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The objective of an optimal control synthesis problem is to compute the policy
that an agent should follow in order to maximize the accumulated reward. Analytical
solution of optimal control problems is often impossible when the system dynamics are
nonlinear. Many numerical solution techniques are available to solve optimal control
problems; however, such methods generally require perfect model knowledge and may
not be implementable in real-time.

Inroads to solve optimal control problems for nonlinear systems can be made
through insights gained from examining the value function. Under a given policy, the
value function provides a map from the state space to the set of real numbers that
measures the value of a state, generally defined as the total accumulated reward
starting from that state. If the value function is known, a reasonable strategy is to apply
control to drive the states towards increasing value. If the value function is unknown,

a reasonable strategy is to use input-output data to estimate the value function online,
and use the estimate to compute the control input. Reinforcement learning (RL)-
based optimal control synthesis techniques implement the aforementioned strategy

by approximating the value function using a parametric approximation scheme. The
approximate optimal policy is then computed based on the approximate value function.

RL-based techniques are valuable not only as online optimization tools but also

as control synthesis tools. In discrete-time stochastic systems with countable state
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and action spaces RL-based techniques have demonstrated the ability to synthesize
stabilizing policies with minimal knowledge of the structure of the system. Techniques
such as Q-learning have shown to be effective tools to generate stabilizing policies
based on input-output data without any other information about the system. RL thus
offers a potential alternative to traditional control design techniques. However, the
extensions of RL techniques to continuous-time systems that evolve on a continuous
state-space are scarce, and often require more information about the system than just
input-output data.

This dissertation investigates extending the applicability of RL-based techniques
in a continuous-time deterministic setting to generate approximate optimal policies
online by relaxing some of the limitations imposed by the continuous-time nature of the
problem. State-of-the-art implementations of RL in continuous-time systems require a
restrictive PE condition for convergence to optimality. In this dissertation, model-based
RL is implemented via simulation of experience to relax the restrictive persistence of
excitation condition. The RL-based approach is also extended to obtain approximate
feedback-Nash equilibrium solutions to N-player nonzero-sum games.

In trajectory tracking problems, since the error dynamics are nonautonomous, the
value function depends explicitly on time. Since universal function approximators can
approximate functions with arbitrary accuracy only on compact domains, value functions
for infinite-horizon optimal tracking problems cannot be approximated with arbitrary
accuracy using universal function approximators. Hence, the extension of RL-based
techniques to optimal tracking problems for continuous-time nonlinear systems has
remained a non-trivial open problem. In this dissertation, RL-based approaches are
extended to solve trajectory tracking problems by using the desired trajectory, in addition
to the tracking error, as an input to learn the value function.

Distributed control of groups of multiple interacting agents is a challenging problem

with multiple practical applications. When the agents possess cooperative or competitive
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objectives, the trajectory and the decisions of each agent are affected by the trajectories
and decisions of the neighboring agents. The external influence renders the dynamics
of each agent nonautonomous; hence, optimization in a network of agents presents
challenges similar to the optimal tracking problem. The interaction between the agents
in a network is often modeled as a differential game on a graph, defined by coupled dy-
namics and coupled cost functions. Using insights gained from the tracking problem, this
dissertation extends the model-based RL technique to generate feedback-Nash equi-
librium optimal policies online, for agents in a network with cooperative or competitive
objectives. In particular, the network of agents is separated into autonomous subgraphs,
and the differential game is solved separately on each subgraph.

The applicability of the developed methods is demonstrated through simulations,
and to illustrate their effectiveness, comparative simulations are presented wherever
alternate methods exist to solve the problem under consideration. The dissertation
concludes with a discussion about the limitations of the developed technique, and
further extensions of the technique are proposed along with the possible approaches to

achieve them.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

The ability to learn the correct behavior from interactions with the environment is
a highly desirable characteristic of a cognitive agent. Typical interactions between an
agent and its environment can be described in terms of actions, states, and rewards (or
penalties). The actions executed by the agent affect the state of the system (i.e., the
agent and the environment), and the agent is presented with a reward (or a penalty).
Assuming that the agent chooses an action based on the state of the system, the
behavior (or the policy) of the agent can be described as a map from the state space to
the action space.

