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Efficient model-based reinforcement learning for
approximate online optimal control

Rushikesh Kamalapurkar, Joel A. Rosenfeld, and Warren E. Dixon

Abstract—An the infinite horizon optimal regulation problem
is solved online for a deterministic control-affine nonlinear
dynamical system using a state following (StaF) kernel method
to approximate the value function. Unlike traditional methods
that aim to approximate a function over a large compact
set, the StaF kernel method aims to approximate a function
in a small neighborhood of a state that travels within a
compact set. Simulation results demonstrate that stability and
approximate optimality of the control system can be achieved
with significantly fewer basis functions than may be required
for global approximation methods.

I. INTRODUCTION

Reinforcement learning (RL) has become a popular tool
for determining online solutions of optimal control problems
for systems with finite state and action spaces [1]–[3]. Due
to various technical challenges, implementation of RL in
systems with continuous state and action spaces has remained
an open problem. In recent years, adaptive dynamic pro-
gramming (ADP) has been successfully used to implement
RL in deterministic autonomous control-affine systems to
solve optimal control problems via value function approx-
imation [3]–[13]. ADP techniques employ parametric func-
tion approximation (typically by employing neural networks
(NNs)) to approximate the value function. Implementation of
function approximation in ADP is challenging because the
controller is void of pre-designed stabilizing feedback and is
completely defined by the estimated parameters. Hence, the
error between the optimal and the estimated value function
is required to decay to a sufficiently small bound sufficiently
fast to establish closed-loop stability. The size of the error
bound is determined by the selected basis functions, and the
convergence rate is determined by richness of the data used
for learning.

Sufficiently accurate approximation of the value function
over a sufficiently large neighborhood often requires a large
number of basis functions, and hence, introduces a large
number of unknown parameters. One way to achieve accurate
function approximation with fewer unknown parameters is
to use some knowledge about the system to determine the
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basis functions. However, for general nonlinear systems,
prior knowledge of the features of the optimal value function
is generally not available; hence, a large number of generic
basis functions is often the only feasible option.

Fast approximation of the value function over a large
neighborhood requires sufficiently rich data to be available
for learning. In traditional ADP methods such as [9], [11],
[14], richness of data manifests itself as the amount of
excitation in the system. In experience replay-based tech-
niques such as [15]–[18], richness of data is quantified by
eigenvalues of the recorded history stack. In model-based RL
techniques such as [19]–[21], richness of data corresponds
to the eigenvalues of a learning matrix. As the dimension
of the system and the number of basis functions increases,
the required richness of data increases. In traditional ADP
methods, the demand for rich data is met by adding excitation
signals to the controller, thereby causing undesirable oscilla-
tions. Hence, implementation of traditional ADP techniques
such as [3]–[14] in high dimensional systems are seldom
found in the literature. In experience replay-based ADP
methods and in model-based RL, the demand for richer data
causes the required amount of data stored in the history
stack, and the number of points selected to construct the
learning matrix, respectively, to grow exponentially with the
dimension of the system. Hence, implementation of data-
driven ADP techniques such as [18]–[23] are scarcely found
in the literature.

In this paper, a novel model-based RL technique is
developed to achieve sufficient excitation without causing
undesirable oscillations and expenditure of control effort like
traditional ADP techniques and at a lower computational
cost than state-of-the-art data-driven ADP techniques. Mo-
tivated by the fact that the computational effort required to
implement ADP and the data-richness required to achieve
convergence both decrease with decreasing number of basis
functions, this paper focuses on reduction of the number of
basis functions used for value function approximation.

A key contribution of this paper and in our preliminary
work in [24] is the observation that online implementation
of an ADP-based approximate optimal controller does not
require an estimate of the optimal value function over the
entire domain of operation of the system. Instead, only an
estimate of the slope of the value function evaluated at the
current state is required for feedback. Hence, estimation
of the value function over a small neighborhood of the
current state should be sufficient to implement an ADP-
based approximate optimal controller. Since it is reasonable
to postulate that approximation of the value function over
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a local domain would require fewer basis functions than
approximation over the entire domain of operation, reduction
of the size of the approximation domain is motivated.

Reduction of the size of the approximation domain is
achieved via selection of basis functions that travel with the
system state (referred to as state-following (StaF) kernels)
to achieve accurate approximation of the value function over
a small neighborhood of the state. The use of StaF kernels
introduces a technical challenge since the ideal values of the
unknown parameters corresponding to the StaF kernels are
functions of the system state. The Lyapunov-based stability
analysis presented in Section IV explicitly incorporates this
functional relationship using the result that the ideal weights
are continuously differentiable functions of the system state.

Another key contribution of this paper is the observation
that model-based RL techniques can be implemented without
storing any data if the available model is used to simulate
persistent excitation. In other words, an excitation signal
added to the simulated system, instead of the actual physical
system, can be used to learn the value function. Excitation
via simulation is implemented using Bellman error (BE)
extrapolation (cf. [19]–[21]); however, instead of a large
number of autonomous extrapolation functions employed in
results such as [19]–[21], a single time-varying extrapola-
tion function is selected, where the time-variation of the
extrapolation function simulates excitation. The use of a
single extrapolation point introduces a technical challenge
since the BE extrapolation matrix is rank deficient at each
time instance. The aforementioned challenge is addressed in
Section IV-C by modifying the stability analysis to utilize
persistent excitation of the extrapolated regressor matrix.
Simulation results including comparisons with state-of-the-
art model-based RL techniques are included to demonstrate
the effectiveness of the developed technique.

II. STAF KERNEL FUNCTIONS

The objective in StaF-based function approximation is to
approximate a target function in a region of interest in the
neighborhood of a point of interest x ∈ Rn. In state-of-the-
art online approximate control, the optimal value function is
approximated using a linear-in-the-parameters approximation
scheme, and the approximate control law drives the system
along the steepest negative gradient of the approximated
value function. To compute the controller at the current
state, only the gradient of the value function evaluated at
the current state is required. Hence, in this application, the
target function is the optimal value function, and the point
of interest is the system state.

Since the system state evolves through the state-space with
time, the region of interest for function approximation also
evolves through the state-space. The StaF technique aims
to maintain a uniform approximation of the value function
over a small region around the current system state so that
the gradient of the value function at the current state, and
hence the optimal controller at the current state, can be
approximated.

To facilitate the theoretical development, this section sum-
marizes key results from our preliminary work in [25], where

the theory of reproducing kernel Hilbert spaces (RKHSs)
is used to establish continuous differentiability of the ideal
weights with respect to the system state, and the postulate
that approximation of a function over a small neighborhood
requires fewer basis functions is stated and proved.

