can also be verified online by evaluating λmin {ΣΓ,p}.8

V. UPDATE LAWS FOR ACTOR AND CRITIC WEIGHTS

Using the extrapolated BEs δ̂i,p, the critic and actor weights
are updated according to the following continuous-time update
policies. These update policies are derived from the Lyapunov-
based analysis in Section VII. In the following definitions,
ηc,p, ηa1,p, ηa2,p, λp ∈ R>0 are user-selected constant learn-
ing gains, and Γp, Γp ∈ R>0 are upper and lower bounds
of the least-squares learning gains of subsystem p. The critic
update law of the pth subsystem is

˙̂
Wc,p ≜ −ηc,pΓpΣc,p. (18)

The actor update law of the pth subsystem is

˙̂
Wa,p ≜ −ηa1,p

(
Ŵa,p − Ŵc,p

)
− ηa2,pŴa,p

+ ηc2,pΣa,pŴc,p. (19)

The time-varying least-squares gain matrix update law [53,
Sec. 8.7.4] of the pth subsystem is

Γ̇p ≜ (λpΓp − ηc,pΓpΣΓ,pΓp) · 1{Γp≤∥Γp∥≤Γp}, (20)

8Both BE extrapolation and CL-based system identification (see Assump-
tion 6) are different techniques that relax the PE condition, which is required
for parameter convergence. While the PE condition is traditionally studied
within the context of system identification, ADP-based controllers require
similarly exciting signals for convergence of the ADP controller to the optimal
controller [13, Ch. 6]. CL system identification provides excitation from stored
input-output data pairs, and BE extrapolation in ADP provides excitation from
simulation of experience (i.e., simulating the learned system model at user-
selection regions of the state space to simulate policy excitation).

where 1{·} denotes the indicator function, and Γp,Γp ∈ R>0

are user-selected saturation gains that bound ∥Γp∥ such that
Γp ≤ ∥Γp (t)∥ ≤ Γp for all t ∈ R>0 and p ∈ P .

VI. SIMULTANEOUS ONLINE LEARNING

In [41], each subsystem’s weights and least-squares gain
matrix (Ŵc,p, Ŵa,p, and Γp) are updated strictly while that
subsystem is active. For example, the (p+ 1)

th subsystem’s
parameters are held constant as the pth subsystem’s parameters
are updated. The previous approach introduces a problem in
the switched systems analysis because the system states are
not continuous between switching instances. For example, in
[41] the active state changes from Ŵc,p to Ŵc,p+1 as the pth

subsystem switches to the (p+ 1)
th subsystem. To account

for the state discontinuity, the weight update policies in [41]
include smooth projection operators. Due to the projection
operators, the bounds on the instantaneous changes in the val-
ues of the Lyapunov-like functions at the switching instances
become overly conservative. As a result, the minimum dwell-
time condition to prove stability is overly conservative for
practical implementation.

In this paper, a dwell-time condition that is less conservative
than [41] is obtained by keeping the parameter update policies
in (12) and (18)-(20) simultaneously active for all p ∈ P . Hav-
ing each subsystem active simultaneously enables the creation
of a concatenated state that contains W̃c,p, W̃a,p, θ̃p ∀p ∈ P .
Hence, when the system switches from the pth subsystem to
the (p+ 1)

th subsystem, the concatenated state is continuous
at the switching instance.

The family of update laws in (18)-(20) is different from
that of the typical model-based ADP [19]. The result in [19]
includes on-trajectory BE data in the critic update law and
an additional on-trajectory term in the actor update law to
compensate for the on-trajectory BE data. Instead, the update
laws in (18)-(20) omit the terms related to on-trajectory BE.
Unlike the update laws in [41], the update laws in (18)-
(20) only use model-based evaluation of the BE at user-



selected points in the state space.9 The omission of on-
trajectory data is motivated by the need to have a continuous
state between all subsystems. Similarly, the parameter update
law in (12) is implemented using only the history stack
{x (tj) , x (tj −∆t) , u (tj)}Mp

j=1 for each subsystem, which
contains data that was recorded while that subsystem was
active. As shown in the subsequent Lyapunov-based stability
analysis, each subsystem is practically stable and the state
trajectory of the switched system is continuous at the switching
instances. The control system architecture, which leverages
simultaneous online learning, is detailed in Figure 1.

VII. STABILITY ANALYSIS

First, the ADP-based controllers in each subsystem are
analyzed using a Lyapunov-based approach. In comparison to
the analysis in [41, Thm. 1], the state vector in the following
analysis includes parameter estimates from every subsystem.
The resulting dwell-time analysis of the overall switched
system is less restrictive that the result in [41, Thm. 1].

A. Subsystem Analysis

To motivate the overall switched systems stability analysis
in Section VII-B, the stability of the system while pth sub-
system is active must first be analyzed. The development in
this subsection does not address switching from the pth to the
(p+ 1)

th subsystem, as switching between a family of stable
subsystems may not result in a stable switched system [1].