To learn the correct policy, it is crucial to establish a measure of correctness.

The correctness of a policy can be quantified in numerous ways depending on the
objectives of the agent-environment interaction. For guidance and control applications,
the correctness of a policy is often quantified in terms of a Lagrange cost and a Meyer
cost. The Lagrange cost is the cumulative penalty accumulated along a path traversed
by the agent and the Meyer cost is the penalty at the boundary. Policies with lower

total cost are considered better and policies that minimize the total cost are considered
optimal. The problem of finding the optimal policy that minimizes the total Lagrange and
Meyer cost is known as the Bolza optimal control problem.

Obtaining an analytical solution to the Bolza problem is often infeasible if the
system dynamics are nonlinear. Many numerical solution techniques are available to
solve Bolza problems; however, numerical solution techniques require exact model
knowledge and are realized via open-loop implementation of offline solutions. Open-
loop implementations are sensitive to disturbances, changes in objectives, and changes
in the system dynamics; hence, online closed-loop solutions of optimal control problems

are sought-after. Inroads to solve an optimal control problem online can be made by

17



looking at the so-called value function. Under a given policy, the value function provides
a map from the state space to the set of real numbers that measures the quality of a
state. In other words, under a given policy, the value function evaluated at a given state
is the cost accumulated when starting in the given state and following the given policy.
Under general conditions, the policy that drives the system state along the steepest
negative gradient of the optimal value function turns out to be the optimal policy; hence,
online optimal control design relies on computation of the optimal value function.

For systems with finite state and action spaces, value function-based dynamic
programming (DP) techniques such as policy iteration (PI) and value iteration (VI)
are established as effective tools for optimal control synthesis. However, both Pl and
VI suffer from Bellman’s curse of dimensionality, i.e., they become computationally
intractable as the size of the state space grows. Furthermore, both Pl and VI require
exact knowledge of the system dynamics. The need for excessive computation can
be realistically sidestepped if one seeks to obtain an approximation to the optimal
value function instead of the exact optimal value function (i.e., approximate dynamic
programming). The need for exact model knowledge can be eliminated by using a
simulation-based approach where the goal is to learn the optimal value function using
state-action-reward triplets observed along the state trajectory (i.e., reinforcement
learning (RL)).

Approximate dynamic programming algorithms approximate the classical Pl and VI
algorithms by using a parametric approximation of the policy or the value function. The
central idea is that if the policy or the value function can be parameterized with sufficient
accuracy using a small number of parameters, the optimal control problem reduces to
an approximation problem in the parameter space. Furthermore, this formulation lends
itself to an online solution approach using RL where the parameters are adjusted on-
the-fly using input-output data. However, sufficient exploration of the state-action space

is required for convergence, and the optimality of the obtained policy depends heavily on
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the accuracy of the parameterization scheme; the formulation of which requires some
insight into the dynamics of the system. Despite the aforementioned drawbacks, RL has
given rise to effective techniques that can synthesize nearly optimal policies to control
nonlinear systems that have large state and action spaces and unknown or partially
known dynamics. As a result, RL has been a growing area of research in the past two
decades.

In recent years, RL techniques have been extended to autonomous continuous-time
deterministic systems. In online implementations of RL, the control policy derived from
the approximate value function is used to control the system; hence, obtaining a good
approximation of the value function is critical to the stability of the closed-loop system.
Obtaining a good approximation of the value function online requires convergence
of the unknown parameters to their ideal values. Hence, similar to adaptive control,
the sufficient exploration condition manifests itself as a persistence of excitation (PE)
condition when RL is implemented online. In general, it is impossible to guarantee PE
a priori; hence, a probing signal designed using trial and error is added to the controller
to ensure PE. The probing signal is not considered in the stability analysis; hence,
stability of the closed-loop implementation cannot be guaranteed. In this dissertation,

a model-based RL scheme is developed to relax the PE condition. Model-based RL
is implemented using a concurrent learning (CL)-based system identifier to simulate
experience by evaluating the Bellman error (BE) over unexplored areas of the state

space.