Let H be a universal RKHS over a compact set χ ⊂ Rn
with a continuously differentiable positive definite kernel k :
χ × χ → R. Let V

∗
: χ → R be a function such that

V
∗ ∈ H . Let C , [c1, c2, · · · cL]

T ∈ χL be a set of distinct
centers, and let σ : χ× χL → RL be defined as σ (x,C) =
[k (x, c1) , · · · , k (x, cL)]

T . Then, there exists a unique set of
weights WH such that

WH (C) = arg min
a∈RL

∥∥∥aTσ(·, C)− V ∗
∥∥∥
H
,

where ‖·‖H denotes the Hilbert space norm.
Let Br (x) ⊂ χ denote a closed ball of radius r centered

at the current state x. Let Hx,r denote the restriction of the
Hilbert space H to Br (x). Then, Hx,r is a Hilbert space with
the restricted kernel kx,r : Br (x) × Br (x) → R defined
as kx,r (y, z) = k (y, z) , ∀ (y, z) ∈ Br (x) × Br (x). The
following result, first stated and proved in [25] is stated here
to motivate the use of StaF kernels.

Theorem 1. [25] Let ε, r > 0 and let p denote a polynomial
that approximates V

∗
within an error ε over Br(x). Let

N (r, x, ε) denote the degree of p. Let k(y, x) = ey
T x

be the exponential kernel function, which corresponds to a
universal RKHS. Then, for each x ∈ χ, there exists a finite
number of centers, c1, c2, ..., cM(r,x,ε) ∈ Br(x) and weights
w1, w2, ..., wM(r,x,ε) such that∥∥∥∥∥∥V ∗(y)−

M(r,x,ε)∑
i=1

wie
yT ci

∥∥∥∥∥∥
Br(x),∞

< ε,

where M (r, x, ε) <
(
n+N(r,x,ε)+S(r,x,ε)
N(r,x,ε)+S(r,x,ε)

)
, asymptotically, for

some S (r, x, ε) ∈ N. Moreover, r, N (r, x, ε) and S (r, x, ε)
can be bounded uniformly over χ for any fixed ε.1

The Weierstrass theorem indicates that as r decreases,
the degree N (r, x, ε) of the polynomial needed to achieve
the same error ε over Br(x) decreases [26]. Hence, by
Theorem 1, approximation of a function over a smaller
domain requires a smaller number of exponential kernels.
Furthermore, provided the region of interest is small enough,
the number of kernels required to approximate continuous
functions with arbitrary accuracy can be reduced to

(
n+2

2

)
.

In the StaF approach, the centers are selected to follow the
current state x, i.e., the locations of the centers are defined as
a function of the system state. Since the system state evolves
in time, the ideal weights are not constant. To approximate
the ideal weights using gradient-based algorithms, it is es-
sential that the weights change smoothly with respect to the
system state. The following result, first stated and proved in
[25] establishes continuity of the ideal weights as a function
of the centers.

1The notation
(a
b

)
denotes the combinatorial operation “a choose b”.
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Theorem 2. [25] Let the kernel function k be such that
the functions k(·, x) are l−times continuously differentiable
for all x ∈ χ. Let C , [c1, c2, ..., cL]

T be a set of distinct
centers such that ci ∈ Br (x) , ∀i = 1, · · · , L, be an ordered
collection of L distinct centers with associated ideal weights

WHx,r (C) = arg min
a∈RM

∥∥∥∥∥
M∑
i=1

aik(·, ci)− V (·)

∥∥∥∥∥
Hx,r

. (1)

Then, the function WHx,r is l−times continuously differen-
tiable with respect to each component of C.

Theorem 1 motivates the use of StaF kernels for model-
based RL, and Theorem 2 facilitates implementation of
gradient-based update laws to learn the time-varying ideal
weights in real-time. In the following, the StaF-based func-
tion approximation approach is used to approximately solve
an optimal regulation problem online using exact model
knowledge via value function approximation. Selection of
an optimal regulation problem and the assumption that the
system dynamics are known are motivated by ease of ex-
position. Using a concurrent learning-based adaptive system
identifier and the state augmentation technique developed in
[20], the technique developed in this paper can be extended
to a class of trajectory tracking problems in the presence
of uncertainties in the system drift dynamics. Simulation
results in Section V-B demonstrate the performance of such
an extension.

III. STAF KERNEL FUNCTIONS FOR ONLINE
APPROXIMATE OPTIMAL CONTROL

A. Problem Formulation

Consider a control affine nonlinear dynamical system of
the form

ẋ (t) = f (x (t)) + g (x (t))u (t) , (2)

t ∈ R≥t0 ,2 where t0 denotes the initial time, x : R≥t0 → Rn
denotes the system state f : Rn → Rn and g : Rn → Rn×m
denote the drift dynamics and the control effectiveness,
respectively, and u : R≥t0 → Rm denotes the control
input. The functions f and g are assumed to be locally
Lipschitz continuous. Furthermore, f (0n×1) = 0n×1 and
∇f : Rn → Rn×n is continuous.3 In the following, the
notation φu (t; t0, x0) denotes the trajectory of the system
in (2) under the control signal u with the initial condition
x0 ∈ Rn and initial time t0 ∈ R≥0.

The control objective is to solve the infinite-horizon opti-
mal regulation problem online, i.e., to design a control signal
u online to minimize the cost functional

J (x, u) ,

∞̂

t0

r (x (τ) , u (τ)) dτ, (3)

2The notation R≥a denotes the interval [a,∞), and the notation R>a

denotes the interval (a,∞).
3The notation 0n×m denotes an n×m matrix of zeros.

under the dynamic constraint in (2) while regulating the
system state to the origin. In (3), r : Rn × Rm → R≥0

denotes the instantaneous cost defined as

r (xo, uo) , Q (xo) + uoTRuo, (4)

for all xo ∈ Rn and uo ∈ Rm, where Q : Rn → R≥0

is a positive definite function, and R ∈ Rm×m is a constant
positive definite symmetric matrix. In (4) and in the reminder
of this paper, the notation (·)o is used to denote an arbitrary
variable.