Since the function Q and, therefore, the optimal value
function V ∗

p in (8) is PSD, V ∗
p is not a valid candidate

Lyapunov function. It is shown in [55] that a nonautonomous
form of V ∗

p , denoted as V ∗
na,p : Rn × R≥0 → R and defined

as V ∗
na,p (e, t) ≜ V ∗

p (ζ) , is positive definite and decrescent.
Hence, V ∗

na,p (0, t) = 0 and there exist class K∞ functions
v, v : R≥0 → R≥0 that bound vp (∥e∥) ≤ V ∗

na,p (e, t) ≤
vp (∥e∥), for all e ∈ Rn and t ∈ R≥0. Hence, V ∗

na,p (e, t)
is a valid candidate Lyapunov function.

Let Z ∈ Rn+|P|(2L+s) denote a
concatenated state defined as Z ≜[
eT , W̃T

c,1, . . . , W̃
T
c,k, W̃

T
a,1, . . . , W̃

T
a,k, θ̃

T
1 , . . . , θ̃

T
k

]T
.10 Let

VL,p : Z ∈ Rn+|P|(2L+s) × R≥0 → R be a candidate
Lyapunov function defined as

VL,p (Z, t) ≜ V ∗
na,p (e, t) +

1

2

∑
p∈P

W̃T
c,pΓp (t)

−1
W̃c,p

+
1

2

∑
p∈P

W̃T
a,pW̃a,p +

1

2

∑
p∈P

θ̃Tp Γ
−1
θ,pθ̃p. (21)

9Depending on the state dimension n, the dimension of the basis functions
L, and number of BE extrapolation points Np, it may be computationally
expensive or intractable to compute (18)-(20) in parallel for each subsystem
in real-time. Sparse NN BE extrapolation methods in [26] and [54] can be
leveraged to reduce the computational cost associated with (18)-(20) for each
subsystem in parallel.

10The inclusion of θ̃p terms in (21) complicate the Lyapunov-based
analysis, cf. [41, Thm. 1]. Recall from Section IV-A that δ̂i,p ≜

δ̂p
(
ζi, θ̂p, Ŵc,p, Ŵa,p

)
, which includes the parameter estimate θ̂p. The

coupling between the actor-critic and system identification update laws
motivates their respective designs and inclusion in (21).

Using the properties of V ∗
na,p (e, t) and the fact that

Γp is bounded, (21) can be bounded as α1,p (∥Z∥) ≤
VL,p (Z, t) ≤ α2,p (∥Z∥) using class K∞ functions α1,p, α2,p :
R≥0 → R≥0. Using (20), the normalized regressors ωp

ρp

and ωe,p

ρe,p
can be bounded as supt∈R≥0

∥∥∥ωp

ρp

∥∥∥ ≤ 1
2
√

νpΓp

and

supt∈R≥0

∥∥∥ωe,p

ρe,p

∥∥∥ ≤ 1
2
√

νpΓp

. The matrices GR,p and Gσ,p can

be bounded as supζp∈Ωp
∥GR∥ ≤ λmax

(
R−1

p

)
Gp

2
≜ GR,p

and supζp∈Ωp
∥Gσ,p∥ ≤

(
∇ζϕpGp

)2
λmax

(
R−1

p

)
≜ Gσ,p,

respectively. These facts are leveraged in the subsequent
Lyapunov-based analysis in Theorem 1. The following the-
orem provides sufficient conditions for the ADP controller
with continuous-time update policies in (18)-(20) to ensure
that the closed-loop subsystems are locally practically stable,
uniformly in t0, in the sense of the definition below.

Definition 1. A system ẋ = f (x, t) is locally practically
stable, uniformly over t0 ∈ R≥0, if there exist constants
0 ≤ ν < r and β ∈ KL such that for all t0 ≥ 0 and
∥x (t0)∥ ≤ r, the trajectory x(·) of the system starting from
(t0, x0) satisfies ∥x (t)∥ ≤ β (∥x0∥ , t− t0)+ ν (see [45, Def.
2.2]).

Subsequently, Theorem 2 provides a minimum dwell time
condition to ensure that the switched system is also locally
practically stable.

Theorem 1. Provided Assumptions 1-7 hold, the weight up-
date laws in (18)-(20) are used, and the conditions

ηa1,p + ηa2,p >
ηc1,p + ηc2,p√

νpΓp

W ∗
pGϕ,p, (22)

cp >
3η2c,pW

∗
p

2
Gϕ,p

2

16νpΓp (ηa1,p + ηa2,p) ηc2,p
+

3ηa1,p
ηc,p

, (23)

Lp < α−1
2,p (α1,p (Rp)) , (24)

are satisfied11 for all p ∈ P , where Rp is the radius of a
ball contained in Ωp and Lp is a positive constant introduced
below, then the closed loop system defined by (1), (12), (18),
and (19), with state Z, is locally practically stable, uniformly
over t0 ∈ R≥0.