A multitude of relevant control problems can be modeled as multi-input systems,
where each input is computed by a player, and each player attempts to influence the
system state to minimize its own cost function. In this case, the optimization problem for
each player is coupled with the optimization problem for other players; hence, in general,
an optimal solution in the usual sense does not exist, motivating the formulation of

alternative solution concepts. The most popular solution concept is a Nash equilibrium
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solution which finds applications in optimal disturbance rejection, i.e., H,, control, where
the disturbance is modeled as a player in a two-player nonzero-sum differential game.

A set of policies is called a Nash equilibrium solution to a multi-objective optimization
problem if none of the players can improve their outcome by changing their policy while
all the other players abide by the Nash equilibrium policies. Thus, Nash equilibrium
solutions provide a secure set of strategies, in the sense that none of the players

have an incentive to diverge from their equilibrium policy. Motivated by the wide-

spread applications of differential games, this dissertation extends the model-based RL
techniques to obtain feedback-Nash equilibrium solutions to N —player nonzero-sum
differential games.

Extension of RL to trajectory tracking problems is not trivial because the error
dynamics are nonautonomous, resulting in time-varying value functions. Since universal
function approximators can approximate functions with arbitrary accuracy only on
compact domains, value functions for infinite-horizon optimal tracking problems cannot
be approximated with arbitrary accuracy using universal function approximators. The
results in this dissertation extend RL-based approaches to trajectory tracking problems
by using the desired trajectory, in addition to the tracking error, as an input to learn the
value function.

The fact that the value function depends on the desired trajectory results in a chal-
lenge in establishing system stability during the learning phase. Stability during the
learning phase is often established using Lyapunov-based stability analysis methods,
which are motivated by the fact that under general conditions, the optimal value function
is a Lyapunov function for the closed-loop system under the optimal policy. In tracking
problems, the value function, as a function of the tracking error and the desired trajec-
tory is not a Lyapunov function for the closed-loop system under the optimal policy. In

this dissertation, the aforementioned challenge is addressed by proving that the value
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function, as a time-varying function of the tracking error can be used as a Lyapunov
function.

RL techniques are valuable not only for optimization but also for control synthesis in
complex systems such as a distributed network of cognitive agents. Combined efforts
from multiple autonomous agents can yield tactical advantages including: improved
munitions effects; distributed sensing, detection, and threat response; and distributed
communication pipelines. While coordinating behaviors among autonomous agents is
a challenging problem that has received mainstream focus, unique challenges arise
when seeking autonomous collaborative behaviors in low bandwidth communication
environments. For example, most collaborative control literature focuses on centralized
approaches that require all nodes to continuously communicate with a central agent,
yielding a heavy communication demand that is subject to failure due to delays, and
missing information. Furthermore, the central agent is required to carry enough on-
board computational resources to process the data and to generate command signals.
These challenges motivate the need for a decentralized approach where the nodes
only need to communicate with their neighbors for guidance, navigation and control
tasks. Furthermore, when the agents posses cooperative or competitive objectives, the
trajectory and the decisions of each agent are affected by the trajectories and decisions
of the neighboring agents. The external influence renders the dynamics of each agent
nonautonomous, and hence, optimization in a network of agents presents challenges
similar to the optimal tracking problem.

The interaction between the agents in a network is often modeled as a differential
game on a graph, defined by coupled dynamics and coupled cost functions. Using
insights gained from the tracking problem, this dissertation extends the model-based RL
technique to generate feedback-Nash equilibrium optimal policies online, for agents in a

network with cooperative or competitive objectives. In particular, the network of agents
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is separated into autonomous subgraphs, and the differential game is solved separately
on each subgraph.

