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The objective of an optimal control synthesis problem is to compute the policy

that an agent should follow in order to maximize the accumulated reward. Analytical

solution of optimal control problems is often impossible when the system dynamics are

nonlinear. Many numerical solution techniques are available to solve optimal control

problems; however, such methods generally require perfect model knowledge and may

not be implementable in real-time.

Inroads to solve optimal control problems for nonlinear systems can be made

through insights gained from examining the value function. Under a given policy, the

value function provides a map from the state space to the set of real numbers that

measures the value of a state, generally defined as the total accumulated reward

starting from that state. If the value function is known, a reasonable strategy is to apply

control to drive the states towards increasing value. If the value function is unknown,

a reasonable strategy is to use input-output data to estimate the value function online,

and use the estimate to compute the control input. Reinforcement learning (RL)-

based optimal control synthesis techniques implement the aforementioned strategy

by approximating the value function using a parametric approximation scheme. The

approximate optimal policy is then computed based on the approximate value function.

RL-based techniques are valuable not only as online optimization tools but also

as control synthesis tools. In discrete-time stochastic systems with countable state

14



and action spaces RL-based techniques have demonstrated the ability to synthesize

stabilizing policies with minimal knowledge of the structure of the system. Techniques

such as Q-learning have shown to be effective tools to generate stabilizing policies

based on input-output data without any other information about the system. RL thus

offers a potential alternative to traditional control design techniques. However, the

extensions of RL techniques to continuous-time systems that evolve on a continuous

state-space are scarce, and often require more information about the system than just

input-output data.

This dissertation investigates extending the applicability of RL-based techniques

in a continuous-time deterministic setting to generate approximate optimal policies

online by relaxing some of the limitations imposed by the continuous-time nature of the

problem. State-of-the-art implementations of RL in continuous-time systems require a

restrictive PE condition for convergence to optimality. In this dissertation, model-based

RL is implemented via simulation of experience to relax the restrictive persistence of

excitation condition. The RL-based approach is also extended to obtain approximate

feedback-Nash equilibrium solutions to N -player nonzero-sum games.

In trajectory tracking problems, since the error dynamics are nonautonomous, the

value function depends explicitly on time. Since universal function approximators can

approximate functions with arbitrary accuracy only on compact domains, value functions

for infinite-horizon optimal tracking problems cannot be approximated with arbitrary

accuracy using universal function approximators. Hence, the extension of RL-based

techniques to optimal tracking problems for continuous-time nonlinear systems has

remained a non-trivial open problem. In this dissertation, RL-based approaches are

extended to solve trajectory tracking problems by using the desired trajectory, in addition

to the tracking error, as an input to learn the value function.

Distributed control of groups of multiple interacting agents is a challenging problem

with multiple practical applications. When the agents possess cooperative or competitive

15



objectives, the trajectory and the decisions of each agent are affected by the trajectories

and decisions of the neighboring agents. The external influence renders the dynamics

of each agent nonautonomous; hence, optimization in a network of agents presents

challenges similar to the optimal tracking problem. The interaction between the agents

in a network is often modeled as a differential game on a graph, defined by coupled dy-

namics and coupled cost functions. Using insights gained from the tracking problem, this

dissertation extends the model-based RL technique to generate feedback-Nash equi-

librium optimal policies online, for agents in a network with cooperative or competitive

objectives. In particular, the network of agents is separated into autonomous subgraphs,

and the differential game is solved separately on each subgraph.

The applicability of the developed methods is demonstrated through simulations,

and to illustrate their effectiveness, comparative simulations are presented wherever

alternate methods exist to solve the problem under consideration. The dissertation

concludes with a discussion about the limitations of the developed technique, and

further extensions of the technique are proposed along with the possible approaches to

achieve them.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The ability to learn the correct behavior from interactions with the environment is

a highly desirable characteristic of a cognitive agent. Typical interactions between an

agent and its environment can be described in terms of actions, states, and rewards (or

penalties). The actions executed by the agent affect the state of the system (i.e., the

agent and the environment), and the agent is presented with a reward (or a penalty).

Assuming that the agent chooses an action based on the state of the system, the

behavior (or the policy) of the agent can be described as a map from the state space to

the action space.

To learn the correct policy, it is crucial to establish a measure of correctness.

The correctness of a policy can be quantified in numerous ways depending on the

objectives of the agent-environment interaction. For guidance and control applications,

the correctness of a policy is often quantified in terms of a Lagrange cost and a Meyer

cost. The Lagrange cost is the cumulative penalty accumulated along a path traversed

by the agent and the Meyer cost is the penalty at the boundary. Policies with lower

total cost are considered better and policies that minimize the total cost are considered

optimal. The problem of finding the optimal policy that minimizes the total Lagrange and

Meyer cost is known as the Bolza optimal control problem.

Obtaining an analytical solution to the Bolza problem is often infeasible if the

system dynamics are nonlinear. Many numerical solution techniques are available to

solve Bolza problems; however, numerical solution techniques require exact model

knowledge and are realized via open-loop implementation of offline solutions. Open-

loop implementations are sensitive to disturbances, changes in objectives, and changes

in the system dynamics; hence, online closed-loop solutions of optimal control problems

are sought-after. Inroads to solve an optimal control problem online can be made by
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looking at the so-called value function. Under a given policy, the value function provides

a map from the state space to the set of real numbers that measures the quality of a

state. In other words, under a given policy, the value function evaluated at a given state

is the cost accumulated when starting in the given state and following the given policy.

Under general conditions, the policy that drives the system state along the steepest

negative gradient of the optimal value function turns out to be the optimal policy; hence,

online optimal control design relies on computation of the optimal value function.

For systems with finite state and action spaces, value function-based dynamic

programming (DP) techniques such as policy iteration (PI) and value iteration (VI)

are established as effective tools for optimal control synthesis. However, both PI and

VI suffer from Bellman’s curse of dimensionality, i.e., they become computationally

intractable as the size of the state space grows. Furthermore, both PI and VI require

exact knowledge of the system dynamics. The need for excessive computation can

be realistically sidestepped if one seeks to obtain an approximation to the optimal

value function instead of the exact optimal value function (i.e., approximate dynamic

programming). The need for exact model knowledge can be eliminated by using a

simulation-based approach where the goal is to learn the optimal value function using

state-action-reward triplets observed along the state trajectory (i.e., reinforcement

learning (RL)).

Approximate dynamic programming algorithms approximate the classical PI and VI

algorithms by using a parametric approximation of the policy or the value function. The

central idea is that if the policy or the value function can be parameterized with sufficient

accuracy using a small number of parameters, the optimal control problem reduces to

an approximation problem in the parameter space. Furthermore, this formulation lends

itself to an online solution approach using RL where the parameters are adjusted on-

the-fly using input-output data. However, sufficient exploration of the state-action space

is required for convergence, and the optimality of the obtained policy depends heavily on
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the accuracy of the parameterization scheme; the formulation of which requires some

insight into the dynamics of the system. Despite the aforementioned drawbacks, RL has

given rise to effective techniques that can synthesize nearly optimal policies to control

nonlinear systems that have large state and action spaces and unknown or partially

known dynamics. As a result, RL has been a growing area of research in the past two

decades.

In recent years, RL techniques have been extended to autonomous continuous-time

deterministic systems. In online implementations of RL, the control policy derived from

the approximate value function is used to control the system; hence, obtaining a good

approximation of the value function is critical to the stability of the closed-loop system.

Obtaining a good approximation of the value function online requires convergence

of the unknown parameters to their ideal values. Hence, similar to adaptive control,

the sufficient exploration condition manifests itself as a persistence of excitation (PE)

condition when RL is implemented online. In general, it is impossible to guarantee PE

a priori; hence, a probing signal designed using trial and error is added to the controller

to ensure PE. The probing signal is not considered in the stability analysis; hence,

stability of the closed-loop implementation cannot be guaranteed. In this dissertation,

a model-based RL scheme is developed to relax the PE condition. Model-based RL

is implemented using a concurrent learning (CL)-based system identifier to simulate

experience by evaluating the Bellman error (BE) over unexplored areas of the state

space.

A multitude of relevant control problems can be modeled as multi-input systems,

where each input is computed by a player, and each player attempts to influence the

system state to minimize its own cost function. In this case, the optimization problem for

each player is coupled with the optimization problem for other players; hence, in general,

an optimal solution in the usual sense does not exist, motivating the formulation of

alternative solution concepts. The most popular solution concept is a Nash equilibrium
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solution which finds applications in optimal disturbance rejection, i.e., H∞ control, where

the disturbance is modeled as a player in a two-player nonzero-sum differential game.

A set of policies is called a Nash equilibrium solution to a multi-objective optimization

problem if none of the players can improve their outcome by changing their policy while

all the other players abide by the Nash equilibrium policies. Thus, Nash equilibrium

solutions provide a secure set of strategies, in the sense that none of the players

have an incentive to diverge from their equilibrium policy. Motivated by the wide-

spread applications of differential games, this dissertation extends the model-based RL

techniques to obtain feedback-Nash equilibrium solutions to N−player nonzero-sum

differential games.

Extension of RL to trajectory tracking problems is not trivial because the error

dynamics are nonautonomous, resulting in time-varying value functions. Since universal

function approximators can approximate functions with arbitrary accuracy only on

compact domains, value functions for infinite-horizon optimal tracking problems cannot

be approximated with arbitrary accuracy using universal function approximators. The

results in this dissertation extend RL-based approaches to trajectory tracking problems

by using the desired trajectory, in addition to the tracking error, as an input to learn the

value function.

The fact that the value function depends on the desired trajectory results in a chal-

lenge in establishing system stability during the learning phase. Stability during the

learning phase is often established using Lyapunov-based stability analysis methods,

which are motivated by the fact that under general conditions, the optimal value function

is a Lyapunov function for the closed-loop system under the optimal policy. In tracking

problems, the value function, as a function of the tracking error and the desired trajec-

tory is not a Lyapunov function for the closed-loop system under the optimal policy. In

this dissertation, the aforementioned challenge is addressed by proving that the value
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function, as a time-varying function of the tracking error can be used as a Lyapunov

function.

RL techniques are valuable not only for optimization but also for control synthesis in

complex systems such as a distributed network of cognitive agents. Combined efforts

from multiple autonomous agents can yield tactical advantages including: improved

munitions effects; distributed sensing, detection, and threat response; and distributed

communication pipelines. While coordinating behaviors among autonomous agents is

a challenging problem that has received mainstream focus, unique challenges arise

when seeking autonomous collaborative behaviors in low bandwidth communication

environments. For example, most collaborative control literature focuses on centralized

approaches that require all nodes to continuously communicate with a central agent,

yielding a heavy communication demand that is subject to failure due to delays, and

missing information. Furthermore, the central agent is required to carry enough on-

board computational resources to process the data and to generate command signals.

These challenges motivate the need for a decentralized approach where the nodes

only need to communicate with their neighbors for guidance, navigation and control

tasks. Furthermore, when the agents posses cooperative or competitive objectives, the

trajectory and the decisions of each agent are affected by the trajectories and decisions

of the neighboring agents. The external influence renders the dynamics of each agent

nonautonomous, and hence, optimization in a network of agents presents challenges

similar to the optimal tracking problem.

The interaction between the agents in a network is often modeled as a differential

game on a graph, defined by coupled dynamics and coupled cost functions. Using

insights gained from the tracking problem, this dissertation extends the model-based RL

technique to generate feedback-Nash equilibrium optimal policies online, for agents in a

network with cooperative or competitive objectives. In particular, the network of agents

21



is separated into autonomous subgraphs, and the differential game is solved separately

on each subgraph.

The applicability of the developed methods is demonstrated through simulations,

and to illustrate their effectiveness, comparative simulations are presented wherever

alternate methods exist to solve the problem under consideration. The dissertation

concludes with a discussion about the limitations of the developed technique, and

further extensions of the technique are proposed along with the possible approaches to

achieve them.

1.2 Literature Review

One way to develop optimal controllers for general nonlinear systems is to use nu-

merical methods [1]. A common approach is to formulate the optimal control problem

in terms of a Hamiltonian and then to numerically solve a two point boundary value

problem for the state and co-state equations [2, 3]. Another approach is to cast the

optimal control problem as a nonlinear programming problem via direct transcription

and then solve the resulting nonlinear program [4–9]. Numerical methods are offline,

do not generally guarantee stability, or optimality, and are often open-loop. These is-

sues motivate the desire to find an analytical solution. Developing analytical solutions

to optimal control problems for linear systems is complicated by the need to solve an

algebraic Riccati equation (ARE) or a differential Riccati equation (DRE). Developing

analytical solutions for nonlinear systems is even further complicated by the sufficient

condition of solving a Hamilton-Jacobi-Bellman (HJB) partial differential equation, where

an analytical solution may not exist in general. If the nonlinear dynamics are exactly

known, then the problem can be simplified at the expense of optimality by solving an

ARE through feedback-linearization methods (cf. [10–14]).

Alternatively, some investigators temporarily assume that the uncertain system

could be feedback-linearized, solve the resulting optimal control problem, and then use

adaptive/learning methods to asymptotically learn the uncertainty, i.e., asymptotically
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converge to the optimal controller [15–18]. Inverse optimal control [19–24] is also an

alternative method to solve the nonlinear optimal control problem by circumventing the

need to solve the HJB equation. By finding a control Lyapunov function, which can be

shown to also be a value function, an optimal controller can be developed that optimizes

a derived cost. However, since the cost is derived rather than specified by mission/task

objectives, this approach is not explored in this dissertation. Optimal control-based

algorithms such as state dependent Riccati equations (SDRE) [25–28] and model-

predictive control (MPC) [29–35] have been widely utilized for control of nonlinear

systems. However, both SDRE and MPC are inherently model-based. Furthermore, due

to nonuniqueness of state dependent linear factorization in SDRE-based techniques,

and since the control problem is solved over a small prediction horizon in MPC, SDRE

and MPC generally result in suboptimal policies. Furthermore, MPC-based approaches

are computationally intensive, and closed-loop stability of SDRE-based methods is

generally impossible to establish a priori and has to be established through extensive

simulation. Owing to the aforementioned drawbacks, SDRE and MPC approaches are

not explored in this dissertation. This dissertation focuses on DP-based techniques.

The fundamental idea in all DP techniques is the principle of optimality, due to

Bellman [36]. DP techniques based on the principle of optimality have been extensively

studied in literature (cf. [37–42]). The applicability of classical DP techniques like PI

and VI is limited by the curse of dimensionality and the need for model knowledge.

Simulation-based reinforcement learning (RL) techniques such as Q-learning [40] and

temporal-difference (TD)-learning [38, 43] avoid the curse of dimensionality and the

need for exact model knowledge. However, these techniques require the states and the

actions to be on finite sets. Even though the theory is developed for finite state spaces

of any size, the implementation of simulation-based RL techniques is feasible only if

the size of the state space is small. Extensions of simulation-based RL techniques to

general state spaces or very large finite state spaces involve parametric approximation
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of the policy. Such algorithms have been studied in depth for systems with countable

state and action spaces under the name of neuro-DP (cf. [42,44–48] and the references

therein). The extension of these techniques to general state spaces and continuous

time-domains is challenging and only a small number of results are available in the

literature [49].

For deterministic systems, RL algorithms have been extended to a solve finite and

infinite-horizon discounted and total cost optimal regulation problems (cf. [50–59]) under

names such as adaptive dynamic programming (ADP) or adaptive critic algorithms.

The discrete/iterative nature of the approximate dynamic programming formulation

lends itself naturally to the design of discrete-time optimal controllers [50, 53, 55,

60–67], and the convergence of algorithms for DP-based RL controllers is studied in

results such as [61, 68–70]. Most prior work has focused on convergence analysis for

discrete-time systems, but some continuous examples are available [52, 54, 57, 70–79].

For example, in [72] Advantage Updating was proposed as an extension of the Q-

learning algorithm which could be implemented in continuous time and provided faster

convergence. The result in [74] used a HJB-based framework to derive algorithms for

value function approximation and policy improvement, based on a continuous version

of the TD error. An HJB framework was also used in [70] to develop a stepwise stable

iterative approximate dynamic programming algorithm for continuous input-affine

systems with an input-quadratic performance measure. Based on the successive

approximation method first proposed in [71], an adaptive optimal control solution is

provided in [73], where a Galerkin’s spectral method is used to approximate the solution

to the generalized HJB (GHJB). A least-squares-based successive approximation

solution to the GHJB is provided in [52], where an NN is trained offline to learn the

GHJB solution. Another continuous formulation is proposed in [75].

In online real-time applications, DP-based techniques generally require a restrictive

PE condition to establish stability and convergence. However, recent research indicates
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that data-driven learning based on recorded experience can improve the efficiency

of information utilization, thereby mollifying the PE requirements. Experience replay

techniques have been studied in RL literature to circumvent the PE requirement, which

is analogous to the requirement of sufficient exploration. Experience replay techniques

involve repeated processing of recorded input-output data in order to improve efficiency

of information utilization [80–85].

ADP-based methods that seek an online solution to the optimal control problem,

(cf., [53, 57, 59, 63, 86, 87] and the references therein) are structurally similar to adaptive

control schemes. In adaptive control, the estimates for the uncertain parameters in the

plant model are updated using the current tracking error as the performance metric,

whereas, in online RL-based techniques, estimates for the uncertain parameters in the

value function are updated using a continuous-time counterpart of the TD error, called

the BE, as the performance metric. Convergence of online RL-based techniques to the

optimal solution is analogous to parameter convergence in adaptive control.

Parameter convergence has been a focus of research in adaptive control for several

decades. It is common knowledge that the least squares and gradient descent-based

update laws generally require PE in the system state for convergence of the parameter

estimates. Modification schemes such as projection algorithms, σ−modification, and

e−modification are used to guarantee boundedness of parameter estimates and overall

system stability; however, these modifications do not guarantee parameter convergence

unless the PE condition, which is often impossible to verify online, is satisfied [88–91].

As recently shown in results such as [92] and [93], CL-based methods can be

used to guarantee parameter convergence in adaptive control without relying on the PE

condition. Concurrent learning relies on recorded state information along with current

state measurements to update the parameter estimates. Learning from recorded data is

effective since it is based on the model error, which is closely related to the parameter

estimation error. The key concept that enables the computation of the model error from
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past recorded data is that the model error can be computed if the state derivative is

known, and the state derivative can be accurately computed at a past recorded data

point using numerical smoothing techniques [92, 93]. Similar techniques have been

recently shown to be effective for online real-time optimal control [94, 95]. In particular,

the results in [95] indicate that recorded values of the BE can be used to solve the online

real-time optimal control problem without the need of PE. However, a finite amount of

added probing noise is required for the recorded data to be rich enough. Inspired by

the results in [96] and [97], which suggest that simulated experience based on a system

model can be more effective than recorded experience, the efforts in this dissertation

focus on the development of online real-time optimal control techniques based on model

learning and BE extrapolation.

A multitude of relevant control problems can be modeled as multi-input systems,

where each input is computed by a player, and each player attempts to influence the

system state to minimize its own cost function. In this case, the optimization problem

for each player is coupled with the optimization problem for other players, and hence, in

general, an optimal solution in the usual sense does not exist, motivating the formulation

of alternative optimality criteria.

Differential game theory provides solution concepts for many multi-player, multi-

objective optimization problems [98–100]. For example, a set of policies is called a Nash

equilibrium solution to a multi-objective optimization problem if none of the players can

improve their outcome by changing their policy while all the other players abide by the

Nash equilibrium policies [101]. Thus, Nash equilibrium solutions provide a secure set of

strategies, in the sense that none of the players have an incentive to diverge from their

equilibrium policy. Hence, Nash equilibrium has been a widely used solution concept in

differential game-based control techniques.

In general, Nash equilibria are not unique. For a closed-loop differential game

(i.e., the control is a function of the state and time) with perfect information (i.e. all the
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players know the complete state history), there can be infinitely many Nash equilibria.

If the policies are constrained to be feedback policies, the resulting equilibria are called

(sub)game perfect Nash equilibria or feedback-Nash equilibria. The value functions

corresponding to feedback-Nash equilibria satisfy a coupled system of Hamilton-Jacobi

(HJ) equations [102–107].

If the system dynamics are nonlinear and uncertain, an analytical solution of the

coupled HJ equations is generally infeasible; hence, dynamic programming-based

approximate solutions are sought [56,58,87,108–112]. In this dissertation, a simulation-

based actor-critic-identifier (ACI) architecture is developed to obtain an approximate

feedback-Nash equilibrium solution to an infinite horizon N -player nonzero-sum dif-

ferential game online, without requiring PE, for a nonlinear control-affine system with

uncertain linearly parameterized drift dynamics.

For trajectory tracking problems in discrete-time systems, several approaches

have been developed to address the nonautonomous nature of the open-loop system.

Park et.al. [113] use generalized backpropagation through time to solve a finite horizon

tracking problem that involves offline training of neural networks (NNs). An ADP-based

approach is presented in [114] to solve an infinite-horizon optimal tracking problem

where the desired trajectory is assumed to depend on the system states. A greedy

heuristic dynamic programming based algorithm is presented in [86] which uses a

system transformation to express a nonautonomous system as an autonomous system.

However, this result lacks an accompanying stability analysis. ADP-based approaches

are presented in [115, 116] for tracking in continuous-time systems. In both the results,

the value function (i.e. the critic) and the controller (i.e. the actor) presented are time-

varying functions of the tracking error. However, since the problem is an infinite-horizon

optimal control problem, time does not lie on a compact set. NNs can only approximate

functions on a compact domain. Thus, it is unclear how a NN with time invariant basis

functions can approximate the time-varying value function and the policy.
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For problems with multiple agents, as the desired action by an individual agent de-

pends on the actions and the resulting trajectories of its neighbors, the error system for

each agent becomes a complex nonautonomous dynamical system. Nonautonomous

systems, in general, have non-stationary value functions. Since non-stationary functions

are difficult to approximate using parameterized function approximation schemes such

as NNs, designing optimal policies for nonautonomous systems is not trivial. To address

this challenge, differential game theory is often employed in multi-agent optimal control,

where solutions to coupled Hamilton-Jacobi (HJ) equations (c.f. [112]) are sought. Since

the coupled HJ equations are difficult to solve, some form of RL is often employed to get

an approximate solution. Results such as [58, 112, 117–120] indicate that ADP can be

used to generate approximate optimal policies online for multi-agent systems. Since the

HJ equations are coupled, all of these results have a centralized control architecture.

Decentralized control techniques focus on finding control policies based on local

data for individual agents that collectively achieve the desired goal, which, for the

problem considered in this effort, is tracking a desired trajectory while maintaining a

desired formation. Various methods have been developed to solve formation tracking

problems for linear systems (cf. [121–125] and the references therein). For nonlinear

systems, MPC-based approaches ( [126, 127]) and ADP-based approaches ( [128,

129]) have been proposed. The MPC-based controllers require extensive numerical

computations and lack stability and optimality guarantees. The ADP-based approaches

either require offline computations, or are suboptimal because not all the inter-agent

interactions are considered in the value function. In this dissertation, a simulation-based

ACI architecture is developed to cooperatively control a group of agents to track a

trajectory while maintaining a desired formation.

1.3 Outline of the Dissertation

Chapter 1 serves as the introduction. Motivation behind the results in the disserta-

tion is presented along with a detailed review of the state of the art.
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Chapter 2 contains a brief review of available techniques used in the application of

RL to deterministic continuous-time systems. This chapter also highlights the problems

and the limitations of existing techniques, thereby motivating the development in the

dissertation.

Chapter 3 implements model-based RL to solve approximate optimal regulation

problems online with a relaxed PE-like condition using a simulation-based ACI architec-

ture. The development is based on the observation that, given a model of the system,

model-based RL can be implemented by evaluating the Bellman error at any number of

desired points in the state space. In this result, a parametric system model is consid-

ered, and a CL-based parameter identifier is developed to compensate for uncertainty

in the parameters. Ultimately bounded (UB) regulation of the system states to a neigh-

borhood of the origin, and convergence of the developed policy to a neighborhood of the

optimal policy are established using a Lyapunov-based analysis, and simulations are

presented to demonstrate the performance of the developed controller.

Chapter 4 extends the results of Chapter 3 to obtain an approximate feedback-

Nash equilibrium solution to an infinite-horizon N -player nonzero-sum differential

game online, without requiring PE, for a nonlinear control-affine system with uncertain

linearly parameterized drift dynamics. It is shown that under a condition milder than

PE, uniformly ultimately bounded convergence of the developed control policies to the

feedback-Nash equilibrium policies can be established. Simulation results are presented

to demonstrate the performance of the developed technique without an added excitation

signal.

Chapter 5 presents an ADP-based approach using the policy evaluation (Critic)

and policy improvement (Actor) architecture to approximately solve the infinite-horizon

optimal tracking problem for control-affine nonlinear systems with quadratic cost. The

problem is solved by transforming the system to convert the tracking problem that has a

non-stationary value function, into a stationary optimal control problem. The ultimately
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bounded UB tracking and estimation result is established using Lyapunov analysis for

nonautonomous systems. Simulations are performed to demonstrate the applicability

and the effectiveness of the developed method.

Chapter 6 utilizes model-based reinforcement learning to extend the results of

Chapter 5 to systems with uncertainties in drift dynamics. A system identifier is used

for approximate model inversion to facilitate the formulation of a feasible optimal control

problem. Model-based reinforcement learning is implemented using a concurrent

learning-based system identifier to simulate experience by evaluating the Bellman

error over unexplored areas of the state space. Tracking of the desired trajectory

and convergence of the developed policy to a neighborhood of the optimal policy is

established via Lyapunov-based stability analysis. Simulation results demonstrate the

effectiveness of the developed technique.

Chapter 7 combines graph theory and differential game theory with the actor-

critic-identifier architecture in ADP to synthesize approximate online feedback-Nash

equilibrium control policies for agents on a communication network with a spanning tree.

NNs are used to approximate the policy, the value function, and the system dynamics.

UB convergence of the agents to the desired formation, UB convergence of the agent

trajectories to the desired trajectories, and UB convergence of the agent controllers to

their respective feedback-Nash equilibrium policies is established through a Lyapunov-

based stability analysis. Simulations are presented to demonstrate the applicability of

the proposed technique to cooperatively control a group of five agents.

Chapter 8 concludes the dissertation. A summary of the dissertation is provided

along with a discussion on open problems and future research directions.

1.4 Contributions

This section details the contributions of this dissertation over the state-of-the-art.
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1.4.1 Approximate Optimal Regulation

In RL-based approximate online optimal control, the HJB equation along with an

estimate of the state derivative (cf. [49, 59] ), or an integral form of the HJB equation (cf.

[130]) is utilized to approximately evaluate the BE at each visited state along the system

trajectory. The BE provides an indirect measure of the quality of the current estimate of

the value function at each visited state along the system trajectory. Hence, the unknown

value function parameters are updated based on the BE along the system trajectory.

Such weight update strategies create two challenges for analyzing convergence. The

system states need to be PE, and the system trajectory needs to visit enough points in

the state space to generate a good approximation to the value function over the entire

operating domain. These challenges are typically addressed by adding an exploration

signal to the control input (cf. [43, 49, 130]) to ensure sufficient exploration in the

desired region of the state space. However, no analytical methods exist to compute the

appropriate exploration signal when the system dynamics are nonlinear.

In this dissertation, the aforementioned challenges are addressed by observing

that the restriction that the BE can only be evaluated along the system trajectories

is a consequence of the model-free nature of RL-based approximate online optimal

control. In particular, the integral BE is only meaningful as a measure of quality of the

value function if evaluated along the system trajectories, and state derivative estimators

can only generate estimates of the state derivative along the system trajectories using

numerical smoothing. However, if the system dynamics are known, the state derivative,

and hence, the BE can be evaluated at any desired point in the state space. Unknown

parameters in the value function can therefore be adjusted based on least square

minimization of the BE evaluated at any number of desired points in the state space. For

example, in an infinite-horizon regulation problem, the BE can be computed at sampled

points uniformly distributed in a neighborhood around the origin of the state space. The

results of this dissertation indicate that convergence of the unknown parameters in the
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value function is guaranteed provided the selected points satisfy a rank condition. Since

the BE can be evaluated at any desired point in the state space, sufficient exploration

can be achieved by appropriately selecting the points in a desired neighborhood.

If the system dynamics are partially unknown, an approximation to the BE can be

evaluated at any desired point in the state space based on an estimate of the system

dynamics. If each new evaluation of the BE along the system trajectory is interpreted

as gaining experience via exploration, an evaluation of the BE at an unexplored point

in the state space can be interpreted as a simulated experience. Learning based

on simulation of experience has been investigated in results such as [131–136] for

stochastic model-based RL; however, these results solve the optimal control problem

offline in the sense that repeated learning trials need to be performed before the

algorithm learns the controller, and system stability during the learning phase is not

analyzed. This dissertation furthers the state of the art for nonlinear, control-affine

plants with linearly parameterizable (LP) uncertainties in the drift dynamics by providing

an online solution to deterministic infinite-horizon optimal regulation problems. In this

dissertation, a CL-based parameter estimator is developed to exponentially identify the

unknown parameters in the system model, and the parameter estimates are used to

implement simulated experience by extrapolating the BE. The main contributions of this

chapter include:

• Novel implementation of simulated experience in deterministic nonlinear systems
using CL-based system identification.

• Detailed stability analysis to establish simultaneous online identification of sys-
tem dynamics and online approximate learning of the optimal controller, while
maintaining system stability. The stability analysis shows that provided the system
dynamics can be approximated fast enough, and with sufficient accuracy, simu-
lation of experience based on the estimated model implemented via approximate
BE extrapolation can be utilized to approximately solve an infinite-horizon optimal
regulation problem online are provided.

• For the first time ever, simulation results that demonstrate the approximate solution
of an infinite-horizon optimal regulation problem online for an inherently unstable
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control-affine nonlinear system with uncertain drift dynamics without the addition of
an external ad-hoc probing signal.

1.4.2 N -player Nonzero-sum Differential Games

In [58], a PE-based integral reinforcement learning algorithm is presented to solve

nonzero-sum differential games in linear systems without the knowledge of the drift

matrix. In [112], a PE-based dynamic programming technique is developed to find

an approximate feedback-Nash equilibrium solution to an infinite-horizon N -player

nonzero-sum differential game online for nonlinear control-affine systems with known

dynamics. In [119], a PE-based ADP method is used to solve a two-player zero-

sum game online for nonlinear control-affine systems without the knowledge of drift

dynamics. In this dissertation, a simulation-based ACI architecture (cf. [59]) is used

to obtain an approximate feedback-Nash equilibrium solution to an infinite-horizon

N -player nonzero-sum differential game online, without requiring PE, for a nonlinear

control-affine system with uncertain LP drift dynamics. The contribution of this result is

that it extends the development in Chapter 3 to the more general N−player nonzero-

sum differential game framework.

1.4.3 Approximate Optimal Tracking

Approximation techniques like NNs are commonly used in ADP literature for

value function approximation. ADP-based approaches are presented in results such

as [115, 116] to address the tracking problem for continuous time systems, where the

value function, and the controller presented are time-varying functions of the tracking

error. However, for an infinite-horizon optimal control problem, the domain of the value

function is not compact. NNs can only approximate functions on a compact domain.

Thus, it is unclear how a NN with the tracking error as an input can approximate the

time-varying value function and controller.

For discrete time systems, several approaches have been developed to address

the tracking problem. Park et.al. [113] use generalized back-propagation through
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time to solve a finite horizon tracking problem that involves offline training of NNs. An

ADP-based approach is presented in [114] to solve an infinite-horizon optimal tracking

problem where the desired trajectory is assumed to depend on the system states.

Greedy heuristic dynamic programming based algorithms are presented in results such

as [86, 137, 138] which transform the nonautonomous system into an autonomous

system, and approximate convergence of the sequence of value functions to the optimal

value function is established. However, these results lack an accompanying stability

analysis. In this result, the tracking error and the desired trajectory both serve as inputs

to the NN for value function approximation. Effectiveness of the developed technique is

demonstrated via numerical simulations. The main contributions of this result include:

• Formulation of a stationary optimal control problem for infinite-horizon total-cost
optimal tracking control.

• Formulation and proof of the hypothesis that the optimal value function is a valid
candidate Lyapunov function when interpreted as a time-varying function of the
tracking error.

• New Lyapunov-like stability analysis to establish ultimate boundedness under
sufficient persistent excitation.

1.4.4 Model-based Reinforcement Learning for Approximate Optimal Tracking

This chapter extends the actor-critic method developed in the previous chapter

to solve an infinite-horizon optimal tracking problem for systems with unknown drift

dynamics using model-based RL. The development in the previous chapter relies on

minimizing the difference between the implemented controller and the steady-state con-

troller. The computation of the steady-state controller requires exact model knowledge.

In this chapter, a CL-based system identifier is developed generate an online approx-

imation to the steady-state controller. Furthermore, the CL-based system identifier is

also used to implement model-based RL to simulate experience by evaluating the BE

over unexplored areas of the state space. Effectiveness of the developed technique is

demonstrated via numerical simulations. The main contributions of this result include:
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• Extension of tracking technique to systems with uncertain drift dynamics via the
use of a CL-based system identification for approximate model inversion.

• Lyapunov-based stability analysis to show simultaneous system identification and
ultimately bounded tracking in the presence of uncertainties.

1.4.5 Differential Graphical Games

Various methods have been developed to solve formation tracking problems for

linear systems. An optimal control approach is used in [139] to achieve consensus

while avoiding obstacles. In [140], an optimal controller is developed for agents with

known dynamics to cooperatively track a desired trajectory. In [141] an inverse optimal

controller is developed for unmanned aerial vehicles to cooperatively track a desired

trajectory while maintaining a desired formation. In [142] a differential game-based

approach is developed for unmanned aerial vehicles to achieve distributed Nash

strategies. In [143], an optimal consensus algorithm is developed for a cooperative

team of agents with linear dynamics using only partial information. A value function

approximation based approach is presented in [128] for cooperative synchronization in a

strongly connected network of agents with known linear dynamics.

For nonlinear systems, an MPC-based approach is presented in [126], however,

no stability or convergence analysis is presented. A stable distributed MPC-based

approach is presented in [127] for nonlinear discrete-time systems with known nominal

dynamics. Asymptotic stability is proved without any interaction between the nodes,

however, a nonlinear optimal control problem need to be solved at every iteration to

implement the controller. An optimal tracking approach for formation control is presented

in [129] using single network adaptive critics where the value function is learned

offline. Online feedback-Nash equilibrium solution of differential graphical games in a

topological network of agents with continuous-time uncertain nonlinear dynamics has

remained an open problem. The contributions of this chapter are the following:

• Introduction of relative control error minimization technique to facilitate the formula-
tion of a feasible infinite-horizon total-cost differential graphical game.
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• Development a set of coupled HJ equations corresponding to feedback-Nash
equilibrium solutions of differential graphical games.

