
Chapter 1

Model-based reinforcement learning for
approximate optimal regulation

Rushikesh Kamalapurkar, Patrick Walters, and Warren E. Dixon

Abstract Reinforcement learning (RL)-based online approximate optimal
control methods applied to deterministic systems typically require a restric-
tive persistence of excitation (PE) condition for convergence. This chapter
develops a model-based RL algorithm to solve approximate optimal regu-
lation problems online under a PE-like rank condition. The development is
based on the observation that, given a model of the system, model-based
RL can be implemented by evaluating the Bellman error at any number of
desired points in the state space. Uniformly ultimately bounded regulation
of the system states to a neighborhood of the origin, and convergence of the
developed policy to a neighborhood of the optimal policy are established us-
ing a Lyapunov-based analysis, and simulations are presented to demonstrate
the performance of the developed controller.

Key words: model-based reinforcement learning; concurrent learning; sim-
ulated experience; data-based control; adaptive control; system identi�cation

1.1 Introduction

Reinforcement learning (RL) enables a cognitive agent to learn desirable be-
havior from interactions with its environment. In control theory, the desirable
behavior is typically quanti�ed using a cost function, and the control prob-
lem is formulated as the desire to �nd the optimal policy that minimizes a
cumulative cost. In recent years, various RL-based techniques have been de-
veloped to approximately solve optimal control problems for continuous-time
and discrete-time deterministic systems [1�34]. The approximate solution is
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facilitated via value function approximation, where the optimal policy is com-
puted based on an estimate of the value function.

Methods that seek online solutions to optimal control problems are com-
parable to adaptive control (cf., [3,8,12,14,35,36] and the references therein).
In adaptive control, the estimates for the uncertain parameters in the plant
model are updated using the current tracking error as a performance metric;
whereas, in online RL-based techniques, estimates for the uncertain param-
eters in the value function are updated using the Bellman error (BE) as a
performance metric. Typically, to establish regulation or tracking, adaptive
control methods do not require the adaptive estimates to convergence to the
true values. However, convergence of the RL-based controller to a neighbor-
hood of the optimal controller requires convergence of the parameter esti-
mates to a neighborhood of their ideal values.

Parameter convergence has been a focus of research in adaptive control
for several decades. It is common knowledge that least squares and gradient
descent-based update laws generally require persistence of excitation (PE)
in the system state for convergence of the parameter estimates. Modi�cation
schemes such as projection algorithms, σ−modi�cation, and e−modi�cation
are used to guarantee boundedness of parameter estimates and overall system
stability; however, these modi�cations do not guarantee parameter conver-
gence unless the PE condition, which is generally impossible to verify online,
is satis�ed [37�40].

In RL-based approximate online optimal control, the Hamilton-Jacobi-
Bellman (HJB) equation along with an estimate of the state derivative
(cf. [7,12]), or an integral form of the HJB equation (cf. [41]) is utilized to ap-
proximately evaluate the BE at each visited state along the system trajectory.
The BE provides an indirect measure of the quality of the current estimate
of the value function at each visited state along the system trajectory. Hence,
the unknown value function parameters are updated based on evaluation of
the BE along the system trajectory. Such weight update strategies create two
challenges for analyzing convergence. The system states need to satisfy PE,
and the system trajectory needs to visit enough points in the state space to
generate a good approximation to the value function over the entire operating
domain: i.e., exploration versus exploitation. These challenges are typically
addressed in related literature (cf. [5, 8, 12, 19, 25�27, 42�44]) by adding an
exploration signal to the control input to ensure su�cient exploration in the
desired region of the state space. However, no analytical methods exist to
compute the appropriate exploration signal when the system dynamics are
nonlinear.

The aforementioned challenges arise from the restriction that the BE can
only be evaluated along the system trajectories. In particular, the integral
BE is only meaningful as a measure of quality of the value function if evalu-
ated along the system trajectories, and state derivative estimators can only
generate estimates of the state derivative along the system trajectories using
numerical smoothing. Recently, [26] demonstrated that experience replay can
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be used to improve data e�ciency in online approximate optimal control by
reuse of recorded data. However, since the data needs to be recorded along
the system trajectory, the system trajectory under the designed approximate
optimal controller needs to provide enough excitation for learning. In gen-
eral, such excitation is not available; hence, the simulation results in [26] are
generated using an added probing signal.

In this chapter, a di�erent approach is used to improve data e�ciency
by observing that if the system dynamics are known, the state derivative,
and hence, the BE can be evaluated at any desired point in the state space.
Unknown parameters in the value function can therefore be adjusted based
on least square minimization of the BE evaluated at any number of desired
points in the state space. For example, in an in�nite horizon regulation prob-
lem, the BE can be computed at sampled points uniformly distributed in a
neighborhood around the origin of the state space. The results of this chapter
indicate that convergence of the unknown parameters in the value function
is guaranteed provided the selected points satisfy a rank condition. Since the
BE can be evaluated at any desired point in the state space, su�cient ex-
ploration can be achieved by appropriately selecting the points in a desired
neighborhood.

If each new evaluation of the BE along the system trajectory is interpreted
as gaining experience via exploration, the use of a model to evaluate the BE
at an unexplored point in the state space can be interpreted as a simulation
of experience. Learning based on simulation of experience has been inves-
tigated in results such as [45�50] for stochastic model-based RL; however,
these results solve the optimal control problem o�-line in the sense that re-
peated learning trials need to be performed before the algorithm learns the
controller, and system stability during the learning phase is not analyzed.