B. Exact Solution

It is well known that since the functions f, g, and Q are
stationary (time-invariant) and the time-horizon is infinite,
the optimal control input is a stationary state-feedback policy
u (t) = ξ (x (t)) for some function ξ : Rn → Rm.
Furthermore, the function that maps each state to the total
accumulated cost starting from that state and following a
stationary state-feedback policy, i.e., the value function, is
also a stationary function. Hence, the optimal value function
V ∗ : Rn → R≥0 can be expressed as

V ∗ (xo) , inf
u(τ)∈U |τ∈R≥t

∞̂

t

r (φu (τ ; t, xo) , u (τ)) dτ, (5)

where U ⊂ Rm is a compact set. Assuming an optimal
controller exists, the optimal value function is characterized
by the corresponding HJB equation [27]

0 = min
uo∈U

(∇V (xo) (f (xo) + g (xo)uo) + r (xo, uo)) , (6)

with the boundary condition V (0n×1) = 0. Provided the
HJB in (6) admits a continuously differentiable solution, it
constitutes a necessary and sufficient condition for optimal-
ity, i.e., if the optimal value function in (5) is continuously
differentiable, then it is the unique solution to the HJB
in (6) [28]. In (6) and in the following development, the
notation ∇f (x, y, · · · ) denotes the partial derivative of f
with respect to the first argument. The optimal control policy
u∗ : Rn → Rm can be determined from (6) as [27]

u∗ (xo) , −1

2
R−1gT (xo) (∇V ∗ (xo))

T
. (7)

The HJB in (6) can be expressed in an open-loop form as

∇V ∗ (xo) (f (xo) + g (xo)u∗ (xo)) + r (xo, u∗ (xo)) = 0.
(8)

Using (7), the HJB in (8) can be expressed in a closed-loop
form as

− 1

4
∇V ∗ (xo) g (xo)R−1gT (xo) (∇V ∗ (xo))

T

+∇V ∗ (xo) f (xo) +Q (xo) = 0. (9)

The optimal policy can now be obtained using (7) if the HJB
in (9) can be solved for the optimal value function V ∗.
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C. Value Function Approximation

An analytical solution of the HJB equation is generally
infeasible; hence, an approximate solution is sought. In an
approximate actor-critic-based solution, the optimal value
function V ∗ is replaced by a StaF kernel-based parametric
estimate V̂ : Rn × RL → R, where ideal values of the un-
known parameters, denoted by W , are functions of the state
x. Replacing V ∗ by V̂ in (7), an approximation to the optimal
policy u∗ is obtained as û : Rn × RL → Rm. The objective
of the critic is to learn the parameters W , and the objective
of the actor is to implement a stabilizing controller based
on the parameters learned by the critic. Motivated by the
stability analysis, the actor and the critic maintain separate
estimates Ŵa and Ŵc, respectively, of the ideal parameters
W . Substituting the estimates V̂ and û for V ∗ and u∗ in (8),
respectively, a residual error δ : Rn×RL×RL → R, called
the BE is computed as

δ
(
xo, Ŵc, Ŵa

)
, r

(
xo, û

(
xo, Ŵa

))
+∇V̂

(
xo, Ŵc

)(
f (xo) + g (xo) û

(
xo, Ŵa

))
.

To solve the optimal control problem, the critic aims to find
a set of parameters Ŵc and the actor aims to find a set of
parameters Ŵa such that δ

(
xo, Ŵc, Ŵa

)
= 0, ∀xo ∈ Rn.

Since an exact basis for value function approximation is
generally not available, an approximate set of parameters that
minimizes the BE is sought.

The expression for the optimal policy in (7) indicates
that to compute the optimal action when the system is at
any given state xo, one only needs to evaluate the gradient
∇V ∗ at xo. Hence, to compute the optimal policy at xo, one
only needs to approximate the value function over a small
neighborhood around xo.

As established in Theorem 1, the number of basis functions
required to approximate the value function is smaller if
the approximation space is smaller in the sense of set
containment. Hence, in this result, instead of aiming to obtain
a uniform approximation of the value function over the entire
operating domain, which might require a computationally
intractable number of basis functions, the aim is to obtain
a uniform approximation of the value function over a small
neighborhood around the current system state.

StaF kernels are employed to achieve the aforementioned
objective. To facilitate the development, let χ ⊂ Rn be
compact and let xo be in the interior of χ. Then, for all
ε > 0, there exists a function V

∗ ∈ Hxo,r such that
supxo∈Br(xo)

∣∣∣V ∗ (xo)− V ∗ (xo)
∣∣∣ < ε, where Hxo,r is a

restriction of a universal RKHS H , introduced in Section
II. In the developed StaF-based method, a small compact
set Br (xo) around the current state xo is selected for value
function approximation by selecting the centers C ∈ Br (xo)
such that C = c (xo) for some continuously differentiable
function c : χ→ χL. The approximate value function V̂ and

the approximate policy û can then be expressed as

V̂
(
xo, Ŵc

)
, ŴT

c σ (xo, c (xo)) ,

û
(
xo, Ŵa

)
, −1

2
R−1gT (xo)∇σ (xo, c (xo))

T
Ŵa, (10)

where σ denotes the vector of basis functions introduced in
Section II.

It should be noted that since the centers of the kernel
functions change as the system state changes, the ideal
weights also change as the system state changes. The state-
dependent nature of the ideal weights differentiates this
approach from state-of-the-art ADP methods in the sense
that the stability analysis needs to account for changing ideal
weights. Based on Theorem 2, it can be established that the
ideal weight function W : χ→ RL defined as

W (xo) ,WHxo,r (c (xo)) ,

where WHxo,r was introduced in (1), is continuously dif-
ferentiable provided the functions σ and c are continuously
differentiable.

D. Online Learning Based on Simulation of Experience

To learn the ideal parameters online, the critic evaluates a
form δt : R≥t0 → R of the BE at each time instance t as

δt (t) , δ
(
x (t) , Ŵc (t) , Ŵa (t)

)
, (11)

where Ŵa (t) and Ŵc (t) denote the estimates of the actor
and the critic weights, respectively, at time t, and the notation
x (t) is used to denote the state the system in (2) at time t
when starting from initial time t0, initial state x0, and under
the feedback controller

u (t) = û
(
x (t) , Ŵa (t)

)
. (12)

Since (8) constitutes a necessary and sufficient condition for
optimality, the BE serves as an indirect measure of how
close the critic parameter estimates Ŵc are to their ideal
values; hence, in RL literature, each evaluation of the BE
is interpreted as gained experience. Since the BE in (11) is
evaluated along the system trajectory, the experience gained
is along the system trajectory.

Learning based on simulation of experience is achieved
by extrapolating the BE to unexplored areas of the
state space. The critic selects a set of functions
{xi : Rn × R≥t0 → Rn}Ni=1 such that each xi maps the
current state x (t) to a point xi (x (t) , t) ∈ Br (x (t)).

The critic then evaluates a form δti : R≥t0 → R of the
BE for each xi as

δti (t) = ŴT
c (t)ωi (t) + r (xi (x (t) , t) , ûi (t)) , (13)

where

ûi (t) , −1

2
R−1gT (xi (x (t) , t))

· ∇σ (xi (x (t) , t) , c (x (t)))
T
Ŵa (t) ,
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and

ωi (t) , ∇σ (xi (x (t) , t) , c (x (t))) f (xi (x (t) , t))

− 1

2
∇σ (xi (x (t) , t) , c (x (t))) g (xi (x (t) , t))R−1·

gT (xi (x (t) , t))∇σT (xi (x (t) , t) , c (x (t))) Ŵa (t) .

