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Abstract

Reinforcement learning (RL)-based online approximate optimal control methods applied to deterministic systems typically
require a restrictive persistence of excitation (PE) condition for convergence. This paper develops a concurrent learning
(CL)-based implementation of model-based RL to solve approximate optimal regulation problems online under a PE-like
rank condition. The development is based on the observation that, given a model of the system, RL can be implemented by
evaluating the Bellman error at any number of desired points in the state space. In this result, a parametric system model
is considered, and a CL-based parameter identi�er is developed to compensate for uncertainty in the parameters. Uniformly
ultimately bounded regulation of the system states to a neighborhood of the origin, and convergence of the developed policy
to a neighborhood of the optimal policy are established using a Lyapunov-based analysis, and simulation results are presented
to demonstrate the performance of the developed controller.
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1 Introduction

Reinforcement learning (RL) enables a cognitive agent
to learn desirable behavior from interactions with its
environment. In control theory, the desirable behavior is
typically quanti�ed using a cost function, and the control
problem is formulated as the desire to �nd the optimal
policy that minimizes a cumulative cost. RL techniques
for discrete time systems are inherently model-free, and
hence, have been a prime focus of research over the past
few decades [1].

Recently, various RL-based techniques have been devel-
oped to approximately solve optimal control problems
for continuous-time and discrete-time deterministic sys-
tems [2�12]. The approximate solution is facilitated via
value function approximation, where the optimal policy
is computed based on an estimate of the value function.

? This research is supported in part by NSF award num-
ber 1509516 and ONR grant number N00014-13-1-0151. Any
opinions, �ndings and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily re�ect the views of the sponsoring agency.

Email addresses: rkamalapurkar@ufl.edu (Rushikesh
Kamalapurkar), walters8@ufl.edu (Patrick Walters),
wdixon@ufl.edu (Warren E. Dixon).

Methods that seek online solutions to optimal con-
trol problems are comparable to adaptive control (cf.,
[3, 8, 10, 12�14] and the references therein). In adaptive
control, the estimates for the uncertain parameters in
the plant model are updated using the tracking error as
a performance metric; whereas, in online RL-based tech-
niques, estimates for the uncertain parameters in the
value function are updated using the Bellman error (BE)
as a performance metric. Typically, to establish regula-
tion or tracking, adaptive control methods do not require
the adaptive estimates to convergence to the true val-
ues. However, convergence of the RL-based controller to
a neighborhood of the optimal controller requires con-
vergence of the parameter estimates to a neighborhood
of their ideal values.

Parameter convergence has been a focus of research in
adaptive control for several decades. It is common knowl-
edge that least squares and gradient descent-based up-
date laws generally require persistence of excitation (PE)
in the system state for convergence of the parameter es-
timates. Modi�cation schemes such as projection algo-
rithms, σ−modi�cation, and e−modi�cation are used to
guarantee boundedness of parameter estimates and over-
all system stability; however, these modi�cations do not
guarantee parameter convergence unless the PE condi-
tion is satis�ed [15�18].
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In RL-based approximate online optimal control, the
Hamilton-Jacobi-Bellman (HJB) equation along with an
estimate of the state derivative (cf. [7, 10] ), or an in-
tegral form of the HJB equation (cf. [19]) is utilized to
approximately evaluate the BE along the system trajec-
tory. The BE, evaluated at a point, provides an indirect
measure of the quality of the estimate of the value func-
tion evaluated at that point. Hence, the unknown value
function parameters are updated based on evaluation
of the BE along the system trajectory. Such weight up-
date strategies create two challenges for analyzing con-
vergence. The system states need to satisfy PE, and the
system trajectory needs to visit enough points in the
state space to generate a good approximation of the
value function over the entire domain of operation. These
challenges are typically addressed in the related litera-
ture (cf. [5,8,10,20�26]) by adding an exploration signal
to the control input to ensure su�cient exploration of
the domain of operation. However, no analytical meth-
ods exist to compute the appropriate exploration signal
when the system dynamics are nonlinear.

The aforementioned challenges arise from the restriction
that the BE can only be evaluated along the system tra-
jectories. In particular, the integral BE is meaningful
as a measure of quality of the value function estimate
only if it is evaluated along the system trajectories, and
state derivative estimators can only generate numerical
estimates of the state derivative along the system tra-
jectories. Recently, [25] demonstrated that experience
replay can be used to improve data e�ciency in online
approximate optimal control by reuse of recorded data.
However, since the data needs to be recorded along the
system trajectory, the system trajectory under the de-
signed approximate optimal controller needs to provide
enough excitation for learning. In general, such excita-
tion is not available; hence, the simulation results in [25]
are generated using an added probing signal.

In this paper, and in our preliminary work in [27], a dif-
ferent approach is used to improve data e�ciency by ob-
serving that if the system dynamics are known, the state
derivative, and hence, the BE can be evaluated at any
desired point in the state space. Unknown parameters
in the value function can therefore be adjusted based on
least square minimization of the BE evaluated at any
number of arbitrary points in the state space. For exam-
ple, in an in�nite horizon regulation problem, the BE can
be computed at points uniformly distributed in a neigh-
borhood around the origin of the state space. The results
of this paper indicate that convergence of the unknown
parameters in the value function is guaranteed provided
the selected points satisfy a rank condition. Since the BE
can be evaluated at any desired point in the state space,
su�cient exploration can be achieved by appropriately
selecting the points to cover the domain of operation. If
the system dynamics are partially unknown, an approx-
imation to the BE can be evaluated at any desired point
in the state space based on an estimate of the system

dynamics.