In this chapter a novel implementation of simulation of experience is pre-
sented for deterministic nonlinear systems using BE extrapolation. A detailed
stability analysis is presented to establish online approximate learning of
the optimal controller while maintaining system stability during the learning
phase. The stability analysis shows that provided an exact model of the sys-
tem is available, simulation of experience based on the model implemented via
BE extrapolation can be utilized to approximately solve an in�nite horizon
optimal regulation problem online.

Exact model knowledge is assumed in this chapter for ease of exposi-
tion. Using techniques similar to results such as [15,20,22,51], the developed
method can be easily extended to establish set-point regulation and conver-
gence to optimality when a system identi�er is employed instead of an exact
model of the system. Using techniques similar to results such as [22, 30], the
developed method can also be extended to optimally track of a class of desired
trajectories.

Simulation results are provided that demonstrate the e�cacy of the sys-
tem identi�cation-based extension of the developed method for uncertain in-
herently unstable control a�ne nonlinear systems without the addition of a
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probing signal. The performance of the developed controller is demonstrated
through approximate solution of an optimal control problem that has a known
analytical solution. Based on the known solution, an exact polynomial basis
is used for value function approximation. Another simulation demonstrates
the applicability of the developed technique in the case where the analytical
solution, and hence, the basis for value function approximation is unknown.
In this case, since the optimal solution is unknown, the optimal trajectories
obtained using the developed technique are compared with optimal trajecto-
ries obtained through numerical optimal control techniques.

The performance of the developed controller is demonstrated via experi-
ments conducted on an autonomous underwater vehicle (AUV) at a spring
head. The developed approximate optimal controller is used to regulate three
degrees-of-freedom of the AUV, i.e., surge, sway, and yaw, to a set-point. All
the computations required to implement the controller are performed on-
board using an embedded processor. The experimental results demonstrate
the capability of the developed method to concurrently identify, optimize,
and control a real-world nonlinear autonomous system.

1.2 Problem Formulation

Consider a control a�ne nonlinear dynamical system of the form

ẋ (t) = f (x (t)) + g (x (t))u (t) , (1.1)

t ∈ R≥t0 ,1 where t0 denotes the initial time, x : R≥t0 → Rn denotes the
system state f : Rn → Rn and g : Rn → Rn×m denote the drift dynamics and
the control e�ectiveness, respectively, and u : R≥t0 → Rm denotes the control
input. The functions f and g are assumed to be locally Lipschitz continuous.
Furthermore, f (0n×1) = 0n×1 and ∇f : Rn → Rn×n are continuous.23 In
the following, the notation φu (t; t0, x

o) denotes the trajectory of the system
in (1.1) under the control signal u with the initial condition4 xo ∈ Rn and
initial time t0 ∈ R≥0.

The control objective is to solve the in�nite-horizon optimal regulation
problem online, i.e., to design a control signal u online to minimize the cost
functional

1 The notation R≥a denotes the interval [a,∞), and the notation R>a denotes the interval
(a,∞).
2 The notation ∇f (x, y, · · · ) denotes the partial derivative of f with respect to the �rst
argument.
3 The notations 0n×m and In denote an n × m matrix of zeros and an n × n identity
matrix, respectively.
4 The notation (·)o is used to denote an arbitrary variable.
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J (x, u) ,

∞̂

t0

r (x (τ) , u (τ)) dτ, (1.2)

under the dynamic constraint in (1.1) while regulating the system state to the
origin. In (1.2), r : Rn × Rm → R≥0 denotes the instantaneous cost de�ned
as

r (xo, uo) , Q (xo) + uoTRuo, (1.3)

for all xo ∈ Rn and uo ∈ Rm, where Q : Rn → R≥0 is a positive de�nite
function, and R ∈ Rm×m is a constant positive de�nite symmetric matrix.

Assuming an optimal controller exists, a closed-form solution to the op-
timal control problem is formulated in terms of the optimal value function
V ∗ : Rn → R≥0 de�ned as

V ∗ (xo) , min
u(τ)∈U |τ∈R≥t

∞̂

t

r (φu (τ ; t, xo) , u (τ)) dτ. (1.4)

Assuming that the optimal value function is continuously di�erentiable, it
can be obtained by solving the corresponding HJB equation [52]

∇V ∗ (xo) (f (xo) + g (xo)u∗ (xo)) +Q (xo) + u∗T (xo)Ru∗ (xo) = 0, (1.5)

for all xo ∈ Rn, with the boundary condition V ∗ (0) = 0. The opti-
mal control law can be determined using the optimal value function as
u∗ (xo) = − 1

2R
−1gT (xo) (∇V ∗ (xo))

T
[52].

An analytical solution of the HJB equation is generally infeasible; hence, an
approximate solution is sought. An approximate solution of the HJB equation
is facilitated by replacing V ∗ and u∗ in (1.5) by their respective subsequently

de�ned parametric estimates V̂
(
xo, Ŵ o

c

)
and û

(
xo, Ŵ o

a

)
to compute the BE

δ : Rn+2L → R as

δ
(
xo, Ŵ o

c , Ŵ
o
a

)
= ∇V̂

(
xo, Ŵ o

c

)(
f (xo) + g (xo) û

(
xo, Ŵ o

a

))
+ xoTQxo

+ ûT
(
xo, Ŵ o

a

)
Rû
(
xo, Ŵ o

a

)
, (1.6)

where Ŵ o
c ∈ RL and Ŵ o

a ∈ RL denote the estimates of the unknown param-
eters in the approximation of the value function and the policy, respectively.
The control objective is achieved by simultaneously adjusting the estimates
Ŵ o
c and Ŵ o

a to minimize the BE.
Since the BE depends on the drift dynamics, f is assumed to be known.