The critic then uses the BEs from (11) and (13) to improve
the estimate Ŵc (t) using the recursive least-squares-based
update law

˙̂
Wc = −kc1Γ (t)

ω (t)

ρ (t)
δt (t)− kc2

N
Γ (t)

N∑
i=1

ωi (t)

ρi (t)
δti (t) ,

(14)
where

ω (t) , ∇σ (x (t) , c (x (t))) f (x (t))

− 1

2
∇σ (x (t) , c (x (t))) g (x (t))R−1gT (x (t))

· ∇σT (x (t) , c (x (t))) Ŵa (t) ,

ρi (t) ,
√

1 + γ1ωTi (t)ωi (t), ρ (t) ,
√

1 + γ1ωT (t)ω (t),
kc1, kc2, γ1 ∈ R>0 are constant learning gains, and Γ (t) de-
notes the least-square learning gain matrix updated according
to

Γ̇ (t) = βΓ (t)− kc1Γ (t)
ω (t)ωT (t)

ρ2 (t)
Γ (t)

− kc2
N

Γ (t)

N∑
i=1

ωi (t)ωTi (t)

ρ2
i (t)

Γ (t) , Γ (t0) = Γ0. (15)

In (15), β ∈ R>0 is a constant forgetting factor.
Motivated by a Lyapunov-based stability analysis, the

actor improves the estimate Ŵa (t) using the update law

˙̂
Wa (t) = −ka1

(
Ŵa (t)− Ŵc (t)

)
− ka2Ŵa (t) +

kc1G
T
σ (t) Ŵa (t)ω (t)

T

4ρ (t)
Ŵc (t)

+

N∑
i=1

kc2G
T
σi (t) Ŵa (t)ωTi (t)

4Nρi (t)
Ŵc (t) , (16)

where ka1, ka2 ∈ R>0 are learning gains,

Gσ (t) , ∇σ (x (t) , c (x (t))) g (x (t))R−1gT (x (t))

· ∇σT (x (t) , c (x (t))) ,

and

Gσi (t) , ∇σ (xi (x (t) , t) , c (x (t))) g (xi (x (t) , t))R−1

· gT (xi (x (t) , t))∇σT (xi (x (t) , t) , c (x (t))) .

IV. ANALYSIS

A. Computational complexity

The computational cost associated with an implemen-
tation of the developed method can be computed to be
O
(
N
(
L3 +mnL+ Lm2 + n2 +m2

))
. Since local ap-

proximation is targeted, the StaF kernels result in a reduction

in the number of required basis functions (i.e., L). Since the
computational cost has a cubic relationship in the number of
basis functions, the StaF methodology results in significant
computational efficiency. The computational cost does grow
linearly with the number of extrapolation points (i.e., N );
however, if the points are selected using grid-based methods
employed in results such as [19], the number N increases
geometrically with respect to the state dimension n. If the
extrapolation points are selected to be time varying, then
as few as a single point can be sufficient provided the time-
trajectory of the point contains enough information to satisfy
the subsequent Assumption 1.

In the following, Assumption 1 formalizes the conditions
under which the trajectories of the closed-loop system can
be shown to be ultimately bounded, and Lemma 1 facilitates
the analysis of the closed-loop system when time-varying
extrapolation trajectories are utilized.

B. Excitation conditions

For notational brevity, time-dependence of all the signals
is suppressed hereafter. Let Bζ ⊂ Rn+2L denote a closed
ball with radius ζ centered at the origin. Let χ , Bζ ∩ Rn.
Let the notation ‖(·)‖ be defined as ‖h‖ , supξ∈χ ‖h (ξ)‖,
for some continuous function h : Rn → Rk. To facilitate
the subsequent stability analysis, the BEs in (11) and (13)
are expressed in terms of the weight estimation errors W̃c ,
W − Ŵc and W̃a = W − Ŵa as

δt = −ωT W̃c +
1

4
W̃aGσW̃a + ∆ (x) ,

δti = −ωTi W̃c +
1

4
W̃T
a GσiW̃a + ∆i (x) , (17)

where the functions ∆,∆i : Rn → R are uniformly bounded
over χ such that the bounds ‖∆‖ and ‖∆i‖ decrease with
decreasing ‖∇ε‖. Let a candidate Lyapunov function VL :
Rn+2L × R≥t0 → R be defined as

VL (Z, t) , V ∗ (x) +
1

2
W̃T
c Γ−1 (t) W̃c +

1

2
W̃T
a W̃a,

where V ∗ is the optimal value function, and

Z =
[
xT , W̃T

c , W̃
T
a

]T
.

To facilitate learning, the system states x or the selected
functions xi are assumed to satisfy the following.

Assumption 1. There exists a constant T ∈ R>0 and such
that

c1IL ≤
t+Tˆ

t

(
ω (τ)ωT (τ)

ρ2 (τ)

)
dτ, ∀t ∈ R≥t0 ,

c2IL ≤ inf
t∈R≥t0

(
1

N

N∑
i=1

ωi (t)ωTi (t)

ρ2
i (t)

)
,

c3IL ≤
1

N

t+Tˆ

t

(
N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

)
dτ, ∀t ∈ R≥t0 ,

where, at least one of the nonnegative constants c1, c2, and
c3 is strictly positive.
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Remark 1. Unlike typical ADP literature that assumes ω is
PE, Assumption 1 only requires either the regressor ω or the
regressor ωi to be persistently exciting. The regressor ω is
completely determined by the system state x, and the weights
Ŵa. Hence, excitation in ω vanishes as the system states and
the weights converge. Hence, in general, it is unlikely that
c1 > 0. However, the regressor ωi depends on xi, which
can be designed independent of the system state x. Hence,
c3 can be made strictly positive if the signal xi contains
enough frequencies, and c2 can be made strictly positive by
selecting a sufficient number of extrapolation functions.

C. Boundedness of the least-squares gain under persistent
excitation

Intuitively, selection of a single time-varying BE extrapo-
lation function results in virtual excitation. That is, instead of
using input-output data from a persistently excited system,
the dynamic model is used to simulate persistent excitation
to facilitate parameter convergence.

In previous model-based RL results such as [19], stability
and convergence of the developed method relied on c2 being
strictly positive. In this paper, the computational efficiency
of model-based RL is improved by allowing time-varying
extrapolation functions that ensure c3 is strictly positive,
which can be achieved using a single extrapolation trajectory
that contains enough frequencies. The performance of the
developed extrapolation method is demonstrated using com-
parative simulations in Section V-C, where it is demonstrated
that the developed method using a single time-varying extrap-
olation point results in improved computational efficiency
when compared to a large number of fixed extrapolation
functions.

The following lemma facilitates the stability analysis by
establishing upper and lower bounds on the eigenvalues of
the least-squares learning gain matrix Γ.