If each new evaluation of the BE along the system tra-
jectory is interpreted as gaining experience via explo-
ration, the use of a model to evaluate the BE at an un-
explored point in the state space can be interpreted as a
simulation of the experience. Learning based on simula-
tion of experience has been investigated in results such
as [28�33] for stochastic model-based RL; however, these
results solve the optimal control problem o�-line in the
sense that repeated learning trials need to be performed
before the algorithm learns the controller, and system
stability during the learning phase is not analyzed. This
paper furthers the state of the art for nonlinear, control
a�ne plants with linearly parameterizable (LP) uncer-
tainties in the drift dynamics by providing an online solu-
tion to deterministic in�nite horizon optimal regulation
problems. In this paper, a CL-based parameter estima-
tor is developed to exponentially identify the unknown
parameters in the system model, and the parameter es-
timates are used to implement simulation of experience
by extrapolating the BE.

The main contributions of this paper include a novel im-
plementation of model-based RL in deterministic non-
linear systems and a detailed stability analysis that es-
tablishes simultaneous online identi�cation of system
dynamics and online approximate learning of the opti-
mal controller, while maintaining system stability. Sim-
ulation results are provided that demonstrate the ap-
proximate solution of in�nite horizon optimal regulation
problems online for inherently unstable nonlinear sys-
temswith uncertain drift dynamics. The simulations also
demonstrate that the developed method can be used to
implement RL without the addition of a probing signal.

2 Problem Formulation

Consider a control a�ne nonlinear dynamical system 1

ẋ (t) = f (x (t)) + g (x (t))u (t) , (1)

where x : R≥t0 → Rn denotes the system state trajec-
tory, u : R≥t0 → Rm denotes the control input, f : Rn →
Rn denotes the drift dynamics, and g : Rn → Rn×m
denotes the control e�ectiveness. In the following, the
notation φu (t; t0, x

o) denotes a trajectory of the system
in (1) under the controller u with the initial condition
xo ∈ Rn and initial time t0 ∈ R≥0.

2 The objective is

1 For notational brevity, unless otherwise speci�ed, the do-
main of all the functions is assumed to be R≥0, where R≥a
denotes the interval [a,∞). The notation ‖·‖ denotes the
Euclidean norm for vectors and the Frobenius norm for ma-
trices. The notation (·)o denotes arbitrary variables.
2 Whenever the initial time and state are implied or unim-
portant, a trajectory of the system in (1) evaluated at time
t will be denoted by x (t).
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to solve the in�nite horizon optimal regulation problem
online, i.e., to �nd the optimal policy u∗ : Rn → Rm
de�ned as

u∗ (xo) , arg min
u(τ)∈U |τ∈R≥t

∞̂

t

r (φu (τ ; t, xo) , u (τ)) dτ, (2)

while regulating the system states to the origin. 3 In
(2), U ∈ Rm denotes the action space and r : Rn ×
Rm → R≥0 denotes the instantaneous cost de�ned as

r (xo, uo) , xoTQx + uoTRuo, where Q ∈ Rn×n and
R ∈ Rm×m are constant positive de�nite symmetric ma-
trices. The class of nonlinear systems considered in this
paper is characterized by the following assumption.

Assumption 1 The drift dynamics f is an unknown,
LP locally Lipschitz function such that f (0) = 0, and the
control e�ectiveness g is a known bounded locally Lips-
chitz function. Furthermore, f ′ : Rn → Rn×n is continu-
ous, where (·)′ denotes the partial derivative with respect
to the �rst argument.

A closed-form solution to the optimal control problem is
formulated in terms of the optimal value function V ∗ :
Rn → R≥0 de�ned as

V ∗ (xo) , min
u(τ)∈U |τ∈R≥t

∞̂

t

r (φu (τ ; t, xo) , u (τ)) dτ. (3)

Assuming that the optimal value function is continu-
ously di�erentiable, it is the unique solution to the cor-
responding HJB equation [34]

V ∗′ (xo) (f (xo) + g (xo)u∗ (xo)) + xoTQxo

+ u∗T (xo)Ru∗ (xo) = 0, (4)

for all xo ∈ Rn, with the boundary condition
V ∗ (0) = 0. The optimal control law can be deter-
mined using the optimal value function as u∗ (xo) =

− 1
2R
−1gT (xo) (V ∗′ (xo))

T
[34].

An analytical solution of the HJB equation is generally
not feasible; hence, an approximate solution is sought.
An approximate solution of the HJB equation is facili-
tated by replacing V ∗ and u∗ in (4) by their respective

subsequently de�ned parametric estimates V̂
(
xo, Ŵ o

c

)
and û

(
xo, Ŵ o

a

)
to compute the BE δ : Rn+2L → R as

δ
(
xo,Ŵ o

c ,Ŵ
o
a

)
=xoTQxo+ ûT

(
xo, Ŵ o

a

)
Rû
(
xo, Ŵ o

a

)
3 The de�nition in (2) implicitly assumes existence of the
optimal policy.

+ V̂ ′
(
xo, Ŵ o

c

)(
f (xo) + g (xo) û

(
xo, Ŵ o

a

))
, (5)

where Ŵ o
c ∈ RL and Ŵ o

a ∈ RL are the estimates of
the unknown parameters in the approximation of the
value function, and the policy, respectively. Since the BE
depends on the uncertain drift dynamics f , an estimate
of the system dynamics is required to evaluate the BE
at any given point xo ∈ Rn

3 Approximate Optimal Control

3.1 System identi�cation

The main contribution of this paper is a novel implemen-
tation of simulation of experience for online approximate
optimal control of deterministic nonlinear systems. If a
system model is available, then the approximate optimal
control technique can be implemented using the model.
However, if an exact model of the system is unavailable,
then parametric system identi�cation can be employed
to generate an estimate of the system model. A possible
approach is to use parameters that are estimated o�ine
in a separate experiment. A more useful approach is to
use the o�ine estimate as the initial guess, and to em-
ploy a dynamic system identi�cation technique capable
of re�ning the initial guess based on input-output data.