The focus of this chapter is a novel implementation of simulation of experience
for online approximate optimal control of deterministic nonlinear systems. If
a system model is available, then the approximate optimal control technique
can be implemented using the model. However, if an exact model of the
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system is unavailable, then parametric system identi�cation can be employed
to generate an estimate of the system model. A possible approach is to use
parameters that are estimated o�ine in a separate experiment. A more useful
approach is to use the o�ine estimate as an initial guess, and employ an
adaptive system identi�cation technique capable of re�ning the initial guess
based on input-output data. The proposed technique can be easily extended
to incorporate an online adaptive system identi�er (cf. [15, 20,22,51]).

1.3 Approximate Optimal Control

1.3.1 Value function approximation

Approximations to the optimal value function V ∗ and the optimal policy
u∗ are designed based on neural network (NN)-based representations. Given
any compact set χ ⊂ Rn and positive constants ε̄, ε̄′ ∈ R, the universal
approximation property of NNs can be exploited to represent the optimal
value function V ∗ as V ∗ (xo) = WTσ (xo)+ ε (xo) , for all xo ∈ χ, where W ∈
RL is the ideal weight matrix, which is bounded above by a known positive
constant W̄ in the sense that ‖W‖ ≤ W̄ , σ : Rn → RL is a continuously
di�erentiable nonlinear activation function such that σ (0) = 0 and σ′ (0) = 0,
L ∈ N is the number of neurons, and ε : Rn → R is the function reconstruction
error such that supxo∈χ |ε (xo)| ≤ ε̄ and supxo∈χ |∇ε (xo)| ≤ ε̄′.

Based on the NN representation of the value function a NN-
based representation of the optimal controller is derived as u∗ (xo) =
− 1

2R
−1gT (xo)

(
∇σT (xo)W +∇εT (xo)

)
. The NN-based approximations V̂ :

Rn × RL → R and û : Rn × RL → Rm are de�ned as

V̂
(
xo, Ŵ o

c

)
, Ŵ oT

c σ (xo) ,

û
(
xo, Ŵ o

a

)
, −1

2
R−1gT (xo)∇σT (xo) Ŵ o

a , (1.7)

where Ŵ o
c ∈ RL and Ŵ o

a ∈ RL denote the estimates of the ideal weights W .
The use of two sets of weights to estimate the same set of ideal weights is
motivated by the stability analysis and the fact that it enables a formulation
of the BE that is linear in the value function weight estimates Ŵ o

c , enabling
a least squares-based adaptive update law.
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1.3.2 Simulation of experience via BE extrapolation

In traditional RL-based algorithms, the value function estimate and the pol-
icy estimate are updated based on observed data. The use of observed data to
learn the value function naturally leads to a su�cient exploration condition,
which demands su�cient richness in the observed data. In stochastic systems,
this is achieved using a randomized stationary policy (cf. [7,53,54]), whereas
in deterministic systems, a probing noise is added to the derived control law
(cf. [8, 12, 55�57]). The technique developed in this result implements simu-
lation of experience in a model-based RL scheme by using the system model
to extrapolate the approximate BE to unexplored areas of the state space.

In the following, δt : R≥t0 → R denotes the BE in (1.6) evaluated along

the trajectories of (1.1), (1.8), and (1.10) as δt (t) , δ
(
x (t) , Ŵc (t) , Ŵa (t)

)
and δti : R≥t0 → R denotes BE extrapolated along the trajectories of (1.8),
(1.10), and a prede�ned set of trajectories {xi : R≥t0 → Rn | i = 1, · · · , N}
as δti , δ

(
xi (t) , Ŵc (t) , Ŵa (t)

)
. A least-squares update law for the value

function weights is designed based on the subsequent stability analysis as

˙̂
Wc = −kc1Γ (t)

ω (t)

ρ (t)
δt (t)− kc2

N
Γ (t)

N∑
i=1

ωi (t)

ρi (t)
δti (t) , (1.8)

Γ̇ (t) = βΓ (t)− kc1Γ (t)
ω (t)ωT (t)

ρ2 (t)
Γ (t)− kc2

N
Γ (t)

N∑
i=1

ωi (t)ωTi (t)

ρ2i (t)
Γ (t) ,

(1.9)

Γ (t0) = Γ0, where Γ : R≥t0 → RL×L is a time-varying least-squares

gain matrix, ω (t) , σ′ (x (t))
(
Y (x (t)) θ̂ (t) + g (x (t)) û

(
x (t) , Ŵa (t)

))
,

ωi (t) , σ′ (xi (t))
(
Y (xi (t)) θ̂ (t) + g (xi (t)) û

(
xi (t) , Ŵa (t)

))
, ρ (t) , 1 +

γ1ω
T (t)ω (t), ρi (t) , 1 + γ1ω

T
i (t)ωi (t), where γ1 ∈ R is a constant positive

normalization gain, 1{·} denotes the indicator function, Γ > 0 ∈ R is a satura-
tion constant, β > 0 ∈ R is a constant forgetting factor, and kc1, kc2 > 0 ∈ R
are constant adaptation gains.