• Lyapunov-based stability analysis to show ultimately bounded formation tracking in
the presence of uncertainties.
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CHAPTER 2
PRELIMINARIES

2.1 Notation

Throughout the dissertation, Rn denotes n−dimensional Euclidean space, R>a

denotes the set of real numbers strictly greater than a ∈ R, and R≥a denotes the set of

real numbers greater than or equal to a ∈ R. Unless otherwise specified, the domain

of all the functions is assumed to be R≥0. Functions with domain R≥0 are defined by

abuse of notation using only their image. For example, the function x : R≥0 → Rn is

defined by abuse of notation as x ∈ Rn, and referred to as x instead of x (t). By abuse

of notation, the state variables are also used to denote state trajectories. For example,

the state variable x in the equation ẋ = f (x) + u is also used as x (t) to denote the

state trajectory i.e., the general solution x : R≥0 → Rn to ẋ = f (x) + u evaluated at

time t. Unless otherwise specified, all the mathematical quantities are assumed to be

time-varying. Unless otherwise specified, an equation of the form g (x) = f + h (y, t) is

interpreted as g (x (t)) = f (t) + h (y (t) , t) for all t ∈ R≥0, and a definition of the form

g (x, y) , f (y) + h (x) for functions g : A × B → C, f : B → C and h : A → C

is interpreted as g (x, y) , f (y) + h (x) , ∀ (x, y) ∈ A × B. The only exception to the

aforementioned equation and definition notation is the definitions of cost functionals,

where the arguments to the cost functional are functions. The total derivative ∂f(x)
∂x

is denoted by ∇f and the partial derivative ∂f(x,y)
∂x

is denoted by ∇xf (x, y). An n × n

identity matrix is denoted by In, n ×m matrices of zeros and ones are denoted by 0n×m

and 1n×m, respectively, and 1S denotes the indicator function of the set S.

2.2 Problem Formulation

The focus of this dissertation is to obtain online approximate solutions to infinite-

horizon total-cost optimal control problems. To facilitate the formulation of the optimal

control problem, Consider a control-affine nonlinear dynamical system

ẋ = f (x) + g (x)u, (2–1)
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where x ∈ Rn denotes the system state, u ∈ Rm denotes the control input, f : Rn → Rn

denotes the drift dynamics, and g : Rn → Rn×m denotes the control effectiveness matrix.

The functions f and g are assumed to be locally Lipschitz continuous functions such

that f (0) = 0 and ∇f (x) is continuous and bounded for every bounded x ∈ Rn. In the

following, the notation φu (t; t0, x0) denotes a trajectory of the system in (2–1) under the

control signal u with the initial condition x0 ∈ Rn and initial time t0 ∈ R≥0.

The control objective is to solve the infinite-horizon optimal regulation problem

online, i.e., to simultaneously design and utilize a control signal u online to minimize the

cost functional

J (x, u) ,

∞̂

t0

r (x (τ) , u (τ)) dτ, (2–2)

under the dynamic constraint in (2–1) while regulating the system state to the origin. In

(2–2), r : Rn × Rm → R≥0 denotes the instantaneous cost defined as

r (x, u) , Q (x) + uTRu, (2–3)

where Q : Rn → R≥0 is a positive definite function and R ∈ Rm×m is a constant positive

definite symmetric matrix.

2.3 Exact Solution

It is well known that if the functions f, g, and Q are stationary (time-invariant) and

the time-horizon is infinite, then the optimal control input is a stationary state-feedback

policy u (t) = ξ (x (t)) for some function ξ : Rn → Rm. Furthermore, the function that

maps each state to the total accumulated cost starting from that state and following a

stationary state-feedback policy, i.e., the value function, is also a stationary function.

Hence, the optimal value function V ∗ : Rn → R≥0 can be expressed as

V ∗ (x) , inf
u(τ)∈U |τ∈R≥t

∞̂

t

r (φu (τ ; t, x) , u (τ)) dτ, (2–4)
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for all x ∈ Rn, where U ⊂ Rm is the action space. Assuming an optimal controller exists,

the optimal value function can be expressed as

V ∗ (x) , min
u(τ)∈U |τ∈R≥t

∞̂

t

r (φu (τ ; t, x) , u (τ)) dτ. (2–5)

The optimal value function is characterized by the corresponding HJB equation [1]

0 = min
u∈U

(∇V (x) (f (x) + g (x)u) + r (x, u)) , (2–6)

for all x ∈ Rn, with the boundary condition V (0) = 0. Provided the HJB in (2–6) admits a

continuously differentiable solution, it constitutes a necessary and sufficient condition for

optimality, i.e., if the optimal value function in (2–5) is continuously differentiable, then it

is the unique solution to the HJB in (2–6) [144]. The optimal control policy u∗ : Rn → Rm

can be determined from (2–6) as [1]

u∗ (x) = −1

2
R−1gT (x) (∇V ∗ (x))T , ∀x ∈ Rn. (2–7)

The HJB in (2–6) can be expressed in the open-loop form

∇V ∗ (x) (f (x) + g (x)u∗ (x)) + r (x, u∗ (x)) = 0, (2–8)

for all x ∈ Rn, and using (2–7), the HJB in (2–8) can be expressed in the closed-loop

form

∇V ∗ (x) f (x)− 1

4
∇V ∗ (x) g (x)R−1gT (x) (∇V ∗ (x))T +Q (x) = 0. (2–9)

for all x ∈ Rn. The optimal policy can now be obtained using (2–7) if the HJB in (2–9)

can be solved for the optimal value function V ∗.

2.4 Value Function Approximation

An analytical solution of the HJB equation is generally infeasible; hence, an approxi-

mate solution is sought. In an approximate actor-critic-based solution, the optimal value

function V ∗ is replaced by a parametric estimate V̂
(
x, Ŵc

)
and the optimal policy u∗ by
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a parametric estimate û
(
x, Ŵa

)
where Ŵc ∈ RL and Ŵa ∈ RL denote vectors of esti-

mates of the ideal parameters. The objective of the critic is to learn the parameters Ŵc,

and the objective of the actor is to learn the parameters Ŵa. Substituting the estimates

V̂ and û for V ∗ and u∗ in (2–8), respectively, a residual error δ : Rn×RL×RL → R, called

the BE, is defined as

δ
(
x, Ŵc, Ŵa

)
, ∇xV̂

(
x, Ŵc

)(
f (x) + g (x) û

(
x, Ŵa

))
+ r

(
x, û

(
x, Ŵa

))
. (2–10)

To solve the optimal control problem, the critic aims to find a set of parameters Ŵc

and the actor aims to find a set of parameters Ŵa such that δ
(
x, Ŵc, Ŵa

)
= 0, and

û
(
x, Ŵa

)
= −1

2
R−1gT (x)

(
∇V̂

(
x, Ŵc

))T
∀x ∈ Rn. Since an exact basis for value

function approximation is generally not available, an approximate set of parameters

that minimizes the BE is sought. In particular, to ensure uniform approximation of the

value function and the policy over an operating domain D ⊂ Rn, it is desirable to find

parameters that minimize the error Es : RL × RL → R defined as

Es

(
Ŵc, Ŵa

)
, sup

x∈D

∣∣∣δ (x, Ŵc, Ŵa

)∣∣∣ .
Hence, in an online implementation of the deterministic actor-critic method, it is desir-

able to update the parameter estimates Ŵc and Ŵa online to minimize the instantaneous

error Es
(
Ŵc (t) , Ŵa (t)

)
or the cumulative instantaneous error

E (t) ,

tˆ

0

Es

(
Ŵc (τ) , Ŵa (τ)

)
dτ, (2–11)

while the system in (2–1) is being controlled using the control law u (t) =

û
(
x (t) , Ŵa (t)

)
.

2.5 RL-based Online Implementation

Computation of the BE in (2–10) and the integral error in (2–11) requires exact

model knowledge. Furthermore, computation of the integral error in (2–11) is generally
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infeasible. Two prevalent approaches employed to render the control design robust to

uncertainties in the system drift dynamics are integral RL (cf. [95] and [145]) and state

derivative estimation (cf. [59] and [146]).

Integral RL exploits the fact that for all T > 0 and t > t0 + T , the BE in (6–2)

has an equivalent integral form δint (t) = V̂
(
x (t− T ) , Ŵc (t)

)
− V̂

(
x (t) , Ŵc (t)

)
−

´ t
t−T r (x (τ) , u (τ)) dτ, where u (t) = û

(
x (t) , Ŵa (t)

)
, ∀t ∈ R≥t0. Since the integral form

does not require model knowledge, policies designed based on δint can be implemented

without knowledge of f.

State derivative estimation-based techniques exploit the fact that if the system

model is uncertain, the critic can compute the BE at each time instance t using the

state-derivative ẋ (t) as

δt (t) , ∇xV̂
(
x (t) , Ŵc (t)

)
ẋ (t) + r

(
x (t) , û

(
x (t) , Ŵa (t)

))
. (2–12)

If the state-derivative is not directly measurable, an approximation of the BE can be

computed using a dynamically generated estimate of the state-derivative. Note that

the integral form of the BE is inherently dependent on the state trajectory, and since

adaptive derivative estimators estimate the derivative only along the trajectory, the

derivative estimation-based techniques are also dependent on the state trajectory.

Hence, in techniques such as [59, 95, 145, 146] the BE can only be evaluated along the

system trajectory.

Since (2–8) constitutes a necessary and sufficient condition for optimality, the

BE serves as an indirect measure of how close the critic parameter estimates Ŵc are

to their ideal values; hence, in RL literature, each evaluation of the BE is interpreted

as gained experience. In particular, the critic receives state-derivative-action-reward

tuples (x (t) , ẋ (t) , u (t) , r (x (t) , u (t))) and computes the BE using (2–12). The critic

then performs a one-step update to the parameter estimates Ŵc based on either the

instantaneous experience, quantified by the squared error δ2
t (t), or the cumulative
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experience, quantified by the integral squared error

Et (t) ,

tˆ

0

δ2
t (τ) dτ, (2–13)

using a steepest descent update law. The use of the cumulative squared error is

motivated by the fact that in the presence of uncertainties, BE can only be evaluated

along the system trajectory; hence, Et (t) is the closest approximation to E (t) in (2–11)

that can be computed using the available information.

Intuitively, for Et (t) to approximate E (t) over an operating domain, the state

trajectory x (t) needs to visit as many points in the operating domain as possible. This

intuition is formalized by the fact that the use of the approximation Et (t) to update the

critic parameter estimates is valid provided certain exploration conditions1 are met. In

RL terms, the exploration conditions translate to the need for the critic to gain enough

experience in order to learn the value function. The exploration conditions can be

relaxed using experience replay, where each evaluation of the BE δint is interpreted

as gained experience, and these experiences are stored in a history stack and are

repeatedly used in the learning algorithm to improve data efficiency, however, a finite

amount of exploration is still required since the values stored in the history stack are

also constrained to the system trajectory.

While the estimates Ŵc are being updated by the critic, the actor simultaneously

updates the parameter estimates Ŵa using a gradient-based approach so that the

quantity û
(
x, Ŵa

)
+ 1

2
R−1gT (x)

(
∇V̂

(
x, Ŵc

))T
decreases. The weight updates are

performed online in real-time while the system is being controlled using the control law

u (t) = û
(
x (t) , Ŵa (t)

)
. Naturally, it is difficult to guarantee stability during the learning

phase. In fact, the use of two different sets parameters to approximate the value function

1 The exploration conditions are detailed in the next section for a linear-in-the-
parameters (LIP) approximation of the value function.
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and the policy is motivated by the stability analysis. In particular, to date, the author is

unaware of any results that can guarantee stability during learning phase in an online

continuous-time deterministic implementation of RL-based actor-critic technique in

which only the the value function is approximated, and based on (2–7), the system is

controlled using the control law u = −1
2
R−1gT (x)

(
∇V̂

(
x, Ŵc

))T
.

2.6 LIP Approximation of the Value Function

For feasibility of analysis, the optimal value function is approximated using a LIP

approximation

V̂
(
x, Ŵc

)
, Ŵ T

c σ (x) , (2–14)

where σ : Rn → RL is a continuously differentiable nonlinear activation function such

that σ (0) = 0 and σ′ (0) = 0, and Ŵc ∈ RL, where L denotes the number of unknown

parameters in the approximation of the value function. Based on (2–7), the optimal

policy is approximated using the LIP approximation

û
(
x, Ŵa

)
, −1

2
R−1g (x)T ∇σT (x) Ŵa. (2–15)

The update law used by the critic to update the weight estimates is given by

˙̂
Wc = −ηcΓ

ω

ρ
δt,

Γ̇ =

(
βΓ− ηcΓ

ωωT

ρ2
Γ

)
1{‖Γ‖≤Γ}, ‖Γ (t0)‖ ≤ Γ, (2–16)

where ω , ∇σ (x) ẋ ∈ RL denotes the regressor vector, ρ , 1+νωTΓω ∈ R, ηc, β, ν ∈ R>0

are constant learning gains, Γ ∈ R>0 is a constant saturation constant, and Γ is the least

squares gain matrix. The update law used by the actor to update the weight estimates is

derived using a Lyapunov-based stability analysis, and is given by

˙̂
Wa = −ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa +

ηc∇σ (x) g (x)R−1gT (x)∇σT (x) Ŵaω
T

4ρ
, (2–17)
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where ηa1, ηa2 ∈ R>0 are constant learning gains. A block diagram of the resulting control

architecture is presented in Figure 2-1.

The stability analysis indicates that the sufficient exploration condition takes the

form of a PE condition that requires the existence of positive constants ψ and T such

that the regressor vector satisfies

ψIL ≤
t+Tˆ

t

ω (τ)ωT (τ)

ρ (τ)
dτ, (2–18)

for all t ∈ R≥t0 .

Let W̃c , W − Ŵc and W̃a , W − Ŵa denote the vectors of parameter estimation

errors, where W ∈ RL denotes the constant vector of ideal parameters. Provided (2–18)

is satisfied, and under sufficient conditions on the learning gains and the constants ψ

and T , the candidate Lyapunov function

VL

(
x, W̃c, W̃a

)
, V ∗ (x) +

1

2
W̃ T
c Γ−1W̃c +

1

2
W̃ T
a W̃a
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can be used to establish convergence of x (t), W̃c (t), and W̃a (t) to a neighborhood of

zero as t→∞, when the system in (2–1) is controlled using the control law

u (t) = û
(
x (t) , Ŵa (t)

)
, (2–19)

and the parameter estimates Ŵc and Ŵa are updated using the update laws in (2–16)

and (2–17), respectively.

2.7 Uncertainties in System Dynamics

The use of the state derivative to compute the BE in (2–12) is advantageous

because it is easier to obtain a dynamic estimate of the state derivative than it is to

identify the system dynamics. For example, consider the high-gain dynamic state

derivative estimator

˙̂x = g (x)u+ kx̃+ µ,

µ̇ = (kα + 1) x̃, (2–20)

where ˙̂x ∈ Rn is an estimate of the state derivative, x̃ , x − x̂ is the state estimation

error, and k, α ∈ R>0 are identification gains. Using (2–20), the BE in (2–12) can be

approximated by δ̂t as

δ̂t (t) = ∇xV̂
(
x (t) , Ŵc (t)

)
˙̂x (t) + r (x (t) , u (t)) .

The critic can then learn the value function weights by using an approximation of

cumulative experience, quantified by the integral error

Êt (t) =

tˆ

0

δ̂2
t (τ) dτ, (2–21)

by using δ̂t instead of δt in (2–16). Under additional sufficient conditions on the gains k

and α, the candidate Lyapunov function

VL

(
x, W̃c, W̃a, x̃, xf

)
, V ∗ (x) +

1

2
W̃ T
c Γ−1W̃c +

1

2
W̃ T
a W̃a +

1

2
x̃T x̃+

1

2
xTf xf ,
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where xf , ˙̃x + αx̃, can be used to establish convergence of x (t), W̃c (t), W̃a (t), x̃, and

xf to a neighborhood of zero, when the system in (2–1) is controlled using the control

law (2–19). This extension of the actor-critic method to handle uncertainties in the

system dynamics using derivative estimation is known as the ACI architecture. A block

diagram of the ACI architecture is presented in Figure 2-2.

In general, the controller in (2–19) does not ensure the PE condition in (2–18).

Thus, in an online implementation, an ad-hoc exploration signal is often added to

the controller (cf. [43, 49, 54]). Since the exploration signal is not considered in the

the stability analysis, it is difficult the ensure stability of the online implementation.

Moreover, the added probing signal causes large control effort expenditure and there

is no means to know when it is sufficient to remove the probing signal. The following

chapter addresses the challenges associated with the satisfaction of the condition in

(2–18) by using simulated experience along with the cumulative experience collected

along the system trajectory.
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CHAPTER 3
MODEL-BASED REINFORCEMENT LEARNING FOR APPROXIMATE OPTIMAL

REGULATION

In this chapter, a CL-based implementation of model-based RL is developed to

solve approximate optimal regulation problems online with a relaxed PE-like condition.

The development is based on the observation that, given a model of the system,

model-based RL can be implemented by evaluating the BE at any number of desired

points in the state space. In this result, a parametric system model is considered,

and a CL-based parameter identifier is developed to compensate for uncertainty in

the parameters. UB regulation of the system states to a neighborhood of the origin,

and convergence of the developed policy to a neighborhood of the optimal policy

are established using a Lyapunov-based analysis, and simulations are presented to

demonstrate the performance of the developed controller.

3.1 Motivation

An ACI architecture to solve optimal regulation problems was presented in Chapter

2, under the restrictive PE requirement in (2–18). The PE requirement is a consequence

of the attempt to achieve uniform approximation using information obtained along one

system trajectory. In particular, in order to approximate the value function, the critic

in the ACI method utilizes experience gained along the system trajectory, quantified

by the cumulative observed error in (2–13), instead of the total error in (2–11). The

critic in the ACI architecture is restricted to the use of experience gained along the

system trajectory because evaluation of the BE requires state derivatives, and the

dynamic state-derivative estimator can only estimate state derivatives along the system

trajectory.

If the system dynamics are known, or if a system identifier can be developed

to estimate the state derivative uniformly over the entire operating domain, then the

critic can utilize simulated experience along with gained experience to learn the value
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function. In particular, the BE in (2–10) can be approximated as

δ̂X

(
x, Ŵc, Ŵa

)
, ∇xV̂

(
x, Ŵc

)
Ẋ
(
x, û

(
x, Ŵa

))
+ r

(
x, û

(
x, Ŵa

))
,

where Ẋ : Rn × Rm → Rn denotes the estimated dynamics that map the state action pair(
x, û

(
x, Ŵa

))
to the corresponding state derivative. Since the control effectiveness and

the control signal in (2–1) are known, a uniform parametric approximation f̂
(
x, θ̂
)

of the

function f , where θ̂ denotes the matrix of parameter estimates, is sufficient to generate a

uniform estimate of the system dynamics. In particular, using f̂ , the BE in (2–10) can be

approximated as

δ̂
(
x, Ŵc, Ŵa, θ̂

)
, ∇xV̂

(
x, Ŵc

)(
f̂
(
x, θ̂
)

+ g (x) û
(
x, Ŵa

))
+ r

(
x, û

(
x, Ŵa

))
. (3–1)

Similar to Section 2.6, the cumulative gained experience can be quantified using the

integral error in (2–21), where δ̂t (τ) = δ̂
(
x (τ) , Ŵc (τ) , Ŵa (τ) , θ̂ (τ)

)
.

Given current parameter estimates Ŵc (t), Ŵa (t) and θ̂ (t), the approximate BE in

(3–1) can be evaluated at any point xi ∈ Rn. That is, the critic can gain experience

on how well the value function is estimated an any arbitrary point xi in the state space

without actually visiting xi. In other words, given a fixed state xi and a corresponding

planned action û
(
xi, Ŵa

)
, the critic can use the estimated drift dynamics f̂

(
xi, Ŵa

)
to simulate a visit to xi by computing an estimate of the state derivative at xi, resulting

in simulated experience quantified by the BE δ̂ti (t) = δ̂
(
xi, Ŵc (t) , Ŵa (t) , θ̂ (t)

)
. The

simulated experience can then be used along with gained experience by the critic to

learn the value function. The motivation behind using simulated experience is that via

selection of multiple (say N ) points, the error signal in (2–21) can be augmented to yield

a heuristically better approximation Êti (t), given by

Êti (t) ,

tˆ

0

(
δ̂2
t (τ) +

N∑
i=1

δ̂2
ti (τ)

)
dτ,
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to the desired error signal in (2–11). A block diagram of the simulation-based ACI

architecture is presented in Figure (2-2).

Online implementation of simulation of experience requires uniform online estima-

tion of the function f using the parametric approximation f̂
(
x, θ̂
)

, i.e., the parameter

estimates θ̂ need to converge to their true values θ. In the following, a system identi-

fier that achieves uniform approximation of f is developed based on recent ideas on

data-driven parameter convergence in adaptive control (cf. [92,93,147]).

3.2 System Identification

Let f (xo) = Y (xo) θ, for all xo ∈ Rn, be a linear parameterization of the function

f , where Y : Rn → Rn×p is the regression matrix, and θ ∈ Rp is the vector of constant
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unknown parameters.1 Let θ̂ ∈ Rp be an estimate of the unknown parameter vector θ.

To estimate the drift dynamics, an identifier is designed as

˙̂x = Y (x) θ̂ + g (x) û+ kxx̃, (3–2)

where the measurable state estimation error x̃ is defined as x̃ , x − x̂, and kx ∈ Rn×n

is a positive definite, constant diagonal observer gain matrix. From (2–1) and (3–2) the

identification error dynamics can be derived as

˙̃x = Y (x) θ̃ − kxx̃, (3–3)

where θ̃ is the parameter identification error defined as θ̃ , θ − θ̂.

3.2.1 CL-based Parameter Update

In traditional adaptive control, convergence of the estimates θ̂ to their true values θ

is ensured by assuming that a PE condition is satisfied [89–91]. To ensure convergence

without the PE condition, this result employs a CL-based approach to update the

parameter estimates using recorded input-output data [92,93,147].

For ease of exposition, the following system identifier development is based on the

assumption that the data required to perform CL-based system identification is available

a priori in a history stack. For example, data recorded in a previous run of the system

can be utilized, or the history stack can be recorded by running the system using a

different known stabilizing controller for a finite amount of time until the recorded data

satisfies the rank condition (3–4) detailed in the following assumption.

From a practical perspective, a recorded history stack is unlikely to be available

a priori. For such applications, the history stack can be recorded online. Provided

1 The function f is assumed to be LP for ease of exposition. The system identifier can
also be developed using multi-layer NNs for non-LP functions. For example, a system
identifier developed using single-layer NNs is presented in Chapter 6.
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the system states are exciting over a finite time interval t ∈
[
t0, t0 + t

]
(versus t ∈

[t0,∞) as in traditional PE-based approaches) until the history stack satisfies (3–4),

then a modified form of the controller developed in Section 3.3 can be used over the

time interval t ∈
[
t0, t0 + t

]
, and the controller developed in Section 3.3 can be used

thereafter. The required modifications to the controller, and the resulting modifications to

the stability analysis are provided in Appendix A.

Assumption 3.1. [92, 93] A history stack Hid containing recorded state-action

pairs {(xj, ûj) | j = 1, · · · ,M}, and corresponding numerically computed estimates

{ ˙̄xj | j = 1, · · · ,M} of the state derivative ẋj , f (xj) + g (xj) ûj that satisfies

rank

(
M∑
j=1

Y T
j Yj

)
= p,

‖ ˙̄xj − ẋj‖ < d̄, ∀j (3–4)

is available a priori, where Yj = Y (xj), and d̄ ∈ R≥0 is a positive constant.

Based on Assumption 3.1, the update law for the parameter estimates in (3–2) is

designed as

˙̂
θ = ΓθY (x)T x̃+ Γθkθ

M∑
j=1

Y T
j

(
˙̄xj − gjûj − Yj θ̂

)
, (3–5)

where gj , g (xj), Γθ ∈ Rp×p is a constant positive definite adaptation gain matrix, and

kθ ∈ R is a constant positive CL gain. From (2–1) and the definition of θ̃, the bracketed

term in (3–5), can be expressed as ˙̄xj − gjûj − Yj θ̂ = Yj θ̃ + dj, where dj , ˙̄xj − ẋj ∈ Rn,

and the parameter update law in (3–5) can be expressed in the advantageous form

˙̂
θ = ΓθY (x)T x̃+ Γθkθ

(
M∑
j=1

Y T
j Yj

)
θ̃ + Γθkθ

M∑
j=1

Y T
j dj. (3–6)

Even if a history stack is available a priori, the performance of the estimator may be

improved by replacing old data with new data. The stability analysis in Section 3.4
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allows for a changing history stack through the use of a singular value maximizing

algorithm (cf. [93,147]).

3.2.2 Convergence Analysis

Let V0 : Rn+p → R≥0 be a positive definite continuously differentiable candidate

Lyapunov function defined as

V0 (z) ,
1

2
x̃T x̃+

1

2
θ̃TΓ−1

θ θ̃, (3–7)

where z ,
[
x̃T , θ̃T

]T
∈ Rn+p. The following bounds on the Lyapunov function can be

established:
1

2
min

(
1, γ
)
‖z‖2 ≤ V0 (z) ≤ 1

2
max (1, γ) ‖z‖2 , (3–8)

where γ, γ ∈ R denote the minimum and the maximum eigenvalues of the matrix Γ−1
θ .

Using (3–3) and (3–6), the Lyapunov derivative can be expressed as

V̇0 = −x̃Tkxx̃− θ̃Tkθ

(
M∑
j=1

Y T
j Yj

)
θ̃ − kθθ̃T

M∑
j=1

Y T
j dj. (3–9)

Let y ∈ R be the minimum eigenvalue of
(∑M

j=1 Y
T
j Yj

)
. Since

(∑M
j=1 Y

T
j Yj

)
is sym-

metric and positive semi-definite, (3–4) can be used to conclude that it is also positive

definite, and hence y > 0. Using (3–8), the Lyapunov derivative in (3–9) can be bounded

as

V̇0 ≤ −kx ‖x̃‖2 − ykθ
∥∥∥θ̃∥∥∥2

+ kθdθ

∥∥∥θ̃∥∥∥ . (3–10)

In (3–10), dθ = d̄
∑M

j=1 ‖Yj‖, and kx ∈ R denotes the minimum eigenvalue of the matrix

kx. The inequalities in (3–8) and (3–10) can be used to conclude that
∥∥∥θ̃∥∥∥ and ‖x̃‖

exponentially decay to an ultimate bound as t→∞.

The CL-based observer results in exponential regulation of the parameter and the

state derivative estimation errors to a neighborhood around the origin. In the following,
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the parameter and state derivative estimates are used to approximately solve the HJB

equation without the knowledge of the drift dynamics.

3.3 Approximate Optimal Control

3.3.1 Value Function Approximation

Approximations to the optimal value function V ∗ and the optimal policy u∗ are

designed based on NN-based representations. A single layer NN can be used to

represent the optimal value function V ∗ as

V ∗ (xo) = W Tσ (xo) + ε (xo) , (3–11)

for all xo ∈ Rn, where W ∈ RL is the ideal weight matrix and σ : Rn → RL and ε : Rn → R

are introduced in (2–14).

Based on (3–11) a NN-based representation of the optimal controller is derived as

u∗ (xo) = −1

2
R−1gT (xo)

(
∇σT (xo)W +∇εT (xo)

)
, (3–12)

for all xo ∈ Rn. The NN-based approximations V̂ : Rn × RL → R of the optimal value

function in (3–11) and û : Rn × RL → Rm of the optimal policy in (3–12) are given by

(2–14) and (2–15), respectively, where Ŵc ∈ RL and Ŵa ∈ RL are estimates of the ideal

weights W . The use of two sets of weights to estimate the same set of ideal weights is

motivated by the stability analysis and the fact that it enables a formulation of the BE

that is linear in the value function weight estimates Ŵc, enabling a least squares-based

adaptive update law. Using the parametric estimates V̂ and û of the value function

and the policy from (2–14) and (2–15), respectively, and using the system identifier

developed in Section 3.2, the BE in (3–1) can be expressed as

δ̂t = ωT Ŵc + xTQx+ ûT
(
x, Ŵa

)
Rû
(
x, Ŵa

)
,

where ω ∈ RL is the regressor vector defined as ω , ∇σ (x)
(
Y (x) θ̂ + g (x) û

(
x, Ŵa

))
.
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3.3.2 Simulation of Experience via BE Extrapolation

In traditional RL-based algorithms, the value function estimate and the policy

estimate are updated based on observed data. The use of observed data to learn

the value function naturally leads to a sufficient exploration condition which demands

sufficient richness in the observed data. In stochastic systems, this is achieved using

a randomized stationary policy (cf. [43, 48, 49]), whereas in deterministic systems,

a probing noise is added to the derived control law (cf. [56, 57, 59, 114, 115]). The

technique developed in this result implements simulation of experience in a model-

based RL scheme by using Y θ̂ as an estimate of the uncertain drift dynamics f to

extrapolate the approximate BE to unexplored areas of the state space. The following

rank condition enables the extrapolation of the approximate BE to a predefined set of

points {xi ∈ Rn | i = 1, · · · , N} in the state space.

Assumption 3.2. There exists a finite set of points {xi ∈ Rn | i = 1, · · · , N} such that

0 < c ,
1

N

(
inf

t∈R≥t0

(
λmin

{
N∑
i=1

ωiω
T
i

ρi

}))
, (3–13)

where λmin {·} denotes the minimum eigenvalue. In (3–13), ρi , 1 + νωTi Γωi ∈ R

are normalization terms, where ν ∈ R is a constant positive normalization gain,

Γ ∈ RL×L is a time-varying least-squares gain matrix, R≥t0 , [t0,∞), and ωi ,

∇σ (xi)
(
Y (xi) θ̂ + g (xi) û

(
xi, Ŵa

))
.

The rank condition in (3–13) depends on the estimates θ̂ and Ŵa; hence, in general,

it is impossible to guarantee a priori. However, unlike the PE condition in previous

results such as [56, 57, 59, 114, 115], the condition in (3–13) can be verified online at

each time t. Furthermore, the condition in (3–13) can be heuristically met by collecting

redundant data, i.e., by selecting more points than the number of neurons by choosing

N � L.
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To simulate experience, the approximate BE is evaluated at the sampled points

{xi | i = 1, · · · , N} as

δ̂ti = ωTi Ŵc + xTi Qxi + ûT
(
xi, Ŵa

)
Rû
(
xi, Ŵa

)
.

For notational brevity, the dependence of the functions f , Y , g, σ, ε, û, ûi, δ̂t, and δ̂ti,

on the state, time, and the weights is suppressed hereafter. A CL-based least-squares

update law for the value function weights is designed based on the subsequent stability

analysis as

˙̂
Wc = −ηc1Γ

ω

ρ
δ̂t −

ηc2
N

Γ
N∑
i=1

ωi
ρi
δ̂ti,

Γ̇ =

(
βΓ− ηc1Γ

ωωT

ρ2
Γ

)
1{‖Γ‖≤Γ}, ‖Γ (t0)‖ ≤ Γ, (3–14)

where 1{·} denotes the indicator function, Γ ∈ R>0 is the saturation constant, β ∈ R>0 is

the forgetting factor, and ηc1, ηc2 ∈ R>0 are constant adaptation gains. The update law in

(3–14) ensures that the adaptation gain matrix is bounded such that

Γ ≤ ‖Γ (t)‖ ≤ Γ, ∀t ∈ R≥t0 , (3–15)

where Γ ∈ R>0 is a constant. The policy weights are then updated to follow the value

function weights as2

˙̂
Wa = −ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa +

(
ηc1G

T
σ Ŵaω

T

4ρ
+

N∑
i=1

ηc2G
T
σiŴaω

T
i

4Nρi

)
Ŵc, (3–16)

2 Using the fact that the ideal weights are bounded, a projection-based (cf. [148]) up-

date law
·

Ŵ a = proj
{
−ηa1

(
Ŵa − Ŵc

)}
can be utilized to update the policy weights.

Since the policy weights are bounded a priori by the projection algorithm, a less complex
stability analysis can be used to establish the result in Theorem 3.1.
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where ηa1, ηa2 ∈ R are positive constant adaptation gains, and Gσ , ∇σgR−1gT∇σT ∈

RL×L.

The update law in (3–14) is fundamentally different from the CL-based adaptive

update in results such as [92, 93], in the sense that the points {xi ∈ Rn | i = 1, · · · , N}

are selected a priori based on prior information about the desired behavior of the sys-

tem, and using an estimate of the system dynamics, the approximate BE is evaluated

at {xi ∈ Rn | i = 1, · · · , N}. In the CL-based adaptive update in results such as [92, 93],

the prediction error is used as a metric for learning. The prediction error depends on

measured or numerically computed values of the state derivative; hence, the prediction

error can only be evaluated at observed data points along the state trajectory.

3.4 Stability Analysis

To facilitate the subsequent stability analysis, the approximate BE is expressed in

terms of the weight estimation errors W̃c and W̃a as

δ̂t = −ωT W̃c −W T∇σY θ̃ +
1

4
W̃ T
a GσW̃a +

1

4
Gε −∇εf +

1

2
W T∇σG∇εT , (3–17)

where G , gR−1gT ∈ Rn×n and Gε , ∇εG∇εT ∈ R. Similarly, the approximate BE

evaluated at the sampled states {xi | i = 1, · · · , N} can be expressed as

δ̂ti = −ωTi W̃c +
1

4
W̃ T
a GσiW̃a −W T∇σiYiθ̃ + ∆i, (3–18)

where Yi = Y (xi), and ∆i , 1
2
W T∇σiGi∇εTi + 1

4
Gεi −∇εifi ∈ R is a constant.

Let Z ⊂ R2n+2L+p denote a compact set, and let χ , Z ∩ Rn. On the compact set

χ ⊂ Rn the function Y is Lipschitz continuous; hence, there exists a positive constant
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LY ∈ R such that3

‖Y (x)‖ ≤ LY ‖x‖ ,∀x ∈ χ. (3–19)

Furthermore, using the universal function approximation property, the ideal weight

matrix W ∈ RL, is bounded above by a known positive constant W in the sense that

‖W‖ ≤ W and the function reconstruction error ε : Rn → R is uniformly bounded over

χ such that supxo∈χ |ε (xo)| ≤ ε̄ and supxo∈χ |∇ε (xo)| ≤ ∇ε. Using (3–15), the normalized

regressor ω
ρ

can be bounded as

sup
t∈R≥t0

∥∥∥∥ω (t)

ρ (t)

∥∥∥∥ ≤ 1

2
√
νΓ
. (3–20)

For brevity of notation, for a function ξ : Rn → R≥0, define the operator (·) : R≥0 →

R≥0 as ξ , supxo∈χ ξ (xo), and the following positive constants:

ϑ1 ,
ηc1LY ‖θ‖∇ε

4
√
νΓ

, ϑ2 ,
N∑
i=1

(
ηc2 ‖∇σiYi‖W

4N
√
νΓ

)
, ϑ3 ,

LY ηc1W‖∇σ‖
4
√
νΓ

, ϑ4 ,

∥∥∥∥1

4
Gε

∥∥∥∥,
ϑ5 ,

ηc1‖2W T∇σG∇εT +Gε‖
8
√
νΓ

+

∥∥∥∥∥
N∑
i=1

ηc2ωi∆i

Nρi

∥∥∥∥∥ , ϑ7 ,
ηc1‖Gσ‖
8
√
νΓ

+
N∑
i=1

(
ηc2 ‖Gσi‖
8N
√
νΓ

)
,

ϑ6 ,

∥∥∥∥1

2
W TGσ +

1

2
∇εGT∇σT

∥∥∥∥+ ϑ7W
2

+ ηa2W, q , λmin{Q},

vl =
1

2
min

(
q

2
,
ηc2c

3
,
ηa1 + 2ηa2

6
, kx,

kθy

4

)
, ι =

3ϑ2
5

4ηc2c
+

3ϑ2
6

2 (ηa1 + 2ηa2)
+
kθd

2
θ

2y
+ϑ4. (3–21)

To facilitate the stability analysis, let VL : R2n+2L+p × R≥0 → R≥0 be a continuously

differentiable positive definite candidate Lyapunov function defined as

VL (Z, t) , V ∗ (x) +
1

2
W̃ T
c Γ−1W̃c +

1

2
W̃ T
a W̃a + V0 (z) , (3–22)

3 The Lipschitz property is exploited here for clarity of exposition. The bound in (3–19)
can be easily generalized to ‖Y (x)‖ ≤ LY (‖x‖) ‖x‖, where LY : R → R is a positive,
non-decreasing function.
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where V ∗ is the optimal value function, V0 was introduced in (3–7) and

Z =
[
xT , W̃ T

c , W̃
T
a , x̃

T , θ̃T
]T
.