To facilitate online system identi�cation, let f (xo) =
Y (xo) θ denote the linear parametrization of the func-
tion f , where Y : Rn → Rn×p is the regression matrix
and θ ∈ Rp is the vector of constant unknown parame-

ters. Let θ̂ ∈ Rp be an estimate of the unknown parame-
ter vector θ. The following development assumes that an
adaptive system identi�er that satis�es conditions de-
tailed in Assumption 2 is available. For completeness, a
concurrent learning-based system identi�er that satis�es
Assumption 2 is presented in Appendix A.

Assumption 2 A compact set Θ ⊂ Rp such that θ ∈ Θ

is known a priori. The estimates θ̂ : R≥t0 → Rp are
updated based on a switched update law of the form

˙̂
θ (t) = fθs

(
θ̂ (t) , t

)
, (6)

θ̂ (t0) = θ̂0 ∈ Θ, where s ∈ N denotes the switching
index and {fθs : Rp × R≥0 → Rp}s∈N denotes a family
of continuously di�erentiable functions. The dynamics
of the parameter estimation error θ̃ : R≥t0 → Rp, de-
�ned as θ̃ (t) , θ − θ̂ (t) can be expressed as

˙̃
θ (t) =

fθs

(
θ − θ̃ (t) , t

)
. Furthermore, there exists a continu-

ously di�erentiable function Vθ : Rp × R≥0 → R≥0 that
satis�es

vθ

(∥∥∥θ̃o∥∥∥) ≤ Vθ (θ̃o, t) ≤ vθ (∥∥∥θ̃o∥∥∥) , (7)
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V ′θ

(
θ̃o, t
)(
−fθs

(
θ−θ̃o, t

))
+
∂Vθ

(
θ̃o, t
)

∂t
≤−K

∥∥∥θ̃o∥∥∥2

+D
∥∥∥θ̃o∥∥∥ ,

(8)

for all s ∈ N, t ∈ R≥t0 , and θ̃o ∈ Rp, where vθ,
vθ : R≥0 → R≥0 are class K functions, K ∈ R>0 is an
adjustable parameter, and D ∈ R>0 is a positive con-
stant. 4

Using an estimate θ̂o, the BE in (5) can be approximated

by δ̂ : Rn+2L+p → R as

δ̂
(
xo, Ŵ o

c , Ŵ
o
a , θ̂

o
)

= xoTQxo + ûT
(
xo,Ŵ o

a

)
Rû
(
xo,Ŵ o

a

)
+ V̂ ′

(
xo, Ŵ o

c

)(
Y (xo) θ̂o + g (xo) û

(
xo, Ŵ o

a

))
. (9)

In the following, the approximate BE in (9) is used to
obtain an approximate solution to the HJB equation in
(4).

3.2 Value function approximation

Approximations to the optimal value function V ∗ and
the optimal policy u∗ are designed based on neural
network (NN)-based representations. Given any com-
pact set χ ⊂ Rn and positive constants ε̄, ε̄′ ∈ R, the
universal approximation property of NNs can be ex-
ploited to represent the optimal value function V ∗ as
V ∗ (xo) = WTσ (xo) + ε (xo) , for all xo ∈ χ, where
W ∈ RL is the ideal weight matrix, which is bounded
above by a known positive constant W̄ in the sense that
‖W‖ ≤ W̄ , σ : Rn → RL is a continuously di�eren-
tiable nonlinear activation function such that σ (0) = 0
and σ′ (0) = 0, L ∈ N is the number of neurons, and
ε : Rn → R is the function reconstruction error such
that supxo∈χ |ε (xo)| ≤ ε̄ and supxo∈χ |ε′ (xo)| ≤ ε̄′.

Based on the NN representation of the value
function a NN-based representation of the
optimal controller is derived as u∗ (xo) =
− 1

2R
−1gT (xo)

(
σ′T (xo)W + ε′T (xo)

)
. The NN-based

approximations V̂ : Rn×RL → R and û : Rn×RL → Rm
are de�ned as

V̂
(
xo, Ŵ o

c

)
, Ŵ oT

c σ (xo) ,

û
(
xo, Ŵ o

a

)
, −1

2
R−1gT (xo)σ′T (xo) Ŵ o

a , (10)

where Ŵ o
c ∈ RL and Ŵ o

a ∈ RL are the estimates of W.
The use of two sets of weights to estimate the same set

4 The subsequent analysis in Section 4 indicates that when
a system identi�er that satis�es Assumption 2 is employed
to facilitate online optimal control, the ratio D

K
needs to

be su�ciently small to establish set-point regulation and
convergence to optimality.

of ideal weights is motivated by the stability analysis
and the fact that it enables a formulation of the BE
that is linear in the value function weight estimates Ŵ o

c ,
enabling a least squares-based adaptive update law.

3.3 Simulation of experience via BE extrapolation

In traditional RL-based algorithms, the value function
estimate and the policy estimate are updated based on
observed data. The use of observed data to learn the
value function naturally leads to a su�cient exploration
condition which demands su�cient richness in the ob-
served data. In stochastic systems, this is achieved using
a randomized stationary policy (cf. [7, 35, 36]), whereas
in deterministic systems, a probing noise is added to the
derived control law (cf. [8, 10,37�39]).