Proof: Taking the time derivative of the Lyapunov-like
function in (21), the fact d

dtΓ
−1 = Γ−1Γ̇Γ−1, along with As-

sumptions 1-7 and the sufficient conditions in (22)-(24) yields
V̇L,p ≤ −vL,p (∥Z∥) , ∀v−1

L,p (Lp) ≤ ∥Z∥ ≤ α−1
2,p (α1,p (Rp)) ,

where

vL,p (∥Z∥) ≜
1

2
q
p
(∥e∥) +

|P|∑
p=1

[
ηc,pcp
12

∥∥∥W̃c,p

∥∥∥2
+
ηa1,p + ηa2,p

20

∥∥∥W̃a,p

∥∥∥2 + kICL,pYp

6

∥∥∥θ̃p∥∥∥2] ,
(25)

11See [22] for insight into satisfying the condition in (22)-(24).



and Lp is a positive constant. While each individual
subsystem is active, [47, Thm. 4.18] can be invoked to infer
the existence of a class KL function βp such that for all
t0 ∈ R≥0, if ∥Z (t0)∥ ≤ α−1

2,p (α1,p (Rp)) then ∥Z (t)∥ ≤
max

{
βp (∥Z (t0)∥ , t− t0) , α

−1
1,p

(
α2,p

(
v−1
L,p (Lp)

))}
and that the subsystem trajectories are UUB. Using
Definition 1, the subsystem is also locally practically stable.
Furthermore, µ̂p converges to a neighborhood of the optimal
policy µ∗

p. Furthermore, since Z ∈ L∞, it follows that
e, W̃c,1 . . . , W̃c,|P|, W̃a,1, . . . , W̃a,|P|, θ̃1, . . . , θ̃|P| ∈ L∞,

hence x, Ŵc,1, . . . , Ŵc,|P|, Ŵa,1, . . . , Ŵa,|P|, θ̂1, . . . , θ̂|P| ∈
L∞ and u ∈ L∞.

Remark 4. Under Assumptions 1-7, the optimal value function
can be shown to be the unique positive definite solution of the
HJB equation. Convergence to the positive definite solution
of the HJB equation is guaranteed by appropriately selecting
initial weight estimate values [56].

Remark 5. The result in Theorem 1 improves upon the result
in [41, Thm. 1] by relaxing the quadratic bounds on (21),
addressing the trajectory tracking problem, including an online
system identification term, performing simultaneous online
learning of all subsystems simultaneously, and providing a sta-
bility result of a state that is common between all subsystems
Z (cf. subsystem-specific states in [41, Thm. 1]).

In addition to establishing that the subsystem trajectories are
UUB, Theorem 1 establishes local practical stability of the
individual subsystems. Switching between a family of such
subsystems may not result in an overall locally practically
stable switched system [1]. The candidate Lyapunov-like func-
tion for the pth subsystem in (21) contains the optimal value
function V ∗

p , which is generally unique to each subsystem;
hence, the switched system does not generally admit a com-
mon Lyapunov-like function. As a result, the use of multiple
Lyapunov-like functions is motivated. To the best of the
authors’ knowledge, a general result that provides conditions
under which local practical stability of the switched system
may be inferred from local practical stability of individual
subsystems is not available in the literature. The development
of such a result, in the context of general nonlinear nonau-
tonomous systems, is the focus of the following section.

B. Switching between locally practically stable subsystems

Consider a family of finitely many nonlinear subsystems of
the form

ẋ = fp (x, t) , p ∈ P, (26)

where the functions fp : Rn×R≥0 → Rn are locally Lipschitz
continuous in x, for all t, and piecewise continuous in t, for all
x. Given a piecewise constant right-continuous (i.e., σ (t) =
limτ↓t+ σ (τ)) switching signal σ : R≥t0 → P where σ(t)
indicates the active subsystem at time t, the corresponding
switched system can be expressed as

ẋ = fσ(t) (x, t) . (27)

The objective of the following theoretical development is to
provide sufficient conditions such that the switched system is
locally practically stable, uniformly over the initial time and
over a suitable set Σ of switching signals, as defined below.

Definition 2. A switched system ẋ = fσ(t) (x, t) is locally
practically stable, uniformly over t0 ∈ R≥0 and σ ∈ Σ, if
there exist constants 0 ≤ ν < r and β ∈ KL such that for all
t0 ≥ 0, σ ∈ Σ, and ∥x0∥ ≤ r, the trajectory x(·) of the system
starting from (t0, x0) satisfies ∥x (t)∥ ≤ β (∥x0∥ , t− t0) + ν
(see [45, Def. 2.2]).

In this paper, the sufficient conditions are derived using a
minimum dwell-time approach [1, Ch. 3.2.1].

Definition 3. Given a switching signal σ and the correspond-
ing sequence of switching times tσ ≜ {t1, . . . , ti, tj , . . .},
the dwell time τ ∈ R>0 is defined as the time between
switching instances. Specifically, τ (ti, tj) ≜ tj − ti such that
σ (ti) ̸= σ (tj) [57].

Another objective of the analysis is to infer the size of the
ultimate bound of the trajectories of the switched system from
the ultimate bounds of the trajectories of the subsystems.