The applicability of the developed methods is demonstrated through simulations,
and to illustrate their effectiveness, comparative simulations are presented wherever
alternate methods exist to solve the problem under consideration. The dissertation
concludes with a discussion about the limitations of the developed technique, and
further extensions of the technique are proposed along with the possible approaches to
achieve them.

1.2 Literature Review
One way to develop optimal controllers for general nonlinear systems is to use nu-
merical methods [1]. A common approach is to formulate the optimal control problem
in terms of a Hamiltonian and then to numerically solve a two point boundary value
problem for the state and co-state equations [2, 3]. Another approach is to cast the
optimal control problem as a nonlinear programming problem via direct transcription
and then solve the resulting nonlinear program [4—9]. Numerical methods are offline,
do not generally guarantee stability, or optimality, and are often open-loop. These is-
sues motivate the desire to find an analytical solution. Developing analytical solutions
to optimal control problems for linear systems is complicated by the need to solve an
algebraic Riccati equation (ARE) or a differential Riccati equation (DRE). Developing
analytical solutions for nonlinear systems is even further complicated by the sufficient
condition of solving a Hamilton-Jacobi-Bellman (HJB) partial differential equation, where
an analytical solution may not exist in general. If the nonlinear dynamics are exactly
known, then the problem can be simplified at the expense of optimality by solving an
ARE through feedback-linearization methods (cf. [10—14]).

Alternatively, some investigators temporarily assume that the uncertain system
could be feedback-linearized, solve the resulting optimal control problem, and then use

adaptive/learning methods to asymptotically learn the uncertainty, i.e., asymptotically
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converge to the optimal controller [15—18]. Inverse optimal control [19—24] is also an
alternative method to solve the nonlinear optimal control problem by circumventing the
need to solve the HJB equation. By finding a control Lyapunov function, which can be
shown to also be a value function, an optimal controller can be developed that optimizes
a derived cost. However, since the cost is derived rather than specified by mission/task
objectives, this approach is not explored in this dissertation. Optimal control-based
algorithms such as state dependent Riccati equations (SDRE) [25-28] and model-
predictive control (MPC) [29-35] have been widely utilized for control of nonlinear
systems. However, both SDRE and MPC are inherently model-based. Furthermore, due
to nonuniqueness of state dependent linear factorization in SDRE-based techniques,
and since the control problem is solved over a small prediction horizon in MPC, SDRE
and MPC generally result in suboptimal policies. Furthermore, MPC-based approaches
are computationally intensive, and closed-loop stability of SDRE-based methods is
generally impossible to establish a priori and has to be established through extensive
simulation. Owing to the aforementioned drawbacks, SDRE and MPC approaches are
not explored in this dissertation. This dissertation focuses on DP-based techniques.
The fundamental idea in all DP techniques is the principle of optimality, due to
Bellman [36]. DP techniques based on the principle of optimality have been extensively
studied in literature (cf. [37—42]). The applicability of classical DP techniques like Pl
and VI is limited by the curse of dimensionality and the need for model knowledge.
Simulation-based reinforcement learning (RL) techniques such as Q-learning [40] and
temporal-difference (TD)-learning [38, 43] avoid the curse of dimensionality and the
need for exact model knowledge. However, these techniques require the states and the
actions to be on finite sets. Even though the theory is developed for finite state spaces
of any size, the implementation of simulation-based RL techniques is feasible only if
the size of the state space is small. Extensions of simulation-based RL techniques to

general state spaces or very large finite state spaces involve parametric approximation
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of the policy. Such algorithms have been studied in depth for systems with countable
state and action spaces under the name of neuro-DP (cf. [42,44—-48] and the references
therein). The extension of these techniques to general state spaces and continuous
time-domains is challenging and only a small number of results are available in the
literature [49].