The technique developed in this result implements sim-
ulation of experience in a model-based RL scheme by

using Y θ̂ as an estimate of the uncertain drift dynam-
ics f to extrapolate the approximate BE to a pre-
de�ned set of points {xi ∈ Rn | i = 1, · · · , N} in the

state space. In the following, δ̂t : R≥t0 → R de-
notes the approximate BE in (9) evaluated along the

trajectories of (1), (6), (11), and (13) as δ̂t (t) ,

δ̂
(
x (t) , Ŵc (t) , Ŵa (t) , θ̂ (t)

)
and δ̂ti : R≥t0 → R de-

notes the approximate BE extrapolated to the points
{xi ∈ Rn | i = 1, · · · , N} along the trajectories of (6),

(11), and (13) as δ̂ti , δ̂
(
xi, Ŵc (t) , Ŵa (t) , θ̂ (t)

)
.

A least-squares update law for the value function weights
is designed based on the subsequent stability analysis as

˙̂
Wc (t)=−ηc1Γ

ω (t)

ρ (t)
δ̂t (t)− ηc2

N
Γ

N∑
i=1

ωi (t)

ρi (t)
δ̂ti (t) , (11)

Γ̇ (t)=

(
βΓ(t)− ηc1

Γ (t)ω (t)ω (t)
T

Γ (t)

ρ2 (t)

)
1{‖Γ‖≤Γ},

(12)

‖Γ (t0)‖ ≤ Γ, where Γ : R≥t0 → RL×L is a

time-varying least-squares gain matrix, ω (t) ,

σ′ (x (t))
(
Y (x (t)) θ̂ (t) + g (x (t)) û

(
x (t) , Ŵa (t)

))
,

ωi (t) , σ′ (xi)
(
Y (xi) θ̂ (t) + g (xi) û

(
xi, Ŵa (t)

))
,

ρ (t) , 1 + νωT (t) Γ (t)ω (t), ρi (t) , 1 +
νωTi (t) Γ (t)ωi (t), where ν ∈ R is a constant positive
normalization gain, 1{·} denotes the indicator function,

Γ > 0 ∈ R is a saturation constant, β > 0 ∈ R is a
constant forgetting factor, and ηc1, ηc2 > 0 ∈ R are
constant adaptation gains.

The policy weights are updated based on the subsequent
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stability analysis as 5

˙̂
Wa (t) = −ηa1

(
Ŵa (t)− Ŵc (t)

)
− ηa2Ŵa (t)

+
ηc1G

T
σ (t) Ŵa (t)ωT (t)

4ρ (t)
Ŵc (t)

+

N∑
i=1

ηc2G
T
σiŴa (t)ωTi (t)

4Nρi (t)
Ŵc (t) , (13)

where ηa1, ηa2 ∈ R are positive con-
stant adaptation gains, Gσ (t) ,
σ′ (x (t)) g (x (t))R−1gT (x (t))σ′T (x (t)), Gσi ,
σ′igiR

−1gTi σ
′T
i ∈ RL×L, where gi = g (xi) and

σ′i = σ′ (xi).

The update law in (11) ensures that the adaptation gain
matrix is bounded such that

Γ ≤ ‖Γ (t)‖ ≤ Γ, ∀t ∈ R≥t0 . (14)

Using the weight estimates Ŵa, the controller for the
system in (1) is designed as

u (t) = û
(
x (t) , Ŵa (t)

)
. (15)

The following rank condition facilitates the subsequent
stability analysis.

Assumption 3 There exists a �nite set of �xed points
{xi ∈ Rn | i = 1, · · · , N} such that ∀t ∈ R≥t0

0 < c ,
1

N

(
inf

t∈R≥t0

(
λmin

{
N∑
i=1

ωi (t)ωTi (t)

ρi (t)

}))
,

(16)
where λmin {·} denotes the minimum eigenvalue.

The rank condition in (16) depends on the estimates θ̂

and Ŵa; hence, in general, it is impossible to guarantee
a priori. However, unlike the PE condition in previous
results such as [8,10,37�39], the condition in (16) can be
veri�ed online at each time t. Furthermore, the condition
in (16) can be heuristically met by collecting redundant
data, i.e., by selecting more points than the number of
neurons by choosing N � L.

The update law in (11) is fundamentally di�erent from
the CL adaptive update in results such as [41, 42], in

5 Using the fact that the ideal weights are bounded,

a projection-based (cf. [40]) update law
·

Ŵ a (t) =

proj
{
−ηa1

(
Ŵa (t)− Ŵc (t)

)}
can be utilized to update the

policy weights. Since the policy weights are bounded a priori
by the projection algorithm, a less complex stability analysis
can be used to establish the result in Theorem 1.

the sense that the points {xi ∈ Rn | i = 1, · · · , N} are se-
lected a priori based on prior information about the de-
sired behavior of the system. Given the system dynam-
ics, or an estimate of the system dynamics, the approxi-
mate BE can be extrapolated to any desired point in the
state space, whereas in adaptive control, the prediction
error is used as a metric which can only be evaluated at
observed data points along the state trajectory.