The subsequent stability analysis relies on multiple
Lyapunov-like functions Vp, where each Vp, for p ∈ P ,
establishes local practical stability of the pth subsystem,
uniformly in t0. Multiple Lyapunov-like functions are a tool
used for proving stability of switched systems [1, Sec. 3.1];
for the subsequent stability analysis, each subsystem has a
respective Lyapunov-like function that is used to determine
the behavior of that system while active. While each Vp is
continuous, the function t 7→ Vσ(t)(x(t)), evaluated along
the trajectories of the switched system in (27) is generally
discontinuous (i.e., Vp may instantaneously change its value
at the switching instances). Furthermore, while the pth system
is active (i.e., σ(t) = p), the corresponding Vp, evaluated along
the trajectories of the switched system in (27), decreases or is
bounded within an ultimate bound. However, the functions Vq ,
corresponding to all inactive subsystems may increase when
evaluated along the trajectories of the switched system in (27)
(see [1, Ch. 3.1]).

The following theorem provides sufficient conditions on
the switching signal and the initial conditions to ensure that
the Lyapunov-like functions corresponding to all subsystems
decrease to an ultimate bound. Furthermore, if the sufficient
conditions are satisfied, then Theorem 2 can also be used
to show that each µ̂p converges to a neighborhood of the
respective optimal policy µ∗

p for all p ∈ P .

Theorem 2. If D ⊂ Rn is an open and connected set contain-
ing the origin, r > 0 is such that Br ≜ {x ∈ Rn | ∥x∥ ≤ r} ⊂
D, ẋ = fp (x, t) is a finite family of subsystems, there exist
continuously differentiable functions Vp : Rn × R≥0 → R,
continuous PD functions Wp : Rn → R≥0, class K functions
α1,p : R≥0 → R≥0, and class K∞ functions α2,p : R≥0 →
R≥0, such that

α1,p (∥x∥) ≤ Vp (x, t) ≤ α2,p (∥x∥) , (28)



for all (p, x, t) ∈ P ×D × R≥0,

∂Vp
∂t

+
∂Vp
∂x

fp (x, t) ≤ −Wp (x) , (29)

for all (p, x, t) ∈ P × Λp × R≥0, and

max
p,q∈P

{
α2,q

(
α−1
1,p (α2,p (νp))

)}
≤min

p∈P
{α1,p (r)} , (30)

where Λp ≜ {x | 0 ≤ νp ≤ ∥x∥ ≤ r}, α−1
1,p : range (α1,p) →

R≥0 is the inverse of α1,p, and for a given λ ∈ (0, 1), if Σλ

is the set of all switching signals σ such that the resulting
sequence of switching times tσ = {t1, t2, . . .} satisfies the
minimum dwell-time condition

τ (ti−1, ti) >

{
0 ∥x(ti)∥ ≤ νi

τσ (ti) otherwise
(31)

for all switching instants ti ∈ tσ , where

τσ (ti) ≜ max

{
0,(

α2,σ(ti−1) (∥x (ti−1)∥)

− α1,σ(ti−1)

(
α−1
2,σ(ti)

(
λα1,σ(ti−1) (∥x (ti−1)∥)

)))
κσ(ti−1)

,(
α2,σ(ti−1) (∥x (ti−1)∥)

− α1,σ(ti−1)

(
α−1
2,σ(ti)

(
α1,σ(ti) (r)

)))
κσ(ti−1)

}
, (32)

then the switched system ẋ = fσ(t) (x, t) is locally practically
stable, uniformly over t0 ∈ R≥0 and σ ∈ Σλ. In particular,
the trajectories of ẋ = fσ(t) (x, t), with

max
p∈P

{α2,p (∥x(t0)∥)} ≤ min
q∈P

{α1,q (r)} (33)

satisfy

lim sup
t→∞

∥x (t)∥

≤ max
p∈P

{
α−1
1,p

(
max
q,s∈P

{
α2,s

(
α−1
1,q (α2,q (νq))

)})}
. (34)

Proof: The proof relies on the observation that if (30)
holds, then for any p ∈ P, if α2,p (νp) < Vp (x, t) ≤ α1,p (r)
then x ∈ Λp, and from (29), V̇p (x, t) < 0. As a result, the
α2,p (νp)− and α1,p (r)− sublevel sets of Vp are forward
invariant whenever the pth subsystem is active.

Let o, p, q ∈ P represent the first three active subsystems
i.e., σ (t0) = o, σ (t1) = p, and σ (t2) = q. From (29),
whenever x ∈ Λo, then V̇o (x, t) ≤ −Wo (x) ≤ −κo,
where generally κo = minx∈Λo

Wo (x) > 0. Using forward
invariance of α1,o (r)− and α2,o (νo)−sublevel sets of Vo and
(33), it can be concluded that α2,o (∥x (t0)∥) ≤ α1,o (r), which
implies that Vo (x (t0) , t0) ≤ α1,o (r), and as a result

Vo (x (t) , t) ≤ max {Vo (x (t0) , t0)− κo (t− t0) , α2,o (νo)}
(35)

for all t ∈ [t0, t1]. From (30), νo satisfies
α2,p

(
α−1
1,o (α2,o (νo))

)
≤ α1,p (r). From (30) and

(31), either x (t1) and νp satisfy ∥x (t1)∥ ≤ νp
and α2,p (νp) ≤ α1,p (r) or the dwell-time satisfies
α2,o (∥x (t0)∥) − κo (t1 − t0) ≤ α1,o

(
α−1
2,p (α1,p (r))

)
.