Lemma 1. Provided Assumption 1 holds and λmin

{
Γ−1

0

}
>

0, the update law in (15) ensures that the least squares gain
matrix satisfies

ΓIL ≤ Γ (t) ≤ ΓIL, (18)

where Γ = 1

min{kc1c1+kc2 max{c2T,c3},λmin{Γ−1
0 }}e−βT

and

Γ = 1

λmax{Γ−1
0 }+ (kc1+kc2)

βγ1

. Furthermore, Γ > 0.

Proof: The proof closely follows the proof of [29, Corol-
lary 4.3.2]. The update law in (15) implies that d

dtΓ
−1 (t) =

−βΓ−1 (t) + kc1
ω(t)ωT (t)
ρ2(t) + kc2

N

∑N
i=1

ωi(t)ω
T
i (t)

ρ2i (t)
. Hence,

Γ−1 (t) = e−βtΓ−1
0 + kc1

tˆ

0

e−β(t−τ)ω (τ)ωT (τ)

ρ2 (τ)
dτ

+
kc2
N

tˆ

0

e−β(t−τ)
N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

dτ.

To facilitate the proof, let t < T . Then,

Γ−1 (t) ≥ e−βtΓ−1
0 ≥ e−βTΓ−1

0 ≥ λmin

{
Γ−1

0

}
e−βT IL.

If t ≥ T, then since the integrands are positive, Γ−1 can be
bounded as

Γ−1 (t) ≥ kc1

tˆ

t−T

e−β(t−τ)ω (τ)ωT (τ)

ρ2 (τ)
dτ

+
kc2
N

tˆ

t−T

e−β(t−τ)
N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

dτ.

Hence,

Γ−1 (t) ≥ kc1e−βT
tˆ

t−T

ω (τ)ωT (τ)

ρ2 (τ)
dτ

+
kc2
N
e−βT

tˆ

t−T

N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

dτ.

Using Assumption 1,

1

N

tˆ

t−T

N∑
i=1

ωi (τ)ωTi (τ)

ρ2
i (τ)

dτ ≥ max {c2T, c3} IL,

tˆ

t−T

ω (τ)ωT (τ)

ρ2 (τ)
dτ ≥ c1IL.

Hence a lower bound for Γ−1 is obtained as,

Γ−1 (t) ≥ min
{
kc1c1 + kc2 max {c2T, c3} ,

λmin

{
Γ−1

0

}}
e−βT IL. (19)

Provided Assumption 1 holds, the lower bound in (19) is
strictly positive. Furthermore, using the facts that ω(t)ωT (t)

ρ2(t) ≤
1
γ1

and ωi(t)ω
T
i (t)

ρ2i (t)
≤ 1

γ1
for all t ∈ R≥t0 ,

Γ−1(t) ≤e−βtΓ−1
0 +

tˆ

0

e−β(t−τ)

(
kc1

1

γ1
+
kc2
N

N∑
i=1

1

γ1

)
ILdτ,

≤
(
λmax

{
Γ−1

0

}
+

(kc1 + kc2)

βγ1

)
IL.

Since the inverse of the lower and upper bounds on Γ−1 are
the upper and lower bounds on Γ, respectively, the proof is
complete.

D. Main result

Since the optimal value function is positive definite, (18)
and [30, Lemma 4.3] can be used to show that the candidate
Lyapunov function satisfies the following bounds

vl (‖Zo‖) ≤ VL (Zo, t) ≤ vl (‖Zo‖) , (20)

for all t ∈ R≥t0 and for all Zo ∈ R2+2L. In (20), vl, vl :
R≥0 → R≥0 are class K functions. To facilitate the analysis,
let c ∈ R>0 be a constant defined as

c ,
β

2Γkc2
+
c2
2
, (21)
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and let ι ∈ R>0 be a constant defined as

ι ,
3
(

(kc1+kc2)‖∆‖√
v

+ ‖∇Wf‖
Γ + ‖Γ−1GWσW‖

2

)2

4kc2c

+
1

(ka1 + ka2)

(
‖GWσW‖+ ‖GV σ‖

2
+ ka2‖W‖

+ ‖∇Wf‖+
(kc1 + kc2) ‖Gσ‖‖W‖

2

4
√
v

)2

+
1

2
‖GV ε‖.

Let vl : R≥0 → R≥0 be a class K function such that

vl (‖Z‖) ≤
Q (x)

2
+
kc2c

6

∥∥∥W̃c

∥∥∥2

+
(ka1 + ka2)

8

∥∥∥W̃a

∥∥∥2

.

The sufficient conditions for the subsequent Lyapunov-based
stability analysis are given by

kc2c

3
≥

(
‖GWσ‖

2Γ + (kc1+kc2)‖WTGσ‖
4
√
v

+ ka1

)2

(ka1 + ka2)
,

(ka1 + ka2)

4
≥

(
‖GWσ‖

2
+

(kc1 + kc2) ‖W‖‖Gσ‖
4
√
v

)
,

v−1
l (ι) < vl

−1
(
vl (ζ)

)
. (22)

Note that the sufficient conditions can be satisfied provided
the points for BE extrapolation are selected such that the
minimum eigenvalue c, introduced in (21) is large enough
and that the StaF kernels for value function approximation
are selected such that ‖ε‖ and ‖∇ε‖ are small enough. To
improve computational efficiency, the size of the domain
around the current state where the StaF kernels provide good
approximation of the value function is desired to be small.
Smaller approximation domain results in almost identical
extrapolated points, which in turn, results in smaller c. Hence,
the approximation domain cannot be selected to be arbitrarily
small and needs to be large enough to meet the sufficient
conditions in (22).

Theorem 3. Provided Assumption 1 holds and the sufficient
gain conditions in (22) are satisfied, the controller in (12)
and the update laws in (14) - (16) ensure that the state x
and the weight estimation errors W̃c and W̃a are ultimately
bounded.

Proof: The time-derivative of the Lyapunov function is
given by

V̇L = V̇ ∗ + W̃T
c Γ−1

(
Ẇ − ˙̂

Wc

)
+

1

2
W̃T
c Γ̇−1W̃c

+ W̃T
a

(
Ẇ − ˙̂

Wa

)
.

Using Theorem 2, the time derivative of the ideal weights
can be expressed as

Ẇ = ∇W (x) (f (x) + g (x)u) . (23)

Using (14) - (17) and (23), the time derivative of the
Lyapunov function is expressed as

V̇L = ∇V ∗ (x) (f (x) + g (x)u)

+ W̃T
c Γ−1∇W (x) (f (x) + g (x)u)

−W̃T
c Γ−1

(
−kc1Γ

ω

ρ

(
−ωT W̃c+

1

4
W̃aGσW̃a+∆(x)

))
− W̃T

c Γ−1

(
−kc2
N

Γ

N∑
i=1

ωi
ρi

1

4
W̃T
a GσiW̃a

)

− W̃T
c Γ−1

(
−kc2
N

Γ

N∑
i=1

ωi
ρi

(
−ωTi W̃c + ∆i (x)

))

− 1

2
W̃T
c Γ−1

(
βΓ− kc1Γ

ωωT

ρ
Γ

)
Γ−1W̃c

− 1

2
W̃T
c Γ−1

(
−kc2
N

Γ

N∑
i=1

ωiω
T
i

ρi
Γ

)
Γ−1W̃c

+ W̃T
a

(
∇W (x) (f (x) + g (x)u)− ˙̂

Wa

)
.