4 Stability analysis

For notational brevity, the dependence of all the func-
tions on the system states and time is suppressed here-
after unless required for clarity of exposition. To facili-
tate the subsequent stability analysis, the approximate
BE is expressed in terms of the weight estimation errors
W̃c ,W −Ŵc and W̃a ,W −Ŵa. Subtracting (4) from
(9), an unmeasurable form of the instantaneous BE can
be expressed as

δ̂t = −ωT W̃c −WTσ′Y θ̃ +
1

4
W̃T
a GσW̃a

+
1

4
Gε − ε′f +

1

2
WTσ′Gε′T , (17)

where G , gR−1gT ∈ Rn×n and Gε , ε′Gε′T ∈ R.
Similarly, the approximate BE evaluated at the sampled
states {xi | i = 1, · · · , N} can be expressed as

δ̂ti = −ωTi W̃c +
1

4
W̃T
a GσiW̃a −WTσ′iYiθ̃ + ∆i, (18)

where Yi = Y (xi), ε
′
i = ε′ (xi), fi = f (xi), Gi ,

giR
−1gTi ∈ Rn×n, Gεi , ε′iGiε

′T
i ∈ R, and ∆i ,

1
2W

Tσ′iGiε
′T
i + 1

4Gεi − ε
′
ifi ∈ R is a constant.

On any compact set χ ⊂ Rn the function Y is Lipschitz
continuous, and hence, there exists a positive constant
LY ∈ R such that 6

‖Y ‖ ≤ LY ‖x‖ ,∀x ∈ χ. (19)

Using (14), the normalized regressor ω
ρ can be bounded

as

sup
t∈R≥t0

∥∥∥∥ωρ
∥∥∥∥ ≤ 1

2
√
νΓ
. (20)

For brevity of notation, given a compact set χ ⊂ Rn, the
operator (·) , supx∈χ (·) : R≥0 → R≥0 and the following
positive constants are de�ned.

ϑ1 ,
ηc1LY ‖θ‖ ε̄′

4
√
νΓ

, ϑ2 ,
N∑
i=1

(
ηc2 ‖σ′iYi‖W

4N
√
νΓ

)
,

6 The Lipschitz property is exploited here for clarity of ex-
position. The bound in (19) can be easily generalized to
‖Y (x)‖ ≤ LY (‖x‖) ‖x‖, where LY : R → R is a positive,
non-decreasing function.
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ϑ3 ,
LY ηc1W‖σ′‖

4
√
νΓ

, ϑ4 ,

∥∥∥∥1

4
Gε

∥∥∥∥,
ϑ5 ,

ηc1‖2WTσ′Gε′T +Gε‖
8
√
νΓ

+

∥∥∥∥∥
N∑
i=1

ηc2ωi∆i

Nρi

∥∥∥∥∥ ,
ϑ6 ,

∥∥∥∥1

2
WTGσ +

1

2
ε′GTσ′T

∥∥∥∥+ ϑ7W
2

+ ηa2W,

ϑ7 ,
ηc1‖Gσ‖

8
√
νΓ

+

N∑
i=1

(
ηc2 ‖Gσi‖
8N
√
νΓ

)
, q , λmin{Q},

vl =
1

2
min

(
q

2
,
ηc2c

3
,
ηa1 + 2ηa2

6
,
K

4

)
,

ι =
3ϑ2

5

4ηc2c
+

3ϑ2
6

2 (ηa1 + 2ηa2)
+
D2

2K
+ ϑ4. (21)

Let Z : R≥t0 → Rn+2L+p denote the concate-

nated trajectories of Ż (t) = h (Z (t) , t), de�ned as

Z (t) ,
[
xT (t) , W̃T

c (t) , W̃T
a (t) , θ̃T (t)

]T
, where h :

Rn+2L+p × R≥t0 → Rn+2L+p is a concatenation of the
dynamics in (1), (6), (11), and (13). The su�cient con-
ditions for ultimate boundedness of Z are derived based
on the subsequent stability analysis as

ηa1 + 2ηa2

6
> ϑ7W

(
2ζ2 + 1

2ζ2

)
,

K

4
>
ϑ2 + ζ1ζ3ϑ3Z

ζ1
,

ηc2
3
>
ζ2ϑ7W + ηa1 + 2

(
ϑ1 + ζ1ϑ2 + (ϑ3/ζ3)Z

)
2c

,

q

2
> ϑ1, (22)

where Z , v−1
(
v
(

max
(
‖Z (t0)‖ ,

√
ι
vl

)))
, ζ1, ζ2, ζ3 ∈

R are known positive adjustable constants, and v and
v are subsequently de�ned class K functions. The Lips-
chitz constants in (19) and the NN function approxima-
tion errors depend on the underlying compact set; hence,
given a bound on the initial condition Z (t0) for the con-
catenated state Z, a compact set that contains the con-
catenated state trajectory needs to be established before
adaptation gains satisfying the conditions in (22) can
be selected. In the following, based on the subsequent
stability analysis, an algorithm is developed to compute
the required compact set, denoted by Z ⊂ R2n+2L+p. In
Algorithm 1, the notation {(·)}i denotes the value of (·)
computed in the ith iteration. Since the constants ι and
vl depend on LY only through the products LY ε

′ and
LY
ζ3

, Algorithm 1 ensures that√
ι

vl
≤ 1

2
diam (Z) , (23)

where diam(Z) denotes the diameter of the setZ de�ned

as diam(Z) , sup {‖x− y‖ | x, y ∈ Z}. The main result
of this paper can now be stated as follows.

Algorithm 1 Gain Selection

First iteration:

Given z ∈ R≥0 such that ‖Z (t0)‖ < z, let Z1 ,{
ξ ∈ R2n+2L+p | ‖ξ‖ ≤ v−1 (v (z))

}
. Using Z1, compute

the bounds in (21) and select the gains according to (22).

If
{√

ι
vl

}
1
≤ z, set Z = Z1 and terminate.