In either case, α2,p (∥x (t1)∥) ≤ α1,p (r), which implies that
Vp (x (t1) , t1) ≤ α1,p (r), and as a result

Vp (x (t) , t) ≤ max {Vp (x (t1) , t1)− κp (t− t1) , α2,p (νp)}
(36)

for all t ∈ [t1, t2]. Similarly, from (30) and (31), either x (t1)
and νp satisfy ∥x (t1)∥ ≤ νp and α2,p (νp) ≤ α1,p (r) or the
dwell-time τ (t0, t1) satisfies α2,o (∥x (t0)∥)− κo (t1 − t0) ≤
α1,o

(
α−1
2,p (λα1,o (∥x (t0)∥))

)
for some λ ∈ (0, 1). In either

case, (35) implies that

Vp (x (t1) , t1)

≤ max
{
λVo (x (t0) , t0) , α2,p

(
α−1
1,o (α2,o (νo))

)}
, (37)

Let α̃ ≜ maxp,q∈P α2,p

(
α−1
1,q (α2,q (νq))

)
. Observe that if

Vo (x (to) , to) ≤ α̃, then from (35) Vo (x (t) , t) ≤ α̃ for all
t ∈ [t0, t1), and from (37), Vp (x (t1) , t1) ≤ α̃. An inductive
argument then shows that Vσ(ti) (x (ti) , ti) ≤ α̃ for some
ti ∈ tσ implies that Vσ(t) (x (t) , t) ≤ α̃ for all t ≥ ti.

Furthermore, given (33), for all switching instances ti ∈ tσ ,
the initial condition satisfies

α2,σ(t0) (∥x (t0)∥) ≤ α1,σ(t0) (r) , (38)

given (30), the residuals νσ(·) satisfy

α2,σ(ti)

(
α−1
1,σ(ti−1)

(
α2,σ(ti−1)

(
νσ(ti−1)

)))
≤ α1,σ(ti) (r) ,

(39)
and given (31), either the dwell-time must satisfy

ti − ti−1 ≥ τσ (ti) (40)

or the state at the time of switch must satisfy ∥x (ti)∥ ≤ νσ(ti).
As a result,

Vσ(ti) (x (ti) , ti) ≤ max
{
λVσ(ti−1) (x (ti−1) , ti−1) , α̃

}
,

(41)

and for all t ∈ [ti, ti+1),

Vσ(t) (x (t) , t) ≤
max

{
Vσ(ti) (x (ti) , ti)− κσ(ti) (t− ti) , α2,σ(ti)

(
νσ(ti)

)}
.

(42)

Let iσ ≜ min
{
i ≥ 0 | Vσ(ti+1) (x (ti+1) , ti+1) ≤ α̃

}
denote

the number of switches for which Vσ remains larger than α̃,
let tiσ ∈ tσ denote the corresponding switching time, and let
Nσ (t) = max {i | 0 ≤ i ≤ iσ ∧ ti ≤ t} denote the number of
switches up to and including t ≤ tiσ . Since (30) implies that

α2,p

(
α−1
1,o (α2,o (νo))

)
≤ α1,q (r) ,∀p, q, o ∈ P, (43)

(41) and (42) can be combined to conclude that for all t ≥ t0,

Vσ(t) (x (t) , t) ≤ max

{(
λNσ(t)Vσ(t0) (x (t0) , t0)

−κσ(t)
(
t− tNσ(t)

)) , α̃} .
(44)



The bound in (44) can be used to establish local practical
stability of the switched system for a given fixed switching sig-
nal σ. The purpose of the following arguments is to compute
a decay bound on Vσ(t) that holds for all σ ∈ Σλ. For brevity
of notation, let V0 ≜ Vσ(t0) (x (t0) , t0). If the initial condition
satisfies (33), then V0 ≤ r∗ ≜ minp α1,p (r). Under the dwell-
time restriction, (44) results in Vσ(ti+1) (x (ti+1) , ti+1) ≤
max

{
λi+1V0, α̃

}
. Therefore, the number of possible switches

over the interval [t0, tiσ ] is bounded, uniformly over σ ∈ Σλ

by i∗. That is, for all σ ∈ Σλ, iσ ≤ min
{
i | λi+1V0 ≤ α̃

}
≤

i∗, where
i∗ ≜ min

{
i | λi+1r∗ ≤ α̃

}
. (45)

Similarly, over the interval [t0, tiσ ], the time between any
two switches can also shown to be bounded, uniformly
over σ ∈ Σλ. Indeed, since α2,p (νp)−sublevel sets are
invariant whenever the pth subsystem is active, t ∈ [t0, tiσ ]
implies that Vσ(t) (x (t) , t) > α2,σ(t)

(
νσ(t)

)
. Therefore, if

ti and ti+1 are two switching instances in [t0, tiσ ], then
λiV0 − κσ(ti) (ti+1 − ti) ≥ α2,σ(ti)

(
νσ(ti)

)
, which results in

the bound ti+1− ti ≤ V0−minp{α2,p(νp)}
κ ≤ τ∗ for all σ ∈ Σλ,

where κ ≜ minp∈P {κp} = minp∈P
{
minx∈Λp

{Wp (x)}
}

and

τ∗ ≜
r∗ −minp {α2,p (νp)}

κ
. (46)

As a result, the last switching time for which Vσ remains larger
than α̃ also admits a bound that is uniform over σ ∈ Σλ.
Specifically, tiσ ≤ t∗ ≜ τ∗i∗.