Provided the sufficient conditions in (22) hold, the time
derivative of the candidate Lyapunov function can be
bounded as

V̇L ≤ −vl (‖Z‖) , ∀ζ > ‖Z‖ > v−1
l (ι) . (24)

Using (20), (22), and (24), [30, Theorem 4.18] can be
invoked to conclude that Z is ultimately bounded, in the
sense that lim supt→∞ ‖Z (t)‖ ≤ vl−1 (vl (ι)) .

Since Z ∈ L∞, x, W̃a, and W̃c ∈ L∞. Since x ∈ L∞
and since W is a continuous function of x, W ◦ x ∈ L∞.
Hence, Ŵa and Ŵc ∈ ∞, which implies u ∈ L∞.

V. SIMULATION

A. Optimal regulation problem with exact model knowledge

1) Simulation parameters: To demonstrate the effective-
ness of the StaF kernels, simulations are performed on a
two-state nonlinear dynamical system. The system dynamics
are given by (2), where xo = [xo1, x

o
2]T ,

f (xo) =

[
−xo1 + xo2

− 1
2x

o
1 − 1

2x
o
2 (cos (2xo1) + 2)

2

]
,

g (xo) =

[
0

cos (2xo1) + 2

]
. (25)

The control objective is to minimize the cost
∞̂

0

(
xT (τ)x (τ) + u2 (τ)

)
dτ. (26)

The system in (25) and the cost in (26) are selected
because the corresponding optimal control problem has a
known analytical solution. The optimal value function is
V ∗ (xo) = 1

2x
o2
1 + xo22 , and the optimal control policy is

u∗(xo) = −(cos(2xo1) + 2)xo2 (cf. [9]).
To apply the developed technique to this

problem, the value function is approximated using
three exponential StaF kernels, i.e, σ (xo, C) =
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x2

Figure 1. State trajectories generated using StaF kernel-based ADP.

[σ1 (xo, c1) , σ2 (xo, c2) , σ3 (xo, c3)]T . The kernels are
selected to be σi (xo, ci) = ex

oT ci − 1, i = 1, · · · , 3.
The centers ci are selected to be on the vertices of a
shrinking equilateral triangle around the current state,
i.e., ci = xo + di (xo) , i = 1, · · · , 3, where d1 (xo) =
0.7νo (xo) · [0, 1]T , d2 (xo) = 0.7νo (xo) · [0.87, −0.5]T ,
and d3 (xo) = 0.7νo (xo) · [−0.87, −0.5]T , and
νo (xo) ,

(
xoT xo+0.01
1+γ2xoT xo

)
denotes the shrinking function,

where γ2 ∈ R>0 is a constant normalization gain. The point
for BE extrapolation is selected at random from a uniform
distribution over a 2.1νo (x (t)) × 2.1νo (x (t)) square
centered at the current state x (t) so that the function xi is
of the form xi (xo, t) = xo + ai (t) for some ai (t) ∈ R2.

The system is initialized at t0 = 0 and the initial condi-
tions4

x (0) = [−1, 1]T , Ŵc (0) = 0.4× 13×1,

Γ (0) = 500I3, Ŵa (0) = 0.7Ŵc (0) ,

and the learning gains are selected as

kc1 = 0.001, kc2 = 0.25, ka1 = 1.2, ka2 = 0.01,

β = 0.003, γ1 = 0.05, γ2 = 1.

2) Results: Figure 1 shows that the developed StaF-based
controller drives the system states to the origin while main-
taining system stability. Figure 2 shows the implemented
control signal compared with the optimal control signal.
It is clear that the implemented control converges to the
optimal controller. Figure 3 shows that the weight estimates
for the StaF-based value function and policy approximation
remain bounded and converge as the state converges to the
origin. Since the ideal values of the weights are unknown, the
weights can not directly be compared with their ideal values.
However, since the optimal solution is known, the value
function estimate corresponding to the weights in Figure 3

4The notation In denotes a n×n identity matrix and 1n×m and 0n×m

denote n×m matrices of ones and zeros, respectively.

Time (s)
0 1 2 3 4 5

-2

-1.5

-1

-0.5

0

Optimal Control Estimation

u$(x(t))

û(x(t); Ŵa(t))

Figure 2. Control trajectory generated using StaF kernel-based ADP
compared with the optimal control trajectory.
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Figure 3. Trajectories of the estimates of the unknown parameters in the
value function generated using StaF kernel-based ADP. The ideal weights
are unknown and time-varying; hence, the obtained weights can not be
compared with their ideal weights.

can be compared to the optimal value function at each time
t. Figure 5 shows that the error between the optimal and the
estimated value functions rapidly decays to zero.

B. Optimal tracking problem with parametric uncertainties
in the drift dynamics

1) Simulation parameters: Similar to [20], the devel-
oped StaF-based RL technique is extended to solve optimal
tracking problems with parametric uncertainties in the drift
dynamics. The drift dynamics in the two-state nonlinear
dynamical system in (25) are assumed to be linearly param-
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Ŵa;1
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Ŵa;3

Figure 4. Trajectories of the estimates of the unknown parameters in
the policy generated using StaF kernel-based ADP. The ideal weights
are unknown and time-varying; hence, the obtained weights can not be
compared with their ideal weights.
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Figure 5. The error between the optimal and the estimated value function.

eterized as

f (xo) =

[
θ1 θ2 θ3

θ4 θ5 θ6

]
︸ ︷︷ ︸

θT

 xo1
xo2

xo2 (cos (2xo1) + 2)


︸ ︷︷ ︸

σθ(xo)

,

where θ ∈ R3×2 is the matrix of unknown parameters and
σθ is the known vector of basis functions. The ideal values
of the unknown parameters are θ1 = −1, θ2 = 1, θ3 = 0,
θ4 = −0.5, θ5 = 0, and θ6 = −0.5. Let θ̂ denote an estimate
of the unknown matrix θ. The control objective is to drive
the estimate θ̂ to the ideal matrix θ, and to drive the state
x to follow a desired trajectory xd. The desired trajectory is

selected to be solution of the initial value problem

ẋd (t) =

[
−1 1
−2 1

]
xd (t) , xd (0) =

[
0
1

]
, (27)

and the cost functional is selected to be´∞
0

(
eT (t) diag (10, 10) e (t) + (µ (t))