The policy weights are updated to follow the value function weights as5

˙̂
Wa (t) = −ka1

(
Ŵa (t)− Ŵc (t)

)
−ka2Ŵa (t)+

kc1G
T
σ (t) Ŵa (t)ωT (t)

4ρ (t)
Ŵc (t)

5 Using the fact that the ideal weights are bounded, a projection-based (cf. [58]) update

law
·
Ŵa = proj

{
−ka1

(
Ŵa − Ŵc

)}
can be utilized to update the policy weights. Since the

policy weights are bounded a priori by the projection algorithm, a less complex stability
analysis can be used to establish the result in Theorem 1.
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+

N∑
i=1

kc2G
T
σi (t) Ŵa (t)ωTi (t)

4Nρi (t)
Ŵc (t) , (1.10)

where ka1, ka2 ∈ R are positive constant adaptation gains,
Gσ (t) , σ′ (x (t)) g (x (t))R−1gT (x (t))σ′T (x (t)), Gσi (t) ,
∇σi (t) gi (t)R−1gTi (t)∇σTi (t) ∈ RL×L, where gi (t) = g (xi (t)) and

∇σi (t) = ∇σ (xi (t)). Using the weight estimates Ŵa, the controller for the
system in (1.1) is designed as

u (t) = û
(
x (t) , Ŵa (t)

)
. (1.11)

The following rank condition facilitates the subsequent stability analysis.

Assumption 1.1. There exists a �nite set of trajectories
{xi : R≥t0 → Rn | i = 1, · · · , N} and a constant T ∈ R>0 such that

c1IL ≤
t+Tˆ

t

(
ω (τ)ωT (τ)

ρ2 (τ)

)
dτ, ∀t ∈ R≥t0 , (1.12)

c2IL ≤ inf
t∈R≥t0

(
1

N

N∑
i=1

ωi (t)ωTi (t)

ρ2i (t)

)
, (1.13)

c3IL ≤
1

N

t+Tˆ

t

(
N∑
i=1

ωi (τ)ωTi (τ)

ρ2i (τ)

)
dτ, ∀t ∈ R≥t0 , (1.14)

where, at least one of the nonnegative constants c1, c2, and c3 is strictly
positive.

The rank conditions in (1.12) - (1.14) depend on the estimates Ŵa; hence, in
general, they are impossible to guarantee a priori. However, unlike traditional
adaptive dynamic programming literature that assumes ω is PE, Assumption
1.1 only requires either the regressor ω or the regressor ωi to be persistently
exciting. The regressor ω is completely determined by the system state x, and
the weights Ŵa. Hence, excitation in ω vanishes as the system states and the
weights converge. Hence, in general, it is unlikely that c1 > 0. However, the
regressor ωi depends on xi, which can be designed independent of the system
state x. Hence, c3 can be made strictly positive if the signal xi contains enough
frequencies, and c2 can be made strictly positive by selecting a su�cient
number of extrapolation functions, i.e., N � L.

The update law in (1.8) is fundamentally di�erent from the CL adaptive
update in results such as [59, 60], in the sense that the trajectories {xi}
are selected a priori based on prior information about the desired behavior
of the system. Given the system dynamics, or an estimate of the system
dynamics, the approximate BE can be extrapolated to any desired point in
the state space, whereas in adaptive control, the prediction error is used as a
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metric which can only be evaluated at observed data points along the state
trajectory.

1.4 Stability analysis

1.4.1 Boundedness of the least-squares gain under

persistent excitation

Intuitively, the selection of time-varying trajectories for BE extrapolation
results in virtual excitation. That is, instead of using input-output data from a
persistently excited system, the dynamic model is used to simulate persistent
excitation to facilitate parameter convergence. In the following upper and
lower bounds on the eigenvalues of the least-squares learning gain matrix Γ
are established. Bounds on the eigenvalues of Γ are traditionally established
under PE. The following lemma extends the traditional PE-based result to
incorporate the generalized excitation conditions in Assumption 1.1.

Lemma 1. Provided Assumption 1.1 holds and λmin

{
Γ−10

}
> 0, the update

law in (1.9) ensures that the least squares gain matrix satis�es

ΓIL ≤ Γ (t) ≤ ΓIL, (1.15)

∀t ∈ R≥0, where Γ = 1

min{kc1c1+kc2 max{c2T,c3},λmin{Γ−1
0 }}e−βT

and Γ =

1

λmax{Γ−1
0 }+ (kc1+kc2)

βγ1

. Furthermore, Γ > 0.

Proof. The proof closely follows the proof of [40, Corollary 4.3.2]. The

update law in (1.9) implies that d
dtΓ
−1 (t) = −βΓ−1 (t) + kc1

ω(t)ωT (t)
ρ2(t) +

kc2
N

∑N
i=1

ωi(t)ω
T
i (t)

ρ2i (t)
. Hence,

Γ−1 (t) = e−βtΓ−10 + kc1

tˆ

0

e−β(t−τ)
ω (τ)ωT (τ)

ρ2 (τ)
dτ

+
kc2
N

tˆ

0

e−β(t−τ)
N∑
i=1

ωi (τ)ωTi (τ)

ρ2i (τ)
dτ.

To facilitate the proof, let t < T . Then,

Γ−1 (t) ≥ e−βtΓ−10 ≥ e−βTΓ−10 ≥ λmin

{
Γ−10

}
e−βT IL.

If t ≥ T, then since the integrands are positive, Γ−1 can be bounded as
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Γ−1(t)≥kc1

tˆ

t−T

e−β(t−τ)
ω (τ)ωT (τ)

ρ2 (τ)
dτ +

kc2
N

tˆ

t−T

e−β(t−τ)
N∑
i=1

ωi (τ)ωTi (τ)

ρ2i (τ)
dτ.

Hence,

Γ−1 (t) ≥ kc1e−βT
tˆ

t−T

ω (τ)ωT (τ)

ρ2 (τ)
dτ +

kc2
N
e−βT

tˆ

t−T

N∑
i=1

ωi (τ)ωTi (τ)

ρ2i (τ)
dτ.