Consider a closed interval Ii ≜ [t0 + iτ∗, t0 + (i+ 1) τ∗],
for 0 ≤ i ≤ i∗. Note that since there are at least i switches
over [t0, t0 + iτ∗], at the start of the interval, Vσ satisfies
Vσ(t0+iτ∗) (x (t0 + iτ∗) , t0 + iτ∗) ≤ λiV0. If there are j ≥ 1
switches over Ii, then at the end of the interval, Vσ sat-
isfies Vσ(t0+(i+1)τ∗) (x (t0 + (i+ 1) τ∗) , t0 + (i+ 1) τ∗) ≤
λi+jV0 ≤ λi+1V0. Furthermore, Vσ is bounded by an
affine function with slope −κ between switches. As a re-
sult, on Ii, Vσ satisfies an affine decay bound with slope
−min

{
κ, V0λ

i(1−λ)
τ∗

}
.

In particular, letting N∗ (t) ≜
⌊

t
τ∗

⌋
, κ∗ (s, t) ≜

min
{
κ, sλ

N∗(t)(1−λ)
τ∗

}
, and

β∗(s, t) ≜

{
sλN

∗(t) − κ∗ (s, t)
(
t− tN∗(t)

)
t < t∗

sλi
∗
e

−κ∗(s,t)

sλi∗ (t−t∗)
t ≥ t∗

, (47)

it can be concluded that for all σ ∈ Σλ, Vσ satisfies the bound
Vσ(t) (x (t) , t) ≤ max {β∗ (maxp∈P {Vp (x (t0) , t0)} , t) , α̃}.
As a result, for all σ ∈ Σλ, the system state is bounded by12

∥x (t)∥ ≤ max

{
max
q∈P

{
α−1
1,q (α̃)

}
,

12Note that condition (30) and (33) imply that α̃ and
maxp∈P {α2,p (∥x (t0)∥)}, respectively, are in the codomain
of α1,q for all q ∈ P . Furthermore, since β∗(s, t) ≤ s,
β∗ (

maxp∈P {α2,p (∥x (t0)∥)} , t
)

is also in the codomain of α1,q

for all q ∈ P .

max
q∈P

{
α−1
1,q

(
β∗
(
max
p∈P

{α2,p (∥x (t0)∥)} , t
))}}

. (48)

Since β∗ ∈ KL, maxq∈P
{
α−1
1,q

}
∈ K, and maxp∈P {α2,p} ∈

K [47, Lemma 4.2] can be invoked to conclude that (s, t) 7→
maxq∈P

{
α−1
1,p (β

∗ (maxp∈P {α2,p (s)} , t))
}
∈ KL and local

practical stability of the closed loop system is established,
uniformly over t0 ∈ R≥0 and σ ∈ Σλ.

C. Application to Switched ADP

From Theorem 1, every individual subsystem is locally
practically stable, uniformly over t0 ∈ Rn; i.e., each sub-
system satisfies (28)-(30). Hence, Theorem 2 can be invoked
to show that provided the concatenated state is initialized
in the set defined by (33) with r = minp {Rp}, then
the closed-loop switched system is locally practically stable,
uniformly over t0 ∈ Rn and over switching signals that
satisfy σ ∈ Σλ. In particular, the resulting trajectory of the
closed-loop switched system satisfies the ultimate bound in
(34) with νq = v−1

L,q (Lq). Furthermore, each µ̂p converges
to a neighborhood of the respective optimal policy µ∗

p for
all p ∈ P . Furthermore, since Z ∈ L∞, it follows that
e, W̃c,1, . . . , W̃c,|P|, W̃a,1, . . . , W̃a,|P|, θ̃1, . . . , θ̃|P| ∈ L∞;
hence e, Ŵc,1, . . . , Ŵc,|P|, Ŵa,1, . . . , Ŵa,|P|, θ̂1, . . . , θ̂|P| ∈
L∞ and u ∈ L∞.

VIII. SIMULATION

The developed switched ADP controller is applied to a fully
actuated autonomous undersea vehicle (AUV), to complete
an Earth-fixed position tracking objective. Specifically, the
simulation is based on the SubjuGator AUV detailed in [23]
and [58]. To focus the scope of this simulation section, it
is assumed that the AUV is neutrally buoyant if submerged,
the center of gravity is located vertically below the center
of buoyancy on the z-axis, and the vehicle model accounts
for small roll and pitch angles. The nonlinear equations of
motion for an AUV under the effects of an irrotational current
are given in [59, Sec. 7.5] as