Using the fact that V ∗ is positive definite, (3–8), (3–15) and Lemma 4.3 from [149] yield

v (‖Zo‖) ≤ VL (Zo, t) ≤ v (‖Zo‖) , (3–23)

for all t ∈ R≥t0 and for all Zo ∈ R2n+2L+p. In (3–23), v, v : R≥0 → R≥0 are class K

functions.

The sufficient conditions for UB convergence are derived based on the subsequent

stability analysis as

ηa1 + 2ηa2

6
> ϑ7W

(
2ζ2 + 1

2ζ2

)
,

kθ
4
>
ϑ2 + ζ1ζ3ϑ3Z

yζ1

,
q

2
> ϑ1,

ηc2
3
>
ζ2ϑ7W + ηa1 + 2

(
ϑ1 + ζ1ϑ2 + (ϑ3/ζ3)Z

)
2c

, (3–24)

√
ι

vl
≤ r, (3–25)

where Z , v−1
(
v
(

max
(
‖Z (t0)‖ ,

√
ι
vl

)))
, r ∈ R≥0 denotes the radius of the set Z

defined as r , 1
2

sup {‖x− y‖ | x, y ∈ Z}, and ζ1, ζ2, ζ3 ∈ R are known positive adjustable

constants. The Lipschitz constants in (3–19) and the NN function approximation

errors in (3–11) depend on the underlying compact set; hence, given a bound on the

initial condition Z (t0) for the concatenated state Z, a compact set that contains the

concatenated state trajectory needs to be established before adaptation gains satisfying

the conditions in (3–24) can be selected. In the following, based on the subsequent

stability analysis, an algorithm is developed to compute the required compact set,

denoted by Z ⊂ R2n+2L+p. In Algorithm 3.1, the notation {(·)}i denotes the value of (·)

computed in the ith iteration. Since the constants ι and vl depend on LY only through

the products LY∇ε and LY
ζ3

, Algorithm 3.1 ensures the satisfaction of the sufficient

condition in (3–25). The main result of this chapter can now be stated as follows.
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Algorithm 3.1 Gain Selection
First iteration:
Given z ∈ R≥0 such that ‖Z (t0)‖ < z, let Z1 ,

{
ξ ∈ R2n+2L+p | ‖ξ‖ ≤ v−1 (v (z))

}
. Using

Z1, compute the bounds in (3–21) and select the gains according to (3–24). If
{√

ι
vl

}
1
≤

z, set Z = Z1 and terminate.
Second iteration:

If z <
{√

ι
vl

}
1
, let Z2 ,

{
ξ ∈ R2n+2L+p | ‖ξ‖ ≤ v−1

(
v

({√
ι
vl

}
1

))}
. Using Z2, compute

the bounds in (3–21) and select the gains according to (3–24). If
{

ι
vl

}
2
≤
{

ι
vl

}
1
, set Z =

Z2 and terminate.
Third iteration:
If
{

ι
vl

}
2
>
{

ι
vl

}
1
, increase the number of NN neurons to {L}3 to ensure {LY }2

{
∇ε
}

3
≤

{LY }2

{
∇ε
}

2
, ∀i = 1, .., N, increase the constant ζ3 to ensure {LY }2{ζ3}3

≤ {LY }2
{ζ3}2

, and in-
crease the gain kθ to satisfy the gain conditions in (3–24). These adjustments ensure

{ι}3 ≤ {ι}2. Set Z =

{
ξ ∈ R2n+2L+p | ‖ξ‖ ≤ v−1

(
v

({√
ι
vl

}
2

))}
and terminate.

Theorem 3.1. Provided Assumptions (3.1) - (3.2) hold and gains q, ηc2, ηa2, and kθ are

selected large enough using Algorithm 3.1, the observer in (3–2) along with the adaptive

update law in (3–5) and the controller in (2–15) along with the adaptive update laws in

(3–14) and (3–16) ensure that the state x, the state estimation error x̃, the value function

weight estimation error W̃c and the policy weight estimation error W̃a are UB.

Proof. The time derivative of (3–22) along the trajectories of (2–1), (3–3), (3–6), (3–14),

and (3–16) is given by

V̇L = ∇V (f + gû)− W̃ T
c

(
−ηc1

ω

ρ
δ̂t −

ηc2
N

N∑
i=1

ωi
ρi
δ̂ti

)
− W̃ T

a

(
−ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa

)
− 1

2
W̃ T
c Γ−1

(
βΓ− ηc1

(
Γ
ωωT

ρ2
Γ

))
Γ−1W̃c − x̃Tkxx̃− kθθ̃T

(
N∑
j=1

Y T
j Yj

)
θ̃ − kθθ̃T

M∑
j=1

Y T
j dj

− W̃ T
a

(
ηc1G

T
σ Ŵaω

T

4ρ
+

N∑
i=1

ηc2G
T
σiŴaω

T
i

4Nρi

)
Ŵc, (3–26)

Substituting for the approximate BEs from (3–17) and (3–18), using the bounds in

(3–19) and (3–20), and using Young’s inequality, the Lyapunov derivative in (3–26) can

59



be upper-bounded as

V̇L ≤ −
q

2
‖x‖2 − ηc2c

3

∥∥∥W̃c

∥∥∥2

− ηa1 + 2ηa2

6

∥∥∥W̃a

∥∥∥2

− kx ‖x̃‖2 −
kθy

4

∥∥∥θ̃∥∥∥2

−
(q

2
− ϑ1

)
‖x‖2

−
(
ηc2c

3
− ϑ1 + ζ1ϑ2 +

ζ2ϑ7W + ηa1

2
− ϑ3 ‖x‖

ζ3

)∥∥∥W̃c

∥∥∥2

−
((

kθy

4
− ϑ2

ζ1

)
− ϑ3ζ3 ‖x‖

)∥∥∥θ̃∥∥∥2

−
(
ηa1 + 2ηa2

6
− ϑ7 ‖W‖ −

ϑ7 ‖W‖
2ζ2

)∥∥∥W̃a

∥∥∥2

+
3ϑ2

5

4ηc2c
+

3ϑ2
6

2 (ηa1 + 2ηa2)
+
kθd

2
θ

2y
+

1

4
Gε.

(3–27)

Provided the gains are selected based using Algorithm 3.1, the Lyapunov derivative in

(3–27) can be upper-bounded as

V̇L ≤ −vl ‖Z‖2 , ∀ ‖Z‖ ≥
√

ι

vl
> 0, (3–28)

for all t ≥ 0 and ∀Z ∈ Z. Using (3–23), (3–25) and (3–28), Theorem 4.18 in [149]

can now be invoked to conclude that Z is UB in the sense that lim supt→∞ ‖Z (t)‖ ≤

v−1
(
v
(√

ι
vl

))
. Furthermore, the concatenated state trajectories are bounded such

that ‖Z (t)‖ ≤ Z for all t ∈ R≥t0 . Since the estimates Ŵa approximate the ideal weights

W , the definitions in (3–12) and (2–15) can be used to conclude that the policy û

approximates the optimal policy u∗.4

3.5 Simulation

This section presents two simulations to demonstrate the performance and the

applicability of the developed technique. First, the performance of the developed

controller is demonstrated through approximate solution of an optimal control problem

that has a known analytical solution. Based on the known solution, an exact polynomial

basis is used for value function approximation. The second simulation demonstrates

4 If Hid is updated with new data, (3–3) and (3–6) form a switched system. Provided
Hid is updated using a singular value maximizing algorithm, (3–28) can be used to es-
tablish that VL is a common Lyapunov function for the switched system (cf. [93]).
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the applicability of the developed technique in the case where the analytical solution,

and hence, the basis for value function approximation is unknown. In this case, since

the optimal solution is unknown, the optimal trajectories obtained using the developed

technique are compared with optimal trajectories obtained through a numerical optimal

control technique.

3.5.1 Problem with a Known Basis

The performance of the developed controller is demonstrated by simulating a

nonlinear, control-affine system with a two dimensional state x = [x1, x2]T . The system

dynamics are described by (2–1), where [57]

f =

 x1 x2 0 0

0 0 x1 x2

(
1− (cos (2x1) + 2)2)




a

b

c

d


, g =

 0

cos (2x1) + 2

 .(3–29)

where a, b, c, d ∈ R are positive unknown parameters. The parameters are selected as5

a = −1, b = 1, c = −0.5, and d = −0.5. The control objective is to minimize the cost in

(2–4), where Q = I2×2 and R = 1. The optimal value function and optimal control for the

system in (3–29) are given by V ∗(x) = 1
2
x2

1 + x2
2, and u∗(x) = −(cos(2x1) + 2)x2 (cf. [57]).

To facilitate the identifier design, thirty data points are recorded using a singular

value maximizing algorithm (cf. [93]) for the CL-based adaptive update law in (3–5). The

state derivative at the recorded data points is computed using a fifth order Savitzky-

Golay smoothing filter (cf. [150]).

To facilitate the ADP-based controller, the basis function σ : R2 → R3 for value

function approximation is selected as σ =

[
x2

1, x1x2, x2
2

]
. Based on the analytical

solution, the ideal weights are W = [0.5, 0, 1]T . The data points for the CL-based update

5 The origin is an unstable equilibrium point of the unforced system ẋ = f (x).
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law in (3–14) are selected to be on a 5× 5 grid on a 2× 2 square around the origin. The

learning gains are selected as ηc1 = 1, ηc2 = 15, ηa1 = 100, ηa2 = 0.1, ν = 0.005, kx =

10I2×2, Γθ = 20I4×4, and kθ = 30. The policy and the value function weight estimates are

initialized using a stabilizing set of initial weights as Ŵc (0) = Ŵa (0) = [1, 1, 1]T and the

least squares gain is initialized as Γ (0) = 100I3×3. The initial condition for the system

state is selected as x (0) = [−1, −1]T , the state estimates x̂ are initialized to be zero, the

parameter estimates θ̂ are initialized to be one , and the history stack for CL is recorded

online.

Figures 3-2 - 3-4 demonstrates that the system state is regulated to the origin, the

unknown parameters in the drift dynamics are identified, and the value function and the

policy weights converge to their true values. Furthermore, unlike previous results, an

ad-hoc probing signal to ensure PE is not required.
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Figure 3-2. System state and control trajectories generated using the developed method
for the system in Section 3.5.1.

3.5.2 Problem with an Unknown Basis

To demonstrate the applicability of the developed controller, a nonlinear, control-

affine system with a four dimensional state x = [x1, x2, x3, x4]T is simulated. The system
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Figure 3-3. Actor and critic weight trajectories generated using the developed method
for the system in Section 3.5.1 compared with their true values. The true
values computed based on the analytical solution are represented by dotted
lines.

dynamics are described by (2–1), where

f =



x3

x4

−M−1Vm

x3

x4




+


0, 0, 0, 0

0, 0, 0, 0[
M−1, M−1

]
D





fd1

fd2

fs1

fs2


,

g =

[[
0, 0

]T
,

[
0, 0

]T
, (M−1)

T

]T
. (3–30)

In (3–30), D , diag [x3, x4, tanh (x3) , tanh (x4)] and the matrices M, Vm, Fd, Fs ∈ R2×2

are defined as M ,

p1 + 2p3c2, p2 + p3c2

p2 + p3c2, p2

 , Fd ,

 fd1, 0

0, fd2

 , Vm ,

−p3s2x4, −p3s2 (x3 + x4)

p3s2x3, 0

 , and Fs ,

 fs1tanh (x3) , 0

0, fs2tanh (x3)

 , where

c2 = cos (x2) , s2 = sin (x2), p1 = 3.473, p2 = 0.196, and p3 = 0.242, and fd1, fd2,

fs1, fs2 ∈ R are positive unknown parameters. The parameters are selected as fd1 = 5.3,
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Figure 3-4. Drift parameter estimate trajectories generated using the developed method
for the system in Section 3.5.1 compared to the actual drift parameters. The
dotted lines represent true values of the drift parameters.

fd2 = 1.1, fs1 = 8.45, and fs2 = 2.35. The control objective is to minimize the cost in

(2–4), where Q = diag ([10, 10, 1, 1]) and R = diag ([1, 1]).

To facilitate the ADP-based controller, the basis function σ : R4 → R10 for value

function approximation is selected as

σ(x) =

[
x1x3, x2x4, x3x2, x4x1, x1x2, x4x3, x2

1, x2
2, x2

3, x2
4

]
.

The data points for the CL-based update law in (3–14) are selected to be on a 3×3×3×3

grid around the origin, and the policy weights are updated using a projection-based

update law. The learning gains are selected as ηc1 = 1, ηc2 = 30, ηa1 = 0.1, ν = 0.0005,

kx = 10I4, Γθ = diag([90, 50, 160, 50]), and kθ = 1.1. The least squares gain is initialized

as Γ (0) = 1000I10 and the policy and the value function weight estimates are initialized

as Ŵc (0) = Ŵa (0) = [5, 5, 0, 0, 0, 0, 25, 0, 2 , 2]T . The initial condition for the system

state is selected as x (0) = [1, 1, 0, 0]T , the state estimates x̂ are initialized to be zero,
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Figure 3-5. System state and control trajectories generated using the developed method
for the system in Section 3.5.2.

the parameter estimates θ̂ are initialized to be one, and a history stack containing thirty

data points is recorded online using a singular value maximizing algorithm (cf. [93]) for

the CL-based adaptive update law in (3–5). The state derivative at the recorded data

points is computed using a fifth order Savitzky-Golay smoothing filter (cf. [150]).

Figures 3-5 - 3-7 demonstrates that the system state is regulated to the origin, the

unknown parameters in the drift dynamics are identified, and the value function and

the policy weights converge. The value function and the policy weights converge to the

following values.

Ŵ ∗
c = Ŵ ∗

a = [24.7, 1.19, 2.25, 2.67, 1.18, 0.93, 44.34, 11.31, 3.81 , 0.10]T . (3–31)

Since the true values of the value function weights are unknown, the weights in

(3–31) cannot be compared to their true values. However, a measure of proxim-

ity of the weights in (3–31) to the ideal weights W can be obtained by compar-

ing the system trajectories resulting from applying the feedback control policy

û∗ (x) = −1
2
R−1gT (x)∇σT (x) Ŵ ∗

a to the system, against numerically computed opti-

mal system trajectories. In Figure 3-8, the numerical optimal solution is obtained using
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Figure 3-6. Actor and critic weight trajectories generated using the developed method
for the system in Section 3.5.2. Since an analytical optimal solution is not
available, the weight estimates cannot be compared with their true values.
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Figure 3-7. Drift parameter estimate trajectories generated using the developed method
for the system in Section 3.5.2 compared to the actual drift parameters. The
dotted lines represent true values of the drift parameters.
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Figure 3-8. State and control trajectories generated using feedback policy û∗ (x)
compared to a numerical optimal solution for the system in Section 3.5.2.

an infinite-horizon Gauss pseudospectral method (cf. [9]) using 45 collocation points.

Figure 3-8 indicates that the weights in (3–31) generate state and control trajectories

that closely match the numerically computed optimal trajectories.

3.6 Concluding Remarks

An online approximate optimal controller is developed, where the value function is

approximated without PE via novel use of a CL-based system identifier to implement

simulation of experience in model-based RL. The PE condition is replaced by a weaker

rank condition that can be verified online from recorded data. UB regulation of the

system states to a neighborhood of the origin, and convergence of the policy to a

neighborhood of the optimal policy are established using a Lyapunov-based analysis.

Simulations demonstrate that the developed technique generates an approximation to

the optimal controller online, while maintaining system stability, without the use of an

ad-hoc probing signal. The Lyapunov analysis suggests that the convergence critically

depends on the amount of collective information available in the set of BEs evaluated at

the predefined points. This relationship is similar to the conditions on the strength and
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the interval of PE that are required for parameter convergence in adaptive systems in

the presence of bounded or Lipschitz additive disturbances.

The control technique developed in this chapter does not account for additive

external disturbances. Traditionally, optimal disturbance rejection is achieved via

feedback-Nash equilibrium solution of an H∞ control problem. The H∞ control problem

is a two-player zero-sum differential game problem. Motivated by the need to accom-

plish disturbance rejection, the following chapter extends the results of this chapter to

obtain feedback-Nash equilibrium solutions to a more general N−player nonzero-sum

differential game.
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CHAPTER 4
MODEL-BASED REINFORCEMENT LEARNING FOR ONLINE APPROXIMATE
FEEDBACK-NASH EQUILIBRIUM SOLUTION OF N -PLAYER NONZERO-SUM

DIFFERENTIAL GAMES

In this chapter, a CL-based ACI architecture (cf. [59]) is used to obtain an approx-

imate feedback-Nash equilibrium solution to an infinite-horizon N -player nonzero-sum

differential game online, without requiring PE, for a nonlinear control-affine system with

uncertain LP drift dynamics.

A system identifier is used to estimate the unknown parameters in the drift dynam-

ics. The solutions to the coupled HJ equations and the corresponding feedback-Nash

equilibrium policies are approximated using parametric universal function approximators.

Based on estimates of the unknown drift parameters, estimates for the Bellman errors

are evaluated at a set of pre-selected points in the state-space. The value function and

the policy weights are updated using a concurrent learning-based least-squares ap-

proach to minimize the instantaneous BEs and the BEs evaluated at pre-selected points.

Simultaneously, the unknown parameters in the drift dynamics are updated using a his-

tory stack of recorded data via a concurrent learning-based gradient descent approach.

It is shown that under a condition milder than PE, UB convergence of the unknown drift

parameters, the value function weights and the policy weights to their true values can

be established. Simulation results are presented to demonstrate the performance of the

developed technique without an added excitation signal.

4.1 Problem Formulation and Exact Solution

Consider a class of control-affine multi-input systems

ẋ = f (x) +
N∑
i=1

gi (x)ui, (4–1)
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where x ∈ Rn is the state and ui ∈ Rmi are the control inputs (i.e. the players). In (4–1),

the unknown function f : Rn → Rn is LP1 , the functions gi : Rn → Rn×mi are known,

locally Lipschitz continuous and uniformly bounded, the function f is locally Lipschitz,

and f (0) = 0. Define a cost functional

Ji (xi, ui, .., uN) =

∞̂

0

ri (xi (σ) , ui (σ)) dσ (4–2)

where ri : Rn × Rm1 × · · · × RmN → R≥0 denotes the instantaneous cost defined as

ri (x, ui, .., uN) , xTQix+
∑N

j=1 u
T
j Rijuj, where Qi ∈ Rn×n and Rij ∈ Rmj×mj are constant

positive definite matrices. The objective of each agent is to minimize the cost functional

in (4–2). To facilitate the definition of a feedback-Nash equilibrium solution, let

U , {{ui : Rn → Rmi , i = 1, .., N} | {u1, .., uN} is admissible with respect to (4–1)}

be the set of all admissible tuples of feedback policies. A tuple {u1, .., uN} is called

admissible if the functions ui are continuous for all i = 1, .., N , and result in finite costs

Ji for all i = 1, .., N. Let V {u1,..,uN}i : Rn → R≥0 denote the value function of the ith player

with respect to the tuple of feedback policies {u1, .., uN} ∈ U , defined as

V
{u1,..,uN}
i (x) ,

∞̂

t

ri (φ (τ, x) , u1 (φ (τ, x)) , .., uN (φ (τ, x))) dτ, (4–3)

where φ (τ, x) for τ ∈ [t,∞) denotes the trajectory of (4–1) obtained using the feedback

controller ui (τ) = ui (φ (τ, x)) and the initial condition φ (t, x) = x. In (4–3), ri :

Rn×Rm1 × · · ·×RmN → R≥0 denotes the instantaneous cost defined as ri (x, ui, .., uN) ,

xTQix +
∑N

j=1 u
T
j Rijuj, where Qi ∈ Rn×n is a positive definite matrix. The control

1 The function f is assumed to be LP for ease of exposition. The system identifier can
also be developed using multi-layer NNs. For example, a system identifier developed
using single-layer NNs is presented in Chapter 6.
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objective is to find an approximate feedback-Nash equilibrium solution to the infinite-

horizon regulation differential game online, i.e., to find a tuple {u∗1, .., u∗N} ∈ U such that

for all i ∈ {1, .., N}, for all x ∈ Rn, the corresponding value functions satisfy

V ∗i (x) , V
{u∗1,u∗2,..,u∗i ,..,u∗N}
i (x) ≤ V

{u∗1,u∗2,..,ui,..,u∗N}
i (x)

for all ui such that {u∗1, u∗2, .., ui, .., u∗N} ∈ U .

Provided a feedback-Nash equilibrium solution exists and provided the value

functions are continuously differentiable, an exact closed-loop feedback-Nash

equilibrium solution {u∗i , .., u∗N} can be expressed in terms of the value functions

as [100,103,104,107,112]

u∗i (xo) = −1

2
R−1
ii g

T
i (xo) (∇V ∗i (xo))T , ∀xo ∈ Rn, (4–4)

and the value functions {V ∗1 , .., V ∗N} are the solutions to the coupled HJ equations

xoTQix
o +

N∑
j=1

1

4
∇V ∗j (xo)Gij (xo)

(
∇V ∗j (xo)

)T − 1

2
∇V ∗i (xo)

N∑
j=1

Gj (xo)
(
∇V ∗j (xo)

)T
+∇V ∗i (xo) f (xo) = 0, (4–5)

for all xo ∈ Rn. In (4–5), Gj (xo) , gj (xo)R−1
jj g

T
j (xo) and Gij (xo) ,

gj (xo)R−1
jj RijR

−1
jj g

T
j (xo). The HJ equations in (4–5) are in the so-called closed-loop

form; they can be expressed in an open-loop form as

xoTQix
o +

N∑
j=1

u∗Tj (xo)Riju
∗
j (xo) +∇V ∗i (xo) f (xo) +∇V ∗i (xo)

N∑
j=1

gj (xo)u∗j (xo) = 0,

for all xo ∈ Rn.

4.2 Approximate Solution

Computation of an analytical solution to the coupled nonlinear HJ equations in (4–5)

is, in general, infeasible. Hence, similar to Chapter 3, a parametric approximate solution{
V̂1

(
x, Ŵc1

)
, .., V̂N

(
x, ŴcN

)}
is sought. Based on

{
V̂1

(
x, Ŵc1

)
, .., V̂N

(
x, ŴcN

)}
,
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an approximation
{
û1

(
x, Ŵa1

)
, .., ûN

(
x, ŴaN

)}
to the closed-loop feedback-Nash

equilibrium solution is computed, where Ŵci ∈ RpWi , i.e., the value function weights,

and Ŵai ∈ RpWi , i.e., the policy weights, denote the parameter estimates. Since the

approximate solution, in general, does not satisfy the HJ equations, a set of residual

errors δi : Rn × RpWi × RpW1×, · · · × RpWN → R, called BEs, is defined as

δi

(
x, Ŵci, Ŵa1, · · · , ŴaN

)
, xTQix+

N∑
j=1

ûTj

(
x, Ŵaj

)
Rijûj

(
x, Ŵaj

)
+∇V̂i

(
x, Ŵci

)
f (x) +∇V̂i

(
x, Ŵci

) N∑
j=1

gj (x) ûj

(
x, Ŵaj

)
, (4–6)

and the approximate solution is recursively improved to drive the BEs to zero. The com-

putation of the BEs in (4–6) requires knowledge of the drift dynamics f . To eliminate this

requirement, and to enable simulation of experience via BE extrapolation, a concurrent

learning-based system identifier is developed in the following section.

4.2.1 System Identification

Let f (xo) = Y (xo) θ, for all xo ∈ Rn, be the linear parameterization of the drift

dynamics, where Y : Rn → Rn×pθ denotes the locally Lipschitz regression matrix, and

θ ∈ Rpθ denotes the vector of constant, unknown drift parameters. The system identifier

is designed as

˙̂x = Y (x) θ̂ +
N∑
i=1

gi (x)ui + kxx̃, (4–7)

where the measurable state estimation error x̃ is defined as x̃ , x − x̂, kx ∈ Rn×n is

a positive definite, constant diagonal observer gain matrix, and θ̂ ∈ Rpθ denotes the

vector of estimates of the unknown drift parameters. In traditional adaptive systems,

the estimates are updated to minimize the instantaneous state estimation error, and

convergence of parameter estimates to their true values can be established under a

restrictive PE condition. In this result, a concurrent learning-based data-driven approach

is developed to relax the PE condition to a weaker, verifiable rank condition as follows.
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Assumption 4.1. [92, 93] A history stack Hid containing state-action tuples{(
xj, uij

)
| i = 1, · · · , N, j = 1, · · · ,Mθ

}
recorded along the trajectories of (4–1) that

satisfies

rank

(
Mθ∑
j=1

Y T
j Yj

)
= pθ,

is available a priori, where Yj , Y (xj), and pθ denotes the number of unknown

parameters in the drift dynamics.

To facilitate the concurrent learning-based parameter update, numerical methods

are used to compute the state derivative ẋj corresponding to
(
xj, ûij

)
. The update law

for the drift parameter estimates is designed as

˙̂
θ = ΓθY

T x̃+ Γθkθ

Mθ∑
j=1

Y T
j

(
ẋj −

N∑
i=1

gijuij − Yj θ̂

)
, (4–8)

where gij , gi (xj), Γθ ∈ Rpθ×pθ is a constant positive definite adaptation gain matrix, and

kθ ∈ R is a constant positive concurrent learning gain. The update law in (4–8) requires

the unmeasurable state derivative ẋj. Since the state derivative at a past recorded point

on the state trajectory is required, past and future recorded values of the state can be

used along with accurate noncausal smoothing techniques to obtain good estimates of

ẋj. In the presence of derivative estimation errors, the parameter estimation errors can

be shown to be UUB, where the size of the ultimate bound depends on the error in the

derivative estimate [93].

To incorporate new information, the history stack is updated with new data. Thus,

the resulting closed-loop system is a switched system. To ensure the stability of the

switched system, the history stack is updated using a singular value maximizing

algorithm (cf. [93]). Using (4–1), the state derivative can be expressed as

ẋj −
N∑
i=1

gijuij = Yjθ,
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and hence, the update law in (4–8) can be expressed in the advantageous form

˙̃θ = −ΓθY
T x̃− Γθkθ

(
Mθ∑
j=1

Y T
j Yj

)
θ̃, (4–9)

where θ̃ , θ − θ̂ denotes the drift parameter estimation error. The closed-loop dynamics

of the state estimation error are given by

˙̃x = Y θ̃ − kxx̃. (4–10)

4.2.2 Value Function Approximation

The value functions, i.e., the solutions to the HJ equations in (4–5), are continuously

differentiable functions of the state. Using the universal approximation property of NNs,

the value functions can be represented as

V ∗i (xo) = W T
i σi (x

o) + εi (x
o) , (4–11)

for all xo ∈ Rn, where Wi ∈ RpWi denotes the constant vector of unknown NN weights,

σi : Rn → RpWi denotes the known NN activation function, pWi ∈ N denotes the

number of hidden layer neurons, and εi : Rn → R denotes the unknown function

reconstruction error. The universal function approximation property guarantees that over

any compact domain C ⊂ Rn, for all constant εi,∇εi > 0, there exists a set of weights

and basis functions such that ‖Wi‖ ≤ W , supx∈C ‖σi (x)‖ ≤ σi, supx∈C ‖∇σi (x)‖ ≤ ∇σi,

supx∈C ‖εi (x)‖ ≤ εi and supx∈C ‖∇εi (x)‖ ≤ ∇εi, where W i, σi,∇σi, εi,∇εi ∈ R are positive

constants. Based on (4–4) and (4–11), the feedback-Nash equilibrium solutions are

given by

u∗i (xo) = −1

2
R−1
ii g

T
i (xo)

(
∇σTi (xo)Wi +∇εTi (xo)

)
, ∀xo ∈ Rn. (4–12)

The NN-based approximations to the value functions and the controllers are defined

as

V̂i

(
x, Ŵci

)
, Ŵ T

ciσi (x) , ûi

(
x, Ŵai

)
, −1

2
R−1
ii g

T
i (x)∇σTi (x) Ŵai, (4–13)
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The use of two different sets
{
Ŵci

}
and

{
Ŵai

}
of estimates to approximate the same

set of ideal weights {Wi} is motivated by the subsequent stability analysis and the fact

that it facilitates an approximate formulation of the BEs that is affine in the value function

weights, enabling least squares-based adaptation. Based on (4–13), measurable

approximations δ̂i : Rn × RpWi × RpW1×, · · · × RpWN × Rpθ → R to the BEs in (4–6) are

defined as

δ̂i

(
x, Ŵci, Ŵa1, · · · , ŴaN , θ̂

)
, Ŵ T

ci

(
∇σi (x)Y (x) θ̂ − 1

2

N∑
j=1

∇σi (x)Gj (x)∇σTj (x) Ŵaj

)

+ xTQix+
N∑
j=1

1

4
Ŵ T
aj∇σj (x)Gij (x)∇σTj (x) Ŵaj, (4–14)

The following assumption, which in general is weaker than the PE assumption, is

required for convergence of the concurrent learning-based value function weight

estimates.

Assumption 4.2. For each i ∈ {1, .., N}, there exists a finite set of Mxi points

{xij ∈ Rn | j = 1, ..,Mxi} such that

cxi ,

(
inft∈R≥0

(
λmin

{∑Mxi

k=1

ωki (t)(ωki )
T

(t)

ρki (t)

}))
Mxi

> 0, (4–15)

where λmin denotes the minimum eigenvalue, and cxi ∈ R is a positive constant. In

(4–15),

ωki = ∇σiki Y ikθ̂ − 1

2

N∑
j=1

∇σiki Gik
j

(
∇σikj

)T
Ŵaj,

where the superscript ik indicates that the function is evaluated at x = xik, and

ρki , 1 + νi
(
ωki
)T

Γiω
k
i , where νi ∈ R>0 is the normalization gain and Γi ∈ RPWi×PWi is the

adaptation gain matrix.
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The concurrent learning-based least-squares update law for the value function

weights is designed as

˙̂
Wci = −ηc1iΓi

ωi
ρi
δ̂ti −

ηc2iΓi
Mxi

Mxi∑
k=1

ωki
ρki
δ̂kti,

Γ̇i =

(
βiΓi − ηc1iΓi

ωiω
T
i

ρ2
i

Γi

)
1{‖Γi‖≤Γi}, ‖Γi (t0)‖ ≤ Γi, (4–16)

where ωi = ∇σi (x)Y (x) θ̂ − 1
2

∑N
j=1∇σi (x)Gj (x)∇σTj (x) Ŵaj (t) , ρi , 1 + νiω

T
i Γiωi,

1{·} denotes the indicator function, Γi > 0 ∈ R is the saturation constant, βi ∈ R is the

constant positive forgetting factor, ηc1i, ηc2i ∈ R are constant positive adaptation gains,

and the instantaneous BEs δ̂ti and δ̂kti are defined as

δ̂ti (t) , δ̂i

(
x (t) , Ŵci (t) , Ŵa1 (t) , · · · , ŴaN (t) , θ̂ (t)

)
,

δ̂kti (t) , δ̂i

(
xik, Ŵci (t) , Ŵa1 (t) , · · · , ŴaN (t) , θ̂ (t)

)
.

The policy weight update laws are designed based on the subsequent stability

analysis as

˙̂
Wai = −ηa1i

(
Ŵai − Ŵci

)
− ηa2iŴai +

1

4

Mxi∑
k=1

N∑
j=1

ηc2i
Mxi

∇σikj Gik
ij

(
∇σikj

)T
Ŵ T
aj

(
ωki
)T

ρki
Ŵ T
ci

+
1

4

N∑
j=1

ηc1i∇σj (x)Gij (x)∇σTj (x) Ŵ T
aj

ωTi
ρi
Ŵ T
ci , (4–17)

where ηa1i, ηa2i ∈ R are positive constant adaptation gains. The forgetting factor βi along

with the saturation in the update law for the least-squares gain matrix in (4–16) ensure

(cf. [91]) that the least-squares gain matrix Γi and its inverse are positive definite and

bounded for all i ∈ {1, .., N} as

Γi ≤ ‖Γi (t)‖ ≤ Γi,∀t ∈ R≥0, (4–18)
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where Γi ∈ R is a positive constant, and the normalized regressor is bounded as∥∥∥∥ωiρi
∥∥∥∥ ≤ 1

2
√
νiΓi

.

For notational brevity, state-dependence of the functions f, gi, u∗i , Gi, Gij, σi, Y , ε and V ∗i

and is suppressed hereafter.