Using Assumption 1.1,

1

N

tˆ

t−T

N∑
i=1

ωi (τ)ωTi (τ)

ρ2i (τ)
dτ ≥ max {c2T, c3} IL,

tˆ

t−T

ω (τ)ωT (τ)

ρ2 (τ)
dτ ≥ c1IL.

Hence a lower bound for Γ−1 is obtained as,

Γ−1 (t) ≥ min
{
kc1c1 + kc2 max {c2T, c3} , λmin

{
Γ−10

}}
e−βT IL. (1.16)

Provided Assumption 1.1 holds, the lower bound in (1.16) is strictly positive.

Furthermore, using the facts that ω(t)ωT (t)
ρ2(t) ≤ 1

γ1
and

ωi(t)ω
T
i (t)

ρ2i (t)
≤ 1

γ1
for all

t ∈ R≥t0 ,

Γ−1 (t) ≤
tˆ

0

e−β(t−τ)

(
kc1

1

γ1
+
kc2
N

N∑
i=1

1

γ1

)
ILdτ + e−βtΓ−10

≤
(
λmax

{
Γ−10

}
+

(kc1 + kc2)

βγ1

)
IL.

Since the inverse of the lower and upper bounds on Γ−1 are the upper and
lower bounds on Γ , respectively, the proof is complete.

1.4.2 Regulation and convergence to optimality

For notational brevity, the dependence of all the functions on the system
states and time is suppressed hereafter unless required for clarity of expo-
sition. To facilitate the subsequent stability analysis, the approximate BE
is expressed in terms of the weight estimation errors W̃c , W − Ŵc and
W̃a , W − Ŵa. Subtracting (1.5) from (1.6), an unmeasurable form of the
instantaneous BE can be expressed as

δt = −ωT W̃c +
1

4
W̃T
a GσW̃a +∆ (1.17)
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where G , gR−1gT ∈ Rn×n, ∆ , 1
2W

T∇σG∇εT + 1
4Gε − ∇εf ∈ R,

Gε , ∇εG∇εT ∈ R, and Gσ was introduced in (1.10). Similarly, the ap-
proximate BE evaluated along the selected trajectories {xi | i = 1, · · · , N}
can be expressed as

δti = −ωTi W̃c +
1

4
W̃T
a GσiW̃a +∆i, (1.18)

where ∇εi = ∇ε (xi), fi = f (xi), Gi , giR
−1gTi ∈ Rn×n, ∆i ,

1
2W

T∇σiGi∇εTi + 1
4Gεi−∇εifi ∈ R is a constant, Gεi , ∇εiGi∇εTi ∈ R, and

Gσi was introduced in (1.10).
Let Bζ ⊂ Rn+2L denote a closed ball with radius ζ centered at the origin.

Let χ , Bζ∩Rn. Let the notation ‖(·)‖ be de�ned as ‖h‖ , supxo∈χ ‖h (xo)‖,
for some continuous function h : Rn → Rk. To facilitate the analysis, let
{$j ∈ R>0 | j = 1, · · · , 7} be constants such that $1 + $2 + $3 = 1, and
$4 +$5 +$6 +$7 = 1. Let c ∈ R>0 be a constant de�ned as

c ,
β

2Γkc2
+
c2
2
, (1.19)

and let ι ∈ R be a positive constant de�ned as

ι ,
(kc1 + kc2)

2 ‖∆‖
2

4kc2c$3
+

1

4 (ka1 + ka2)$6

(
W‖Gσ‖

2
+

(kc1 + kc2)W
2‖Gσ‖

4

+
‖∇εGT∇σT ‖

2
+ ka2W

)2

+
1

4
‖Gε‖. (1.20)

To facilitate the stability analysis, let VL : Rn+2L ×R≥0 → R≥0 be a contin-
uously di�erentiable candidate Lyapunov function de�ned as

VL (Zo, t) , V ∗ (xo) +
1

2
W̃ oT
c Γ−1W̃ o

c +
1

2
W̃ oT
a W̃ o

a , (1.21)

where V ∗ is the optimal value function and Zo ,
[
xoT , W̃ oT

c , W̃ oT
a

]T
. Using

the fact that V ∗ is positive de�nite, (1.15), Lemma 1, and Lemma 4.3 from
[61] yield

vl (‖Zo‖) ≤ VL (Zo, t) ≤ vl (‖Zo‖) , (1.22)

for all t ∈ R≥t0 and for all Zo ∈ Rn+2L, where vl, vl : R≥0 → R≥0 are
class K functions. Let vl : R≥0 → R≥0 be a class K function such that

vl (‖Zo‖) ≥ Q(xo)
2 + kc2c$1

2

∥∥∥W̃ o
c

∥∥∥2 + (ka1+ka2)$4

2

∥∥∥W̃ o
a

∥∥∥2 .
Let Z : R≥t0 → Rn+2L denote the concatenated trajectories of (1.1), (1.8),

and (1.10), de�ned as Z (t) ,
[
xT (t) , W̃T

c (t) , W̃T
a (t)

]T
. The su�cient
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conditions for ultimate boundedness of Z are derived based on the subsequent
stability analysis as

kc2c (ka1 + ka2)$5$2 ≥
(
ka1 +

1

4
(kc1 + kc2)W‖Gσ‖

)
, (1.23)

(ka1 + ka2)$7 ≥
1

4
(kc1 + kc2)W‖Gσ‖, (1.24)

v−1l (ι) < vl
−1 (vl (ζ)

)
. (1.25)

The bound on the function f and the NN function approximation errors
depend on the underlying compact set; hence, ι is a function of ζ. Even
though, in general, ι increases with increasing ζ, the su�cient condition in
(1.25) can be satis�ed provided the points for BE extrapolation are selected
such that the constant c, introduced in (1.19) is large enough and that the
basis for value function approximation are selected such that ‖ε‖ and ‖∇ε‖
are small enough. The main result of this chapter can now be stated as follows.