η̇AUV = JE (ηAUV ) νAUV (49)
MRB ν̇AUV + CRB (νAUV ) νAUV +MAν̇r + CA (νr) νr

+DA (νr) νr +G (ηAUV ) = τb, (50)

where νAUV ∈ R3 is the body-fixed translational and angular
velocity vector, νc ∈ R3 is the body-fixed irrotational current
velocity vector, νr ≜ νAUV − νc is the relative body-fixed
translational and angular fluid velocity vector, ηAUV ∈ R3 is
the Earth-fixed position and orientation vector, JE : R3 →
R3×3 is the coordinate transformation between the body-fixed
and Earth-fixed coordinates, MRB ∈ R3×3 is the constant
rigid body inertia matrix, CRB : R3 → R3×3 is the rigid
body centripetal and Coriolis matrix, MA ∈ R3×3 is the
constant hydrodynamic added mass matrix, CA : R3 → R3×3

is the unknown hydrodynamic centripetal and Coriolis matrix,
DA : R3 → R3×3 is the unknown hydrodynamic damping and
friction matrix, G : R3 → R3 is the gravitational and buoyancy
force and moment vector, and τb ∈ R3 is the body-fixed force



and moment control input. Further define ηAUV ≜ [x, y, ψ]
T

and νAUV ≜ [ub, vb, rb]
T , where x, y ∈ R are the Earth-fixed

position vector components of the center of mass, ψ ∈ [0, 2π]
represents the yaw angle, ub, vb ∈ R are the body-fixed
translational velocities, and rb ∈ R is the body-fixed angular
velocity. The constant irrotational current vector is generally
defined as νc ≜

[
uc vc 0

]
, where uc, vc ∈ R are the

body-fixed translational velocities. The coordinate transforma-
tion JE : R3 → R3×3 is

JE (ηAUV ) =

 cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

 . (51)

Given the previous definitions, the control affine form of
the AUV dynamics is

ξ̇ = Y (ξ, νc) θ + f0 (ξ, ν̇c) + gτb, (52)

where ξ ≜
[
ηTAUV , ν

T
AUV

]T ∈ R6 is the concatenated state
vector, f0 : R6 × R3 → R6 is the known rigid body drift
dynamics, Y : R6 × R3 → R6×5 is the known regression
matrix, and θ ∈ R5 is a vector of unknown hydrodynamic
parameters. Furthermore, let e ≜ ξ − ξd and ζ =

[
eT , ξTd

]T
.

Each mode of the controller corresponds to a different irro-
tational current vector. The subsystem that each quantity be-
longs to is marked with an appropriate subscript; if there is no
subscript, then that quantity can be identically applied across
all subsystems. Three irrotational currents, which correspond
to the three different subsystems are νc1 = [−0.1, 0.1, 0]

T ,
νc2 = [0.05,−0.2, 0]

T , and νc3 = [−0.15,−0.1, 0]
T . The

current direction and magnitude are switched every 20 seconds
resulting in the switching signal13

σ (t) =


1, 60

⌊
t
60

⌋
≤ t < 60

⌊
t
60

⌋
+ 20,

2, 60
⌊

t
60

⌋
+ 20 ≤ t < 60

⌊
t
60

⌋
+ 40,

3, 60
⌊

t
60

⌋
+ 40 ≤ t < 60

⌊
t
60

⌋
+ 60,

(53)

where ⌊·⌋ denotes the floor operator. The initial state is
ξ (0) =

[
−1, 1.5, 3π4 , 0, 0, 0

]T
. The initial parameter estimate

is θ̂ (0) = 06×1. The desired trajectory is generated by

ξd (t) =
[
cos
( π
20
t
)
, cos

( π
30
t
)
, 0

−
π sin

(
π
20 t
)

20
,−

π sin
(

π
30 t
)

30
, 0

]T
(54)

and, hence, is initialized as ξd (0) = [1, 1, 0, 0, 0, 0]
T .

The cost function for each subsystem is
selected as r (ζ, µ) = ζTQζ + µTRµ, where
Q = diag (100, 100, 200, 10, 10, 50, 0, 0, 0, 0, 0), and
R = I3×3, In×n denotes the n × n identity matrix,
and diag(v) for a vector v denotes a diagonal matrix with
entries of the vector on the diagonal. The learning parameters
are selected as ηc = 0.5, ηa1 = 10, ηa2 = 0.1, ν = 0.025,
λ = 0.025, Γ = 5000, Γ = 100, and Γ (0) = 5000 · I27×27.

13Future work will investigate detecting and accounting for a sudden change
in the system model.
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Figure 2. Error trajectories e of the AUV. The vertical dashed lines denote
the time at which a switching instance occurred.

The actor and critic weights Ŵa (0) and Ŵc (0) were
initialized by solving the ARE for the linearized rigid body
AUV dynamics about the position ξ = 06×1. For each
subsystem the same BE extrapolation trajectories ζi were
used, where each element of ζi was selected from a uniform
distribution on the interval [−1, 1]. The polynomial basis
function ϕ = ϕp for all p ∈ {1, 2, 3} used for value function
approximation is

ϕ (ζ) = [ζ1ζ2, ζ1ζ3, ζ1ζ4, ζ1ζ5, ζ1ζ6, ζ2ζ3, ζ2ζ4,

ζ2ζ5, ζ2ζ6, ζ3ζ4, ζ3ζ5, ζ3ζ6, ζ4ζ5, ζ4ζ6, ζ5ζ6, ζ
2
1 , ζ

2
2 ,

ζ23 , ζ
2
4 , ζ

2
5 , ζ

2
6 , ζ3ζ7, ζ3ζ8, ζ

2
3 , ζ3ζ10, ζ3ζ11, ζ3ζ12

]T
.