4.3 Stability Analysis

Subtracting (4–5) from (4–14), the approximate BE can be expressed in an unmea-

surable form as

δ̂ti = ωTi Ŵci +
N∑
j=1

1

4
Ŵ T
aj∇σjGij∇σTj Ŵaj −

N∑
j=1

u∗Tj Riju
∗
j −∇V ∗i f −∇V ∗i

N∑
j=1

gju
∗
j

Substituting for V ∗ and u∗ from (4–11) and (4–12) and using f = Y θ, the approximate

BE can be expressed as

δ̂ti=ωTi Ŵci +
N∑
j=1

1

4
Ŵ T
aj∇σjGij∇σTj Ŵaj −W T

i ∇σiY θ −∇εiY θ −
N∑
j=1

1

4
W T
j ∇σjGij∇σTj Wj

−
N∑
j=1

1

2
ε′jGij∇σTj Wj −

N∑
j=1

1

4
ε′jGij∇εTj +

1

2

N∑
j=1

∇εiGj∇εTj +
1

2

N∑
j=1

W T
i ∇σiGj∇σTj Wj

+
1

2

N∑
j=1

∇εiGj∇σTj Wj +
1

2

N∑
j=1

W T
i ∇σiGj∇εTj ,

Adding and subtracting 1
4
Ŵ T
aj∇σjGij∇σTj Wj + ωTi Wi yields

δ̂ti = −ωTi W̃ci +
1

4

N∑
j=1

W̃ T
aj∇σjGij∇σTj W̃aj −

1

2

N∑
j=1

(
W T
i ∇σiGj −W T

j ∇σjGij

)
∇σTj W̃aj

−W T
i ∇σiY θ̃ −∇εiY θ + ∆i, (4–19)

where ∆i , 1
2

∑N
j=1

(
W T
i ∇σiGj −W T

j ∇σjGij

)
∇εTj + 1

2

∑N
j=1W

T
j ∇σjGj∇εTi +

1
2

∑N
j=1∇εiGj∇εTj −

∑N
j=1

1
4
ε′jGij∇εTj . Similarly, the approximate BE evaluated at the

selected points can be expressed in an unmeasurable form as
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δ̂kti = −ωkTi W̃ci + ∆k
i −W T

i ∇σiki Y ikθ̃ − 1

2

N∑
j=1

(
W T
i ∇σiki Gik

j −W T
j ∇σikj Gik

ij

) (
∇σikj

)T
W̃aj

+
1

4

N∑
j=1

W̃ T
aj∇σikj Gik

ij

(
∇σikj

)T
W̃aj, (4–20)

where the constant ∆k
i ∈ R is defined as ∆k

i , −ε′iki Y ikθ + ∆ik
i . To facilitate the stability

analysis, a candidate Lyapunov function is defined as

VL =
N∑
i=1

V ∗i +
1

2

N∑
i=1

W̃ T
ciΓ
−1
i W̃ci +

1

2

N∑
i=1

W̃ T
aiW̃ai +

1

2
x̃T x̃+

1

2
θ̃TΓ−1

θ θ̃. (4–21)

Since V ∗i are positive definite, the bound in (4–18) and Lemma 4.3 in [149] can be used

to bound the candidate Lyapunov function as

v (‖Zo‖) ≤ VL (Zo, t) ≤ v (‖Zo‖) (4–22)

for all Zo =
[
xT , W̃ T

c1, .., W̃
T
cN , W̃

T
a1, .., W̃

T
aN , x̃, θ̃

]T
∈ R2n+2N

∑
i pWi+pθ and v, v : R≥0 → R≥0

are class K functions. For any compact set Z ⊂ R2n+2N
∑
i pWi+pθ , define

ι1 , max
i,j

(
sup
Z∈Z

∥∥∥∥1

2
W T
i ∇σiGj∇σTj +

1

2
∇εiGj∇σTj

∥∥∥∥) , ι4 , max
i,j

(
sup
Z∈Z

∥∥∇σjGij∇σTj
∥∥) ,

ι5i ,
ηc1iLY∇εiθ

4
√
νiΓi

, ι2 , max
i,j

(
sup
Z∈Z

∥∥∥ηc1iωi
4ρi

(
3Wj∇σjGij − 2W T

i ∇σiGj

)
∇σTj

+

Mxi∑
k=1

ηc2iω
k
i

4Mxiρki

(
3W T

j ∇σikj Gik
ij − 2W T

i ∇σiki Gik
j

) (
∇σikj

)T∥∥∥)
ι3 , max

i,j

(
sup
Z∈Z

∥∥∥∥∥1

2

N∑
i,j=1

(
W T
i ∇σi +∇εi

)
Gj∇εTj −

1

4

N∑
i,j=1

(
2W T

j ∇σj + ε′j
)
Gij∇εTj

∥∥∥∥∥
)

ι6i ,
ηc1iLYW i∇σi

4
√
νiΓi

, ι7i ,
ηc2i maxk

∥∥∇σiki Y ik
∥∥W i

4
√
νiΓi

, ι8 ,
N∑
i=1

(ηc1i + ηc2i)W iι4

8
√
νiΓi

,

ι9i ,
(
ι1N + (ηa2i + ι8)W i

)
, ι10i ,

ηc1i supZ∈Z ‖∆i‖+ ηc2i maxk
∥∥∆k

i

∥∥
2
√
νiΓi

vl,
1

2
min

(
qi

2
,
ηc2icxi

4
, kx,

2ηa1i+ηa2i

8
,
kθy

2

)
, ι,

N∑
i=1

(
2ι29i

2ηa1i+ηa2i

+
ι210i

ηc2icxi

)
+ι3, (4–23)
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where qi denotes the minimum eigenvalue of Qi, y denotes the minimum eigenvalue of∑Mθ

j=1 Y
T
j Yj, kx denotes the minimum eigenvalue of kx, and the suprema exist since ωi

ρi

is uniformly bounded for all Z, and the functions Gi, Gij, σi, and ∇εi are continuous. In

(4–23), LY ∈ R≥0 denotes the Lipschitz constant such that ‖Y ($)‖ ≤ LY ‖$‖ for all

$ ∈ Z ∩ Rn. The sufficient conditions for UB convergence are derived based on the

subsequent stability analysis as

qi > 2ι5i,

ηc2icxi > 2ι5i + 2ζ1ι7i + ι2ζ2N + ηa1i + 2ζ3ι6iZ,

2ηa1i + ηa2i > 4ι8 +
2ι2N

ζ2

,

kθy >
2ι7i
ζ1

+ 2
ι6i
ζ3

Z, (4–24)

where Z , v−1
(
v
(

max
(
‖Z (t0)‖ ,

√
ι
vl

)))
and ζ1, ζ2, ζ3 ∈ R are known positive

adjustable constants. Furthermore, the compact set Z satisfies the sufficient condition√
ι

vl
≤ r, (4–25)

where r ∈ R≥0 denotes the radius of the set Z.

Since the NN function approximation error and the Lipschitz constant LY depend

on the compact set that contains the state trajectories, the compact set needs to be

established before the gains can be selected using (4–24). Based on the subsequent

stability analysis, an algorithm is developed to compute the required compact set

(denoted by Z) based on the initial conditions. In Algorithm 4.1, the notation {$}i

for any parameter $ denotes the value of $ computed in the ith iteration. Since the

constants ι and vl depend on LY only through the products LY∇εi and LY ζ3, Algorithm

4.1 ensures the satisfaction of the sufficient condition in that

Theorem 4.1. Provided Assumptions 4.1-4.2 hold and the control gains satisfy the

sufficient conditions in (4–24), where the constants in (4–23) are computed based on
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Algorithm 4.1 Gain Selection
First iteration:
Given z ∈ R≥0 such that ‖Z (t0)‖ < z, let Z1 ,{
ξ ∈ R2n+2N

∑
i{pWi}1+pθ | ‖ξ‖ ≤ v−1 (v (z))

}
. Using Z1, compute the bounds in (4–23)

and select the gains according to (4–24). If
{√

ι
vl

}
1
≤ z, set Z = Z1 and terminate.

Second iteration:

If z <
{√

ι
vl

}
1
, let Z2 ,

{
ξ ∈ R2n+2N

∑
i{pWi}1+pθ | ‖ξ‖ ≤ v−1

(
v

({√
ι
vl

}
1

))}
. Using

Z2, compute the bounds in (4–23) and select the gains according to (4–24). If
{√

ι
vl

}
2
≤{√

ι
vl

}
1
, set Z = Z2 and terminate.

Third iteration:
If
{√

ι
vl

}
2

>
{√

ι
vl

}
1
, increase the number of NN neurons to {pWi}3 to en-

sure {LY }2

{
∇εi
}

3
≤ {LY }2

{
∇εi
}

2
,∀i = 1, .., N, decrease the constant ζ3

to ensure {LY }2 {ζ3}3 ≤ {LY }2 {ζ3}2, and increase the gain kθ to satisfy the
gain conditions in (4–24). These adjustments ensure {ι}3 ≤ {ι}2. Set Z ={
ξ ∈ R2n+2N

∑
i{pWi}3+pθ | ‖ξ‖ ≤ v−1

(
v

({√
ι
vl

}
2

))}
and terminate.

the compact set Z selected using Algorithm 4.1, the system identifier in (4–7) along with

the adaptive update law in (4–8) and the controllers ui (t) = ûi

(
x (t) , Ŵai (t)

)
along

with the adaptive update laws in (4–16) and (4–17) ensure that the state x, the state

estimation error x̃, the value function weight estimation errors W̃ci and the policy weight

estimation errors W̃ai are UB, resulting in UB convergence of the controllers ui to the

feedback-Nash equilibrium controllers u∗i (x).

Proof. The derivative of the candidate Lyapunov function in (4–21) along the trajectories

of (4–1), (4–9), (4–10), (4–16), and (4–17) is given by

V̇L =
N∑
i=1

(
∇V ∗i

(
f +

N∑
j=1

gjuj

))
+ x̃T

(
Y θ̃ − kxx̃

)
+ θ̃T

(
−Y T x̃− kθ

(
Mθ∑
j=1

Y T
j Yj

)
θ̃

)

− 1

2

N∑
i=1

W̃ T
ci

(
βiΓ

−1
i − ηc1i

ωiω
T
i

ρ2
i

)
W̃ci +

N∑
i=1

W̃ T
ci

(
ηc1iωi
ρi

δ̂ti +
ηc2i
Mxi

Mxi∑
i=1

ωki
ρki
δ̂kti

)

−
N∑
i=1

W̃ T
ai

(
− ηa1i

(
Ŵ T
ai − Ŵ T

ci

)
− ηa2iŴ

T
ai +

1

4

N∑
j=1

ηc1iŴ
T
ci

ωi
ρi
Ŵ T
aj∇σjGij∇σTj
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+
1

4

Mxi∑
k=1

N∑
j=1

ηc2i
Mxi

Ŵ T
ci

ωki
ρki
Ŵ T
aj∇σikj Gik

ij

(
∇σikj

)T )
. (4–26)

Substituting the unmeasurable forms of the BEs from (4–19) and (4–20) into (4–26) and

using the triangle inequality, the Cauchy-Schwarz inequality and Young’s inequality, the

Lyapunov derivative in (4–26) can be bounded as

V̇ ≤ −
N∑
i=1

qi

2
‖x‖2 −

N∑
i=1

ηc2icxi
2

∥∥∥W̃ci

∥∥∥2

− kx ‖x̃‖2 −
kθy

2

∥∥∥θ̃∥∥∥2

−
N∑
i=1

(
2ηa1i + ηa2i

4

)∥∥∥W̃ai

∥∥∥2

+
N∑
i=1

ι9i

∥∥∥W̃ai

∥∥∥+
N∑
i=1

ι10i

∥∥∥W̃ci

∥∥∥− N∑
i=1

(qi
2
− ι5i

)
‖x‖2 +

N∑
i=1

(
kθy

2
− ι7i
ζ1

− ι6i
ζ3

‖x‖
)∥∥∥θ̃i∥∥∥2

−
N∑
i=1

(
ηc2icxi

2
− ι5i − ζ1ι7i −

1

2
ι2ζ2N −

1

2
ηa1i − ζ3ι6i ‖x‖

)∥∥∥W̃ci

∥∥∥2

+
N∑
i=1

(
2ηa1i + ηa2i

4
− ι8 −

ι2N

2ζ2

)∥∥∥W̃ai

∥∥∥2

+ ι3. (4–27)

Provided the sufficient conditions in (4–24) hold and the conditions

ηc2icxi
2

> ι5i + ζ1ι7i +
1

2
ι2ζ2N +

1

2
ηa1i + ζ3ι6i ‖x‖ ,

kθy

2
>
ι7i
ζ1

+
ι6i
ζ3

‖x‖ (4–28)

hold for all Z ∈ Z. Completing the squares in (4–27), the bound on the Lyapunov

derivative can be expressed as

V̇ ≤−
N∑
i=1

qi

2
‖x‖2−

N∑
i=1

ηc2icxi
4

∥∥∥W̃ci

∥∥∥2

− kx ‖x̃‖2−
N∑
i=1

(
2ηa1i + ηa2i

8

)∥∥∥W̃ai

∥∥∥2

−
kθy

2

∥∥∥θ̃∥∥∥2

+ ι,

≤ −vl ‖Z‖2 , ∀ ‖Z‖ >
√

ι

vl
, Z ∈ Z. (4–29)

Using (4–22), (4–25), and (4–29), Theorem 4.18 in [149] can be invoked to conclude

that lim supt→∞ ‖Z (t)‖ ≤ v−1
(
v
(√

ι
vl

))
. Furthermore, the system trajectories are

bounded as ‖Z (t)‖ ≤ Z for all t ∈ R≥0. Hence, the conditions in (4–24) are sufficient for

the conditions in (4–28) to hold for all t ∈ R≥0.
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The error between the feedback-Nash equilibrium controller and the approximate

controller can be expressed as

‖u∗i (x (t))− ui (t)‖ ≤
1

2
‖Rii‖ gi∇σi

(∥∥∥W̃ai (t)
∥∥∥+∇εi

)
,

for all i = 1, .., N , where gi , supxo ‖gi (xo)‖. Since the weights W̃ai are UB, UB

convergence of the approximate controllers to the feedback-Nash equilibrium controller

is obtained.

Remark 4.1. The closed-loop system analyzed using the candidate Lyapunov function in

(4–21) is a switched system. The switching happens when the history stack is updated

and when the least-squares regression matrices Γi reach their saturation bound. Similar

to least squares-based adaptive control (cf. [91]), (4–21) can be shown to be a common

Lyapunov function for the regression matrix saturation, and the use of a singular value

maximizing algorithm to update the history stack ensures that (4–21) is a common

Lyapunov function for the history stack updates (cf. [93]). Since (4–21) is a common

Lyapunov function, (4–22), (4–25), and (4–29) establish UB convergence of the switched

system.

4.4 Simulation

4.4.1 Problem Setup

To portray the performance of the developed approach, the concurrent learning-

based adaptive technique is applied to the nonlinear control-affine system [112]

ẋ = f (x) + g1 (x)u1 + g2 (x)u2, (4–30)

where x ∈ R2, u1, u2 ∈ R, and

f =


x2 − 2x1 −1

2
x1 − x2 + 1

4
x2 (cos (2x1) + 2)2

+1
4
x2 (sin (4x2

1) + 2)
2


 ,
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g1 =

 0

cos (2x1) + 2

 , g2 =

 0

sin (4x2
1) + 2

 .
The value function has the structure shown in (4–3) with the weights Q1 = 2Q2 = 2I2

and R11 = R12 = 2R21 = 2R22 = 2. The system identification protocol given in Section

4.2.1 and the concurrent learning-based scheme given in Section 4.2.2 are implemented

simultaneously to provide an approximate online feedback-Nash equilibrium solution to

the given nonzero-sum two-player game.

4.4.2 Analytical Solution

The control-affine system in (4–30) is selected for this simulation because it is

constructed using the converse HJ approach [12] such that the analytical feedback-

Nash equilibrium solution of the nonzero-sum game is

V ∗1 =


0.5

0

1


T 

x2
1

x1x2

x2
2

 , V ∗2 =


0.25

0

0.5


T 

x2
1

x1x2

x2
2

 ,
and the feedback-Nash equilibrium control policies for player 1 and player 2 are

u∗1 = −1

2
R−1

11 g
T
1


2x1 0

x2 x1

0 2x2


T 

0.5

0

1

 , u∗2 = −1

2
R−1

22 g
T
2


2x1 0

x2 x1

0 2x2


T 

0.25

0

0.5

 .
Since the analytical solution is available, the performance of the developed method can

be evaluated by comparing the obtained approximate solution against the analytical

solution.

4.4.3 Simulation Parameters

The dynamics are linearly parameterized as f (x) = Y (x) θ, where

Y (x) =

 x2 x1 0 0 0 0

0 0 x1 x2 x2 (cos (2x1) + 2)2 x2 (cos (2x1) + 2)2



83



Table 4-1. Learning gains for for value function approximation
Player 1 Player 2

ν 0.005 0.005
ηc1 1.0 1.0
ηc2 1.5 1.0
ηa1 10.0 10.0
ηa2 0.1 0.1
β 3.0 3.0
Γ̄ 10,000.0 10,000.0

is known and the constant vector of parameters θ =
[
1,−2,−1

2
,−1, 1

4
,−1

4

]T is assumed

to be unknown. The initial guess for θ is selected as θ̂ (t0) = 0.5 × 16×1. The system

identification gains are selected as kx = 5, Γθ = diag (20, 20, 100, 100, 60, 60), kθ = 1.5.

A history stack of 30 points is selected using a singular value maximizing algorithm

(cf. [93]) for the concurrent learning-based update law in (4–8), and the state derivatives

are estimated using a fifth order Savitzky-Golay filter (cf. [150]). Based on the structure

of the feedback-Nash equilibrium value functions, the basis function for value function

approximation is selected as σ = [x2
1, x1x2, x

2
2]T , and the adaptive learning parameters

and initial conditions are shown for both players in Tables 4-1 and 4-2. Twenty-five points

lying on a 5 × 5 grid on a 2 × 2 square around the origin are selected for the concurrent

learning-based update laws in (4–16) and (4–17).

Table 4-2. Initial conditions for the system and the two players

Player 1 Player 2

Ŵc (t0) [3, 3, 3]T [3, 3, 3]T

Ŵa (t0) [3, 3, 3]T [3, 3, 3]T

Γ (t0) 100I3 100I3

x (t0) [1, 1]T [1, 1]T

x̂ (t0) [0, 0]T [0, 0]T
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4.4.4 Simulation Results

Figures 4-1 and 4-2 show the rapid convergence of the actor and critic weights

to the approximate feedback-Nash equilibrium values for both players, resulting in the

value functions and control policies

V1 (x) =


0.5021

−0.0159

0.9942


T 

x2
1

x1x2

x2
2

 , u1 (x) = −1

2
R−1

11 g
T
1


2x1 0

x2 x1

0 2x2


T 

0.4970

−0.0137

0.9810

 ,

V2 (x) =


0.2510

−0.0074

0.4968


T 

x2
1

x1x2

x2
2

 , u2 (x) = −1

2
R−1

22 g
T
2


2x1 0

x2 x1

0 2x2


T 

0.2485

−0.0055

0.4872

 .
Figure 4-3 demonstrates that (without the injection of a PE signal) the system identifi-

cation parameters also approximately converged to the correct values. The state and

control signal trajectories are displayed in Figure 4-4.
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Figure 4-1. Trajectories of actor and critic weights for player 1 compared against their
true values. The true values computed based on the analytical solution are
represented by dotted lines.
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Figure 4-2. Trajectories of actor and critic weights for player 2 compared against their
true values. The true values computed based on the analytical solution are
represented by dotted lines.
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Figure 4-3. Trajectories of the estimated parameters in the drift dynamics compared
against their true values. The true values are represented by dotted lines.
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Figure 4-4. System state trajectory and the control trajectories for players 1 and 2
generated using the developed technique

4.5 Concluding Remarks

A concurrent learning-based adaptive approach is developed to determine the

feedback-Nash equilibrium solution to an N -player nonzero-sum game online. The

solutions to the associated coupled HJ equations and the corresponding feedback-Nash

equilibrium policies are approximated using parametric universal function approximators.

Based on estimates of the unknown drift parameters, estimates for the Bellman errors

are evaluated at a set of preselected points in the state-space. The value function

and the policy weights are updated using a concurrent learning-based least-squares

approach to minimize the instantaneous BEs and the BEs evaluated at the preselected

points. Simultaneously, the unknown parameters in the drift dynamics are updated

using a history stack of recorded data via a concurrent learning-based gradient descent

approach.

The simulation-based ACI technique developed in this chapter and Chapter 3

achieves approximate optimal control for autonomous system and stationary cost

functions. Extension of the ACI techniques to optimal trajectory tracking problems

presents unique challenges for value function approximation due to the time-varying
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nature of the problem. The following chapter describes the challenges and presents

a solution to extend the ACI architecture to solve infinite-horizon trajectory tracking

problems.
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CHAPTER 5
EXTENSION TO APPROXIMATE OPTIMAL TRACKING

ADP has been investigated and used as a tool to approximately solve optimal

regulation problems. For these problems, function approximation techniques can be

used to approximate the value function because it is a time invariant function. In tracking

problems, the tracking error, and hence the value function, is a function of the state and

an explicit function of time. Approximation techniques like NNs are commonly used in

ADP literature for value function approximation. However, NNs can only approximate

functions on compact domains, thus leading to a technical challenge to approximate the

value function for a tracking problem because the infinite-horizon nature of the problem

implies that time does not lie on a compact set. Hence, the extension of this technique

to optimal tracking problems for continuous-time nonlinear systems has remained a

non-trivial open problem.

In this result, the tracking error and the desired trajectory both serve as inputs to

the NN. This makes the developed controller fundamentally different from previous

results, in the sense that a different HJB equation must be solved and its solution, i.e.

the feedback component of the controller, is a time-varying function of the tracking

error. In particular, this chapter addresses the technical obstacles that result from the

time-varying nature of the optimal control problem by including the partial derivative

of the value function with respect to the desired trajectory in the HJB equation, and

by using a system transformation to convert the problem into a time-invariant optimal

control problem in such a way that the resulting value function is a time-invariant

function of the transformed states, and hence, lends itself to approximation using a NN.

A Lyapunov-based analysis is used to prove ultimately bounded tracking and that the

enacted controller approximates the optimal controller. Simulation results are presented

to demonstrate the applicability of the presented technique. To gauge the performance

of the proposed method, a comparison with a numerical optimal solution is presented.
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5.1 Formulation of Time-invariant Optimal Control Problem

Consider the class of nonlinear control-affine systems described in (2–1). The

control objective is to track a bounded continuously differentiable signal xd ∈ Rn. To

quantify this objective, a tracking error is defined as e , x − xd. The open-loop tracking

error dynamics can then be written as

ė = f (x) + g (x)u− ẋd. (5–1)

The following assumptions are made to facilitate the formulation of an approximate

optimal tracking controller.

Assumption 5.1. The function g is bounded, the matrix g (xo) has full column rank for all

xo ∈ Rn, and the function g+ : Rn → Rm×n defined as g+ ,
(
gTg
)−1

gT is bounded and

locally Lipschitz.

Assumption 5.2. The desired trajectory is bounded such that ‖xd‖ ≤ d ∈ R, and

there exists a locally Lipschitz function hd : Rn → Rn such that ẋd = hd (xd) and

g (xd) g
+ (xd) (hd (xd)− f (xd)) = hd (xd)− f (xd), ∀t ∈ R≥t0.

The steady-state control policy ud : Rn → Rm corresponding to the desired

trajectory xd is

ud (xd) = g+
d (hd (xd)− fd) , (5–2)

where g+
d , g+ (xd) and fd , f (xd). To transform the time-varying optimal control

problem into a time-invariant optimal control problem, a new concatenated state ζ ∈ R2n

is defined as [86]

ζ ,
[
eT , xTd

]T
. (5–3)

Based on (5–1) and Assumption 5.2, the time derivative of (5–3) can be expressed as

ζ̇ = F (ζ) +G (ζ)µ, (5–4)
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where the functions F : R2n → R2n, G : R2n → R2n×m, and the control µ ∈ Rm are

defined as

F (ζ) ,

 f (e+ xd)− hd (xd) + g (e+ xd)ud (xd)

hd (xd)

 , G (ζ) ,

g (e+ xd)

0n×m

 , µ , u−ud (xd) .

(5–5)

Local Lipschitz continuity of f and g, the fact that f (0) = 0, and Assumption 5.2 imply

that F (0) = 0 and F is locally Lipschitz. The objective of the optimal control problem

is to minimize the cost functional J (ζ, µ), introduced in (2–2), subject to the dynamic

constraints in (5–4) while tracking the desired trajectory. For ease of exposition, let the

function Q : R2n → R≥0 in (2–3) be defined as Q (ζ) , ζTQζ, where Q ∈ R2n×2n is a

constant matrix defined as

Q ,

 Q 0n×n

0n×n 0n×n

 , (5–6)

where Q ∈ Rn×n is a positive definite symmetric matrix of constants with the minimum

eigenvalue q ∈ R>0. Thus, the reward r : R2n × Rm → R is given by

r (ζ, µ) , ζTQζ + µTRµ. (5–7)

5.2 Approximate Optimal Solution

Similar to the development in Chapter 2, assuming that a minimizing policy exists

and assuming that the optimal value function satisfies V ∗ ∈ C1 and V ∗ (0) = 0, the local

cost in (5–7) and the dynamics in (5–4), yield the optimal policy µ∗ : R2n → Rm as

µ∗ (ζo) = −1

2
R−1GT (ζo) (∇V ∗ (ζo))T , ∀ζo ∈ R2n (5–8)
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where V ∗ : R2n → R≥0 denotes the optimal value function defined as in (2–4) with the

local cost defined in (5–7).1 The policy in (5–8) and the value function V ∗ satisfy the

HJB equation [1]

∇V ∗ (ζo) (F (ζo) +G (ζo)µ∗ (ζo)) + r (ζo, µ∗ (ζo)) = 0, (5–9)

∀ζo ∈ R2n, with the initial condition V ∗ (0) = 0.

The value function V ∗ can be represented using a NN with L neurons as

V ∗ (ζo) = W Tσ (ζo) + ε (ζo) , ∀ζo ∈ R2n (5–10)

where W ∈ RL is the constant ideal weight matrix bounded above by a known positive

constant W ∈ R in the sense that ‖W‖ ≤ W , σ : R2n → RL is a bounded continuously

differentiable nonlinear activation function, and ε : R2n → R is the function reconstruction

error [151,152].

Using (5–8) and (5–10) the optimal policy can be represented as

µ∗ (ζo) = −1

2
R−1GT (ζo)

(
∇σT (ζo)W +∇εT (ζo)

)
, ∀ζo ∈ R2n. (5–11)

Based on (5–10) and (5–11), the NN approximations to the optimal value function and

the optimal policy are defined as

V̂
(
ζ, Ŵc

)
, Ŵ T

c σ (ζ) , µ̂
(
ζ, Ŵa

)
, −1

2
R−1GT (ζ)∇σT (ζ) Ŵa, (5–12)

where Ŵc ∈ RL and Ŵa ∈ RL are estimates of the ideal neural network weights W . The

use of two separate sets of weight estimates Ŵa and Ŵc for W is motivated by the fact

that the BE is linear with respect to the value function weight estimates and nonlinear

1 Since the closed-loop system corresponding to (5–4) under a feedback policy is au-
tonomous, the cost-to-go, i.e., the integral in (2–5) is independent of initial time. Hence,
the value function is only a function of ζ.
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with respect to the policy weight estimates. Use of a separate set of weight estimates for

the value function facilitates least squares-based adaptive updates.

The controller for the dynamics in (5–4) is µ (t) = µ̂
(
ζ (t) , Ŵa (t)

)
, and the controller

implemented on the actual system is obtained from (5–2), (5–5), and (5–12) as

u = −1

2
R−1GT (ζ)∇σT (ζ) Ŵa + g+

d (hd (xd)− fd) . (5–13)

Using the approximations µ̂ and V̂ in (5–9) for µ∗ and V ∗, respectively, the BE in

(2–12), is given in a measurable form by

δt = ∇ζ V̂
(
ζ, Ŵc

)
ζ̇ + r (ζ, µ) , (5–14)

where the derivative ζ̇ is measurable because the system model is known. For no-

tational brevity, state-dependence of the functions hd, F, G, V ∗, µ∗, σ, and ε and the

arguments to the functions µ̂, and V̂ are suppressed hereafter. The value function

weights are updated to minimize
´ t

0
δ2
t (ρ) dρ using a normalized least squares update

law2 with an exponential forgetting factor as [91]

˙̂
Wc = −ηcΓ

ω

1 + νωTΓω
δt, (5–15)

Γ̇ = −ηc
(
−λΓ + Γ

ωωT

1 + νωTΓω
Γ

)
,

where ν, ηc ∈ R are constant positive adaptation gains, ω ∈ RL is defined as ω , ∇σζ̇,

and λ ∈ (0, 1) is the constant forgetting factor for the estimation gain matrix Γ ∈ RL×L.

2 The least-squares approach is motivated by faster convergence. With minor modifi-
cations to the stability analysis, the result can also be established for a gradient descent
update law.
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The policy weights are updated to follow the critic weights3 as

˙̂
Wa = −ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa, (5–16)

where ηa1, ηa2 ∈ R are constant positive adaptation gains. The following assumption

facilitates the stability analysis using PE.

Assumption 5.3. The regressor ψ : R≥0 → RL defined as ψ , ω√
1+νωTΓω

satisfies the

PE condition, i.e., there exist constants T, ψ ∈ R>0 such that ψI ≤
´ t+T
t

ψ (τ)ψ (τ)T dτ.4

Using Assumption 5.3 and [91, Corollary 4.3.2] it can be concluded that

ϕIL×L ≤ Γ (t) ≤ ϕIL×L, ∀t ∈ R≥0 (5–17)

where ϕ, ϕ ∈ R are constants such that 0 < ϕ < ϕ.5 Based on (5–17), the regressor

vector can be bounded as

‖ψ (t)‖ ≤ 1
√
νϕ

, ∀t ∈ R≥0. (5–18)

Using (5–10), (5–11), and (5–14), an unmeasurable form of the BE can be written

as

δt = −W̃ T
c ω +

1

4
W̃ T
a GσW̃a +

1

4
∇εG∇εT +

1

2
W T∇σG∇εT −∇εF, (5–19)

3 The least-squares approach cannot be used to update the policy weights because
the BE is a nonlinear function of the policy weights.

4 The regressor is defined here as a trajectory indexed by time. This definition sup-
presses the fact that different initial conditions result in different regressor trajectories.
Assumption 5.3 describes the properties of one specific trajectory starting from one
specific initial condition. Naturally, the final result of the chapter also describes limiting
properties of one specific state trajectory. That is, the final result is not uniform in the
initial conditions.

5 Since the evolution of ψ is dependent on the initial condition, the constants ϕ and ϕ
depend on the initial condition.
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where G , GR−1GT and Gσ , ∇σGR−1GT∇σT . The weight estimation errors for

the value function and the policy are defined as W̃c , W − Ŵc and W̃a , W − Ŵa,

respectively.

5.3 Stability Analysis

Before stating the main result of the chapter, three supplementary technical lemmas

are stated. To facilitate the discussion, let Y ∈ R2n+2L be a compact set, and let

Z , Y ∩ Rn+2L. Using the universal approximation property of NNs, on the compact set

Y ∩ R2n, the NN approximation errors can be bounded such that supζo∈Y∩R2n |ε (ζo)| ≤ ε̄

and supζo∈Y∩R2n |∇ε (ζo)| ≤ ∇ε, where ε̄ ∈ R and ∇ε ∈ R are positive constants. Using

Assumptions 5.1 and 5.2 and the fact that on the compact set Y ∩ R2n, there exists

a positive constant LF ∈ R such that6 supζo∈Y∩R2n ‖F (ζo)‖ ≤ LF ‖ζo‖ , the following

bounds are developed to aid the subsequent stability analysis:∥∥∥∥(∇ε4 +
W T∇σ

2

)
G∇εT

∥∥∥∥+∇εLF ‖xd‖ ≤ ι1, ‖Gσ‖ ≤ ι2,
∥∥∇εG∇εT∥∥ ≤ ι3,∥∥∥∥1

2
W TGσ +

1

2
∇εG∇σT

∥∥∥∥ ≤ ι4,

∥∥∥∥1

4
∇εG∇εT +

1

2
W T∇σG∇εT

∥∥∥∥ ≤ ι5, (5–20)

where ι1, ι2, ι3, ι4, ι5 ∈ R are positive constants.

5.3.1 Supporting Lemmas

The contribution in the previous section was the development of a transformation

that enables the optimal policy and the optimal value function to be expressed as a

time-invariant function of ζ. The use of this transformation presents a challenge in the

sense that the optimal value function, which is used as the Lyapunov function for the

stability analysis, is not a positive definite function of ζ, because the matrix Q is positive

6 Instead of using the fact that locally Lipschitz functions on compact sets are Lips-
chitz, it is possible to bound the function F as ‖F (ζ)‖ ≤ ρ (‖ζ‖) ‖ζ‖, where ρ : R≥0 →
R≥0 is non-decreasing. This approach is feasible and results in additional gain condi-
tions.
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semi-definite. In this section, this technical obstacle is addressed by exploiting the fact

that the time-invariant optimal value function V ∗ : R2n → R can be interpreted as a

time-varying map V ∗t : Rn × R≥0 → R, such that

V ∗t (e, t) , V ∗


 e

xd (t)


 (5–21)

for all e ∈ Rn and for all t ∈ R≥0. Specifically, the time-invariant form facilitates the

development of the approximate optimal policy, whereas the equivalent time-varying

form can be shown to be a positive definite and decrescent function of the tracking error.

In the following, Lemma 5.1 is used to prove that V ∗t : Rn × R≥0 → R is positive definite

and decrescent, and hence, a candidate Lyapunov function.

Lemma 5.1. Let Ba denote a closed ball around the origin with the radius a ∈ R>0. The

optimal value function V ∗t : Rn × R≥0 → R satisfies the following properties

V ∗t (e, t) ≥ v (‖e‖) , (5–22a)

V ∗t (0, t) = 0, (5–22b)

V ∗t (e, t) ≤ v (‖e‖) , (5–22c)

∀t ∈ R≥0 and ∀e ∈ Ba where v : [0, a]→ R≥0 and v : [0, a]→ R≥0 are class K functions.

Proof. See Appendix B.1.

Since the stability analysis is subject to the PE condition in Assumption 5.3, the

behavior of the system states is examined over the time interval [t, t + T ]. The following

two lemmas establish growth bounds on the tracking error and the actor and the critic

weights.

Lemma 5.2. Let Z ,

[
eT W̃ T

c W̃ T
a

]T
, and suppose that Z (τ) ∈ Z, for all τ ∈ [t, t+ T ].

Then, the NN weights and the tracking errors satisfy

− inf
τ∈[t,t+T ]

‖e (τ)‖2 ≤ −$0 sup
τ∈[t,t+T ]

‖e (τ)‖2 +$1T
2 sup
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥2

+$2 (5–23)
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− inf
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥2

≤ −$3 sup
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥2

+$4 inf
τ∈[t,t+T ]

∥∥∥W̃c (τ)
∥∥∥2

+$5 sup
τ∈[t,t+T ]

‖e (τ)‖2

+$6, (5–24)

where

$1 = 3n
4

supt∈R≥to

∥∥gR−1GT∇σT
∥∥2, $6 =

18(Lηa1ηcϕ(∇εLF d+ι5)T 2)
2

νϕ
(

1−6L(ηcϕT )2/(νϕ)
2
) + 3L

(
ηa2WT

)2
,

$3 =
(1−6L(ηa1+ηa2)2T 2)

2
, $4 =

6Lη2a1T
2(

1−6L(ηcϕT )2/(νϕ)
2
) , $5 =

18(ηa1Lηcϕ∇εLFT 2)
2

νϕ
(

1−6L(ηcϕT )2/(νϕ)
2
) ,

$0 =
(1−6nT 2L2

F )
2

, $2 =
3n2T 2(dLF+supt‖gg+d (hd−fd)− 1

2
gR−1GT∇σTW−hd‖)2

n
.