2
)
dt, where

e (t) = x (t) − xd (t) , µ (t) = u (t) −
g+ (xd (t))

([
−1 1
−2 1

]
xd (t)− f (xd (t))

)
, and g+ (xo)

denotes the pseudoinverse of g (xo).
The value function is a function of the concatenated

state ζ ,
[
eT xTd

]T ∈ R4. The value function is ap-
proximated using five exponential StaF kernels given by
σi (ζo, C), where the five centers are selected according to
ci = ζo + di (ζo) to form a regular five dimensional simplex
around the current state with νo (ζo) ≡ 1. Learning gains
for system identification and value function approximation
are selected as

kc1 = 0.001, kc2 = 2, ka1 = 2, ka2 = 0.001,

β = 0.01, γ1 = 0.1, γ2 = 1, k = 500,

Γθ = I3, Γ (0) = 50I5, kθ = 20,

To implement BE extrapolation, a single state trajectory ζi
is selected as ζi (ζo, t) = ζo+ai (t), where ai (t) is sampled
at each t from a uniform distribution over the a 2.1× 2.1×
2.1×2.1 hypercube centered at the origin. The history stack
required for concurrent learning contains ten points, and is
recorded online using a singular value maximizing algorithm
(cf. [17]), and the required state derivatives are computed
using a fifth order Savitzky-Golay smoothing filter (cf. [31]).

The initial values for the state and the state estimate are
selected to be x (0) = [0, 0]T and x̂ (0) = [0, 0]T , respec-
tively. The initial values for the NN weights for the value
function, the policy, and the drift dynamics are selected to
be 0.025×15×1, 0.025×15×1, and 03×2, respectively. Since
the system in (25) has no stable equilibria, the initial policy
µ̂ (ζ,03×2) is not stabilizing. The stabilization demonstrated
in Figure 6 is achieved via fast simultaneous learning of the
system dynamics and the value function.

2) Results: Figures 6 and 7 demonstrate that the controller
remains bounded and the tracking error is regulated to the
origin. The NN weights are functions of the system state
ζ. Since ζ converges to a periodic orbit, the NN weights
also converge to a periodic orbit (within the bounds of the
excitation introduced by the BE extrapolation signal), as
demonstrated in Figures 8 and 9. Figure 10 demonstrates that
the unknown parameters in the drift dynamics, represented
by solid lines, converge to their ideal values, represented by
dashed lines.

C. Comparison

The developed technique is compared with the model-
based RL method developed in [19] for regulation and [20]
for tracking, respectively. The simulations are performed in
MATLABr Simulinkr at 1000 Hz on the same machine.
The simulations run for 100 seconds of simulated time. Since
the objective is to compare computational efficiency of the
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Problem description Regulation (2-state system) Regulation (3-state system) Tracking (4-state system)
Controller StaF Controller in [19] StaF Controller in [19] StaF Controller in [20]

Running time (seconds) 6.5 17 9.5 62 12 260
Total cost 2.8 1.8 9.3 12.3 3.9 3.4

RMS steady-state error 2.5× 10−6 0 4.3× 10−6 4.5× 10−6 3.5× 10−4 2.5× 10−4

Table I
SIMULATION RESULTS FOR 2, 3 AND 4 DIMENSIONAL NONLINEAR SYSTEMS.

Time (s)
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0
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1
Tracking Error

Figure 6. Tracking error trajectories generated using the proposed method
for the trajectory tracking problem.
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Control Trajectory

Figure 7. Control signal generated using the proposed method for the
trajectory tracking problem.

model-based RL method, exact knowledge of the system
model is used. Table I shows that the developed controller
requires significantly fewer computational resources than the
controllers from [19] and [20]. Furthermore, as the system
dimension increases, the developed controller significantly
outperforms the controllers from [19] and [20] in terms of
computational efficiency.

Time (s)
0 10 20 30 40

Ŵ
a
(t

)

-0.5

0

0.5

1
Policy Weights

Figure 8. Policy weight trajectories generated using the proposed method
for the trajectory tracking problem. The weights do not converge to a steady-
state value because the ideal weights are functions of the time-varying
system state. Since an analytical solution of the optimal tracking problem
is not available, weights cannot be compared against their ideal values

Since the optimal solution for the regulation problem is
known to be quadratic, the model-based RL method from
[19] is implemented using three quadratic basis functions.
Since the basis used is exact, the method from [19] yields a
smaller steady-state error than the developed method, which
uses three inexact, but generic StaF kernels. For the 3-state
regulation problem and the tracking problem, the methods
from [19] and [20] are implemented using polynomial basis
functions selected based on a trial-and-error approach. The
developed technique is implemented using generic StaF
kernels. In this case, since the optimal solution is unknown,
both the methods use inexact basis functions, resulting in
similar steady-state errors.

The two main advantages of StaF kernels are that they are
universal, in the sense that they can be used to approximate
a large class of value functions, and that they target local
approximation, resulting in a smaller number of required
basis functions. However, the StaF kernels trade optimality
for universality and computational efficiency. The kernels
are inexact, and the weight estimates need to be continually
adjusted based on the system trajectory. Hence, as shown in
Table I, the developed technique results in a higher total cost
than state-of-the-art model-based RL techniques.
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Figure 9. Value function weight trajectories generated using the proposed
method for the trajectory tracking problem. The weights do not converge
to a steady-state value because the ideal weights are functions of the time-
varying system state. Since an analytical solution of the optimal tracking
problem is not available, weights cannot be compared against their ideal
values

Time (s)
0 10 20 30 40

3̂
(t

)

-1

-0.5

0

0.5

1

1.5
Drift Dynamics NN Weights

3̂1

3̂2

3̂3

3̂4

3̂5

3̂6

Figure 10. Trajectories of the unknown parameters in the system drift
dynamics for the trajectory tracking problem. The dotted lines represent the
true values of the parameters.

VI. CONCLUSION

In this paper an infinite horizon optimal control problem
is solved using a new approximation methodology called the
StaF kernel method. Motivated by the fact that a smaller
number of basis functions is required to approximate func-
tions on smaller domains, the StaF kernel method aims to
maintain good approximation of the value function over
a small neighborhood of the current state. Computational
efficiency of model-based RL is improved by allowing selec-
tion of fewer time-varying extrapolation trajectories instead
of a large number of autonomous extrapolation functions.
Simulation results are presented that solve the infinite hori-

zon optimal regulation and tracking problems online for a
two state system using only three and five basis functions,
respectively, via the StaF kernel method.