(55)

To facilitate ICL, a maximum of Mp = 100 state-action
pairs for all p ∈ {1, 2, 3} are recorded and replaced according
to the singular value maximization algorithm defined in [21,
Algorithm 1]. The state-action pairs are not populated a priori;
all data needed for ICL is generated online. The ICL learning
parameters are Γθ = diag (50, 30, 10, 2.5, 1), kθ = 5 · 105,
and ∆t = 0.25.

Figure 2 shows the error trajectories of the AUV while
switching between the multiple subsystems every 20 seconds.
Despite the three distinct currents acting on the AUV, each
subsystem’s control policy approximates the dynamic effect
of its respective current and appropriately compensates for it
with a feedforward control term. The approximation of this
feedforward term facilitates convergence at approximately 120
seconds.

Figure 3 shows the parameter estimation error θ̃ for the
active subsystem. The parameters are estimated to within
a neighborhood of the actual values at approximately 100
seconds. Parameter estimation is facilitated by the fact that
each subsystem, even when inactive, continues to learn the
uncertain parameters via the ICL history stack. The error
convergence in Figure 2 occurs approximately at 120 seconds,
highlighting the fact that error convergence occurs after the
uncertain parameters are identified. Hence, as predicted by
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Figure 3. System identification errors θ̃p for the hydrodynamic parameters
of the AUV. The vertical dashed lines denote the time at which a switching
instance occurred.
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Figure 4. The actor weight estimates Ŵa,p. The vertical dashed lines denote
the time at which a switching instance occurred.

the theoretical analysis, once the parameters, and therefore
the correct feedforward control term for trajectory tracking, is
identified, then the controller is able to drive the tracking error
to zero.

Figures 4 and 5 show the actor and critic weight approx-
imations, respectively, for the active subsystem. The weights
initially change to reflect the parameters updated parameter
estimates (see Figure 3). It may appear that the weights do
not change significantly. This behavior is due to the large
magnitude of the weights. Hence, a small change in the actor
and critic weight approximation in Figures 4 and 5 result in a
large magnitude change in the applied control input.

Figure 6 shows each approximated optimal value function
V̂p

(
ζ, Ŵc,p

)
for the active subsystem. Based on the construc-

tion of the cost function rp (ζ, µp), the convergence of the
approximation optimal value function corresponds to the error
convergence in Figure 2.

Figure 7 shows each approximated optimal transient control
policy µ̂p

(
ζ, Ŵa,p

)
for the active subsystem. µ̂p

(
ζ, Ŵa,p

)
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Figure 5. The critic weight estimates Ŵc,p. The vertical dashed lines denote
the time at which a switching instance occurred.
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Figure 6. Value function approximation value V̂
(
ζ, Ŵc,p

)
. The vertical

dashed lines denote the time at which a switching instance occurred.

converges to 0 at 120 seconds because the transient component
has been eliminated. At that point, only the trajectory tracking
component of the controller ûd,p

(
ζ, θ̂p

)
is nonzero (i.e.,

active).

IX. CONCLUSION

In this paper, a new Lyapunov-based theorem is developed
to analyze convergence properties of switched systems in the
case where each subsystem has UUB or locally practically sta-
ble trajectories. Sufficient conditions that relate the minimum
dwell time, the initial conditions, the convergence rates, and
the ultimate bounds of the subsystem to those of the switched
system are developed.

This new theorem aids in the design of an ADP-based
controller to optimize the performance of a switched system
while achieving a tracking objective and compensating for
parametric uncertainties in the system’s drift dynamics. Local
practical stability of individual subsystems, along with local
practical stability of the overall switched system are proven via
two Lyapunov-based stability analyses. Simulations results are
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Figure 7. Transient controller term µ̂p

(
ζ, Ŵa,p

)
. The vertical dashed lines

denote the time at which a switching instance occurred.

presented for optimal control of an AUV in the presence of a
discretely varying set of irrotational currents to show the effi-
cacy of the developed technique. Future research will expand
on the results in this paper by compensating for uncertainty
in the control effectiveness matrix and investigating stronger
subsystem stability results.

When applied to the ADP-based design, the sufficient con-
ditions of the developed theorem provide qualitative intuition
as to which parameters affect the needed minimum dwell time.
Since the sufficient conditions require knowledge of bounds on
the optimal value function, the bounds are difficult to compute
in applications where estimation of bounds on the optimal
value function is not feasible. The need to estimate bounds
on the optimal value function, while limiting, is typical in
ADP-based designs for computation of control gains, ultimate
bounds, and regions of attraction (see [12]–[16]).

In this paper, the objective is to optimize the performance of
each subsystem, with respect to given subsystem-specific per-
formance metrics, while maintaining stability of the switched
system. Optimization of the switched system relative to a
system-wide performance metric is out of the scope of this
work and is also a topic for future research.
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