Second iteration:

If z <
{√

ι
vl

}
1
, let Z2 ,{

ξ ∈ R2n+2L+p | ‖ξ‖ ≤ v−1

(
v

({√
ι
vl

}
1

))}
. Using

Z2, compute the bounds in (21) and select the gains

according to (22). If
{
ι
vl

}
2
≤
{
ι
vl

}
1
, set Z = Z2 and

terminate.
Third iteration:

If
{
ι
vl

}
2
>
{
ι
vl

}
1
, increase the number of NN neurons to

{L}3 to ensure {LY }2 {ε
′}3 ≤ {LY }2 {ε

′}2 ,∀i = 1, .., N,

increase the constant ζ3 to ensure
{LY }2
{ζ3}3

≤ {LY }2{ζ3}2
, and

increase the gains K and ηa1 to satisfy the gain condi-
tions in (22). Provided the constant c is large enough and
D is small enough, these adjustments ensure {ι}3 ≤ {ι}2.

Set Z =

{
ξ ∈ R2n+2L+p | ‖ξ‖ ≤ v−1

(
v

({√
ι
vl

}
2

))}
and terminate.

Theorem 1 Provided Assumptions (1) - (3) hold and
gains q, ηc2, ηa2, and K are selected large enough using
Algorithm 1, the controller in (15) along with the adap-
tive update laws in (11) and (13) ensure that the state

x, the value function weight estimation error W̃c, and
the policy weight estimation error W̃a are uniformly ul-
timately bounded (UUB).

PROOF. Let VL : Rn+2L+p × R≥0 → R≥0 be a con-
tinuously di�erentiable positive de�nite candidate Lya-
punov function de�ned as

VL (Zo, t) , V ∗ (xo) +
1

2
W̃ oT
c Γ−1 (t) W̃ o

c

+
1

2
W̃ oT
a W̃ o

a + Vθ

(
θ̃o, t

)
, (24)

where V ∗ is the optimal value function, Vθ
was introduced in Assumption 2, and Zo ,[
xoT , W̃ oT

c , W̃ oT
a , θ̃oT

]T
. Using the fact that V ∗ is

positive de�nite, (7), (14) and Lemma 4.3 from [43] yield

v (‖Zo‖) ≤ VL (Zo, t) ≤ v (‖Zo‖) , (25)

for all t ∈ R≥t0 and for all Zo ∈ Rn+2L+p, where v,
v : R≥0 → R≥0 are class K functions.
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Provided the gains are selected based using Algorithm 1,
substituting for the approximate BEs from (17) and (18),
using the bounds in (19) and (20), and using Young's
inequality, the time derivative of (24) evaluated along
the trajectory Z can be upper-bounded as

V ′L (Zo, t)h (Zo, t) +
∂VL (Zo, t)

∂t
≤ −vl ‖Zo‖2 , (26)

for all ‖Zo‖ ≥
√

ι
vl
> 0, Zo ∈ Z and t ∈ R≥t0 . 7 Us-

ing (25), (23) and (26), Theorem 4.18 in [43] can now
be invoked to conclude that Z is UUB in the sense

that lim supt→∞ ‖Z (t)‖ ≤ v−1
(
v
(√

ι
vl

))
. Further-

more, the concatenated state trajectories are bounded
such that ‖Z (t)‖ ≤ Z for all t ∈ R≥t0 . Since the esti-

mates Ŵa approximate the ideal weights W , the policy
û approximates the optimal policy u∗.

5 Simulation

This section presents two simulations to demonstrate the
performance and the applicability of the developed tech-
nique. First, the performance of the developed controller
is demonstrated through an approximate solution of an
optimal control problem that has a known analytical so-
lution. Based on the known solution, an exact polyno-
mial basis is used for value function approximation. The
second simulation demonstrates the applicability of the
developed technique in the case where the analytical so-
lution, and hence, the basis for value function approx-
imation is unknown. In this case, since the optimal so-
lution is unknown, the optimal trajectories obtained us-
ing the developed technique are compared with optimal
trajectories obtained through numerical optimal control
techniques.

5.1 Problem with a known basis

The performance of the developed controller is demon-
strated by simulating a nonlinear, control a�ne system
with a two dimensional state x = [x1, x2]T . The system
dynamics are described by (1), where [8]

f =

 x1 x2 0 0

0 0 x1 x2

(
1− (cos (2x1) + 2)

2
) 


a

b

c

d

 ,

g =
[

0 (cos (2x1) + 2)
T
]T
. (27)

7 Since Vθ is a common Lyapunov function for the switched
subsystem in (6), and the terms introduced by the update
law (12) do not contribute to the bound in (26), VL is a
common Lyapunov function for the complete error system.

In (27) a, b, c, d ∈ R are positive unknown parameters.
The parameters are selected as 8 a = −1, b = 1, c =
−0.5, and d = −0.5. The control objective is to minimize
the cost in (3), where Q = I2×2 and R = 1, where In×n
denotes an n × n identity matrix. The optimal value
function and optimal control for the system in (27) are
given by V ∗(x) = 1

2x
2
1 + x2

2, and u
∗(x) = −(cos(2x1) +

2)x2 (cf. [8]).

To facilitate the identi�er design, thirty data points are
recorded using a singular value maximizing algorithm
(cf. [42]) for the CL-based adaptive update law in (A.2).
The state derivative at the recorded data points is com-
puted using a �fth order Savitzky-Golay smoothing �l-
ter (cf. [44]).

To facilitate the ADP-based controller, the basis func-
tion σ : R2 → R3 for value function approximation is

selected as σ =
[
x2

1, x1x2, x
2
2

]
. Based on the analyt-

ical solution, the ideal weights are W = [0.5, 0, 1]
T
.