Theorem 1. Provided Assumption (1.1) holds and the su�cient gain con-
ditions in (1.23) - (1.25) are satis�ed, the controller in (1.11) along with
the adaptive update laws in (1.8) - (1.10) ensure that the state x, the value
function weight estimation error W̃c and the policy weight estimation error
W̃a are uniformly ultimately bounded.

Proof. The time derivative of (1.21) along the trajectories of (1.1) and (1.8)
- (1.10) is given by

V̇L = V̇ ∗ − W̃T
c Γ
−1 ˙̂
Wc −

1

2
W̃T
c Γ̇
−1W̃c − W̃T

a
˙̂
Wa,

= ∇V ∗ (f + gu)− W̃T
c

(
−kc1

ω

ρ
δt −

kc2
N

N∑
i=1

ωi
ρi
δti

)

− 1

2
W̃T
c Γ
−1

(
βΓ − kc1

(
Γ
ωωT

ρ2
Γ

)
− kc2

N
Γ

N∑
i=1

ωiω
T
i

ρ2i
Γ

)
Γ−1W̃c

− W̃T
a

(
−ka1

(
Ŵa − Ŵc

)
− ka2Ŵa

)
− W̃T

a

(
kc1G

T
σ Ŵaω

T

4ρ
+

N∑
i=1

kc2G
T
σiŴaω

T
i

4Nρi

)
Ŵc.

Substituting for the approximate BEs from (1.17) and (1.18) and using the

inequality ωωT

ρ2 ≤
ωωT

ρ , the Lyapunov derivative can be bounded as

V̇L ≤ −Q (x)− kc2W̃T
c

(
βΓ−1

2kc2
+

N∑
i=1

ωiω
T
i

2Nρi

)
W̃c − (ka1 + ka2) W̃T

a W̃a
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+

(
WTGσ+∇εGT∇σT

2
+ka2W

T− kc1W
TωWTGσ
4ρ

−
N∑
i=1

kc2W
TωiW

TGσi
4Nρi

)
W̃a

+ W̃T
c

(
ka1 +

kc1ωW
TGσ

4ρ
+

N∑
i=1

kc2ωiW
TGσi

4Nρi

)
W̃a

+WT kc1ω

4ρ
W̃T
a GσW̃a +WT

N∑
i=1

kc2ωi
4Nρi

W̃T
a GσiW̃a

+ W̃T
c

(
kc1

ω

ρ
∆+

1

N

N∑
i=1

kc2ωi
ρi

∆i

)
+

1

4
Gε.

Provided the gains are selected based on the su�cient conditions in (1.23) -
(1.25), the Lyapunov derivative can be upper-bounded as

V̇L ≤ −vl (‖Z‖) , ∀ ‖Z‖ > v−1l (ι) , (1.26)

for all t ≥ 0 and ∀Z ∈ Bζ . Using (1.22), (1.25), and (1.26), Theorem 4.18
in [61] can now be invoked to conclude that Z is uniformly ultimately bounded
in the sense that lim supt→∞ ‖Z (t)‖ ≤ vl

−1 (vl (v−1l (ι)
))
. Furthermore, the

concatenated state trajectories are bounded such that ‖Z (t)‖ ∈ Bζ for all

t ∈ R≥t0 . Since the estimates Ŵa approximate the ideal weightsW , the policy
û approximates the optimal policy u∗.

1.5 Simulation

This section presents two simulations to demonstrate the performance and the
applicability of the developed technique. First, the performance of the devel-
oped controller is demonstrated through approximate solution of an optimal
control problem that has a known analytical solution. Based on the known
solution, an exact polynomial basis is used for value function approximation.
The second simulation demonstrates the applicability of the developed tech-
nique in the case where the analytical solution, and hence, the basis for value
function approximation is unknown. In this case, since the optimal solution
is unknown, the optimal trajectories obtained using the developed technique
are compared with optimal trajectories obtained through o�ine numerical
optimal control techniques.
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1.5.1 Problem with a known basis

The performance of the developed controller is demonstrated by simulating
a nonlinear, control a�ne system with a two dimensional state x = [x1, x2]T .
The system dynamics are described by (1.1), where [8]

f =

[
x1 x2 0 0

0 0 x1 x2

(
1− (cos (2x1) + 2)

2
)]

a
b
c
d

 ,
g =

[
0

cos (2x1) + 2

]
. (1.27)

In (1.27), a, b, c, d ∈ R are positive unknown parameters.6 The parameters
are selected as7 a = −1, b = 1, c = −0.5, and d = −0.5. The control
objective is to minimize the cost in (1.4), where Q = I2 and R = 1. The
optimal value function and optimal control for the system in (1.27) are given
by V ∗(x) = 1

2x
2
1 + x22, and u

∗(x) = −(cos(2x1) + 2)x2 (cf. [8]).
To facilitate the ADP-based controller, the basis function σ : R2 → R3

for value function approximation is selected as σ =
[
x21, x1x2, x

2
2

]
. Based

on the analytical solution, the ideal weights are W = [0.5, 0, 1]
T
. The data

points for the CL-based update law in (1.8) are selected to be on a 5 × 5
grid around the origin. The initial condition for the system state is selected
as x (0) = [−1, −1]

T
.