Proof. See Appendix B.2.

Lemma 5.3. Let Z ,

[
eT W̃ T

c W̃ T
a

]T
, and suppose that Z (τ) ∈ Z, for all τ ∈ [t, t+ T ].

Then, the critic weights satisfy

−
t+Tˆ

t

∥∥∥W̃ T
c ψ
∥∥∥2

dτ ≤ −ψ$7

∥∥∥W̃c

∥∥∥2

+$8

t+Tˆ

t

‖e‖2 dτ + 3ι22

t+Tˆ

t

∥∥∥W̃a (σ)
∥∥∥4

dσ +$9T, (5–25)

where $7 =
ν2ϕ2

2(ν2ϕ2+η2cϕ
2T 2)

, $8 = 3ε̄′2L2
F , and $9 = 2 (ι25 + ε̄′2L2

Fd
2) .

Proof. See Appendix B.3.

5.3.2 Gain Conditions and Gain Selection

This section details sufficient gain conditions derived based on a stability analysis

performed using the candidate Lyapunov function VL : Rn+2L × R≥0 → R defined as

VL (Z, t) , V ∗t (e, t) + 1
2
W̃ T
c Γ−1W̃c + 1

2
W̃ T
a W̃a. Using (5–17) and Lemma 5.1,

vl (‖Zo‖) ≤ VL (Zo, t) ≤ vl (‖Zo‖) , (5–26)

∀Zo ∈ Bb, ∀t ∈ R≥0, where vl : [0, b] → R≥0 and vl : [0, b] → R≥0 are class K functions,

and Bb ⊂ Rn+2L denotes a ball of radius b ∈ R>0 around the origin, containing Z.
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To facilitate the discussion, define ηa12 , ηa1 + ηa2, ι ,
(ηa2W+ι4)

2

ηa12
+

2ηc (ι1)2 + 1
4
ι3, $10 ,

$6ηa12+2$2q+ηc$9

8
+ ι, Z ,

[
eT W̃ T

c W̃ T
a

]T
, and

$11 , 1
16

min(ηcψ$7, 2$0qT, $3ηa12T ). Let Z0 ∈ R≥0 denote a known constant

bound on the initial condition such that ‖Z (t0)‖ ≤ Z0, and let

Z , vl
−1

(
vl

(
max

(
Z0,

√
$10T

$11

))
+ ιT

)
. (5–27)

The sufficient gain conditions for the subsequent Theorem 5.1 are given by7

ηa12 > max

(
ηa1ξ2 +

ηcι2
4

√
Z

νϕ
, 3ηcι

2
2Z

)
, ξ1 > 2∇εLF , ηc >

ηa1

λγξ2

, ψ >
2$4ηa12

ηc$7

T,

q > max

(
$5ηa12

$0

,
1

2
ηc$8, ηcLF∇εξ1

)
,

T < min

(
1√

6Lηa12

,
νϕ

√
6Lηcϕ

,
1

2
√
nLF

,

√
ηa12

6Lη3
a12 + 8q$1

)
. (5–28)

Furthermore, the compact set Z satisfies the sufficient condition

Z ≤ r, (5–29)

where r , 1
2

supz,y∈Z ‖z − y‖ denotes the radius of Z. Since the Lipschitz constant and

the bounds on NN approximation error depend on the size of the compact set Z, the

constant Z depends on r; hence, feasibility of the sufficient condition in (5–29) is not

apparent. Algorithm 5.1 details an iterative gain selection process in order to ensure

satisfaction of the sufficient condition in (5–29). In Algorithm 5.1, the notation {$}i for

any parameter $ denotes the value of $ computed in the ith iteration. Algorithm 5.1

ensures satisfaction of the sufficient condition in (5–29).

7 Similar conditions on ψ and T can be found in PE-based adaptive control in the
presence of bounded or Lipschitz uncertainties (cf. [153,154]).
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Algorithm 5.1 Gain Selection
First iteration:
Given Z0 ∈ R≥0 such that ‖Z (t0)‖ < Z0, let Z1 =

{
% ∈ Rn+2{L}1 | ‖%‖ ≤ β1vl

−1 (vl (Z0))
}

for some β1 > 1. Using Z1, compute the bounds in (5–20) and (5–27), and select the
gains according to (5–28). If

{
Z
}

1
≤ β1vl

−1 (vl (‖Z0‖)) , set Z = Z1 and terminate.
Second iteration:
If
{
Z
}

1
> β1vl

−1 (vl (‖Z0‖)) , let Z2 ,
{
% ∈ Rn+2{L}1 | ‖%‖ ≤ β2

{
Z
}

1

}
. Using Z2,

compute the bounds in (5–20) and (5–27) and select the gains according to (5–28).
If
{
Z
}

2
≤
{
Z
}

1
, set Z = Z2 and terminate.

Third iteration:
If
{
Z
}

2
>

{
Z
}

1
, increase the number of NN neurons to {L}3 to yield a lower function

approximation error
{
∇ε
}

3
such that {LF}2

{
∇ε
}

3
≤ {LF}1

{
∇ε
}

1
. The increase in the

number of NN neurons ensures that {ι}3 ≤ {ι}1. Furthermore, the assumption that the
PE interval {T}3 is small enough such that {LF}2 {T}3 ≤ {T}1 {LF}1 and {L}3 {T}3 ≤
{T}1 {L}1 ensures that

{
$10

$11

}
3
≤

{
$10

$11

}
1
, and hence,

{
Z
}

3
≤ β2

{
Z
}

1
. Set Z ={

% ∈ Rn+2{L}3 | ‖%‖ ≤ β2

{
Z
}

1

}
and terminate.

5.3.3 Main Result

Theorem 5.1. Provided that the sufficient conditions in (5–28) and (5–29) are satis-

fied and Assumptions 5.1 - 5.3 hold, the controller in (5–13) and the update laws in

(5–15) - (5–16) guarantee that the tracking error is ultimately bounded, and the error

‖µ (t)− µ∗ (ζ (t))‖ is ultimately bounded as t→∞.

Proof. The time derivative of VL is V̇L = ∇V ∗F+∇V ∗Gµ̂+W̃ T
c Γ−1 ˙̃Wc− 1

2
W̃ T
c Γ−1Γ̇Γ−1W̃c−

W̃ T
a

˙̂
Wa. Using (5–19) and the facts that ∇V ∗F = −∇V ∗Gµ∗ − r (ζ, µ∗) and ∇V ∗G =

−2µ∗TR yields

V̇L = −eTQe+ µ∗TRµ∗ − 2µ∗TRµ̂− ηcW̃ T
c ψψ

T W̃c − λ
ηC
2
W̃ T
c Γ−1W̃c +

1

2
ηcW̃

T
c

ωωT

ρ
W̃c

− W̃ T
a

˙̂
Wa +

ηcW̃
T
c ψ√

1 + νωTΓω

(
1

4
W̃ T
a GσW̃a −∇εF +

1

4
∇εG∇εT +

1

2
W T∇σG∇εT

)
, (5–30)

where ρ , 1 + νωTΓω. Using (5–15), (5–19) and the bounds in (5–18) - (5–20) the

Lyapunov derivative in (5–30) can be bounded above on the set Z as

V̇L ≤ −
q

2
‖e‖2 − 1

4
ηc

∥∥∥W̃ T
c ψ
∥∥∥2

− ηa12

2

∥∥∥W̃a

∥∥∥2

+
(
2ηa2W + ι4

)∥∥∥W̃a

∥∥∥− ηc
2

(
1− ∇ε

ξ1

)∥∥∥W̃ T
c ψ
∥∥∥2
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− 1

2

(
ηa12 − ηa1ξ2 −

ηcι2
4

∥∥∥W̃ T
c ψ
∥∥∥)∥∥∥W̃a

∥∥∥2

−
(
q − ηcLF∇εξ1

)
2

‖e‖2 − 1

2

(
ληcγ −

ηa1

ξ2

)∥∥∥W̃c

∥∥∥2

+ ηc

(
ι1 + ι2W

2
)∥∥∥W̃ T

c ψ
∥∥∥+

1

4
ι3,

where ξ1, ξ2 ∈ R are known adjustable positive constants. Provided the sufficient

conditions in (5–28) are satisfied, completion of squares yields

V̇L ≤ −
q

2
‖e‖2 − 1

8
ηc

∥∥∥W̃ T
c ψ
∥∥∥2

− ηa12

4

∥∥∥W̃a

∥∥∥2

+ ι. (5–31)

The inequality in (5–31) is valid provided Z (t) ∈ Z. Integrating (5–31) and using Lemma

5.3 and the gain conditions in (5–28) yields

VL (Z (t+ T ) , t+ T )− VL (Z (t) , t) ≤ −1

8
ηcψ$7

∥∥∥W̃c (t)
∥∥∥2

−
q

4

t+Tˆ

t

‖e (τ)‖2 dτ +
1

8
ηc$9

− ηa12

8

t+Tˆ

t

∥∥∥W̃a (τ)
∥∥∥2

dτ + ιT,

provided Z (τ) ∈ Z, ∀τ ∈ [t, t+ T ]. Using the facts that −
´ t+T
t
‖e (τ)‖2 dτ ≤

−T infτ∈[t,t+T ] ‖e (τ)‖2 and −
´ t+T
t

∥∥∥W̃a (τ)
∥∥∥2

dτ ≤ −T infτ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥2

, and Lemma

5.2 yield

VL (Z (t+ T ) , t+ T )− VL (Z (t) , t) ≤ −
ηcψ$7

16

∥∥∥W̃c (t)
∥∥∥2

− $3ηa12T

16

∥∥∥W̃a (t)
∥∥∥2

+$10T

−
$0qT

8
‖e (t)‖2 ,

provided Z (τ) ∈ Z, ∀τ ∈ [t, t+ T ]. Thus, VL (Z (t+ T ) , t+ T )−VL (Z (t) , t) < 0 provided

‖Z (t)‖ >
√

$10T
$11

and Z (τ) ∈ Z,∀τ ∈ [t, t+ T ]. The bounds on the Lyapunov function in

(5–26) yield VL (Z (t+ T ) , t+ T ) − VL (Z (t) , t) < 0 provided VL (Z (t) , t) > vl

(√
$10T
$11

)
and Z (τ) ∈ Z, ∀τ ∈ [t, t+ T ].

Since Z (t0) ∈ Z, (5–31) can be used to conclude that V̇L (Z (t0) , t0) ≤ ι. The

sufficient condition in (5–29) ensures that vl−1 (VL (Z (t0) , t0) + ιT ) ≤ r; hence,

Z (t) ∈ Z for all t ∈ [t0, t0 + T ]. If VL (Z (t0) , t0) > vl

(√
$10T
$11

)
, then Z (t) ∈ Z
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for all t ∈ [t0, t0 + T ] implies VL (Z (t0 + T ) , t0 + T ) − VL (Z (t0) , t0) < 0; hence,

vl
−1 (VL (Z (t0 + T ) , t0 + T ) + ιT ) ≤ r. Thus, Z (t) ∈ Z for all t ∈ [t0 + T, t0 + 2T ].

Inductively, the system state is bounded such that supt∈[0,∞) ‖Z (t)‖ ≤ r and ultimately

bounded8 such that

lim sup
t→∞
‖Z (t)‖ ≤ vl

−1

(
vl

(√
$10T

$11

)
+ ιT

)
.

5.4 Simulation

Simulations are performed on a two-link manipulator to demonstrate the ability of

the presented technique to approximately optimally track a desired trajectory. The two

link robot manipulator is modeled using Euler-Lagrange dynamics as

Mq̈ + Vmq̇ + Fdq̇ + Fs = u, (5–32)

where q =

[
q1 q2

]T
and q̇ =

[
q̇1 q̇2

]T
are the angular positions in radians

and the angular velocities in radian/s respectively. In (5–32), M ∈ R2×2 denotes

the inertia matrix, and Vm ∈ R2×2 denotes the centripetal-Coriolis matrix given by

M ,

p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2

 , Vm ,

−p3s2q̇2 −p3s2 (q̇1 + q̇2)

p3s2q̇1 0

 , where c2 = cos (q2) ,

s2 = sin (q2), p1 = 3.473 kg.m2, p2 = 0.196 kg.m2, and p3 = 0.242 kg.m2, and

Fd = diag
[

5.3, 1.1

]
Nm.s and Fs (q̇) =

[
8.45tanh (q̇1) , 2.35tanh (q̇2)

]T
Nm are the

models for the static and the dynamic friction, respectively.

The objective is to find a policy µ̂ that ensures that the state x ,

[
q1, q2, q̇1, q̇2

]T
tracks the desired trajectory xd (t) =

[
0.5cos (2t) , 0.33cos (3t) , −sin (2t) , −sin (3t)

]T
,

8 If the regressor ψ satisfies a stronger u-PE assumption (cf. [155, 156]), the tracking
error and the weight estimation errors can be shown to be uniformly ultimately bounded.
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while minimizing the cost
´∞

0

(
eTQe+ µ̂T µ̂

)
dt, where Q = diag

[
10, 10, 2, 2

]
. Using

(5–2) - (5–5) and the definitions

f ,

x3, x4,

M−1 (−Vm − Fd)

x3

x4

− Fs

T

T

, hd ,

[
xd3, xd4, −4xd1, −9xd2

]T
,

g+
d ,

[[
0, 0

]T
,

[
0, 0

]T
, M (xd)

]
, g ,

[[
0, 0

]T
,

[
0, 0

]T
, (M−1)

T

]T
,(5–33)

the optimal tracking problem can be transformed into the time-invariant form in (5–5).

The two major challenges in the application of ADP to systems such as (5–33)

include selecting an appropriate basis for the value function approximation and ensuring

that the regressor ψ introduced in Assumption 5.3 is PE. Due to the size of the state

space and the complexity of the dynamics, obtaining an analytical solution to the HJB

equation for this problem is prohibitively difficult. Furthermore, since the regressor is a

complex nonlinear function of the states, it is difficult to ensure that it remains PE. As a

result, this serves as a model problem to demonstrate the applicability of ADP-based

approximate online optimal control.

In this effort, the basis selected for the value function approximation is a polynomial

basis with 23 elements given by

σ(ζ) =
1

2

[
ζ2

1 ζ2
2 ζ1ζ3 ζ1ζ4 ζ2ζ3 ζ2ζ4 ζ2

1ζ
2
2 ζ2

1ζ
2
5 ζ2

1ζ
2
6 ζ2

1ζ
2
7 ζ2

1ζ
2
8 ζ2

2ζ
2
5

ζ2
2ζ

2
6 ζ2

2ζ
2
7 ζ2

2ζ
2
8 ζ2

3ζ
2
5 ζ2

3ζ
2
6 ζ2

3ζ
2
7 ζ2

3ζ
2
8 ζ2

4ζ
2
5 ζ2

4ζ
2
6 ζ2

4ζ
2
7 ζ2

4ζ
2
8

]T
. (5–34)

The control gains are selected as ηa1 = 5, ηa2 = 0.001, ηc = 1.25, λ = 0.001, and

ν = 0.005, and the initial conditions are x (0) =

[
1.8 1.6 0 0

]T
, Ŵc (0) = 10 × 123×1,
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Figure 5-1. State and error trajectories with probing signal.

Ŵa (0) = 6× 123×1, and Γ (0) = 2000I23. To ensure PE, a probing signal

p (t) =



2.55tanh(2t)
(

20sin
(√

232πt
)
cos
(√

20πt
)

+6sin
(
18e2t

)
+ 20cos (40t) cos (21t)

)
0.01tanh(2t)

(
20sin

(√
132πt

)
cos
(√

10πt
)

+6sin (8et) + 20cos (10t) cos (11t))


(5–35)

is added to the control signal for the first 30 seconds of the simulation [57].

It is clear from Figure 5-1 that the system states are bounded during the learning

phase and the algorithm converges to a stabilizing controller in the sense that the

tracking errors go to zero when the probing signal is eliminated. Furthermore, Figure 5-2

shows that the weight estimates for the value function and the policy are bounded and

they converge. Thus, Figures 5-1 and 5-2 demonstrate that an approximate optimal

policy can be generated online to solve an optimal tracking problem using a simple

polynomial basis such as (5–34), and a probing signal that consists of a combination of

sinusoidal signals such as (5–35).

The NN weights converge to the following values

Ŵc = Ŵa =

[
83.36 2.37 27.0 2.78 −2.83 0.20 14.13 29.81 18.87 4.11 3.47
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Figure 5-2. Evolution of value function and policy weights.

6.69 9.71 15.58 4.97 12.42 11.31 3.29 1.19 −1.99 4.55 −0.47 0.56

]T
.

Note that the last sixteen weights that correspond to the terms containing the desired

trajectories ζ5, · · · , ζ8 are non-zero. Thus, the resulting value function V and the resulting

policy µ̂ depend on the desired trajectory, and hence, are time-varying functions of the

tracking error. Since the true weights are unknown, a direct comparison of the weights

in (5.4) with the true weights is not possible. Instead, to gauge the performance of the

presented technique, the state and the control trajectories obtained using the estimated

policy are compared with those obtained using Radau-pseudospectral numerical optimal

control computed using the GPOPS software [7]. Since an accurate numerical solution

is difficult to obtain for an infinite-horizon optimal control problem, the numerical optimal

control problem is solved over a finite horizon ranging over approximately 5 times the

settling time associated with the slowest state variable. Based on the solution obtained

using the proposed technique, the slowest settling time is estimated to be approximately

20 seconds. Thus, to approximate the infinite-horizon solution, the numerical solution is

computed over a 100 second time horizon using 300 collocation points.
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Figure 5-3. Hamiltonian and costate of the numerical solution computed using GPOPS.
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Figure 5-4. Control trajectories µ̂ (t) obtained from GPOPS and the developed
technique.
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Figure 5-5. Tracking error trajectories e (t) obtained from GPOPS and the developed
technique.

As seen in Figure 5-3, the Hamiltonian of the numerical solution is approximately

zero. This supports the assertion that the optimal control problem is time-invariant. Fur-

thermore, since the Hamiltonian is close to zero, the numerical solution obtained using

GPOPS is sufficiently accurate as a benchmark to compare against the ADP-based

solution obtained using the proposed technique. Note that in Figure 5-3, the costate

variables corresponding to the desired trajectories are nonzero. Since these costate

variables represent the sensitivity of the cost with respect to the desired trajectories, this

further supports the assertion that the optimal value function depends on the desired

trajectory, and hence, is a time-varying function of the tracking error.

Figures 5-4 and 5-5 show the control and the tracking error trajectories ob-

tained from the developed technique (dashed lines) plotted alongside the numerical

solution obtained using GPOPS (solid lines). The trajectories obtained using the

developed technique are close to the numerical solution. The inaccuracies are a
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result of the facts that the set of basis functions in (5–34) is not exact, and the pro-

posed method attempts to find the weights that generate the least total cost for the

given set of basis functions. The accuracy of the approximation can be improved

by choosing a more appropriate set of basis functions, or at an increased computa-

tional cost, by adding more basis functions to the existing set in (5–34). The total cost
´ 100

0

(
e (t)T Qe (t) + µ (t)T Rµ (t)

)
dt obtained using the numerical solution is found to

be 75.42 and the total cost
´∞

0

(
e (t)T Qe (t) + µ (t)T Rµ (t)

)
dt obtained using the de-

veloped method is found to be 84.31. Note that from Figures 5-4 and 5-5, it is clear that

both the tracking error and the control converge to zero after approximately 20 seconds,

and hence, the total cost obtained from the numerical solution is a good approximation

of the infinite-horizon cost.

5.5 Concluding Remarks

An ADP-based approach using the policy evaluation and policy improvement

architecture is presented to approximately solve the infinite-horizon optimal tracking

problem for control-affine nonlinear systems with quadratic cost. The problem is

solved by transforming the system to convert the tracking problem that has a time-

varying value function, into a time-invariant optimal control problem. The ultimately

bounded tracking and estimation result was established using Lyapunov analysis for

nonautonomous systems. Simulations are performed to demonstrate the applicability

and the effectiveness of the developed method. The developed method can be applied

to high-dimensional nonlinear dynamical systems using simple polynomial basis

functions and sinusoidal probing signals. However, the accuracy of the approximation

depends on the choice of basis functions and the result hinges on the system states

being PE. Furthermore, computation of the desired control in (5–2) requires exact model

knowledge. The following chapter uses model-based RL ideas from Chapter 3 to relax

the PE requirement and to allow for uncertainties in the system dynamics.
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CHAPTER 6
MODEL-BASED REINFORCEMENT LEARNING FOR APPROXIMATE OPTIMAL

TRACKING

In this chapter, the tracking controller developed in Chapter 5 is extended to solve

infinite-horizon optimal tracking problems control-affine continuous-time nonlinear

systems with uncertain drift dynamics using model-based RL. In Chapter 5, model

knowledge is used in the computation of the BE and in the computation of the steady-

state control signal. In this chapter, a CL-based system identifier is used to simulate

experience by evaluating the BE over unexplored areas of the state space. The system

identifier is also utilized to approximate the steady-state control signal. A Lyapunov-

based stability analysis is presented to establish simultaneous identification and

trajectory tracking. Effectiveness of the developed technique is demonstrated via

numerical simulations.

6.1 Problem Formulation and Exact Solution

Consider the concatenated nonlinear control-affine system described by the

differential equation (5–4). Similar to Chapter 5, the objective of the optimal control

problem is to minimize the cost functional J (ζ, µ), introduced in (2–2), subject to the

dynamic constraints in (5–4) while tracking the desired trajectory. In this chapter, a more

general form of the reward signal is considered. The reward signal r : R2n × Rm → R is

given by

r (ζ, µ) , Q (ζ) + µTRµ,

where the function Q : R2n → R is defined as

Q


 e
xd


 , Q (e) , ∀xd ∈ Rn, (6–1)

where Q : Rn → R is a continuous positive definite function that satisfies

q (‖eo‖) ≤ Q (eo) ≤ q (‖eo‖) , ∀eo ∈ Rn

108



where q : R→ R and q : R→ R are class K functions.

Using the estimates V̂
(
ζ, Ŵc

)
and µ̂

(
ζ, Ŵa

)
in (5–9) the BE can be obtained as

δ
(
ζ, Ŵc, Ŵa

)
, ∇ζ V̂

(
ζ, Ŵc

)(
F (ζ) +G (ζ) µ̂

(
ζ, Ŵa

))
+ r

(
ζ, µ̂

(
ζ, Ŵa

))
. (6–2)

In this chapter, simulation of experience via BE extrapolation is used to improve data

efficiency, based on the observation that if a dynamic system identifier is developed to

generate an estimate Fθ
(
ζ, θ̂
)

of the drift dynamics F , an estimate of the BE in (6–2)

can be evaluated at any ζ ∈ R2n. That is, using F̂ , experience can be simulated by

extrapolating the BE over unexplored off-trajectory points in the operating domain.

Hence, if an identifier can be developed such that F̂ approaches F exponentially

fast, learning laws for the optimal policy can utilize simulated experience along with

experience gained and stored along the state trajectory.

If parametric approximators are used to approximate F , convergence of F̂ to F is

implied by convergence of the parameters to their unknown ideal values. It is well known

that adaptive system identifiers require PE to achieve parameter convergence. To relax

the PE condition, a CL-based (cf. [92, 93, 97, 147]) system identifier that uses recorded

data for learning is developed in the following section.

6.2 System Identification

On any compact set C ⊂ Rn the function f can be represented using a NN as

f (xo) = θTσf
(
Y Tx1

)
+ εθ (xo) , ∀xo ∈ Rn (6–3)

where x1 ,

[
1 (xo)T

]T
∈ Rn+1, θ ∈ Rp+1×n and Y ∈ Rn+1×p denote the unknown

output-layer and hidden-layer NN weights, σf : Rp → Rp+1 denotes a bounded NN basis

function, εθ : Rn → Rn denotes the function reconstruction error, and p ∈ N denotes the

number of NN neurons. Using the universal function approximation property of single

layer NNs, given a constant matrix Y such that the rows of σf
(
Y Tx1

)
form a proper

basis, there exist constant ideal weights θ and known constants θ, εθ, and ε′θ ∈ R such
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that ‖θ‖F ≤ θ < ∞, supxo∈C ‖εθ (xo)‖ ≤ εθ, and supxo∈C ‖∇xoεθ (xo)‖ ≤ ε′θ, where ‖·‖F

denotes the Frobenius norm.

Using an estimate θ̂ ∈ Rp+1×n of the weight matrix θ, the function f can be approxi-

mated by the function f̂ : R2n × Rp+1×n → Rn defined as

f̂
(
ζ, θ̂
)
, θ̂Tσθ (ζ) , (6–4)

where σθ : R2n → Rp+1 is defined as σθ (ζ) = σf

(
Y T

[
1 eT + xTd

]T)
. Based on (6–3),

an estimator for online identification of the drift dynamics is developed as

˙̂x = θ̂Tσθ (ζ) + g (x)u+ kx̃, (6–5)

where x̃ , x − x̂, and k ∈ R is a positive constant learning gain. The following

assumption facilitates CL-based system identification.

Assumption 6.1. [92] A history stack containing recorded state-action pairs {xj, uj}Mj=1

along with numerically computed state derivatives { ˙̄xj}
M

j=1 that satisfies

λmin

(
M∑
j=1

σfjσ
T
fj

)
= σθ > 0,

‖ ˙̄xj − ẋj‖ < d, ∀j (6–6)

is available a priori. In (6–6), σfj , σf

(
Y T

[
1 xTj

]T)
, d ∈ R is a known positive

constant, and λmin (·) denotes the minimum eigenvalue.

The weight estimates θ̂ are updated using the following CL-based update law:

˙̂
θ = Γθσf

(
Y Tx1

)
x̃T + kθΓθ

M∑
j=1

σfj

(
˙̄xj − gjuj − θ̂Tσfj

)T
, (6–7)

where kθ ∈ R is a constant positive CL gain, and Γθ ∈ Rp+1×p+1 is a constant, diagonal,

and positive definite adaptation gain matrix.
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To facilitate the subsequent stability analysis, a candidate Lyapunov function

V0 : Rn × Rp+1×n → R is selected as

V0

(
x̃, θ̃
)
,

1

2
x̃T x̃+

1

2
tr
(
θ̃TΓ−1

θ θ̃
)
, (6–8)

where θ̃ , θ − θ̂ and tr (·) denotes the trace of a matrix. Using (6–5)-(6–7), the following

bound on the time derivative of V0 is established:

V̇0 ≤ −k ‖x̃‖2 − kθσθ
∥∥∥θ̃∥∥∥2

F
+ εθ ‖x̃‖+ kθdθ

∥∥∥θ̃∥∥∥
F
, (6–9)

where dθ = d
∑M

j=1 ‖σθj‖ +
∑M

j=1

(
‖εθj‖‖σθj‖

)
. Using (6–8) and (6–9) a Lyapunov-based

stability analysis can be used to show that θ̂ converges exponentially to a neighborhood

around θ.

Using (6–4), the BE in (6–2) can be approximated as

δ̂
(
ζ, Ŵc, Ŵa, θ̂

)
, ∇ζ V̂

(
ζ, Ŵc

)(
Fθ

(
ζ, θ̂
)

+ F1 (ζ) +G (ζ) µ̂
(
ζ, Ŵa

))
+Q (ζ)

+ µ̂T
(
ζ, Ŵa

)
Rµ̂
(
ζ, Ŵa

)
,

where

Fθ

(
ζ, θ̂
)
,


θ̂Tσθ (ζ)− g (x) g+ (xd) θ̂

Tσθ


0n×1

xd




0n×1


,

and F1 (ζ) ,

[
(−hd + g (e+ xd) g

+ (xd)hd)
T

hTd

]T
. The optimal tracking problem is

thus reformulated as the need to find estimates µ̂ and V̂ online, to minimize the error

Êθ̂

(
Ŵc, Ŵa

)
, sup

ζ∈R2n

∣∣∣δ (ζ, Ŵc, Ŵa, θ̂
)∣∣∣ ,
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for a given θ̂, while simultaneously improving θ̂ using (6–7), and ensuring stability of the

system in (2–1) using the control law

u = µ̂
(
ζ, Ŵa

)
+ ûd

(
ζ, θ̂
)
, (6–10)

where

ûd

(
ζ, θ̂
)
, g+

d

(
hd − θ̂Tσθd

)
, (6–11)

and σθd , σθ

([
01×n xTd

]T)
.

6.3 Value Function Approximation

Since V ∗ and µ∗ are functions of the state ζ, the minimization problem stated in

Section 6.2 is infinite-dimensional, and hence, intractable. To obtain a finite-dimensional

minimization problem, the optimal value function is represented over any compact

operating domain C ⊂ R2n using a NN as

V ∗ (ζo) = W Tσ (ζo) + ε (ζo) , ∀ζo ∈ R2n

where W ∈ RL denotes a vector of unknown NN weights, σ : R2n → RL denotes

a bounded NN basis function, ε : R2n → R denotes the function reconstruction

error, and L ∈ N denotes the number of NN neurons. Using the universal function

approximation property of single layer NNs, there exist constant ideal weights W and

known constants W , ε, and ∇ε ∈ R such that ‖W‖ ≤ W < ∞, supζo∈C ‖ε (ζo)‖ ≤ ε, and

supζo∈C ‖∇ε (ζo)‖ ≤ ∇ε.

Using (5–8), a NN representation of the optimal policy is obtained as

µ∗ (ζo) = −1

2
R−1GT (ζo)

(
∇σT (ζo)W +∇εT (ζo)

)
, ∀ζo ∈ R2n. (6–12)
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Using estimates Ŵc and Ŵa for the ideal weights W , the optimal value function and the

optimal policy are approximated as

V̂
(
ζ, Ŵc

)
, Ŵ T

c σ (ζ) , µ̂
(
ζ, Ŵa

)
, −1

2
R−1GT (ζ)∇σT (ζ) Ŵa. (6–13)

Using (5–2), (6–11), and (6–10), the virtual controller µ for the concatenated system in

(5–4) can be expressed as1

µ = µ̂
(
ζ, Ŵa

)
+ g+

d θ̃
Tσθd + g+

d εθd, (6–14)

where εθd , εθ (xd).

6.4 Simulation of Experience

The following assumption facilitates simulation of experience.

Assumption 6.2. [97] There exists a finite set of points {ζi ∈ C | i = 1, · · · , N} such that

0 < c ,
1

N

(
inf

t∈R≥t0

(
λmin

{
N∑
i=1

ωiω
T
i

ρi

}))
, (6–15)

where ρi , 1 + νωTi Γωi ∈ R, and ωi , ∇σ (ζi)
(
Fθ

(
ζi, θ̂

)
+ F1 (ζi) +G (ζi) µ̂

(
ζi, Ŵa

))
.

Using Assumption 6.2, simulation of experience is implemented by the weight

update laws

˙̂
Wc = −ηc1Γ

ω

ρ
δ̂t −

ηc2
N

Γ
N∑
i=1

ωi
ρi
δ̂ti, (6–16)

Γ̇ =

(
βΓ− ηc1Γ

ωωT

ρ2
Γ

)
1{‖Γ‖≤Γ}, ‖Γ (t0)‖ ≤ Γ, (6–17)

˙̂
Wa = −ηa1

(
Ŵa − Ŵc

)
− ηa2Ŵa +

(
ηc1G

T
σ Ŵaω

T

4ρ
+

N∑
i=1

ηc2G
T
σiŴaω

T
i

4Nρi

)
Ŵc, (6–18)

1 The expression in (6–14) is developed to facilitate the stability analysis, whereas the
equivalent expression in (6–10) is implemented in practice.
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where ω , ∇σ (ζ)
(
Fθ

(
ζ, θ̂
)

+ F1 (ζ) +G (ζ) µ̂
(
ζ, Ŵa

))
, Γ ∈ RL×L is the least-

squares gain matrix, Γ ∈ R denotes a positive saturation constant, β ∈ R denotes the

forgetting factor, ηc1, ηc2, ηa1, ηa2 ∈ R denote constant positive adaptation gains, 1{·}

denotes the indicator function of the set {·}, Gσ , σ′ (ζ)G (ζ)R−1GT (ζ) (∇σ (ζ))T , and

ρ , 1 + νωTΓω, where ν ∈ R is a positive normalization constant. In (6–16)-(6–18) and

in the subsequent development, for any function ξ (ζ, ·), the notation ξi, is defined as

ξi , ξ (ζi, ·), and the instantaneous BEs δ̂t and δ̂ti are defined as

δ̂t (t) , δ̂
(
ζ (t) , Ŵc (t) , Ŵa (t) , θ̂ (t)

)
(6–19)

and δ̂ti (t) , δ̂
(
ζi, Ŵc (t) , Ŵa (t) , θ̂ (t)

)
. The saturated least-squares update law in (6–17)

ensures that there exist positive constants γ, γ ∈ R such that

γ ≤
∥∥(Γ (t))−1

∥∥ ≤ γ, ∀t ∈ R. (6–20)

6.5 Stability Analysis

If the state penalty function Q is positive definite, then the optimal value function V ∗

is positive definite, and serves as a Lyapunov function for the system in (5–4) under the

optimal control policy µ∗; hence, V ∗ is used (cf. [57, 59, 145]) as a candidate Lyapunov

function for the closed-loop system under the policy µ̂. Based on the definition in (6–1),

the function Q, and hence, the function V ∗ are positive semidefinite; hence, the function

V ∗ is not a valid candidate Lyapunov function. However, the results in Chapter 5 can

be used to show that a nonautonomous form of the optimal value function denoted by

V ∗t : Rn × R→ R, defined as

V ∗t (e, t) , V ∗


 e

xd (t)


 , ∀e ∈ Rn, t ∈ R,
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is positive definite and decrescent. Hence, V ∗t (0, t) = 0, ∀t ∈ R and there exist class K

functions v : R→ R and v : R→ R such that

v (‖eo‖) ≤ V ∗t (eo, t) ≤ v (‖eo‖) , (6–21)

for all eo ∈ Rn and for all t ∈ R.