The data points for the CL-based update law in (11)
are selected to be on a 5 × 5 grid around the origin.
The learning gains are selected as ηc1 = 1, ηc2 = 15,
ηa1 = 100, ηa2 = 0.1, and ν = 0.005. The gains for
the system identi�er developed in Appendix A are se-
lected as kx = 10I2×2, Γθ = 20I4×4, and kθ = 30.
The policy and the value function weight estimates are
initialized using a stabilizing set of initial weights as

Ŵc (0) = Ŵa (0) = [1, 1, 1]
T
and the least squares gain

is initialized as Γ (0) = 100I3×3. The initial condition

for the system state is selected as x (0) = [−1, −1]
T
, the

state estimates x̂ are initialized to be zero, the param-

eter estimates θ̂ are initialized to be one , and the data
stack for CL is recorded online.

Figure 1 demonstrates that the system state is regulated
to the origin, the unknown parameters in the drift dy-
namics are identi�ed, and the value function and the pol-
icy weights converge to their true values. Furthermore,
unlike previous results, a probing signal to ensure PE is
not required. Figure 2 demonstrates the satisfaction of
Assumptions 3 and 4.

5.2 Problem with an unknown basis

To demonstrate the applicability of the developed con-
troller, a nonlinear, control a�ne system with a four di-
mensional state x = [x1, x2, x3, x4]T is simulated. The
system dynamics are described in [45, Equation 31], with
the states selected as 9 x1 = q1, x2 = q2, x3 = q̇1, and
x4 = q̇2, and the inertia parameters p1, p2, and p3, and
the friction coe�cients are considered unknown. The

8 The origin is an unstable equilibrium point of the unforced
system ẋ = f (x).
9 The origin is a marginally stable equilibrium point of the
unforced system ẋ = f (x).
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Ŵa1,1
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Figure 1. System trajectories generated using the developed
technique, and compared to the analytical solution.
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Figure 2. Satisfaction of Assumptions 3 and 4 for the simu-
lation with known basis.

control objective is to minimize the cost in (3), where
Q = diag ([10, 10, 1, 1]) and R = diag ([1, 1]).

The basis function σ : R4 → R10 for value
function approximation is selected as σ(x) =[
x1x3, x2x4, x3x2, x4x1, x1x2, x4x3, x

2
1, x

2
2, x

2
3, x

2
4

]
.

The data points for the CL-based update law in (11) are
selected to be on a 3× 3× 3× 3 grid around the origin,
and the policy weights are updated using a projection-
based update law. The learning gains are selected as
ηc1 = 1, ηc2 = 30, ηa1 = 0.1, and ν = 0.0005. The gains
for the system identi�er developed in Appendix A are
selected as kx = 10I4×4, Γθ = diag([90, 50, 160, 50]),
and kθ = 1.1. The least squares gain is initial-
ized as Γ (0) = 1000I10×10 and the policy and the
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Figure 3. System trajectories generated using the developed
technique, where the drift parameter estimates are compared
to the actual drift parameters.
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Figure 4. State and control trajectories generated using feed-
back policy û∗ (x) compared to a numerical optimal solution.

value function weight estimates are initialized as

Ŵc (0) = Ŵa (0) = [5, 5, 0, 0, 0, 0, 25, 0, 2 , 2]
T
. The

initial condition for the system state is selected as

x (0) = [1, 1, 0, 0]
T
, the state estimates x̂ are initialized

to be zero, the parameter estimates θ̂ are initialized to
be one, and the data stack for CL is recorded online.

Figure 3 demonstrates that the system state is regulated
to the origin, the unknown parameters in the drift dy-
namics are identi�ed, and the value function and the
policy weights converge. Figure 5 demonstrates the sat-
isfaction of Assumptions 3 and 4. The value function and
the policy weights converge to the following values.
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Figure 5. Satisfaction of Assumptions 3 and 4 for the simu-
lation with unknown basis.

Ŵ ∗c = Ŵ ∗a = [24.7, 1.19, 2.25, 2.67, 1.18,

0.93, 44.34, 11.31, 3.81 , 0.10]
T
. (28)

Since the true values of the value function weights are
unknown, the weights in (28) can not be compared
to their true values. However, a measure of proximity
of the weights in (28) to the ideal weights W can be
obtained by comparing the system trajectories result-
ing from applying the feedback control policy û∗ (x) =

− 1
2R
−1gT (x)σ′T (x) Ŵ ∗a to the system, against numer-

ically computed optimal system trajectories. In Figure
4, the numerical optimal solution is obtained using an
in�nite-horizon Gauss pseudospectral method (cf. [46])
using 45 collocation points. Figure 4 indicates that the
weights in (28) generate state and control trajectories
that closely match the numerically computed optimal
trajectories.

6 Conclusion

An online approximate optimal controller is developed,
where the value function is approximated without PE
in the system states via novel use of a model to evalu-
ate the BE over unexplored areas of the state-space. The
PE condition is replaced by a set of rank conditions that
can be veri�ed online using current and recorded obser-
vations. UUB regulation of the system states to a neigh-
borhood of the origin, and convergence of the policy to
a neighborhood of the optimal policy are established us-
ing a Lyapunov-based analysis. Simulations demonstrate
that the developed technique approximates the system
model and the optimal controller on-line, while main-
taining system stability, without the use of a probing
signal.
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A System Identi�cation

A.1 CL-based parameter update

In traditional adaptive control, convergence of the esti-

mates θ̂ to their true values θ is ensured by assuming
that a persistent excitation condition is satis�ed [16�18].
To ensure convergence under a �nite excitation condi-
tion, this result employs a CL-based approach to update
the parameter estimates using recorded input-output
data [41,42,47].