Figure 1.1 demonstrates that the system state is regulated to the origin,
the unknown parameters in the drift dynamics are identi�ed, and the value
function and the policy weights converge to their true values. Furthermore,
unlike previous results, a probing signal to ensure PE is not required. Figure
1.2 demonstrates the satisfaction of Assumptions 2 and 3.

1.5.2 Problem with an unknown basis

To demonstrate the applicability of the developed controller, a nonlinear,
control a�ne system with a four dimensional state x = [x1, x2, x3, x4]T is
simulated. The system dynamics are described by (1.1), where

6 To relax the requirement of exact model knowledge, the simulations and the experiment
employ a concurrent learning-based system identi�er (cf. [15,20,22,51]). Using techniques
similar to results such as [15,20,22,51], the analysis in Section (1.4) can be easily extended
to establish set-point regulation and convergence to optimality when a system identi�er is
employed instead of an exact model of the system.
7 The origin is an unstable equilibrium point of the unforced system ẋ = f (x).
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Fig. 1.1 System trajectories generated using the proposed method, and compared to the
analytical solution.

f (x) =


x3
x4

−M−1Vm
[
x3
x4

]
+

 0, 0, 0, 0
0, 0, 0, 0[
M−1, M−1

]
D



fd1
fd2
fs1
fs2

 ,
g (x) =

[[
0, 0
]T
,
[
0, 0
]T
,
(
M−1

)T ]T . (1.28)
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Fig. 1.2 Satisfaction of Assumption 1.1 for the simulation with known basis.

In (1.28), x , [x1, x2, x3, x4]
T
, D , diag [x3, x4, tanh (x3) , tanh (x4)]

and the matrices M, Vm, Fd, Fs ∈ R2×2 are de�ned as

M ,

[
p1 + 2p3c2, p2 + p3c2
p2 + p3c2, p2

]
, Fd ,

[
fd1, 0
0, fd2

]
, Vm ,[

−p3s2x4, −p3s2 (x3 + x4)
p3s2x3, 0

]
, and Fs ,

[
fs1 tanh (x3) , 0

0, fs2 tanh (x3)

]
,

where c2 = cos (x2) , s2 = sin (x2), p1 = 3.473, p2 = 0.196, and p3 = 0.242,
and fd1, fd2, fs1, fs2 ∈ R are positive unknown parameters.8 The parameters
are selected as fd1 = 5.3, fd2 = 1.1, fs1 = 8.45, and fs2 = 2.35. The control
objective is to minimize the cost in (1.4), where Q = diag ([10, 10, 1, 1])
and R = diag ([1, 1]).

To facilitate the ADP-based controller, the basis function σ :
R4 → R10 for value function approximation is selected as σ(x) =[
x1x3, x2x4, x3x2, x4x1, x1x2, x4x3, x

2
1, x

2
2, x

2
3, x

2
4

]
. The points for the CL-

based update law in (1.8) are selected to be on a 3 × 3 × 3 × 3 grid
around the origin, and the policy weights are updated using a projection-
based update law. The initial condition for the system state is selected as
x (0) = [1, 1, 0, 0]

T
.

Figure 1.3 demonstrates that the system state is regulated to the origin,
the unknown parameters in the drift dynamics are identi�ed, and the value
function and the policy weights converge. Figure 1.5 demonstrates the satis-
faction of Assumptions 2 and 3. The value function and the policy weights
converge to the following values.

Ŵ ∗c = Ŵ ∗a = [24.7, 1.19, 2.25, 2.67, 1.18, 0.93, 44.34,

11.31, 3.81 , 0.10]
T
. (1.29)

8 See Footnote (6).
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Fig. 1.4 State and control trajectories generated using feedback policy û∗ (x) compared
to a numerical optimal solution.
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Fig. 1.5 Satisfaction of Assumption 1.1 for the simulation with unknown basis.

Since the true values of the value function weights are unknown, the weights
in (1.29) can not be compared to their true values. However, a measure of
proximity of the weights in (1.29) to the ideal weights W can be obtained
by comparing the system trajectories resulting from applying the feedback
control policy û∗ (x) = − 1

2R
−1gT (x)∇σT (x) Ŵ ∗a to the system, against nu-

merically computed optimal system trajectories. In Figure 1.4, the numerical
optimal solution is obtained using an in�nite-horizon Gauss pseudospectral
method (cf. [62]) using 45 collocation points. Figure 1.4 indicates that the
weights in (1.29) generate state and control trajectories that closely match
the numerically computed optimal trajectories.
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1.6 Experimental Validation

The performance of the developed controller is demonstrated with experi-
ments conducted at Ginnie Springs in High Springs, FL. Ginnie Springs is
a second-magnitude spring discharging 142 million liters of freshwater daily
with a spring pool measuring 27.4 m in diameter and 3.7 m deep [63]. Ginnie
Springs was selected to validate the proposed controller because of its rela-
tively high �ow rate and clear waters for vehicle observation. For clarity of
exposition9 and to remain within the vehicle's depth limitations10, the pro-
posed method is implemented on 3 degrees-of-freedom of an AUV, i.e., surge,
sway, yaw.

1.6.1 Experimental Platform

Experiments were conducted on an AUV, SubjuGator 7, developed at the
University of Florida. The AUV, shown in Figure 1.6, is a small two man
portable AUV with a mass of 40.8 kg. The vehicle is over-actuated with eight
bidirectional thrusters.