To facilitate the stability analysis, a concatenated state Z ∈ R2n+2L+n(p+1) is defined

as

Z ,

[
eT W̃ T

c W̃ T
a x̃T

(
vec

(
θ̃
))T]T

,

and a candidate Lyapunov function is defined as

VL (Z, t) , V ∗t (e, t) +
1

2
W̃ T
c Γ−1W̃c +

1

2
W̃ T
a W̃a + V0

(
θ̃, x̃
)
, (6–22)

where vec (·) denotes the vectorization operator and V0 is defined in (6–8). Us-

ing (6–8), the bounds in (6–20) and (6–21), and the fact that tr
(
θ̃TΓ−1

θ θ̃
)

=(
vec

(
θ̃
))T (

Γ−1
θ ⊗ Ip+1

) (
vec

(
θ̃
))

, the candidate Lyapunov function in (6–22) can

be bounded as

vl (‖Zo‖) ≤ VL (Zo, t) ≤ vl (‖Zo‖) , (6–23)

for all Zo ∈ R2n+2L+n(p+1) and for all t ∈ R, where vl : R → R and vl : R → R are class K

functions.

To facilitate the stability analysis, given any compact set χ ⊂ R2n+2L+n(p+1) con-

taining an open ball of radius ρ ∈ R centered at the origin, a positive constant ι ∈ R is

defined as

ι ,
3

(
(ηc1+ηc2)W

2‖Gσ‖
16
√
νΓ

+ ‖(WTGσ+∇εGr∇σT )‖
4

+ ηa2W
2

)2

(ηa1 + ηa2)
+

∥∥∥∥Gε

2

∥∥∥∥+

∥∥∥∥W T∇σGr∇εT
2

∥∥∥∥
+
∥∥W T∇σGg+

d εθd
∥∥,+3

((∥∥W T∇σGg+
d

∥∥+
∥∥∇εGg+

d

∥∥)σg + kθdθ

)2

4kθσθ
+

(ηc1 + ηc2)2 ‖∆‖
2

4νΓηc2c
+
εθ

2

2k

+
∥∥∇εGg+

d εθd
∥∥ (6–24)
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where Gr , GR−1GT , and Gε , ∇εGr (∇ε)T . Let vl : R → R be a class K function such

that

vl (‖Z‖) ≤
q (‖e‖)

2
+
ηc2c

8

∥∥∥W̃c

∥∥∥2

+
(ηa1 + ηa2)

6

∥∥∥W̃a

∥∥∥2

+
k

4
‖x̃‖2 +

kθσθ

6

∥∥∥vec
(
θ̃
)∥∥∥2

.

The sufficient gain conditions used in the subsequent Theorem 6.1 are

v−1
l (ι) < vl

−1
(
vl (ρ)

)
(6–25)

ηc2c >
3 (ηc2 + ηc1)2W

2‖∇σ‖
2
σg

2

4kθσθνΓ
(6–26)

(ηa1 + ηa2) >
3 (ηc1 + ηc2)W‖Gσ‖

8
√
νΓ

+
3

cηc2

(
(ηc1 + ηc2)W‖Gσ‖

8
√
νΓ

+ ηa1

)2

. (6–27)

In (6–24)-(6–27), for any function $ : Rl → R, l ∈ N, the notation ‖$‖, denotes

supy∈χ∩Rl ‖$ (y)‖ and σg , ‖σθ‖+
∥∥gg+

d

∥∥‖σθd‖.
The sufficient condition in (6–25) requires the set χ to be large enough based on

the constant ι. Since the NN approximation errors depend on the compact set χ, in

general, for a fixed number of NN neurons, the constant ι increases with the size of

the set χ. However, for a fixed set χ, the constant ι decreases with decreasing function

reconstruction errors, i.e., with increasing number of NN neurons. Hence a sufficiently

large number of NN neurons is required to satisfy the condition in (6–25).

Theorem 6.1. Provided Assumptions 5.2-6.2 hold, and the control gains are selected

based on (6–25)-(6–27), the controller in (6–10), along with the weight update laws

(6–16)-(6–18), and the identifier in (6–5) along with the weight update law (6–7) en-

sure that the system states remain bounded, the tracking error is uniformly ultimately

bounded, and that the control policy µ̂ converges to a neighborhood around the optimal

control policy µ∗.

116



Proof. Using (5–4) and the fact that V̇ ∗t (e (t) , t) = V̇ ∗ (ζ (t)) , ∀t ∈ R, the time-derivative

of the candidate Lyapunov function in (6–22) is

V̇L=∇ζV
∗(F+Gµ∗)− W̃ T

c Γ−1 ˙̂
Wc −

1

2
W̃ T
c Γ−1Γ̇Γ−1W̃c − W̃ T

a
˙̂
Wa + V̇0 +∇V ∗Gµ−∇V ∗Gµ∗.

(6–28)

Using (5–9), (6–12), (6–13), and (6–14) the expression in (6–28) is bounded as

V̇L≤−Q (ζ)− W̃ T
c Γ−1 ˙̂

Wc −
1

2
W̃ T
c Γ−1Γ̇Γ−1W̃c − W̃ T

a
˙̂
Wa + V̇0 +

1

2

(
W TGσ+∇εGr∇σT

)
W̃a

+W T∇σGg+
d θ̃

Tσθd +∇εGg+
d θ̃

Tσθd +
1

2
Gε +

1

2
W T∇σGr∇εT +W T∇σGg+

d εθd − (µ∗)T Rµ∗

+∇εGg+
d εθd. (6–29)

The approximate BE in (6–19) is expressed in terms of the weight estimation errors as

δ̂t = −ωT W̃c −W T∇σFθ̃ +
1

4
W̃ T
a GσW̃a + ∆, (6–30)

where Fθ̃ , Fθ

(
ζ, θ̃
)

and ∆ = O
(
ε,∇ε, εθ

)
. Using (6–30), the bound in (6–9) and the

update laws in (6–16)-(6–18), the expression in (6–29) is bounded as

V̇L ≤ −Q (ζ)−
N∑
i=1

W̃ T
c

ηc2
N

ωiω
T
i

ρi
W̃c − kθσθ

∥∥∥θ̃∥∥∥2

F
− (ηa1 + ηa2) W̃ T

a W̃a − k ‖x̃‖2

− ηc1W̃ T
c

ω

ρ
W T∇σFθ̃ + ηa1W̃

T
a W̃c + ηa2W̃

T
a W +

1

4
ηc1W̃

T
c

ω

ρ
W̃ T
a GσW̃a−

N∑
i=1

W̃ T
c

ηc2
N

ωi
ρi
W Tσ′iFθ̃i

+
N∑
i=1

1

4
W̃ T
c

ηc2
N

ωi
ρi
W̃ T
a GσiW̃a+W̃ T

c

ηc2
N

N∑
i=1

ωi
ρi

∆i−W̃ T
a

(
ηc1G

T
σ Ŵaω

T

4ρ
+

N∑
i=1

ηc2G
T
σiŴaω

T
i

4Nρi

)
Ŵc

+ εθ ‖x̃‖+kθdθ

∥∥∥θ̃∥∥∥
F

+
1

2

(
W TGσ +∇εGr∇σT

)
W̃a+W T∇σGg+

d θ̃
Tσθd+∇εGg+

d θ̃
Tσθd+

1

2
Gε

+ ηc1W̃
T
c

ω

ρ
∆ +

1

2
W T∇σGr∇εT +W T∇σGg+

d εθd +∇εGg+
d εθd.

Segregation of terms, completion of squares, and the use of Young’s inequalities yields

V̇L ≤ −Q (ζ)− ηc2c

4

∥∥∥W̃c

∥∥∥2

− (ηa1 + ηa2)

3

∥∥∥W̃a

∥∥∥2

− k

2
‖x̃‖2 −

kθσθ

3

∥∥∥θ̃∥∥∥2

F
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−

(
ηc2c

4
− 3 (ηc2 + ηc1)2W

2‖∇σ‖
2
σg

2

16kθσθνΓ

)∥∥∥W̃c

∥∥∥2

−

(
(ηa1 + ηa2)

3
− (ηc1 + ηc2)W‖Gσ‖

8
√
νΓ

)∥∥∥W̃a

∥∥∥2

+
1

cηc2

(
(ηc1 + ηc2)W‖Gσ‖

8
√
νΓ

+ ηa1

)2 ∥∥∥W̃a

∥∥∥2

+
3
((∥∥W T∇σGg+

d

∥∥+
∥∥∇εGg+

d

∥∥)σg + kθdθ

)2

4kθσθ

+

3

(
(ηc1+ηc2)W

2‖Gσ‖
16
√
νΓ

+ ‖(WTGσ+∇εGr∇σT )‖
4

+ ηa2‖W‖
2

)2

(ηa1 + ηa2)
+

(ηc1 + ηc2)2 ‖∆‖
2

4νΓηc2c
+
εθ

2

2k

+

∥∥∥∥1

2
Gε

∥∥∥∥+

∥∥∥∥1

2
W T∇σGr∇εT

∥∥∥∥+
∥∥W T∇σGg+

d εθd
∥∥+

∥∥∇εGg+
d εθd

∥∥, (6–31)

for all Z ∈ χ. Provided the sufficient conditions in (6–26)-(6–27) are satisfied, the

expression in (6–31) yields

V̇L ≤ −vl (‖Z‖) , ∀ ‖Z‖ ≥ v−1
l (ι) , (6–32)

for all Z ∈ χ. Using (6–23), (6–25), and (6–32) Theorem 4.18 in [149] can be invoked to

conclude that every trajectory Z (t) satisfying ‖Z (t0)‖ ≤ vl
−1
(
vl (ρ)

)
, is bounded for all

t ∈ R and satisfies lim supt→∞ ‖Z (t)‖ ≤ vl
−1
(
vl
(
v−1
l (ι)

))
.

6.6 Simulation

6.6.1 Nonlinear System

The effectiveness of the developed technique is demonstrated via numerical

simulation on a nonlinear system of the form (5–4), where

f =

 θ1 θ2 θ3

θ4 θ5 θ6




x1

x2

x2 (cos (2x1) + 2)

 , g =

 0

cos (2x1) + 2

 . (6–33)

The ideal values of the unknown parameters are θ1 = −1, θ2 = 1, θ3 = 0, θ4 = −0.5,

θ5 = 0, and θ6 = −0.5. The control objective is to follow a desired trajectory, which is the
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solution of the initial value problem

ẋd =

−1 1

−2 1

xd, xd (0) =

0

2

 ,
while ensuring convergence of the estimated policy µ̂ to a neighborhood of

the policy µ∗, such that the control law µ (t) = µ∗ (ζ (t)) minimizes the cost
´∞

0

(
eT (t) diag ([10, 10]) e (t) + (µ (t))2) dt, subject to the dynamic constraint in (5–4).

The value function is approximated using the polynomial basis σ (ζ) =

[e2
1, e

2
2, e

2
1x

2
d1, e

2
2x

2
d2, e

2
2x

2
d1, e

2
1x

2
d2, e1e2]

T
, and the unknown drift dynamics are approxi-

mated using the basis σθ (x) = [x1, x2, x2 (cos (2x1) + 2)]T . Learning gains for system

identification and value function approximation are selected as

ηc1 = 0.1, ηc2 = 2.5, ηa1 = 1, ηa2 = 0.01, β = 0.3, ν = 0.005, Γ = 100000, k = 500,

Γθ = I3, Γ (0) = 5000I9, kθ = 20,

To implement BE extrapolation, error values {ζi}81
i=1 are selected to be uniformly spaced

over the a 2 × 2 × 2 × 2 hypercube centered at the origin. The history stack required

for CL contains ten points, and is recorded online using a singular value maximizing

algorithm (cf. [93]), and the required state derivatives are computed using a fifth order

Savitzky-Golay smoothing filter (cf. [150]).

The initial values for the state and the state estimate are selected to be x (0) =

[1, 2]T and x̂ (0) = [0, 0]T , respectively. The initial values for the NN weights for the

value function, the policy, and the drift dynamics are selected to be 5 × 17, 3 × 17, and

06, respectively. Since the system in (6–33) has no stable equilibria, the initial policy

µ̂ (ζ,06×1) is not stabilizing. The stabilization demonstrated in Figure 6-1 is achieved via

fast simultaneous learning of the system dynamics and the value function.
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Figure 6-1 and 6-2 demonstrates that the controller remains bounded, the tracking

error is regulated to the origin, and the NN weights converge. In Figure 6-3, the dashed

lines denote the ideal values of the NN weights for the system drift dynamics.
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Figure 6-1. System trajectories generated using the proposed method for the nonlinear
system.

Figure 6-4 demonstrates satisfaction of the rank conditions in (6–6) and (6–15).

The rank condition on the history stack in (6–6) is ensured by selecting points using a

singular value maximization algorithm, and the condition in (6–15) is met via oversam-

pling, i.e., by selecting 160 points to identify 9 unknown parameters. Unlike previous

results that rely on the addition of an ad-hoc probing signal to satisfy the PE condition,

this result ensures sufficient exploration via BE extrapolation.

Since an analytical solution of the optimal tracking problem is not available for

the nonlinear system in (6–33), the value function and the policy weights cannot be

compared against their ideal values. However, a measure of proximity of the obtained

weights Ŵ ∗
a to the ideal weights W can be obtained by comparing the system trajecto-

ries resulting from applying the feedback control policy µ̂ (ζ) = −1
2
R−1GT (ζ)∇σT (ζ) Ŵ ∗

a

for fixed weights Ŵ ∗
a to the system, against numerically computed optimal system tra-

jectories. Figure 6-5 shows that the control and error trajectories resulting from the
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Figure 6-2. Value function and the policy weight trajectories generated using the
proposed method for the nonlinear system. Since an analytical solution of
the optimal tracking problem is not available, weights cannot be compared
against their ideal values

obtained weights are close to the numerical solution. The numerical solution is obtained

from GPOPS optimal control software [7] using 300 collocation points.

A comparison between the learned weights and the optimal weights is possible for

linear systems provided the dynamics hd of the desired trajectory are also linear.

6.6.2 Linear System

To demonstrate convergence to the ideal weights, the following linear system is

simulated:

ẋ =

 −1 1

−0.5 0.5

x+

0

1

u. (6–34)

The control objective is to follow a desired trajectory, which is the solution of the initial

value problem

ẋd =

−1 1

−2 1

xd, xd (0) =

0

2

 .
while ensuring convergence of the estimated policy µ̂ to a neighborhood of

the policy µ∗, such that the control law µ (t) = µ∗ (ζ (t)) minimizes the cost
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Figure 6-3. Trajectories of the unknown parameters in the system drift dynamics for the
nonlinear system. The dotted lines represent the true values of the
parameters.

´∞
0

(
eT (t) diag ([10, 10]) e (t) + (µ (t))2) dt, subject to the dynamic constraint in (5–4),

over µ ∈ U .

The value function is approximated using the polynomial basis σ (ζ) =

[e2
1, e

2
2, e1e2, e1xd1, e2xd2, e1xd2, e2xd1]T , and the unknown drift dynamics is approxi-

mated using the linear basis σθ (x) = [x1, x2]T . Learning gains for system identification

and value function approximation are selected as

ηc1 = 0.5, ηc2 = 10, ηa1 = 10, ηa2 = 0.001, β = 0.1, ν = 0.005, Γ = 100000, k = 500,

Γθ = I2, Γ (0) = 1000I7, kθ = 10,

To implement BE extrapolation, error values {ei}25
i=1 are selected to be uniformly spaced

in a 5×5 grid on a 2×2 square around the origin, and the points {xd (tj)}11
j=1 are selected

along the desired trajectory such that the time instances tj are linearly spaced over the
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Figure 6-4. Satisfaction of Assumptions 6.1 and 6.2 for the nonlinear system.

interval [0.1, 2π]. The set of points {ζk}275
k=1 is then computed as {ζk} =

{[
eTi xTd (tj)

]T}
,

i = 1, · · · , 25, j = 1, · · · , 11. The history stack required for CL contains ten points,

and is recorded online using a singular value maximizing algorithm (cf. [93]), and the

required state derivatives are computed using a fifth order Savitzky-Golay smoothing

filter (cf. [150]).

The linear system in (6–34) and the linear desired dynamics result in a linear time-

invariant concatenated system. Since the system is linear, the optimal tracking problem

reduces to an optimal regulation problem, which can be solved by solving the resulting

algebraic Riccati equation. The optimal value function is given by V (ζ) = ζTPζζ, where

the matrix Pζ is given by

Pζ =



4.43 0.67 0 0

0.67 2.91 0 0

0 0 0 0

0 0 0 0


.

Using the matrix Pζ , the ideal weighs corresponding to the selected basis can be

computed as W = [4.43, 1.35, 0, 0, 2.91, 0, 0].

123



0 1 2 3 4 5
−0.5

0

0.5

1

1.5

2

2.5

Time (s)

µ
(t
)

Control Trajectory

 

 

µ − ADP
µ − GPOPS

0 1 2 3 4 5
−1

−0.5

0

0.5

1

Time (s)

e
(t
)

Tracking Error

 

 

e
1
 − ADP

e
2
 − ADP

e
1
 − GPOPS

e
2
 − GPOPS

Figure 6-5. Comparison between control and error trajectories resulting from the
developed technique and a numerical solution for the nonlinear system.

Figures 6-6 - 6-8 demonstrate that the controller remains bounded, the tracking

error goes to zero, and the weight estimates Ŵc, Ŵa and θ̂ go to their true values,

establishing the convergence of the approximate policy to the optimal policy. Figure 6-9

demonstrates satisfaction of the rank conditions in (6–6) and (6–15).

6.7 Concluding Remarks

A concurrent-learning based implementation of model-based RL is developed to

obtain an approximate online solution to infinite-horizon optimal tracking problems for

nonlinear continuous-time control-affine systems. The desired steady-state controller is

used to facilitate the formulation of a feasible optimal control problem, and the system

state is augmented with the desired trajectory to facilitate the formulation of a stationary

optimal control problem. A CL-based system identifier is developed to remove the

dependence of the desired steady-state controller on the system drift dynamics, and to

facilitate simulation of experience via BE extrapolation.

The design variable in (5–5) and inversion of the control effectiveness matrix is

necessary because the controller does not asymptotically go to zero, causing the total

cost to be infinite for any policy. The definition of µ and the inversion of the control
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Figure 6-6. System trajectories generated using the proposed method for the linear
system.

effectiveness matrix can be avoided if the optimal control problem is formulated in terms

of a discounted cost. An online solution of the discounted cost optimal control problem is

possible by making minor modifications to the technique developed in this chapter.

The history stack in Assumption 6.1 is assumed to be available a priori for ease of

exposition. Provided the system states are exciting over a finite amount of time needed

for collection, the history stack can be collected online. For the case when a history

stack is not available initially, the developed controller needs to be modified during the

data collection phase to ensure stability. The required modifications are similar to those

described in Appendix A. Once the condition in Assumption 6.1 is met, the developed

controller can be used thereafter.

Technical challenges similar to the optimal tracking problem are encountered while

dealing with multiple interacting agents. Since the trajectory of one agent is influenced

by other agents, the value function becomes time-varying. The following chapter

extends the simulation-based ACI method to obtain an approximate feedback-Nash

equilibrium solution to a class of graphical games based on ideas developed in previous

chapters.
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Ŵ
a
(t
)

Policy NN Weights
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Figure 6-7. Value function and the policy weight trajectories generated using the
proposed method for the linear system. Dotted lines denote the ideal values
generated by solving the LQR problem.
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linear system. The dotted lines represent the true values of the parameters.

126



0 2 4 6 8 10
0

2

4

6

8

10

12

14

Time (s)

Minimum Singular Value of CL History Stack

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (s)

Minimum Eigenvalue of BE Extrapolation Matrix

Figure 6-9. Satisfaction of Assumptions 6.1 and 6.2 for the linear system.

127



CHAPTER 7
MODEL-BASED REINFORCEMENT LEARNING FOR ONLINE APPROXIMATE
FEEDBACK-NASH EQUILIBRIUM SOLUTION OF DIFFERENTIAL GRAPHICAL

GAMES

Efforts in this chapter seek to combine differential game theory with the ADP

framework to determine forward-in-time, approximate optimal controllers for formation

tracking in multi-agent systems with uncertain nonlinear dynamics. A continuous

control strategy is proposed, using communication feedback from extended neighbors

on a communication topology that has a spanning tree. The simulation-based ACI

architecture from Chapter 3 is extended to cooperatively control a group of agents to

track a trajectory in a desired formation using ideas from Chapter 6.

7.1 Graph Theory Preliminaries

Consider a set of N autonomous agents moving in the state space Rn. The control

objective is for the agents to track a desired trajectory while maintaining a desired

formation. To aid the subsequent design, another agent (henceforth referred to as the

leader) is assumed to be traversing the desired trajectory, denoted by x0 ∈ Rn. The

agents are assumed to be on a network with a fixed communication topology modeled

as a static directed graph (i.e. digraph).

Each agent forms a node in the digraph. The set of all nodes excluding the leader

is denoted by N = {1, · · ·N} and the leader is denoted by node 0. If node i can receive

information from node j then there exists a directed edge from the jth to the ith node

of the digraph, denoted by the ordered pair (j, i). Let E denote the set of all edges.

Let there be a positive weight aij ∈ R associated with each edge (j, i). Note that

aij 6= 0 if and only if (j, i) ∈ E. The digraph is assumed to have no repeated edges

i.e. (i, i) /∈ E,∀i, which implies aii = 0,∀i. Note that ai0 denotes the edge weight

(also referred to as the pinning gain) for the edge between the leader and an node i.

Similar to the other edge weights, ai0 6= 0 if and only if there exists a directed edge

from the leader to the agent i. The neighborhood sets of node i are denoted by N−i
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and Ni, defined as N−i , {j ∈ N | (j, i) ∈ E} and Ni , N−i ∪ {i}. To streamline the

analysis, a graph connectivity matrix A ∈ RN×N is defined as A , [aij | i, j ∈ N ],

a diagonal pinning gain matrix A0 ∈ RN×N is defined as A0 , diag (ai0) | i ∈ N ,

an in-degree matrix D ∈ RN×N is defined as D , diag (di) , where di ,
∑

j∈Ni aij,

and a graph Laplacian matrix L ∈ RN×N is defined as L , D − A. The graph is

said to have a spanning tree if given any node i, there exists a directed path from

the leader 0 to node i. A node j is said to be an extended neighbor of node i if there

exists a directed path from node j to node i. The extended neighborhood set of node

i, denoted by S−i, is defined as the set of all extended neighbors of node i. Formally,

S−i , {j ∈ N | j 6= i ∧ ∃n ≤ N, {j1, · · · jn} ⊂ N | {(j, j1) , (j1, j2) , · · · , (jn, i)} ⊂ 2E}. Let

Si , S−i ∪ {i}, and let the edge weights be normalized such that
∑

j aij = 1 for all i ∈ N .

Note that the sub-graphs are nested in the sense that Sj ⊆ Si for all j ∈ Si.

7.2 Problem Formulation

The state xi ∈ Rn of each agent evolves according to the control-affine dynamics

ẋi = fi (xi) + gi (xi)ui, (7–1)

where ui ∈ Rmi denotes the control input and fi : Rn → Rn and gi : Rn → Rn×mi are

locally Lipschitz continuous functions.

Assumption 7.1. The group of agents follows a virtual leader whose dynamics are

described by ẋ0 = f0 (x0) , where f0 : Rn → Rn is a locally Lipschitz continuous function.

The function f0, and the initial condition x0 (t0) are selected such that the trajectory x0 (t)

is bounded for all t ∈ R≥t0.

The control objective is for the agents to maintain a predetermined formation

around the leader while minimizing a cost function. For all i ∈ N , the ith agent is

aware of its constant desired relative position xdij ∈ Rn with respect to all its neighbors

j ∈ N−i, such that the desired formation is realized when xi − xj → xdij for all i, j ∈ N .

To facilitate control design, the formation is expressed in terms of a set of constant
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vectors {xdi0 ∈ Rn}i∈N where each xdi0 denotes the constant final desired position of

agent i with respect to the leader. The vectors {xdi0}i∈N are unknown to the agents

not connected to the leader, and the known desired inter agent relative position can

be expressed in terms of {xdi0}i∈N as xdij = xdi0 − xdj0. The control objective is thus

satisfied when xi → xdi0 + x0 for all i ∈ N . To facilitate control design, define the local

neighborhood tracking error signal

ei =
∑

j∈{0}∪N−i

aij ((xi − xj)− xdij) . (7–2)

To facilitate analysis, the error signal in (7–2) is expressed in terms of the unknown

leader-relative desired positions as

ei =
∑

j∈{0}∪N−i

aij ((xi − xdi0)− (xj − xdj0)) . (7–3)

Stacking the error signals in a vector E ,

[
eT1 , eT2 , · · · , eTN

]T
∈ RnN the equation in

(7–3) can be expressed in a matrix form

E = ((L+A0)⊗ In) (X − Xd −X0) , (7–4)

where X =

[
xT1 , xT2 , · · · , xTN

]T
∈ RnN , Xd =

[
xTd10, xTd20, · · · , xTdN0

]T
∈ RnN ,

X0 =

[
xT0 , xT0 , · · · , xT0

]T
∈ RnN , In denotes an n× n identity matrix, and ⊗ denotes

the Kronecker product. Using (7–4), it can be concluded that provided the matrix

((L+A0)⊗ In) ∈ RnN×nN is nonsingular, ‖E‖ → 0 implies xi → xdi0 + x0 for all i, and

hence, the satisfaction of the control objective. The matrix ((L+A0)⊗ In) can be shown

to be nonsingular provided the graph has a spanning tree with the leader at the root. To

facilitate the formulation of an optimization problem, the following section explores the

functional dependence of the state value functions for the network of agents.
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7.2.1 Elements of the Value Function

The dynamics for the open-loop neighborhood tracking error are

ėi =
∑

j∈{0}∪N−i

aij (fi (xi) + gi (xi)ui − fj (xj)− gj (xj)uj) .

Under the temporary assumption that each controller ui is an error-feedback controller,

i.e. ui (t) = ûi (ei (t) , t), the error dynamics are expressed as

ėi =
∑

j∈{0}∪N−i

aij (fi (xi) + gi (xi) ûi (ei, t)− fj (xj)− gj (xj) ûj (ej, t)) .

Thus, the error trajectory {ei (t)}∞t=t0 , where t0 denotes the initial time, depends

on ûj (ej (t) , t), ∀j ∈ Ni. Similarly, the error trajectory {ej (t)}∞t=t0 depends on

ûk (ek (t) , t) ,∀k ∈ Nj. Recursively, the trajectory {ei (t)}∞t=t0 depends on ûj (ej (t) , t),

and hence, on ej (t) ,∀j ∈ Si. Thus, even if the controller for each agent is restricted to

use local error feedback, the resulting error trajectories are interdependent. In particular,

a change in the initial condition of one agent in the extended neighborhood causes a

change in the error trajectories corresponding to all the extended neighbors. Conse-

quently, the value function corresponding to an infinite-horizon optimal control problem

where each agent tries to minimize
´∞
t0

(Q (ei (τ)) +R (ui (τ))) dτ , where Q : Rn → R

and R : Rmi → R are positive definite functions, is dependent on the error states of

all the extended neighbors. In other words, the infinite-horizon value of an error state

depends on error states of all the extended neighbors; hence, communication with ex-

tended neighbors is vital for the solution of an optimal control problem in the presented

framework.

7.2.2 Optimal Formation Tracking Problem

When the agents are perfectly tracking the desired trajectory in the desired forma-

tion, even though the states of all the agents are different, the time-derivatives of the

states of all the agents are identical. Hence, in steady state, the control signal applied

by each agent must be such that the time derivatives are all identical. In particular, the
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relative control signal uij ∈ Rmi that will keep node i in its desired relative position with

respect to node j, i.e., xi = xj + xdij, must be such that the time derivative of xi is the

same as the time derivative of xj. Using the dynamics of the agent from (7–1), and

substituting the desired relative position xj + xdij for the state xi, the relative control

signal uij must satisfy

fi (xj + xdij) + gi (xj + xdij)uij = ẋj. (7–5)

The relative steady-state control signal can be expressed in an explicit form provided the

following assumption is satisfied.

Assumption 7.2. The matrix gi (x) is full rank for all i ∈ N and for all x ∈ Rn, further-

more, the relative steady-state control signal expressed as

uij = fij (xj) + gij (xj)uj,

satisfies (7–5) along the desired trajectory, where fij (xj) ,

g+
i (xj + xdij) (fj (xj)− fi (xj + xdij)) ∈ Rmi, gij (xj) , g+

i (xj + xdij) gj (xj) ∈ Rmi×mj ,

g0 (x) , 0 for all x ∈ Rn, ui0 ≡ 0 for all i ∈ N , and g+
i (x) denotes the Moore-Penrose

pseudoinverse of the matrix gi (x) for all x ∈ Rn.

To facilitate the formulation of an optimal formation tracking problem, define the

control error µi ∈ Rmi as

µi ,
∑

j∈N−i∪{0}

aij (ui − uij) . (7–6)

In the reminder of this chapter, the control errors {µi} will be treated as the design

variables. In order to implement the controllers {ui} using designed control errors {µi},

it is essential to invert (7–6). To facilitate the inversion, let Soi , {1, · · · , si}, where

si , |Si|. Let λi : Soi → Si be a bijective map such that λi (1) = i. For notational brevity,

let (·)Si denote the concatenated vector
[
(·)Tλ1i , (·)

T
λ2i
, · · · , (·)Tλsii

]T
, let (·)S−i denote the

concatenated vector
[
(·)Tλ2i , · · · , (·)

T
λ
si
i

]T
, let

∑i denote
∑

j∈N−i∪{0}, let λji denote λi (j),

let Ei ,
[
eTSi , x

T
λ1i

]T
∈ Rn(si+1), and let E−i ,

[
eTS−i , x

T
λ1i

]T
∈ Rnsi. Then, the control error
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vector µSi ∈ R
∑
k∈So

i
m
λk
i can be expressed as

µSi = Lgi (Ei)uSi − Fi (Ei) , (7–7)

where the matrix Lgi : Rn(si+1) → R
∑
k∈So

i
m
λk
i
×
∑
k∈So

i
m
λk
i is defined as

Lgi (Ei) ,



∑λ1i aλ1i jImλ1i
, −aλ1i λ2i gλ1i λ2i

(
xλ2i

)
, · · · ,−aλ1i λsii gλ1i λsii

(
xλsii

)
−aλ2i λ1i gλ2i λ1i

(
xλ1i

)
,
∑λ2i aλ2i jImλ2i

, · · · ,−aλ2i λsii gλ2i λsii
(
xλsii

)
...

−aλsii λ1i gλsii λ1i
(
xλ1i

)
, −aλsii λ2i gλsii λ2i

(
xλ2i

)
, · · · ,

∑λ
si
i aλsii jImλsii


,

and Fi : Rn(si+1) → R
∑
k∈So

i
m
λk
i is defined as

Fi (Ei) ,
[ ∑λ1i aλ1i jf

T
λ1i j

(xj) · · ·
∑λ

si
i aλsii jf

T
λ
si
i j

(xj)

]T
.

Assumption 7.3. The matrix Lgi (Ei (t)) is invertible for all t ∈ R.

Assumption 7.3 is a controllability like condition. Intuitively, Assumption 7.3 requires

the control effectiveness matrices to be compatible to ensure the existence of relative

control inputs that allow the agents to follow the desired trajectory in the desired

formation.

Using Assumption 7.3, the control vector can be expressed as

uSi = L −1
gi (Ei)µSi + L −1

gi Fi (Ei) .

Let L k
gi denote the

(
λ−1
i (k)

)
th block row of L −1

gi . Then, the controller ui can be imple-

mented as

ui = L i
gi (Ei)µSi + L i

giFi (Ei) , (7–8)

and for any j ∈ N−i,

uj = L j
gi (Ei)µSi + L j

giFi (Ei) . (7–9)
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Using (7–8) and (7–9), the error and the state dynamics for the agents can be repre-

sented as

ėi = Fi (Ei) + Gi (Ei)µSi , (7–10)

and

ẋi = Fi (Ei) + Gi (Ei)µSi , (7–11)

where Fi (Ei) ,
∑i aij

(
fi (xi)− fj (xj) +

(
gi (xi) L i

gi (Ei)− gj (xj) L j
gi (Ei)

)
Fi (Ei)

)
,

Gi (Ei) ,
∑i aij

(
gi (xi) L i

gi (Ei)− gj (xj) L j
gi (Ei)

)
, Fi (Ei) , fi (xi) + gi (xi) L i

gi (Ei)Fi (Ei),

and Gi (Ei) , gi (xi) L i
gi (Ei).

Let h
µi,µS−i
ei (t, t0, Ei0) and h

µi,µS−i
xi (t, t0, Ei0) denote the trajectories of (7–10) and

(7–11), respectively, with the initial time t0, initial condition Ei (t0) = Ei0, and policies

µi : Rn(si+1) → Rmi, and let and Hi =
[
(he)

T
Si , h

T
xλ1i

]T
. Define a cost functional

Ji (ei, µi) ,

∞̂

0

ri (ei (σ) , µi (σ)) dσ (7–12)

where ri : Rn×Rmi → R≥0 denotes the local cost defined as ri (ei, µi) , Qi (ei) + µTi Riµi,

where Qi : Rn → R≥0 is a positive definite function and Ri ∈ Rmi×mi is a constant

positive definite matrix. The objective of each agent is to minimize the cost functional in

(7–12). To facilitate the definition of a feedback-Nash equilibrium solution, define value

functions Vi : Rn(si+1) → R≥0 as

V
µi,µS−i
i (Ei) ,

∞̂

t

ri

(
h
µi,µS−i
ei (σ, t, Ei) , µi

(
H
µi,µS−i
i (σ, t, Ei)

))
dσ, (7–13)

where the notation V
µi,µS−i
i (Ei) denotes the total cost-to-go under the policies µSi,

starting from the state Ei. Note that the value functions in (7–13) are time-invariant

because the dynamical systems
{
ėj = Fj (Ei) + Gj (Ei)µSj

}
j∈Si

and ẋi = Fi (Ei) +

Gi (Ei)µSi together form an autonomous dynamical system.
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A graphical feedback-Nash equilibrium solution within the subgraph Si is defined

as the tuple of policies
{
µ∗j : Rn(sj+1) → Rmj

}
j∈Si

such that the value functions in (7–13)

satisfy

V ∗j (Ej) , V
µ∗j ,µ

∗
S−j

j (Ej) ≤ V
µj ,µ

∗
S−j

j (Ej) ,

for all j ∈ Si, for all Ei ∈ Rn(si+1) and for all admissible policies µj. Provided a feedback-

Nash equilibrium solution exists and the value functions (7–13) are continuously

differentiable, the feedback-Nash equilibrium value functions can be characterized in

terms of the following system of HJ equations:

∑
j∈Si

∇ejV
∗
i (Eoi )

(
Fj (Eoi ) + Gj (Eoi )µ∗Sj (Eoi )

)
+∇xiV

∗
i (Eoi )

(
Fi (Eoi ) + Gi (Eoi )µ∗Si (Eoi )

)
+Qi (Eoi ) + µ∗Ti (Eoi )Riµ

∗
i (Eoi ) = 0, ∀Eoi ∈ Rn(si+1), (7–14)

where Qi : Rn(si+1) → R is defined as Qi (Ei) , Qi (ei).