State-of-the-art solutions to solve infinite horizon optimal
control problems online aim to approximate the value func-
tion over the entire operating domain. Since the approximate
optimal policy is completely determined by the value func-
tion estimate, state-of-the-art solutions generate, often at an
intractable computational cost, policies that are valid over
the entire state space. Since the StaF kernel method aims
at maintaining local approximation of the value function
around the current system state, the StaF kernel method
lacks memory, in the sense that the information about the
ideal weights over a region of interest is lost when the state
leaves the region of interest. Thus, unlike existing techniques,
the StaF method trades global optimality for computational
efficiency to generate a policy that is near-optimal only
over a small neighborhood of the origin. A memory-based
modification to the StaF technique that retains and reuses
past information is a subject for future research.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA, USA: MIT Press, 1998.

[2] D. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 2007.

[3] P. Mehta and S. Meyn, “Q-learning and pontryagin’s minimum princi-
ple,” in Proc. IEEE Conf. Decis. Control, Dec. 2009, pp. 3598 –3605.

[4] K. Doya, “Reinforcement learning in continuous time and space,”
Neural Comput., vol. 12, no. 1, pp. 219–245, 2000.

[5] R. Padhi, N. Unnikrishnan, X. Wang, and S. Balakrishnan, “A single
network adaptive critic (SNAC) architecture for optimal control syn-
thesis for a class of nonlinear systems,” Neural Netw., vol. 19, no. 10,
pp. 1648–1660, 2006.

[6] A. Al-Tamimi, F. L. Lewis, and M. Abu-Khalaf, “Discrete-time
nonlinear HJB solution using approximate dynamic programming:
Convergence proof,” IEEE Trans. Syst. Man Cybern. Part B Cybern.,
vol. 38, pp. 943–949, 2008.

[7] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst.
Mag., vol. 9, no. 3, pp. 32–50, 2009.

[8] T. Dierks, B. Thumati, and S. Jagannathan, “Optimal control of
unknown affine nonlinear discrete-time systems using offline-trained
neural networks with proof of convergence,” Neural Netw., vol. 22,
no. 5-6, pp. 851–860, 2009.

[9] K. Vamvoudakis and F. Lewis, “Online actor-critic algorithm to
solve the continuous-time infinite horizon optimal control problem,”
Automatica, vol. 46, no. 5, pp. 878–888, 2010.

[10] H. Zhang, L. Cui, X. Zhang, and Y. Luo, “Data-driven robust approx-
imate optimal tracking control for unknown general nonlinear systems
using adaptive dynamic programming method,” IEEE Trans. Neural
Netw., vol. 22, no. 12, pp. 2226–2236, 2011.

[11] S. Bhasin, R. Kamalapurkar, M. Johnson, K. Vamvoudakis, F. L.
Lewis, and W. Dixon, “A novel actor-critic-identifier architecture
for approximate optimal control of uncertain nonlinear systems,”
Automatica, vol. 49, no. 1, pp. 89–92, 2013.

[12] H. Zhang, L. Cui, and Y. Luo, “Near-optimal control for nonzero-sum
differential games of continuous-time nonlinear systems using single-
network adp,” IEEE Trans. Cybern., vol. 43, no. 1, pp. 206–216, 2013.

[13] H. Zhang, D. Liu, Y. Luo, and D. Wang, Adaptive Dynamic Program-
ming for Control Algorithms and Stability, ser. Communications and
Control Engineering. London: Springer-Verlag, 2013.

[14] K. Vamvoudakis and F. Lewis, “Online synchronous policy iteration
method for optimal control,” in Recent Advances in Intelligent Control
Systems, W. Yu, Ed. Springer, 2009, pp. 357–374.

[15] G. Chowdhary, “Concurrent learning adaptive control for convergence
without persistencey of excitation,” Ph.D. dissertation, Georgia Insti-
tute of Technology, December 2010.



12

[16] G. Chowdhary and E. Johnson, “A singular value maximizing data
recording algorithm for concurrent learning,” in Proc. American Con-
trol Conf., 2011, pp. 3547–3552.

[17] G. Chowdhary, T. Yucelen, M. Mühlegg, and E. N. Johnson, “Con-
current learning adaptive control of linear systems with exponentially
convergent bounds,” Int. J. Adapt. Control Signal Process., vol. 27,
no. 4, pp. 280–301, 2013.

[18] H. Modares, F. L. Lewis, and M.-B. Naghibi-Sistani, “Integral rein-
forcement learning and experience replay for adaptive optimal control
of partially-unknown constrained-input continuous-time systems,” Au-
tomatica, vol. 50, no. 1, pp. 193–202, 2014.

[19] R. Kamalapurkar, P. Walters, and W. E. Dixon, “Concurrent learning-
based approximate optimal regulation,” in Proc. IEEE Conf. Decis.
Control, Florence, IT, Dec. 2013, pp. 6256–6261.

[20] R. Kamalapurkar, L. Andrews, P. Walters, and W. E. Dixon, “Model-
based reinforcement learning for infinite-horizon approximate optimal
tracking,” in Proc. IEEE Conf. Decis. Control, 2014, pp. 5083–5088.

[21] R. Kamalapurkar, J. Klotz, and W. Dixon, “Concurrent learning-based
online approximate feedback Nash equilibrium solution of N -player
nonzero-sum differential games,” IEEE/CAA J. Autom. Sin., vol. 1,
no. 3, pp. 239–247, July 2014.

[22] B. Luo, H.-N. Wu, T. Huang, and D. Liu, “Data-based approximate
policy iteration for affine nonlinear continuous-time optimal control
design,” Automatica, 2014.

[23] X. Yang, D. Liu, and Q. Wei, “Online approximate optimal control
for affine non-linear systems with unknown internal dynamics using
adaptive dynamic programming,” IET Control Theory Appl., vol. 8,
no. 16, pp. 1676–1688, 2014.

[24] R. Kamalapurkar, J. A. Rosenfeld, and W. E. Dixon, “State following
(StaF) kernel functions for function approximation part II: Adaptive
dynamic programming,” in Proc. Am. Control Conf., 2015, to appear
(see also arXiv:1502.02609).

[25] J. A. Rosenfeld, R. Kamalapurkar, and W. E. Dixon, “State following
(StaF) kernel functions for function approximation part I: Theory and
motivation,” in Proc. Am. Control Conf., 2015, to appear (see also
arXiv:1503.04854).

[26] G. G. Lorentz, Bernstein polynomials, 2nd ed. Chelsea Publishing
Co., New York, 1986.

[27] D. Kirk, Optimal Control Theory: An Introduction. Dover, 2004.
[28] D. Liberzon, Calculus of variations and optimal control theory: a

concise introduction. Princeton University Press, 2012.
[29] P. Ioannou and J. Sun, Robust Adaptive Control. Prentice Hall, 1996.
[30] H. K. Khalil, Nonlinear Systems, 3rd ed. Upper Saddle River, NJ,

USA: Prentice Hall, 2002.
[31] A. Savitzky and M. J. E. Golay, “Smoothing and differentiation of data

by simplified least squares procedures.” Anal. Chem., vol. 36, no. 8,
pp. 1627–1639, 1964.