Designed to be modular, the vehicle has multiple specialized pressure ves-
sels that house computational capabilities, sensors, batteries, and mission
speci�c payloads. The central pressure vessel houses the vehicle's motor con-
trollers, network infrastructure, and core computing capability. The core com-
puting capability services the vehicles environmental sensors (e.g. visible light
cameras, scanning sonar, etc.), the vehicles high-level mission planning, and
low-level command and control software. A standard small form factor com-
puter makes up the computing capability and utilizes a 2.13 GHz server grade
quad-core processor. Located near the front of the vehicle, the navigation
vessel houses the vehicles basic navigation sensors. The suite of navigation
sensors include an inertial measurement unit, a Doppler velocity log (DVL),
a depth sensor, and a digital compass. The navigation vessel also includes
an embedded 720 MHz processor for preprocessing and packaging navigation
data. Along the sides of the central pressure vessel, two vessels house 44 Ah
of batteries used for propulsion and electronics.

The vehicle's software runs within the Robot Operating System framework
in the central pressure vessel. For the experiment, three main software nodes
were used: navigation, control, and thruster mapping nodes. The navigation

9 The number of basis functions and weights required to support a 6 DOF model greatly
increases from the set required for the 3 DOF model. The increased number of parameters
and complexity reduces the clarity of this proof of principal experiment.
10 The vehicle's Doppler velocity log has a minimum height over bottom of approximately
3 m that is required to measure water velocity. A minimum depth of approximately 0.5
m is required to remove the vehicle from surface e�ects. With the depth of the spring
nominally 3.7 m, a narrow window of about 20 cm is left operate the vehicle in heave.
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Fig. 1.6 SubjuGator 7 AUV operating at Ginnie Springs, FL.

node receives packaged navigation data from the navigation pressure vessel
where an unscented Kalman �lter estimates the vehicle's full state at 50Hz.
The desired force and moment produced by the controller are mapped to the
eight thrusters using a least-squares minimization algorithm. The controller
node contains the proposed controller and system identi�er.

1.6.2 Controller Implementation

Implementation of the developed controller is divided into three parts: system
identi�cation, value function iteration, and control iteration. Implementing
the system identi�er requires a recorded data set. The data set was collected
in a swimming pool. The vehicle was commanded to track an exciting tra-
jectory with a robust integral of the sign of the error (RISE) controller [64]
while the state-action pairs were recorded. The recorded data was trimmed
to a subset of 40 sampled points that were selected to maximize the mini-
mum singular value of the history stack as in Section 6.2 of [65]. The system
identi�er is updated at 50 Hz.

Equations (1.6) and (1.8) form the value function iteration. Evaluating the
extrapolated BE (1.6) with each control iteration is computational expensive.
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Due to the limited computational resources available on-board the AUV, the
update of the value function weights was calculated at 5 Hz.

For the experiments, the proposed controller was restricted to 3 degrees-of-
freedom, i.e., surge, sway, and yaw. The RISE controller is used to regulate the
remaining degrees-of-freedom, i.e., heave, roll, and pitch, in order to maintain
the implied assumption that roll and pitch remain at zero and the depth
remains constant. Implementing the proposed controller requires (1.10) and
(1.11). The RISE controller in conjunction with the proposed controller runs
at a rate of 50Hz.

The vehicle uses water pro�ling data from the DVL to measure the rela-
tive water velocity near the vehicle in addition to bottom tracking data for
the state estimator. Between the state estimator, water pro�ling data, and
recorded data, the equations used to implement the proposed controller only
contain known or measurable quantities.

1.6.3 Results
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Fig. 1.7 Inertial position error η , [x, y, θ]T (left) and body-�xed velocity error ν ,
[u, v, r]T (right) of the AUV.

The vehicle was commanded to hold a station near the vent of Ginnie
Spring. An initial condition of x (t0) =

[
4 m 4 m π

4 rad 0 m/s 0 m/s 0 rad/s
]T

was given to demonstrate the controller's ability to regulate the state.
The optimal control weighting matrices were selected to be Q =
diag ([20, 50, 20, 10, 10, 10]) and R = I3. The NN weights were initialized to
match the ideal values for the linearized optimal control problem, which is
obtained by solving the algebraic Riccati equation with the dynamics lin-
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Fig. 1.8 Critic Ŵc (left) and actor Ŵa (right) neural network weight estimates online
convergence.
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Fig. 1.9 Body-�xed optimal control e�ort commanded about the center of mass of the
vehicle.

earized about the station. The BE was extrapolated to 2025 points in a grid
about the station.

Figure 1.7 illustrates the ability of the generated policy to regulate the
state. Figure 1.9 illustrates the total control e�ort applied to the body of the
vehicle. Figure 1.9 illustrates the output of the approximate optimal policy for
the residual system. Figure 1.10 illustrates the convergence of the parameters
of the system identi�er and Figure 1.8 illustrates convergence of the neural
network weights representing the value function.
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Fig. 1.10 Identi�ed system parameters determined for the vehicle online. The parameter
de�nitions may be found in Example 6.2 and Equation 6.100 of [66].

1.7 Conclusion

An online approximate optimal controller is developed, where the value func-
tion is approximated without PE in the system states via novel use of a model
to to evaluate the BE over unexplored areas of the state-space. The PE condi-
tion along the system trajectories is replaced by an excitation condition that
needs to be satis�ed along virtual trajectories selected a priori. UUB regu-
lation of the system states to a neighborhood of the origin, and convergence
of the policy to a neighborhood of the optimal policy are established using a
Lyapunov-based analysis. Simulations demonstrate that the developed tech-
nique generates an approximation to the optimal controller on-line, while
maintaining system stability, without the use of a probing signal. Experi-
ments demonstrate the ability to concurrently identify the uncertainties in
the dynamics and generate an approximate optimal policy using the identi�ed
model. The vehicle follows the generated policy to achieve its station keeping
objective in the presence of external disturbances using industry standard
navigation and environmental sensors.
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