Theorem 7.1. Provided a feedback-Nash equilibrium solution exists and that the value

functions in (7–13) are continuously differentiable, the system of HJ equations in (7–14)

constitutes a necessary and sufficient condition for feedback-Nash equilibrium.

Proof. Consider the cost functional in (7–12), and assume that all the extended neigh-

bors of the ith agent follow their feedback-Nash equilibrium policies. The value function

corresponding to any admissible policy µi can be expressed as

V
µi,µ

∗
S−i

i

([
eTi , ET−i

]T)
=

∞̂

t

ri

(
h
µi,µ

∗
S−i

ei (σ, t, Ei) , µi
(
H
µi,µ

∗
S−i

i (σ, t, Ei)
))

dσ.

Treating the dependence on E−i as explicit time dependence define

V
µi,µ

∗
S−i

i (ei, t) , V
µi,µ

∗
S−i

i

([
eTi , ET−i (t)

]T)
, (7–15)

for all ei ∈ Rn and for all t ∈ R≥0. Assuming that the optimal controller that minimizes

(7–12) when all the extended neighbors follow their feedback-Nash equilibrium policies

exists, and assuming that the optimal value function V
∗
i , V

µ∗i ,µ
∗
S−i

i exists and is
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continuously differentiable, optimal control theory for single objective optimization

problems (cf. [144]) can be used to derive the following necessary and sufficient

condition

∂V
∗
i (ei, t)

∂ei

(
Fi (Ei) + Gi (Ei)µ∗Si (Ei)

)
+
∂V
∗
i (ei, t)

∂t
= Qi (ei) + µ∗Ti (Ei)Riµ

∗
i (Ei) . (7–16)

Using (7–15), the partial derivative with respect to the state can be expressed as

∂V
∗
i (ei, t)

∂ei
=
∂V ∗i (Ei)
∂ei

, (7–17)

for all ei ∈ Rn and for all t ∈ R≥0, and the partial with respect to time can be expressed

as

∂V
∗
i (ei, t)

∂t
=
∑
j∈S−i

∂V ∗i (Ei)
∂ej

(
Fj (Ei) + Gj (Ei)µ∗Sj (Ei)

)
+
∂V ∗i (Ei)
∂xi

(
Fi (Ei) + Gi (Ei)µ∗Si (Ei)

)
,

(7–18)

for all ei ∈ Rn and for all t ∈ R≥0. Substituting (7–17) and (7–18) into (7–16) and

repeating the process for each i, the system of HJ equations in (7–14) is obtained.

Minimizing the HJ equations using the stationary condition, the feedback-Nash

equilibrium solution is expressed in the explicit form

µ∗i (Eoi ) = −1

2
R−1
i

∑
j∈Si

(
G i
j (Eoi )

)T (∇ejV
∗
i (Eoi )

)T − 1

2
R−1
i

(
Gii (Eoi )

)T
(∇xiV

∗
i (Eoi ))T , (7–19)

for all (Eoi ) ∈ Rn(si+1), where G i
j , Gj

∂µ∗Sj
∂µ∗i

, and Gii , Gi
∂µ∗Si
∂µ∗i

. Since solution of the system

of HJ equations in (7–14) is generally infeasible, the feedback-Nash value functions and

the feedback-Nash policies are approximated using parametric approximation schemes

as V̂i
(
Ei, Ŵci

)
and µ̂i

(
Ei, Ŵai

)
, respectively where Ŵci ∈ RLi and Ŵai ∈ RLi are

parameter estimates. Substitution of the approximations V̂i and µ̂i in (7–14) leads to a

set of BEs δi defined as

δi

(
Ei, Ŵci,

(
Ŵa

)
Si

)
,
∑
j∈Si

∇ej V̂i

(
Ei, Ŵci

)(
Fj (Ej) + Gj (Ej) µ̂Sj

(
Ej,
(
Ŵa

)
Sj

))
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+∇xiV̂i

(
Ei, Ŵci

)(
Fi (Ei) + Gi (Ei) µ̂Si

(
Ei,
(
Ŵa

)
Si

))
− µ̂Ti

(
Ei, Ŵai

)
Rµ̂i

(
Ei, Ŵai

)
−Qi (ei) .

Approximate feedback-Nash equilibrium control is realized by tuning the estimates V̂i

and µ̂i so as to minimize the Bellman errors δi. However, computation of δi and that

of uij in (7–6) requires exact model knowledge. In the following, a CL-based system

identifier is developed to relax the exact model knowledge requirement. In particular, the

developed controllers do not require the knowledge of the system drift functions fi.

7.3 System Identification

On any compact set χ ⊂ Rn the function fi can be represented using a NN as

fi (x) = θTi σθi (x) + εθi (x) , (7–20)

for all x ∈ Rn, where θi ∈ RPi+1×n denote the unknown output-layer NN weights,

σθi : Rn → RPi+1 denotes a bounded NN basis function, εθi : Rn → Rn denotes the

function reconstruction error, and Pi ∈ N denotes the number of NN neurons. Using

the universal function approximation property of single layer NNs, provided the rows of

σθi (x) form a proper basis, there exist constant ideal weights θi and positive constants

θi ∈ R and εθi ∈ R such that ‖θi‖F ≤ θi < ∞ and supx∈χ ‖εθi (x)‖ ≤ εθi, where ‖·‖F

denotes the Frobenius norm.

Assumption 7.4. The bounds θi and εθi are known for all i ∈ N .

Using an estimate θ̂i ∈ RPi+1×n of the weight matrix θi, the function fi can be

approximated by the function f̂i : Rn × RPi+1×n → Rn defined by f̂i
(
x, θ̂
)
, θ̂Tσθi (x) .

Based on (7–20), an estimator for online identification of the drift dynamics is developed

as

˙̂xi = θ̂Ti σθi (xi) + gi (xi)ui + kix̃i, (7–21)

where x̃i , xi − x̂i, and ki ∈ R is a positive constant learning gain. The following

assumption facilitates CL-based system identification.

137



Assumption 7.5. [92] A history stack containing recorded state-action pairs
{
xki , u

k
i

}Mθi

k=1

along with numerically computed state derivatives
{

˙̄xki
}Mθi

k=1
that satisfies

λmin

(
Mθi∑
k=1

σkθi
(
σkθi
)T)

= σθi > 0,

∥∥ ˙̄xki − ẋki
∥∥ < di, ∀k, (7–22)

is available a priori. In (7–22), σkθi , σθi
(
xki
)
, dθi ∈ R is a known positive constant, and

λmin (·) denotes the minimum eigenvalue.

The weight estimates θ̂i are updated using the following CL-based update law:

˙̂
θi = kθiΓθi

Mθi∑
k=1

σkθi

(
˙̄xki − gki uki − θ̂Ti σkθi

)T
+ Γθiσθi (xi) x̃

T
i , (7–23)

where gki , gi
(
xki
)
, kθi ∈ R is a constant positive CL gain, and Γθi ∈ RPi+1×Pi+1 is a

constant, diagonal, and positive definite adaptation gain matrix.

To facilitate the subsequent stability analysis, a candidate Lyapunov function

V0i : Rn × RPi+1×n → R is selected as

V0i

(
x̃i, θ̃i

)
,

1

2
x̃Ti x̃i +

1

2
tr
(
θ̃Ti Γ−1

θi θ̃i

)
, (7–24)

where θ̃i , θi − θ̂i and tr (·) denotes the trace of a matrix. Using (7–21)-(7–23), the

following bound on the time derivative of V0i is established:

V̇0i ≤ −ki ‖x̃i‖2 − kθiσθi
∥∥∥θ̃i∥∥∥2

F
+ εθi ‖x̃i‖+ kθidθi

∥∥∥θ̃i∥∥∥
F
, (7–25)

where dθi , di
∑Mθi

k=1

∥∥σkθi∥∥ +
∑Mθi

k=1

(∥∥εkθi∥∥∥∥σkθi∥∥). Using (7–24) and (7–25), a Lyapunov-

based stability analysis can be used to show that θ̂i converges exponentially to a

neighborhood around θi.

7.4 Approximation of the BE and the Relative Steady-state Controller

Using the approximations f̂i for the functions fi, the BEs can be approximated as

138



δ̂i

(
Ei, Ŵci,

(
Ŵa

)
Si
, θ̂Si

)
, ∇xiV̂i

(
Ei, Ŵci

)(
F̂i
(
Ei, θ̂Si

)
+ Gi (Ei) µ̂Si

(
Ei,
(
Ŵa

)
Si

))
+
∑
j∈Si

∇ej V̂i

(
Ei, Ŵci

)(
F̂j

(
Ej, θ̂Sj

)
+ Gj (Ej) µ̂Sj

(
Ej,
(
Ŵa

)
Sj

))
−Qi (ei)

− µ̂Ti
(
Ei, Ŵai

)
Rµ̂i

(
Ei, Ŵai

)
. (7–26)

In (7–26),

F̂i

(
Ei, θ̂Si

)
,
∑iaij

(
f̂i

(
xi, θ̂i

)
−f̂j

(
xj, θ̂j

))
+
∑iaij

(
gi (xi) L i

gi−gj (xj) L j
gi

)
F̂i

(
Ei, θ̂Si

)
,

F̂i
(
Ei, θ̂Si

)
, θ̂Ti σθi (xi) + gi (xi) L i

giF̂i

(
Ei, θ̂Si

)
,

F̂i

(
Ei, θ̂Si

)
,

[(∑λ1i aλ1i j f̂λ1i j

(
xλ1i , θ̂λ1i , xj, θ̂j

))T
,· · ·,

(∑λ
si
i aλsii j f̂λ

si
i j

(
xλsii , θ̂λ

si
i
, xj, θ̂j

))T]T
,

f̂ij

(
xi, θ̂i, xj, θ̂j

)
, g+

i (xj + xdij)
(
f̂j

(
xj, θ̂j

)
− f̂i

(
xj + xdij, θ̂i

))
.

The approximations F̂i, F̂i, and F̂i are related to the original unknown function as

F̂i (Ei, θSi) + Bi (Ei) = Fi (Ei), F̂i (Ei, θSi) + Bi (Ei) = Fi (Ei), and F̂i (Ei, θSi) +

Bi (Ei) = Fi (Ei), where Bi, Bi, and Bi are O
(
(εθ)Si

)
terms that denote bounded function

approximation errors.

Using the approximations f̂i, an implementable form of the controllers in (7–8) is

expressed as

uSi = L −1
gi (Ei) µ̂Si

(
Ei,
(
Ŵa

)
Si

)
+ L −1

gi F̂i (Ei, θSi) . (7–27)

Using (7–7) and (7–27), an unmeasurable form of the virtual controllers implemented on

the systems (7–10) and (7–11) is given by

µSi = µ̂Si

(
Ei,
(
Ŵa

)
Si

)
− F̂i

(
Ei, θ̃Si

)
−Bi (Ei) . (7–28)

7.5 Value Function Approximation

On any compact set χ ∈ Rn(si+1), the value functions can be represented as

V ∗i (Eoi ) = W T
i σi (Eoi ) + εi (Eoi ) , ∀Eoi ∈ Rn(si+1), (7–29)
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where Wi ∈ RLi are ideal NN weights, σi : Rn(si+1) → RLi are NN basis functions

and εi : Rn(si+1) → R are function approximation errors. Using the universal function

approximation property of single layer NNs, provided σi (Eoi ) forms a proper basis, there

exist constant ideal weights Wi and positive constants Wi ∈ R and εi,∇εi ∈ R such that

‖Wi‖ ≤ Wi <∞, supEoi ∈χ ‖εi (E
o
i )‖ ≤ εi, and supEoi ∈χ ‖∇εi (E

o
i )‖ ≤ ∇εi.

Assumption 7.6. The constants εi, ∇εi, and Wi are known for all i ∈ N .

Using (7–19) and (7–29), the feedback-Nash equilibrium policies can be repre-

sented as

µ∗i (Eoi ) = −1

2
R−1
i Gσi (Eoi )Wi −

1

2
R−1
i Gεi (Eoi ) , ∀Eoi ∈ Rn(si+1),

where

Gσi (Ei) ,
∑
j∈Si

(
G i
j (Ei)

)T (∇ejσi (Ei)
)T

+
(
Gii (Ei)

)T
(∇xiσi (Ei))

T

and

Gεi (Ei) ,
∑
j∈Si

(
G i
j (Ei)

)T (∇ejεi (Ei)
)T

+
(
Gii (Ei)

)T
(∇xiεi (Ei))

T .

The value functions and the policies are approximated using NNs as

V̂i

(
Ei, Ŵci

)
, Ŵ T

ciσi (Ei) , µ̂i

(
Ei, Ŵai

)
, −1

2
R−1
i Gσi (Ei) Ŵai. (7–30)

7.6 Simulation of Experience via BE Extrapolation

A consequence of Theorem 7.1 is that the BE provides an indirect measure of

how close the weights Ŵci and Ŵai are to the ideal weights Wi. From a reinforcement

learning perspective, each evaluation of the BE along the system trajectory can be

interpreted as experience gained by the critic, and each evaluation of the BE at points

not yet visited can be interpreted as simulated experience. In previous results such

as [95,112,119,128,157], the critic is restricted to the experience gained (in other words

BEs evaluated) along the system state trajectory. The development in [112, 119, 128,

157] can be extended to employ simulated experience; however, the extension requires

exact model knowledge. In results such as [95], the formulation of the BE does not allow
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for simulation of experience. The formulation in (7–26) employs the system identifier

developed in Section 7.3 to facilitate approximate evaluation of the BE at off-trajectory

points.

To simulate experience, each agent selects a set of points
{
Eki
}Mi

k=1
and evaluates

the instantaneous BE at the current state, denoted by δ̂ti, and the instantaneous state at

the selected points, denoted by δ̂kti. The BEs δ̂ti and δ̂kti are defined as

δ̂ti (t) , δ̂i

(
Ei (t) , Ŵci (t) ,

(
Ŵa (t)

)
Si
,
(
θ̂ (t)

)
Si

)
,

δ̂kti (t) , δ̂i

(
Eki , Ŵci (t) ,

(
Ŵa (t)

)
Si
,
(
θ̂ (t)

)
Si

)
.

Note that once {ej}j∈Si and xi are selected, the ith agent can compute the states of

all the remaining agents in the subgraph. For notational brevity, the arguments to the

functions σi, F̂i, Gi, Gi, F̂i, µ̂i, Gσi, Gεi, and εi are suppressed hereafter.

The critic uses simulated experience to update the value function weights using a

least squares-based update law

˙̂
Wci = −ηc1iΓi

ωi
ρi
δ̂ti −

ηc2iΓi
Mi

Mi∑
k=1

ωki
ρki
δ̂kti,

Γ̇i =

(
βiΓi − ηc1iΓi

ωiω
T
i

ρ2
i

Γi

)
1{‖Γi‖≤Γi}, ‖Γi (t0)‖ ≤ Γi, (7–31)

where ρi , 1 + νiω
T
i Γiωi, Γi ∈ RLi×Li denotes the time-varying least-squares learning

gain, Γi ∈ R denotes the saturation constant, and ηc1i, ηc2i, βi, νi ∈ R are constant

positive learning gains. In (7–31),

ωi ,
∑
j∈Si

∇ejσi

(
F̂j + Gjµ̂Sj

)
+∇xiσi

(
F̂i + Giµ̂Si

)
,

ωki ,
∑
j∈Si

∇ejσ
k
i

(
F̂ k
j + G k

j µ̂
k
Sj

)
+∇xiσ

k
i

(
F̂ki + Gki µ̂kSi

)
,

where for a function φi (Ei, (·)), the notation φki indicates evaluation at Ei = Eki ; i.e.,

φki , φi
(
Eki , (·)

)
. The actor updates the policy weights using the following update law
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derived based on a Lyapunov-based stability analysis:

˙̂
Wai = −ηa2iŴai +

1

4
ηc1iG

T
σiR

−1
i GσiŴai

ωTi
ρi
Ŵci +

1

4

Mi∑
k=1

ηc2i
Mi

(
Gk
σi

)T
R−1
i Gk

σiŴai

(
ωki
)T

ρki
Ŵci

− ηa1i

(
Ŵai − Ŵci

)
, (7–32)

where ηa1i, ηa2i ∈ R are constant positive learning gains. The following assumption

facilitates simulation of experience

Assumption 7.7. [97] For each i ∈ N , there exists a finite set of Mi points
{
Eki
}Mi

k=1

such that

ρi ,

(
inft∈R≥0

(
λmin

{∑Mi

k=1

ωki (t)(ωki )
T

(t)

ρki (t)

}))
Mi

> 0,

where λmin denotes the minimum eigenvalue, and ρi ∈ R is a positive constant.

7.7 Stability Analysis

To facilitate the stability analysis, the left hand side of (7–14) is subtracted from

(7–26) to express the BE in terms of weight estimation errors as

δ̂ti = −W̃ T
ciωi −W T

i ∇xiσi (Ei) F̂i
(
Ei, θ̃Si

)
+

1

4
W̃ T
aiG

T
σiR

−1
i GσiW̃ai −

1

2
W T
i G

T
σiR

−1
i GσiW̃ai

−W T
i

∑
j∈Si

∇ejσi (Ei) F̂j

(
Ej, θ̃Sj

)
+

1

2
W T
i

∑
j∈Si

∇ejσi (Ei) GjRSj
(
W̃a

)
Sj

+ ∆i

+
1

2
W T
i ∇xiσi (Ei)GiRSi

(
W̃a

)
Si
, (7–33)

where (̃·) , (·) − (̂·), ∆i = O
(

(ε)Si ,
(
∇ε
)
Si
, (εθ)Si

)
, and RSj ,

diag
([
R−1
λ1j
GT
σλ1j
, · · · , R−1

λ
sj
j

GT

σλ
sj
j

])
is a block diagonal matrix. Consider a set of ex-

tended neighbors Sp corresponding to the pth agent. To analyze asymptotic properties of

the agents in Sp, consider the following candidate Lyapunov function

VLp (Zp, t) ,
∑
i∈Sp

Vti (eSi , t) +
∑
i∈Sp

1

2
W̃ T
ciΓ
−1
i W̃ci +

∑
i∈Sp

1

2
W̃ T
aiW̃ai +

∑
i∈Sp

V0i

(
x̃i, θ̃i

)
, (7–34)
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where Zp ∈ R(2nsi+2Lisi+n(Pi+1)si) is defined as

Zp ,

[
eTSp ,

(
W̃c

)T
Sp
,
(
W̃a

)T
Sp
, x̃TSp , vec

(
θ̃Sp

)T]T
,

vec (·) denotes the vectorization operator, and Vti : Rnsi × R→ R is defined as

Vti (eSi , t) , V ∗i

([
eTSi , x

T
i (t)

]T)
, (7–35)

∀eSi ∈ Rnsi , ∀t ∈ R. Since V ∗ti depends on t only through uniformly bounded leader

trajectories, Lemmas 1 and 2 from [146] can be used to show that Vti is a positive

definite and decrescent function. Thus, using Lemma 4.3 from [149], the following

bounds on the candidate Lyapunov function in (7–34) are established

vlp
(∥∥Zo

p

∥∥) ≤ VLp
(
Zo
p , t
)
≤ vlp

(∥∥Zo
p

∥∥) , (7–36)

for all Zo
p ∈ R(2nsi+2Lisi+n(Pi+1)si) and for all t, where vlp, vlp : R→ R are class K functions.

To facilitate the stability analysis, given any compact ball χp ⊂ R2nsi+2Lisi+n(Pi+1)si of

radius rp ∈ R centered at the origin, a positive constant ιp ∈ R is defined as

ιp ,
∑
i∈Sp

εθi2
2ki

+
3
(
kθidθi +

∥∥Aθi∥∥∥∥Bθ
i

∥∥)2

4kθiσθi

+
∑
i∈Sp

5 (ηc1i + ηc2i)
2
∥∥∥ωiρi ∆i

∥∥∥2

4ηc2iρi

+
∑
i∈Sp

1

2

∥∥∥∥∥∇xiV
∗
i (Ei)GiRSiεSi +

∑
j∈Si

∇ejV
∗
i (Ei) GjRSjεSj

∥∥∥∥∥
+
∑
i∈Sp

3

(
1
4

(ηc1i + ηc2i)
∥∥∥W T

i
ωi
ρi
W T
i G

T
σiR

−1
i Gσi

∥∥∥+ 1
2
‖Aa1

i ‖+ ηa2iWi

)2

4 (ηa1i + ηa2i)

+
∑
i∈Sp

∥∥∥∥∥∑
j∈Si

∇ejV
∗
i (Ei) GjBj +∇xiV

∗
i (Ei)GiBi

∥∥∥∥∥,
where for any function $ : Rl → R, l ∈ N, the notation ‖$‖, denotes supy∈χp∩Rl ‖$ (y)‖

and Aθi , Bθ
i , and Aa1

i are uniformly bounded state-dependent terms. Let vlp : R→ R be a
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class K function such that

vlp (‖Zp‖) ≤ +
1

2

∑
i∈Sp

ηc2iρi

5

∥∥∥W̃ci

∥∥∥2

+
1

2

∑
i∈Sp

(ηa1i + ηa2i)

3

∥∥∥W̃ai

∥∥∥2

+
1

2

∑
i∈Sp

kθiσθi

3

∥∥∥θ̃i∥∥∥2

F

1

2

∑
i∈Sp

qi (‖ei‖) +
1

2

∑
i∈Sp

ki
2
‖x̃i‖2 ,

where qi : R→ R are class K functions such that qi (‖e‖) ≤ Qi (e) , ∀e ∈ Rn, ∀i ∈ N . The

sufficient gain conditions used in subsequent Theorem 7.2 are

ηc2iρi

5
>
∑
j∈Sp

3sp1j∈Si (ηc1i + ηc2i)
2
∥∥A1aθ

ij

∥∥2∥∥B1aθ
ij

∥∥2

4kθjσθj
, (7–37)

(ηa1i + ηa2i)

3
>
∑
j∈Sp

5sp1i∈Sj (ηc1j + ηc2j)
2
∥∥A1ac

ji

∥∥2

16ηc2jρj
+

5η2
a1i

4ηc2iρi

+
(ηc1i + ηc2i)Wi

∥∥∥ωiρi ∥∥∥∥∥GT
σiR

−1
i Gσi

∥∥
4

,

v−1
lp (ιp) < vlp

−1
(
vlp (rp)

)
, (7–38)

where A1aθ
ij , B1aθ

ij , and A1ac
ji are uniformly bounded state-dependent terms.

Theorem 7.2. Provided Assumptions 7.1-7.7 hold and the sufficient gain conditions

in (7–37)-(7–38) are satisfied, the controller in (7–30) along with the actor and critic

update laws in (7–31) and (7–32), and the system identifier in (7–21) along with the

weight update laws in (7–23) ensure that the local neighborhood tracking errors ei are

ultimately bounded and that the policies µ̂i converge to a neighborhood around the

feedback-Nash policies µ∗i for all i ∈ N .

Proof. The time derivative of the candidate Lyapunov function in (7–34) is given by

V̇Lp =
∑
i∈Sp

V̇ti (eSi , t)−
1

2

∑
i∈Sp

W̃ T
ciΓ
−1
i Γ̇iΓ

−1
i W̃ci −

∑
i∈Sp

W̃ T
ciΓ
−1
i

˙̂
Wci −

∑
i∈Sp

W̃ T
ai

˙̂
Wai

+
∑
i∈Sp

V̇0i

(
x̃i, θ̃i

)
. (7–39)
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Using (7–25), the update laws in (7–31) and (7–32), and the definition of Vti in (7–35),

the derivative (7–39) can be bounded as

V̇Lp ≤
∑
i∈Sp

∑
j∈Si

∇ejV
∗
i (Ei)

(
Fj + GjµSj

)
+
∑
i∈Sp

∇xiV
∗
i (Ei) (Fi + GiµSi) +

∑
i∈Sp

kθidθi

∥∥∥θ̃i∥∥∥
F

− 1

2

∑
i∈Sp

W̃ T
ciΓ
−1
i

(
βiΓi − ηc1iΓi

ωiω
T
i

ρ2
i

Γi

)
Γ−1
i W̃ci −

∑
i∈Sp

W̃ T
ai

(
−ηa1i

(
Ŵai − Ŵci

)
− ηa2iŴai

)

− 1

4

∑
i∈Sp

ηc1iW̃
T
aiG

T
σiR

−1
i GσiŴai

ωTi
ρi
Ŵci +

1

4

∑
i∈Sp

ηc2i
Mi

W̃ T
ai

Mi∑
k=1

(
Gk
σi

)T
R−1
i Gk

σiŴai

(
ωki
)T

ρki
Ŵci

−
∑
i∈Sp

W̃ T
ciΓ
−1
i

(
−ηc1iΓi

ωi
ρi
δ̂i −

ηc2iΓi
Mi

Mi∑
k=1

ωki
ρki
δ̂kti

)
−
∑
i∈Sp

ki ‖x̃i‖2−
∑
i∈Sp

kθiσθi

∥∥∥θ̃i∥∥∥2

F
+
∑
i∈Sp

εθi ‖x̃i‖ .

(7–40)

Using (7–14), (7–28), and (7–33), the derivative in (7–40) can be bounded as

V̇Lp ≤ −
∑
i∈Sp

Qi (ei)−
1

2

∑
i∈Sp

ηc1iW̃
T
ci

ωiω
T
i

ρi
W̃ci −

∑
i∈Sp

ηc2i
Mi

W̃ T
ci

Mi∑
k=1

ωki
ρki
ωkTi W̃ci

−
∑
i∈Sp

(ηa1i + ηa2i) W̃
T
aiW̃ai +

1

2

∑
i∈Sp

∑
j∈Si

∇ejV
∗
i (Ei) GjRSj

(
W̃a

)
Sj

+
1

2

∑
i∈Sp

ηc1iW̃
T
ci

ωi
ρi
W T
i ∇xiσi (Ei)GiRSi

(
W̃a

)
Si

+
∑
i∈Sp

ηa2iW̃
T
aiWi

− 1

4

∑
i∈Sp

ηc1iW
T
i

ωi
ρi
W T
i G

T
σiR

−1
i GσiW̃ai −

1

4

∑
i∈Sp

ηc2i
Mi

W T
i

Mi∑
k=1

ωki
ρki
W T
i G

kT
σi R

−1
i Gk

σiW̃ai

−
∑
i∈Sp

∑
j∈Si

∇ejV
∗
i (Ei) GjF̂j

(
Ej, θ̃Sj

)
−
∑
i∈Sp

∇xiV
∗
i (Ei)GiF̂i

(
Ei, θ̃Si

)
+
∑
i∈Sp

ηa1iW̃
T
aiW̃ci

+
1

2

∑
i∈Sp

∇xiV
∗
i (Ei)GiRSiεSi +

1

2

∑
i∈Sp

∑
j∈Si

∇ejV
∗
i (Ei) GjRSjεSj −

∑
i∈Sp

∑
j∈Si

∇ejV
∗
i (Ei) GjBj

−
∑
i∈Sp

∇xiV
∗
i (Ei)GiBi +

∑
i∈Sp

ηc1iW̃
T
ci

ωi
ρi

∆i −
∑
i∈Sp

ηc2i
Mi

W̃ T
ci

Mi∑
k=1

ωki
ρki
W T
i ∇xiσi

(
Eki
)
F̂i
(
Eki , θ̃Si

)
−
∑
i∈Sp

ηc1iW̃
T
ci

ωi
ρi
W T
i

∑
j∈Si

∇ejσi (Ei) F̂j

(
Ej, θ̃Sj

)
−
∑
i∈Sp

ηc1iW̃
T
ci

ωi
ρi
W T
i ∇xiσi (Ei) F̂i

(
Ei, θ̃Si

)

−
∑
i∈Sp

Mi∑
k=1

ηc2iW̃
T
ciω

k
i

Miρki
W T
i

∑
j∈Si

∇ejσi
(
Eki
)
F̂j

(
Ekj , θ̃Sj

)
+
∑
i∈Sp

ηc2i
Mi

W̃ T
ci

Mi∑
k=1

ωki
ρki

∆k
i
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+
1

2

∑
i∈Sp

ηc1iW̃
T
ci

ωi
ρi
W T
i

∑
j∈Si

∇ejσi (Ei) GjRSj
(
W̃a

)
Sj

+
1

2

∑
i∈Sp

∇xiV
∗
i (Ei)GiRSi

(
W̃a

)
Si

−
∑
i∈Sp

ηc1iW̃
T
ci

ωi
4ρi

W T
i G

T
σiR
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i GσiW̃ai +
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i∈Sp

Mi∑
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ηc2iW̃
T
ciω

k
iW

T
i

2Miρki

∑
j∈Si

∇ejσi
(
Eki
)
G k
j Rk

Sj

(
W̃a

)
Sj

− 1

4

∑
i∈Sp

ηc2i
Mi

W̃ T
ci

Mi∑
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ωki
ρki
W T
i G

kT
σi R

−1
i Gk

σiW̃ai +
1

4

∑
i∈Sp

ηc2i
Mi

W T
i

Mi∑
k=1

ωki
ρki
W̃ T
aiG

kT
σi R

−1
i Gk

σiW̃ai

+
1

2

∑
i∈Sp

ηc2i
Mi

W̃ T
ci

Mi∑
k=1

ωki
ρki
W T
i ∇xiσi

(
Eki
)
GkiRk

Si

(
W̃a

)
Si
−
∑
i∈Sp

ki ‖x̃i‖2 −
∑
i∈Sp

kθiσθi

∥∥∥θ̃i∥∥∥2

F

+
∑
i∈Sp

ηc1i
W T
i ωi

4ρi
W̃ T
aiG

T
σiR

−1
i GσiW̃ai +

∑
i∈Sp

kθidθi

∥∥∥θ̃i∥∥∥
F

+
∑
i∈Sp

εθi ‖x̃i‖ . (7–41)

Using the Cauchy-Schwarz inequality, the Triangle inequality, and completion of

squares, the derivative in (7–41) can be bounded as

V̇Lp ≤ −vlp (‖Zp‖) (7–42)

for all Zp ∈ χp such that ‖Zp‖ ≥ v−1
lp (ιp). Using the bounds in (7–36), the sufficient

condition in (7–38), and the derivative in (7–42), Theorem 4.18 in [149] can be invoked

to conclude that every trajectory Zp (t) satisfying ‖Zp (t0)‖ ≤ vlp
−1
(
vlp (rp)

)
, is bounded

for all t ∈ R and satisfies lim supt→∞ ‖Zp (t)‖ ≤ vlp
−1
(
vlp
(
v−1
lp (ιp)

))
.

Since the choice of the subgraph Sp was arbitrary, the neighborhood tracking errors

ei are ultimately bounded for all i ∈ N . Furthermore, the weight estimates Ŵai converge

to a neighborhood of the ideal weights Wi; hence, invoking Theorem 7.1, the policies

µ̂i converge to a neighborhood of the feedback-Nash equilibrium policies µ∗i for all

i ∈ N .

7.8 Simulations

This section provides two simulation examples to demonstrate the applicability

of the developed technique. The agents in both the examples are assumed to have

the communication topology as shown in Figure 7-1 with unit pinning gains and edge

weights. The motion of the agents in the first example is described by identical nonlinear
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Figure 7-1. Communication topology a network containing five agents.

one-dimensional dynamics, and the motion of the agents in the second example is

described by identical nonlinear two-dimensional dynamics.

7.8.1 One-dimensional Example

The dynamics of all the agents are selected to be of the form (7–1) where fi (xi) =

θi1xi + θi2x
2
i , and gi (xi) = (cos(2xi1) + 2) for all i = 1, · · · , 5. The ideal values of the

unknown parameters are selected to be θi1 = 0 and θi2 = 1, for all i. The agents start

at xi = 2 for all i, and their final desired locations with respect to each other are given

by xd12 = 0.5, xd21 = −0.5, xd43 = −0.5, and xd53 = −0.5. The leader traverses an

exponentially decaying trajectory x0 (t) = e−0.1∗t. The desired positions of agents 1 and 3

with respect to the leader are xd10 = 0.75 and xd30 = 1, respectively.
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Figure 7-2. State trajectories for the five agents for the one-dimensional example. The
dotted lines show the desired state trajectories.
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Table 7-1. Simulation parameters for the one-dimensional example.
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Qi 10 10 10 10 10
Ri 0.1 0.1 0.1 0.1 0.1

σi (Ei) 1
2
[e2

1,
1
2
e4

1, e
2
1x

2
1, e

2
2]T 1

2
[e2

2,
1
2
e4

2, e
2
2x

2
2, e

2
1]T 1

2
[e2

3,
1
2
e4

3, e
2
3x

2
3,

1
2
e4

3x
2
3]T

1

2
[e2

4,
1

2
e4

4, e
2
3e

2
4,

e2
4x

2
4, e

2
3]T

1

2
[e2

5,
1

2
e4

5, e
2
4e

2
5, e

2
3e

2
5,

e2
5x

2
5, e

2
3e

2
4, e

2
3, e

2
4]T

xi (0) 2 2 2 2 2
x̂i (0) 0 0 0 0 0
Ŵci (0) 14×1 14×1 14×1 15×1 3× 18×1

Ŵai (0) 14×1 14×1 14×1 15×1 3× 18×1

θ̂i (0) 02×1 02×1 02×1 02×1 02×1

Γi (0) 500I4 500I4 500I4 500I5 500I8

ηc1i 0.1 0.1 0.1 0.1 0.1
ηc2i 10 10 10 10 10
ηa1i 5 5 5 5 5
ηa2i 0.1 0.1 0.1 0.1 0.1
νi 0.005 0.005 0.005 0.005 0.005
Γθi I2 0.8I2 I2 I2 I2

ki 500 500 500 500 500
kθi 30 30 25 20 30
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Figure 7-3. Tracking error trajectories for the agents for the one-dimensional example.

Table 7-1 summarizes the optimal control problem parameters, basis functions,

and adaptation gains for the agents. For each agent i, five values of ei, three values of

xi, and three values of errors corresponding to all the extended neighbors are selected

for BE extrapolation, resulting in 5 × 3si total values of Ei. All agents estimate the

unknown drift parameters using history stacks containing thirty points recorded online

using a singular value maximizing algorithm (cf. [93]), and compute the required state

derivatives using a fifth order Savitzky-Golay smoothing filter (cf. [150]).