Assumption 4 [41, 42] A collection Hid of triplets

{(aj , bj , cj) | aj ∈ Rn, bj ∈ Rn, cj ∈ Rm}Mj=1 that satis-

�es

rank

 M∑
j=1

Y T (aj)Y (aj)

 = p,

‖bj − f (aj) + g (aj) cj‖ < d, ∀j, (A.1)

10



is available a priori, where d ∈ R≥0 is a positive con-
stant. 10

To satisfy Assumption 4, data recorded in a previous run
of the system can be utilized, or the data stack can be
recorded by running the system using a di�erent known
stabilizing controller for a �nite amount of time until the
recorded data satis�es the rank condition (A.1).

In some cases, a data stack may not be available a priori.
For such applications, the data stack can be recorded on-
line, i.e., the points aj and cj can be recorded along the
system trajectory as aj = x (tj) and cj = u (tj) for some
tj ∈ R≥t0 . Provided the system states are exciting over
a �nite time interval t ∈

[
t0, t0 + t

]
(versus t ∈ [t0,∞)

as in traditional PE-based approaches) until the data
stack satis�es (A.1), then a modi�ed form of the con-
troller developed in Section 3 can be used over the time
interval t ∈

[
t0, t0 + t

]
, and the controller developed in

Section 3 can be used thereafter. The required modi�ca-
tions to the controller, and the resulting modi�cations to
the stability analysis are provided in [48, Appendix A].

Based on Assumption 4, the update law for the param-
eter estimates is designed as

˙̂
θ=

Γθkθ
M

M∑
j=1

Y T (aj)
(
bj − g (aj) cj − Y (aj) θ̂

)
, (A.2)

where Γθ ∈ Rp×p is a constant positive de�nite adapta-
tion gain matrix and kθ ∈ R is a constant positive CL
gain. From (1) and the de�nition of θ̃, the bracketed term

in (A.2), can be expressed as bj − g (aj) cj − Y (aj) θ̂ =

Y (aj) θ̃ + dj , where dj , bj − f (aj) + g (aj) cj ∈ Rn,
and the parameter update law in (A.2) can be expressed
in the advantageous form

˙̂
θ =

Γθkθ
M

 M∑
j=1

Y T (aj)Y (aj)

 θ̃+
Γθkθ
M

M∑
j=1

Y T (aj) dj .

(A.3)
The rate of convergence of the parameter estimates to
a neighborhood of their ideal values is directly (and the
ultimate bound is inversely) proportional to the mini-

mum singular value of the matrix
∑M
j=1 Y

T (aj)Y (aj);
hence, the performance of the estimator can be improved
online if a triplet (aj , bj , cj) in Hid is replaced with an
updated triplet (ak, bk, ck) that increases the singular

value of
∑M
j=1 Y

T (aj)Y (aj). The stability analysis in
Section 4 allows for this approach through the use of a
singular value maximizing algorithm (cf. [42, 47]).

10 Since θ ∈ Θ, where Θ is a compact set, the assumption
that d is independent of θ is justi�ed.

A.2 Convergence analysis

Let Vθ : Rn+p → R≥0 be a positive de�nite continuously
di�erentiable candidate Lyapunov function de�ned as

Vθ

(
θ̃
)
,

1

2
θ̃TΓ−1

θ θ̃,

The following bounds on the Lyapunov function can be
established:

γ

2

∥∥∥θ̃∥∥∥2

≤ Vθ
(
θ̃
)
≤ γ

2

∥∥∥θ̃∥∥∥2

,

where γ, γ ∈ R denote the minimum and the maximum

eigenvalues of the matrix Γ−1
θ . Using (A.3), the Lya-

punov derivative can be expressed as

V̇θ=−θ̃T kθ
M

M∑
j=1

Y T (aj)Y (aj)

θ̃ − kθ
M
θ̃T

M∑
j=1

Y T (aj)dj .

Let y ∈ R be the minimum eigen-

value of
(

1
M

∑M
j=1 Y

T (aj)Y (aj)
)
. Since(∑M

j=1 Y
T (aj)Y (aj)

)
is symmetric and positive semi-

de�nite, (A.1) can be used to conclude that it is also
positive de�nite, and hence y > 0. Hence, the Lyapunov

derivative can be bounded as 11

V̇0 ≤ −ykθ
∥∥∥θ̃∥∥∥2

+ kθdθ

∥∥∥θ̃∥∥∥ ,
where dθ = dY , Y = maxj=1,···,M (‖Y (aj)‖). Hence,∥∥∥θ̃∥∥∥ exponentially decays to an ultimate bound as t →
∞. The CL-based system identi�er satis�es Assumption
2 with K = ykθ and D = kθdθ. To satisfy the last in-
equality in (22), the quantity ι

vl
needs to be small. Based

on the de�nitions in (21), the quantity ι
vl
is proportional

to D2

K2 , which is proportional to
d2θ
y2 . From the de�nitions

of dθ and y,

d2
θ

y2
= d

2

(∑M
j=1 ‖Y (aj)‖

)2

(
λmin

(∑M
j=1 Y

T (aj)Y (aj)
))2 .

Thus, in general, a small d (i.e., accurate numerical dif-
ferentiation) is required to obtain the result in Theorem
1.

11 If Hid is updated with new data, the update law (A.3)
forms a switched system. Provided(A.1) holds, and Hid is
updated using a singular value maximizing algorithm, Vθ
is a common Lyapunov function for the switched system
(cf. [42]).
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