Figures 7-2 - 7-4 show the tracking error, the state trajectories compared with the

desired trajectories, and the control inputs for all the agents demonstrating convergence

to the desired formation and the desired trajectory. Note that agents 2, 4, and 5 do not

have a communication link to the leader, nor do they know their desired relative position

from the leader. The convergence to the desired formation is achieved via cooperative

control based on decentralized objectives. Figures 7-5 - 7-9 show the evolution and
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Figure 7-4. Trajectories of the control input and the relative control error for all agents for
the one-dimensional example.
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Figure 7-5. Value function weights and drift dynamics parameters estimates for agent 1
for the one-dimensional example. The dotted lines in the drift parameter plot
are the ideal values of the drift parameters.
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Figure 7-6. Value function weights and drift dynamics parameters estimates for agent 2
for the one-dimensional example. The dotted lines in the drift parameter plot
are the ideal values of the drift parameters.
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Figure 7-7. Value function weights and drift dynamics parameters estimates for agent 3
for the one-dimensional example. The dotted lines in the drift parameter plot
are the ideal values of the drift parameters.
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Figure 7-8. Value function weights and drift dynamics parameters estimates for agent 4
for the one-dimensional example. The dotted lines in the drift parameter plot
are the ideal values of the drift parameters.
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Figure 7-9. Value function weights and drift dynamics parameters estimates for agent 5
for the one-dimensional example. The dotted lines in the drift parameter plot
are the ideal values of the drift parameters.
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Figure 7-10. Phase portrait in the state-space for the two-dimensional example. The
actual pentagonal formation is represented by a solid black pentagon, and
the desired desired pentagonal formation around the leader is represented
by a dotted black pentagon.

convergence of the value function weights and the unknown parameters in the drift

dynamics.

7.8.2 Two-dimensional Example

In this simulation, the dynamics of all the agents are assumed to be exactly known,

and are selected to be of the form (7–1) where for all i = 1, · · · , 5,

fi (xi) =

 −xi1 + xi2

−0.5xi1 − 0.5xi2(1− (cos(2xi1) + 2)2)

 , gi (xi) =

 sin(2xi1) + 2 0

0 cos(2xi1) + 2

 .
The agents start at the origin, and their final desired relative positions are given by

xd12 = [−0.5, 1]T xd21 = [0.5, −1]T , xd43 = [0.5, 1]T , and xd53 = [−1, 1]T .
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Table 7-2. Simulation parameters for the two-dimensional example
Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Qi 10I2 10I2 10I2 10I2 10I2

Ri I2 I2 I2 I2 I2

σi (Ei)

1

2
[2e2

11, 2e11e12, 2e2
12,

e2
21, 2e21e22, e

2
22,

e2
11x

2
11, e

2
12x

2
11,

e2
11x

2
12, e

2
12x

2
12]T

1

2
[2e2

21, 2e21e22, 2e2
22,

e2
11, 2e11e12, e

2
12,

e2
21x

2
21, e

2
22x

2
21,

e2
21x

2
22, e

2
22x

2
22]T

1

2
[2e2

31, 2e31e32, 2e2
32,

e2
31x

2
31, e

2
32x

2
31,

e2
31x

2
32, e

2
32x

2
12]T

1

2
[2e2

41, 2e41e42, 2e2
42,

e2
31, 2e31e32, e

2
32

e2
41x

2
41, e

2
42x

2
41,

e2
41x

2
42, e

2
42x

2
42]T

1

2
[2e2

51, 2e51e52, 2e2
52,

e2
41, 2e41e42, e

2
42,

e2
31, 2e31e32, e

2
32,

e2
51x

2
51, e

2
52x

2
51,

e2
51x

2
52, e

2
52x

2
52]T

xi (0) 02×1 02×1 02×1 02×1 02×1

Ŵci (0) 110×1 110×1 2× 17×1 5× 110×1 3× 113×1

Ŵai (0) 110×1 110×1 2× 17×1 5× 110×1 3× 113×1

Γi (0) 500I10 500I10 500I4 500I5 500I8

ηc1i 0.1 0.1 0.1 0.1 0.1
ηc2i 2.5 5 2.5 2.5 2.5
ηa1i 2.5 0.5 2.5 2.5 2.5
ηa2i 0.01 0.01 0.01 0.01 0.01
νi 0.005 0.005 0.005 0.005 0.005
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Figure 7-11. Phase portrait of all agents in the error space for the two-dimensional
example.

The relative positions are designed such that the final desired formation is a

pentagon with the leader node at the center.

The leader traverses a sinusoidal trajectory trajectory x0 (t) = [2 sin(t), 2 sin(t) +

2 cos(t)]T . The desired positions of agents 1 and 3 with respect to the leader are

xd10 = [−1, 0]T and xd30 = [0.5, −1]T , respectively.

Table 7-2 summarizes the optimal control problem parameters, basis functions,

and adaptation gains for the agents. For each agent i, nine values of ei, xi, and errors

corresponding to all the extended neighbors are selected for BE extrapolation in uniform

3 × 3 grid in a 1 × 1 square around the origin, resulting in 9 × 9si total values of Ei.

Figures 7-10 - 7-16 show the tracking error, the state trajectories, and the control

inputs for all the agents demonstrating convergence to the desired formation and the

desired trajectory. Note that agents 2, 4, and 5 do not have a communication link
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Figure 7-12. Trajectories of the control input and the relative control error for Agent 1 for
the two-dimensional example.
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Figure 7-13. Trajectories of the control input and the relative control error for Agent 2 for
the two-dimensional example.
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Figure 7-14. Trajectories of the control input and the relative control error for Agent 3 for
the two-dimensional example.

0 2 4 6 8 10
−10

−5

0

5

10

15

20

Time (s)

u
4
(t
)

Control trajectory for Agent 4

 

 
u41
u42

0 2 4 6 8 10
−5

0

5

10

15

20

Time (s)

u
4
(t
)

Virtual control trajectory for Agent 4

 

 
µ41
µ42

Figure 7-15. Trajectories of the control input and the relative control error for Agent 4 for
the two-dimensional example.
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Figure 7-16. Trajectories of the control input and the relative control error for Agent 5 for
the two-dimensional example.
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Figure 7-17. Value function weights and policy weights for agent 1 for the
two-dimensional example.
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Figure 7-18. Value function weights and policy weights for agent 2 for the
two-dimensional example.
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Figure 7-19. Value function weights and policy weights for agent 3 for the
two-dimensional example.
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Figure 7-20. Value function weights and policy weights for agent 4 for the
two-dimensional example.

0 2 4 6 8 10
−3

−2

−1

0

1

2

3

Time (s)

Ŵ
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Figure 7-21. Value function weights and policy weights for agent 5 for the
two-dimensional example.
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to the leader, nor do they know their desired relative position from the leader. The

convergence to the desired formation is achieved via cooperative control based on

decentralized objectives. Figures 7-17 - 7-21 show the evolution and convergence of

the value function weights and the policy weights for all the agents. Since an alternative

method to solve this problem is not available to the best of the author’s knowledge, a

comparative simulation cannot be provided.

7.9 Concluding Remarks

A simulation-based ACI architecture is developed to cooperatively control a group

of agents to track a trajectory while maintaining a desired formation. Communication

among extended neighbors is needed to implement the developed method. Since an

analytical feedback-Nash equilibrium solution is not available, the presented simulation

does not demonstrate convergence to feedback-Nash equilibrium solutions. To the

best of the author’s knowledge, alternative methods to solve differential graphical game

problems are not available in the literature; hence, a comparative simulation is infeasible.
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CHAPTER 8
CONCLUSIONS

RL is a powerful tool for online learning and optimization, however, the application

of RL to dynamical systems is challenging from a control theory perspective. The

challenges take three different forms: analysis and design challenges, applicability

challenges, and implementation challenges.

Since the controller is simultaneously learned and used online, unique analysis

challenges arise in establishing stability during the learning phase. Furthermore,

RL-based controllers are hard to design owing to the necessary tradeoffs between

exploration and exploitation, which also complicate the stability analysis owing to the

fact that in general, the learned controller does not meet the exploration demands,

necessitating the addition of an exploration signal. In the case of deterministic nonlinear

systems, an explicit characterization of the necessary exploration signals is hard

to obtain; hence, the exploration signal is generally left out of the stability analysis,

defeating the purpose of the stability analysis.

Applicability challenges spring from the fact that RL in continuous-state systems is

usually realized using value function approximation. Since the action that a controller

takes in a particular state depends on the value of that state, the control policy depends

on the value function; hence, a uniform approximation of the value function over the

entire operating domain is vital for the control design. Results that use parametric ap-

proximation techniques for value function approximation are ubiquitous in literature.

Since parametric approximators can only generate uniform approximations over com-

pact domains, approximation becomes challenging if the value function is time-varying

and if the time horizon is infinite. Hence, traditional RL methods are not applicable for

trajectory tracking applications, network control applications, and other applications that

exhibit time-varying value functions.
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The results of this dissertation partially address the aforementioned challenges

via the development new innovative model-based RL methods and rigorous Lyapunov-

based methods for stability analysis. In Chapter 3, a data-driven model-based RL

technique that does not require an added exploration signal is developed to solve

infinite-horizon total-cost optimal regulation problems for uncertain control-affine

nonlinear systems. In Chapter 4, the data-driven model-based RL technique is extended

to obtain feedback-Nash equilibrium solutions to N−player nonzero-sum differential

games, without external ad-hoc application of an exploration signal. In chapters 3 and 4,

sufficient exploration is simulated by using an estimate of the system dynamics obtained

using a data-driven system identifier to extrapolate the BE to unexplored areas of the

state-space. A set of points in the state space is selected a priori for BE extrapolation,

and the value function is approximated using a time-varying regressor matrix computed

based on the selected points. The developed result relies on a sufficient condition on

the minimum eigenvalue of a time-varying regressor matrix. While this condition can

be heuristically satisfied by choosing enough points, and can be easily verified online,

it cannot, in general, be guaranteed a priori. Further research is required to investigate

the existence of a set of points that guarantees that the resulting regressor matrix has

a uniform a positive minimum singular value. The fact that the convergence rate of

the value function approximation depends on the aforementioned minimum singular

value motivates further research into a priori selection of and online adjustments to the

set of points used for BE extrapolation. For example, threshold-based algorithms can

be employed to ensure sufficient exploration by selecting new points if the minimum

singular value of the regressor falls below a certain threshold.

In Chapter 5, RL-based methods are extended to a class of infinite-horizon optimal

trajectory tracking problems where the value function is time-varying. Provided that

the desired trajectory is the output of an autonomous dynamical system, the optimal

control problem can be formulated so that the vale function depends on time only
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through the desired trajectory. Value function approximation is then achieved by using

the desired trajectory along with the tracking error as training inputs. A Lyapunov-based

stability analysis is developed based by proving that the time-varying value function

is a Lyapunov function for the optimal closed-loop error system. The developed result

relies on the assumption that a steady-state controller that can make the system exactly

track the desired trajectory exists, and that it can be computed by inversion of the

system dynamics. Inversion of system dynamics requires exact model knowledge.

Motivated by the need to obtain an optimal tracking solution for uncertain systems, a

data-driven system identifier is developed for approximate model inversion in Chapter 6.

The data-driven system identifier is also used to extrapolate the BE, thereby removing

the need for an added exploration signal from the tracking controller developed in

Chapter 5. The developed technique requires knowledge of the dynamics of the desired

trajectory. The fact that in many real world control applications, the desired trajectory

is generated online using a trajectory planner module, motivates the development of

an optimal tracking controller robust to uncertainties in the dynamics of the desired

trajectory. Further research is required to apply RL-based methods to time-varying

systems that cannot be transformed into stationary systems on compact domains using

state augmentation. In adaptive control, it is generally possible to formulate the control

problem such that PE along the desired trajectory is sufficient to achieve parameter

convergence. In the ADP-based tracking problem, PE along the desired trajectory would

be sufficient to achieve parameter convergence if the BE can be formulated in terms of

the desired trajectories. Achieving such a formulation is not trivial, and is a subject for

future research.

In Chapter 7, the RL-based methods are extended to obtain feedback-Nash equi-

librium solutions to a class of differential graphical games using ideas from chapters

3 - 6. It is established that in a cooperative game based on minimization of the local

neighborhood tracking errors, the value function corresponding to the agents depends

165



on information obtained from all their extended neighbors. A set of coupled HJ equa-

tions are developed that serve as necessary and sufficient conditions for feedback-Nash

equilibrium, and closed-form expressions for the feedback-Nash equilibrium policies are

developed based on the HJ equations. The fact that the developed technique requires

each agent to communicate with all of its extended neighbors motivates the search for a

decentralized method to generate feedback-Nash equilibrium policies.

In all the chapters of this dissertation, parametric approximation techniques are

used to approximate the value functions. Parametric approximation of the value function

requires selection of appropriate basis functions. Selection of basis functions for

general nonlinear systems is a nontrivial open problem, even if the system dynamics

are known. Implementation of RL-based controllers for general nonlinear systems is

difficult because the basis functions and the exploration signal needs to be selected

using trial-and-error, with very little insights to be gained from domain knowledge about

the system. Note that a uniform approximation of the value function over the entire

domain is required only if an optimal controller is desired. For real-time sub-optimal

control, a good approximation of the value function over a small neighborhood of the

current state is sufficient. This motivates the development of basis functions that follow

the system state, and are capable of approximating the value function over a small

domain. Analysis of convergence and stability issues arising from the use of moving

basis functions is a subject for future research.
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APPENDIX A
ONLINE DATA COLLECTION (CH 3)

The history stack Hid that satisfies conditions in (3–4) can be collected online

provided the controller in (2–15) results in the system states being sufficiently exciting

over a finite time interval
[
t0, t0 + t

]
⊂ R.1 During this finite time interval, since a history

stack is not available, an adaptive update law that ensures fast convergence of θ̃ to

zero without PE cannot be developed. Hence, the system dynamics cannot be directly

estimated without PE. Since extrapolation of the BE to unexplored areas of the state

space requires estimates of the system dynamics, without PE, such extrapolation is

infeasible during the time interval
[
t0, t0 + t

]
.

However, evaluation of the BE along the system trajectories does not explicitly

depend on the parameters θ. Estimation of the state derivative is enough to evaluate

the BE along system trajectories. This motivates the development of the following state

derivative estimator.

˙̂xf = gu+ kf x̃f + µf ,

µ̇f = (kfαf + 1) x̃f , (A–1)

where x̂f ∈ Rn is an estimate of the state x, x̃f , x − x̂f , and kf , αf , γf ∈ R>0 are

constant estimation gains. To facilitate the stability analysis, define a filtered error signal

r ∈ Rn as r , ˙̃xf + αf x̃f , where ˙̃xf , ẋ− ˙̂xf . Using (2–1) and (A–1) the dynamics of the

filtered error signal can be expressed as ṙ = −kfr + x̃f + ∇xff + ∇xfgû + α ˙̃xf . The

instantaneous BE in (2–12) can be approximated along the state trajectory using the

1 To collect the history stack, the first M values of the state, the control, and the cor-
responding numerically computed state derivative are added to the history stack. Then,
the existing values are progressively replaced with new values using a singular value
maximization algorithm.
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state derivative estimate as

δ̂f = ωTf Ŵcf + xTQx+ ûT
(
x, Ŵaf

)
Rû
(
x, Ŵaf

)
, (A–2)

where ωf ∈ RL is the regressor vector defined as ωf , ∇σ (x) ˙̂xf . During the interval[
t0, t0 + t

]
, the value function and the policy weights can be learned based on the

approximate BE in (A–2) provided the system states are exciting, i.e., if the following

assumption is satisfied.

Assumption A.1. There exists a time interval
[
t0, t0 + t

]
⊂ R and positive constants

ψ, T ∈ R such that closed-loop trajectories of the system in (2–1) with the controller in

(2–15) along with the weight update laws

˙̂
Wcf = −ηcfΓf

ωf
ρf
δf , Γ̇f = λfΓf − ηcfΓf

ωfω
T
f

ρf
Γf ,

·

Ŵ af = −ηa1f

(
Ŵa − Ŵc

)
− ηa2fŴa, (A–3)

where ρf , 1 + νfω
T
f Γfωf is the normalization term, ηa1f , ηa2f , ηcf , νf ∈ R are constant

positive gains and Γf ∈ RL×L is the least-squares gain matrix, and the state derivative

estimator in (A–1) satisfies

ψIL ≤
t+Tˆ

t

ψf (τ)ψf (τ)T dτ, ∀t ∈
[
t0, t0 + t

]
, (A–4)

where ψf , ωf√
1+νfω

T
f Γfωf

∈ RN is the regressor vector. Furthermore, there exists a set

of time instances {t1 · · · tM} ⊂
[
t0, t0 + t

]
such that the history stack Hid containing the

values of state-action pairs and the corresponding numerical derivatives recorded at

{t1 · · · tM} satisfies the conditions in Assumption (3.1).

Conditions similar to (A–4) are ubiquitous in online approximate optimal control

literature. In fact, Assumption A.1 requires the regressor ψf to be exciting over a finite

time interval, whereas the PE conditions used in related results such as [57–59, 114,

158] require similar regressor vectors to be exciting over all t ∈ R≥t0.
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On any compact set χ ⊂ Rn the function f is Lipschitz continuous; hence, there

exist positive constants Lf , Ldf ∈ R such that

‖f (x)‖ ≤ Lf ‖x‖ and ‖∇xf (x)‖ ≤ Ldf ,

for all x ∈ χ. The update laws in (A–3) along with the excitation condition in (A–4) ensure

that the adaptation gain matrix is bounded such that

Γf ≤ ‖Γf (t)‖ ≤ Γf , ∀t ∈ R≥t0 , (A–5)

where (cf. [91, Proof of Corollary 4.3.2])

Γf = min
{
ηcfψT, λmin (Γf (t0))

}
e−λfT .

The following positive constants are defined for brevity of notation.

ϑ8 ,
Ldf
2
‖gR−1gT∇σT‖, ϑ9 ,

∥∥W TGσ + 1
2
∇εGT∇σT

∥∥
2

+ ηa2fW,

ϑ10 ,
‖2W T∇σG∇εT +Gε‖

4
, ιf , 2ηcfϑ10 +

3ϑ9

4 (ηa1f + ηa2f )
+ ϑ4 +

5ϑ2
8W

2

4kf
,

vlf =
1

2
min

(
q

2
,
βΓf

4
,
(ηa1f + ηa2f )

3
,
αf
3
,
kf
5

)
.

To facilitate the stability analysis, Let VLf : R3n+2L × R≥0 → R≥0 be a continuously

differentiable positive definite candidate Lyapunov function defined as

VLf (Zf , t) , V ∗ (x) +
1

2
W̃ T
cfΓ
−1
f (t) W̃cf +

1

2
W̃ T
afW̃af +

1

2
x̃Tf x̃f +

1

2
rT r. (A–6)

Using the fact that V ∗ is positive definite, (A–5) and Lemma 4.3 from [149] yield

vlf (‖Zf‖) ≤ VLf (Zf , t) ≤ vlf (‖Zf‖) , (A–7)
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for all t ∈ R≥t0 and for all Zf ∈ R3n+2L. In (A–7), vlf , vlf : R≥0 → R≥0 are class

K functions and Z ,
[
xT , W̃ T

cf , W̃
T
af , x̃

T
f , r

T
]T
. The sufficient conditions for UUB

convergence are derived based on the subsequent stability analysis as

(ηa1f + ηa2f ) >
3ηa1f

2ζ4

− 3ϑ8ζ5

2
− 3ηcf‖Gσ‖

4
√
νfΓf

Zf , q > 2L2
f

(
2ηcf∇ε

2
+

5L2
df

4kf

)
kf > 5 max

(
ϑ8

2ζ5

+ αf + 2ηcfW
2‖∇σ‖

2
,
3α3

f

4

)
,

1

αf
> 6ηcfW

2‖∇σ‖
2
, βΓf > 2ηa1fζ4,(A–8)

where Zf , v−1
f

(
vf

(
max

(
‖Zf (t0)‖ ,

√
ιf
vlf

)))
, and ζ4, ζ5 ∈ R are known positive

adjustable constants. An algorithm similar to Algorithm 3.1 is employed to select the

gains and a compact set Zf ⊂ R3n+2L such that√
ιf
vlf
≤ 1

2
diam (Zf ) . (A–9)

Theorem A.1. Provided the gains are selected to satisfy the sufficient conditions

in (A–8) based on an algorithm similar to Algorithm 3.1, the controller in (2–15), the

weight update laws in (A–3), the state derivative estimator in (A–1), and the excitation

condition in (A–4) ensure that the state trajectory x, the state estimation error x̃f , and

the parameter estimation errors W̃cf , and W̃af remain bounded such that

‖Zf (t)‖ ≤ Zf , ∀t ∈
[
t0, t0 + t

]
.

Proof. Using techniques similar to the proof of Theorem 3.1, the time derivative of the

candidate Lyapunov function in (A–6) can be bounded as

V̇Lf ≤ −vlf ‖Zf‖2 , ∀ ‖Zf‖ ≥
√

ιf
vlf
, (A–10)

in the domain Zf . Using (A–7), (A–9), and (A–10), Theorem 4.18 in [149] is used to

show that Zf is UUB, and that ‖Zf (t)‖ ≤ Zf , ∀t ∈
[
t0, t0 + t

]
.

During the interval
[
t0, t0 + t

]
, the controller in (2–15) is used along with the weight

update laws in Assumption A.1. When enough data is collected in the history stack to
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satisfy the rank condition in (3–4), the update laws from Section (3.3) are used. The

bound Zf is used to compute gains for Theorem 3.1 using Algorithm 3.1. Theorems 1

and 2 establish UUB regulation of the system state and the parameter estimation errors

for the overall switched system.
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APPENDIX B
PROOF OF SUPPORTING LEMMAS (CH 5)

B.1 Proof of Lemma 5.1

The following supporting technical lemma is used to prove Lemma 5.1.

Lemma B.1. Let D ⊆ Rn contain the origin and let Ξ : D × R≥0 → R≥0 be positive

definite. If t 7−→ Ξ (x, t) is uniformly bounded for all x ∈ D and if x 7−→ Ξ (x, t) is

continuous, uniformly in t, then Ξ is decrescent in D.

Proof. Since Ξ (x, t) is bounded, uniformly in t, supt∈R≥0
{Ξ (x, t)} exists and is unique for

all bounded x. Let the function α : D → R≥0 be defined as

α (x) , sup
t∈R≥0

{Ξ (x, t)} . (B–1)

Since x→ Ξ (x, t) is continuous, uniformly in t, ∀ε > 0, ∃ς (x) > 0 such that ∀y ∈ D,

dD×R≥0
((x, t) , (y, t)) < ς (x) =⇒ dR≥0 (Ξ (x, t) ,Ξ (y, t)) < ε, (B–2)

where dM (·, ·) denotes the standard Euclidean metric on the metric space M . By the

definition of dM (·, ·), dD×R≥0
((x, t) , (y, t)) = dD (x, y) . Using (B–2),

dD (x, y) < ς (x) =⇒ |Ξ (x, t)− Ξ (y, t)| < ε. (B–3)

Given the fact that Ξ is positive, (B–3) implies Ξ (x, t) < Ξ (y, t) + ε and Ξ (y, t) <

Ξ (x, t) + ε which from (B–1) implies α (x) < α (y) + ε and α (y) < α (x) + ε, and hence,

from (B–3), dD (x, y) < ς (x) =⇒ |α (x)− α (y)| < ε. Since Ξ is positive definite, (B–1)

can be used to conclude α (0) = 0. Thus, Ξ is bounded above by a continuous positive

definite function; hence, Ξ is decrescent in D.

Based on the definitions in (5–3)-(5–6) and (5–21), V ∗t (e, t) > 0, ∀t ∈ R≥0 and

∀e ∈ Ba \ {0}.The optimal value function V ∗
([

0, xTd
]T) is the cost incurred when starting

with e = 0 and following the optimal policy thereafter for an arbitrary desired trajectory

xd. Substituting x (t0) = xd (t0), µ (t0) = 0 and (5–2) in (5–4) indicates that ė (t0) = 0.
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Thus, when starting from e = 0, a policy that is identically zero satisfies the dynamic

constraints in (5–4). Furthermore, the optimal cost is V ∗
([

0, xTd (t0)
]T)

= 0, ∀xd (t0)

which, from (5–21), implies (5–22b). Since the optimal value function V ∗t is strictly

positive everywhere but at e = 0 and is zero at e = 0, V ∗t is a positive definite function.

Hence, Lemma 4.3 in [149] can be invoked to conclude that there exists a class K

function v : [0, a]→ R≥0 such that v (‖e‖) ≤ V ∗t (e, t), ∀t ∈ R≥0 and ∀e ∈ Ba.

Admissibility of the optimal policy implies that V ∗ (ζ) is bounded over all compact

subsets K ⊂ R2n. Since the desired trajectory is bounded, t 7−→ V ∗t (e, t) is uniformly

bounded for all e ∈ Ba. To establish that e 7−→ V ∗t (e, t) is continuous, uniformly in t, let

χeo ⊂ Rn be a compact set containing eo. Since xd is bounded, xd ∈ χxd, where χxd ⊂ Rn

is compact. Since V ∗ : R2n → R≥0 is continuous, and χeo × χxd ⊂ R2n is compact, V ∗ is

uniformly continuous on χeo×χxd. Thus, ∀ε > 0, ∃ς > 0, such that ∀
[
eTo , x

T
d

]T
,
[
eT1 , x

T
d

]T ∈
χeo×χxd, dχeo×χxd

([
eTo , x

T
d

]T
,
[
eT1 , x

T
d

]T)
< ς =⇒ dR

(
V ∗
([
eTo , x

T
d

]T)
, V ∗

([
eT1 , x

T
d

]T))
<

ε. Thus, for each eo ∈ Rn, there exists a ς > 0 independent of xd, that establishes the

continuity of e 7−→ V ∗
([
eT , xTd

]T) at eo. Thus, e 7−→ V ∗
([
eT , xTd

]T) is continuous,

uniformly in xd, and hence, using (5–21) e 7−→ V ∗t (e, t) is continuous, uniformly in t.

Using Lemma B.1 and (5–22a) and (5–22b), there exists a positive definite function

α : Rn → R≥0 such that V ∗t (e, t) < α (e) , ∀ (e, t) ∈ Rn × R≥0. Lemma 4.3 in [149]

indicates that there exists a class K function v : [0, a] → R≥0 such that α (e) ≤ v (‖e‖),

which implies (5–22c).

B.2 Proof of Lemma 5.2

Using the definition of the controller in (14), the tracking error dynamics can be

expressed as

ė = f +
1

2
gR−1GTσ′T W̃a + gg+

d (hd − fd)−
1

2
gR−1GTσ′TW − hd.
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On any compact set, the tracking error derivative can be bounded above as

‖ė‖ ≤ LF ‖e‖+ LW

∥∥∥W̃a

∥∥∥+ Le,

where Le = LF ‖xd‖ +
∥∥gg+

d (hd − fd)− 1
2
gR−1GTσ′TW − hd

∥∥ and LW = 1
2

∥∥gR−1GTσ′T
∥∥.

Using the fact that e and W̃a are continuous functions of time, on the interval [t, t+ T ],

the time derivative of e can be bounded as

‖ė‖ ≤ LF sup
τ∈[t,t+T ]

‖e (τ)‖+ LW sup
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥+ Le.

Since the infinity norm is less than the 2-norm, the derivative of the jth component of ė is

bounded as

ėj ≤ LF sup
τ∈[t,t+T ]

‖e (τ)‖+ LW sup
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥+ Le.

Thus, the maximum and the minimum value of ej are related as

sup
τ∈[t,t+T ]

|ej (τ)| ≤ inf
τ∈[t,t+T ]

|ej (τ)|+

(
LF sup

τ∈[t,t+T ]

‖e (τ)‖+ LW sup
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥+ Le

)
T.

Squaring the above expression and using the inequality (x+ y)2 ≤ 2x2 + 2y2

sup
τ∈[t,t+T ]

|ej (τ)|2≤2 inf
τ∈[t,t+T ]

|ej (τ)|2+2

(
LF sup
τ∈[t,t+T ]

‖e (τ)‖+LW sup
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥+Le

)2

T 2.

Summing over j, and using the the facts that supτ∈[t,t+T ] ‖e (τ)‖2≤∑n
j=1 supτ∈[t,t+T ] |ej (τ)|2 and infτ∈[t,t+T ]

∑n
j=1 |ej (τ)|2≤ infτ∈[t,t+T ] ‖e (τ)‖2,

sup
τ∈[t,t+T ]

‖e (τ)‖2≤2 inf
τ∈[t,t+T ]

‖e (τ)‖2+2

(
LF sup
τ∈[t,t+T ]

‖e (τ)‖2+LW sup
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥2

+Le

)2

nT 2.

Using the inequality (x+ y + z)2 ≤ 3x2 + 3y2 + 3z2, (5–23) can be obtained. Using a

similar procedure on the update law for W̃a,

− inf
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥2

≤ −
(
1− 6N (ηa1 + ηa2)2 T 2

)
2

sup
τ∈[t,t+T ]

∥∥∥W̃a (τ)
∥∥∥2

+ 3Nη2
a2W

2T 2

+ 3Nη2
a1 sup

τ∈[t,t+T ]

∥∥∥W̃c (τ)
∥∥∥2

T 2. (B–4)
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Similarly, the dynamics for W̃c yield

sup
τ∈[t,t+T ]

∥∥∥W̃c (τ)
∥∥∥2

≤ 2(
1− 6Nη2cϕ

2T 2

ν2ϕ2

) inf
τ∈[t,t+T ]

∥∥∥W̃c (τ)
∥∥∥2

+
6NT 2η2

cϕ
2 (ε̄′LFd+ ι5)

2

νϕ
(

1− 6Nη2cϕ
2T 2

ν2ϕ2

)
+

6NT 2η2
cϕ

2ε̄′
2
L2
F

νϕ
(

1− 6Nη2cϕ
2T 2

ν2ϕ2

) sup
τ∈[t,t+T ]

‖e (τ)‖2 . (B–5)

Substituting (B–5) into (B–4), (5–24) can be obtained.

B.3 Proof of Lemma 5.3

The integrand on the LHS can be written as

W̃ T
c (τ)ψ (τ) = W̃ T

c (t)ψ (τ) +
(
W̃ T
c (τ)− W̃ T

c (t)
)
ψ (τ) .

Using the inequality (x+ y)2 ≥ 1
2
x2 − y2 and integrating,

t+Tˆ

t

(
W̃ T
c (τ)ψ (τ)

)2

dτ ≥ 1

2
W̃ T
c (t)

 t+Tˆ

t

(
ψ (τ)ψ (τ)T

)
dτ

 W̃c (t)

−
t+Tˆ

t

 τˆ

t

˙̃Wc (σ) dτ

T

ψ (τ)

2

dτ.

Substituting the dynamics for W̃c from (20) and using the PE condition in Assumption 3,

t+Tˆ

t

(
W̃ T
c (τ)ψ (τ)

)2

dτ ≥ 1

2
ψW̃ T

c (t) W̃c (t)−
t+Tˆ

t

(( τˆ

t

(
−ηcΓ (σ)ψ (σ)ψT (σ) W̃c (σ)

+
ηcΓ (σ)ψ (σ) ∆ (σ)√

1 + νω (σ)T Γ (σ)ω (σ)
+

ηcΓ (σ)ψ (σ) W̃ T
a GσW̃a

4
√

1 + νω (σ)T Γ (σ)ω (σ)

− ηcΓ (σ)ψ (σ) ε
′
(σ)F (σ)√

1 + νω (σ)T Γ (σ)ω (σ)

)
dσ

)T
ψ (τ)

)2

,

where ∆ , 1
4
ε′Gε′T + 1

2
W Tσ′Gε′T . Using the inequality (x+ y + w − z)2 ≤ 2x2 + 6y2 +

6w2 + 6z2,
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t+Tˆ

t

(
W̃ T
c (τ)ψ (τ)

)2

dτ ≥ 1

2
ψW̃ T

c (t) W̃c (t)

−
t+Tˆ

t

2

 τˆ

t

ηcW̃
T
c (σ)ψ (σ)ψT (σ) ΓT (σ)ψ (τ) dσ

2

dτ

− 6

t+Tˆ

t

 τˆ

t

ηc∆
T (σ)ψT (σ) ΓT (σ)ψ (τ)√
1 + νω (σ)T Γ (σ)ω (σ)

dσ

2

dτ

− 6

t+Tˆ

t

 τˆ

t

ηcF
T (σ) ε

′T (σ)ψT (σ) ΓT (σ)ψ (τ)√
1 + νω (σ)T Γ (σ)ω (σ)

dσ

2

dτ

− 6

t+Tˆ

t

 τˆ

t

ηcW̃
T
a (σ)Gσ (σ) W̃a (σ)ψT (σ) ΓT (σ)ψ (τ)√

1 + νω (σ)T Γ (σ)ω (σ)
dσ

2

dτ.

Using the Cauchy-Schwarz inequality, the Lipschitz property, the fact that 1√
1+νωTΓω

≤ 1,

and the bounds in (23),

t+Tˆ

t

(
W̃ T
c (τ)ψ (τ)

)2

dτ ≥ 1

2
ψW̃ T

c (t) W̃c (t)− 6

t+Tˆ

t

 τˆ

t

ηcι5ϕ

νϕ
dσ

2

dτ

−
t+Tˆ

t

2η2
c

 τˆ

t

(
W̃ T
c (σ)ψ (σ)

)2

dσ

τˆ

t

(
ψT (σ) ΓT (σ)ψ (τ)

)2
dσ

 dτ

−
t+Tˆ

t

6η2
c ι

2
2

 τˆ

t

∥∥∥W̃a (σ)
∥∥∥4

dσ

τˆ

t

(
ψT (σ) ΓT (σ)ψ (τ)

)2
dσ

 dτ

−
t+Tˆ

t

6η2
c ε̄
′2

 τˆ

t

‖F (σ)‖2 dσ

τˆ

t

(
ψT (σ) ΓT (σ)ψ (τ)

)2
dσ

 dτ

Thus,

t+Tˆ

t

(
W̃ T
c (τ)ψ (τ)

)2

dτ ≥ −2η2
cA

4ϕ2

t+Tˆ

t

(τ − t)
τˆ

t

(
W̃ T
c (σ)ψ (σ)

)2

dσdτ

+
1

2
ψW̃ T

c (t) W̃c (t)− 3η2
cA

4ϕ2ι25T
3 − 6η2

c ι
2
2A

4ϕ2

t+Tˆ

t

(τ − t)
τˆ

t

∥∥∥W̃a (σ)
∥∥∥4

dσdτ
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− 6η2
c ε̄
′2L2

FA
4ϕ2

t+Tˆ

t

(τ − t)
τˆ

t

‖e‖2 dσdτ − 3η2
cA

4ϕ2ε̄′
2
L2
Fd

2T 3,

where A = 1√
νϕ

. Changing the order of integration,

t+Tˆ

t

(
W̃ T
c (τ)ψ (τ)

)2

dτ ≥ 1

2
ψW̃ T

c (t) W̃c (t)− η2
cA

4ϕ2T 2

t+Tˆ

t

(
W̃ T
c (σ)ψ (σ)

)2

dσ

− 3η2
cA

4ϕ2ε̄′
2
L2
FT

2

t+Tˆ

t

‖e (σ)‖2 dσ − 3η2
c ι

2
2A

4ϕ2T 2

t+Tˆ

t

∥∥∥W̃a (σ)
∥∥∥4

dσ

− 2η2
cA

4ϕ2T 3
(
ι25 + ε̄′

2
L2
Fd

2
)
.

Reordering the terms, (5–25) is obtained.
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