For deterministic systems, RL algorithms have been extended to a solve finite and

infinite-horizon discounted and total cost optimal regulation problems (cf. [50-59]) under
names such as adaptive dynamic programming (ADP) or adaptive critic algorithms.
The discrete/iterative nature of the approximate dynamic programming formulation
lends itself naturally to the design of discrete-time optimal controllers [50, 53, 55,
60—67], and the convergence of algorithms for DP-based RL controllers is studied in
results such as [61, 68—70]. Most prior work has focused on convergence analysis for
discrete-time systems, but some continuous examples are available [52, 54,57, 70-79].
For example, in [72] Advantage Updating was proposed as an extension of the Q-
learning algorithm which could be implemented in continuous time and provided faster
convergence. The result in [74] used a HJB-based framework to derive algorithms for
value function approximation and policy improvement, based on a continuous version
of the TD error. An HJB framework was also used in [70] to develop a stepwise stable
iterative approximate dynamic programming algorithm for continuous input-affine
systems with an input-quadratic performance measure. Based on the successive
approximation method first proposed in [71], an adaptive optimal control solution is
provided in [73], where a Galerkin’s spectral method is used to approximate the solution
to the generalized HJB (GHJB). A least-squares-based successive approximation
solution to the GHJB is provided in [52], where an NN is trained offline to learn the
GHJB solution. Another continuous formulation is proposed in [75].

In online real-time applications, DP-based techniques generally require a restrictive

PE condition to establish stability and convergence. However, recent research indicates
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that data-driven learning based on recorded experience can improve the efficiency

of information utilization, thereby mollifying the PE requirements. Experience replay
techniques have been studied in RL literature to circumvent the PE requirement, which
is analogous to the requirement of sufficient exploration. Experience replay techniques
involve repeated processing of recorded input-output data in order to improve efficiency
of information utilization [80—-85].

ADP-based methods that seek an online solution to the optimal control problem,
(cf., [58,57,59, 63, 86,87] and the references therein) are structurally similar to adaptive
control schemes. In adaptive control, the estimates for the uncertain parameters in the
plant model are updated using the current tracking error as the performance metric,
whereas, in online RL-based techniques, estimates for the uncertain parameters in the
value function are updated using a continuous-time counterpart of the TD error, called
the BE, as the performance metric. Convergence of online RL-based techniques to the
optimal solution is analogous to parameter convergence in adaptive control.

Parameter convergence has been a focus of research in adaptive control for several
decades. It is common knowledge that the least squares and gradient descent-based
update laws generally require PE in the system state for convergence of the parameter
estimates. Modification schemes such as projection algorithms, o —maodification, and
e—modification are used to guarantee boundedness of parameter estimates and overall
system stability; however, these modifications do not guarantee parameter convergence
unless the PE condition, which is often impossible to verify online, is satisfied [88—91].

As recently shown in results such as [92] and [93], CL-based methods can be
used to guarantee parameter convergence in adaptive control without relying on the PE
condition. Concurrent learning relies on recorded state information along with current
state measurements to update the parameter estimates. Learning from recorded data is
effective since it is based on the model error, which is closely related to the parameter

estimation error. The key concept that enables the computation of the model error from
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past recorded data is that the model error can be computed if the state derivative is
known, and the state derivative can be accurately computed at a past recorded data
point using numerical smoothing techniques [92, 93]. Similar techniques have been
recently shown to be effective for online real-time optimal control [94, 95]. In particular,
the results in [95] indicate that recorded values of the BE can be used to solve the online
real-time optimal control problem without the need of PE. However, a finite amount of
added probing noise is required for the recorded data to be rich enough. Inspired by

the results in [96] and [97], which suggest that simulated experience based on a system
model can be more effective than recorded experience, the efforts in this dissertation
focus on the development of online real-time optimal control techniques based on model
learning and BE extrapolation.

A multitude of relevant control problems can be modeled as multi-input systems,
where each input is computed by a player, and each player attempts to influence the
system state to minimize its own cost function. In this case, the optimization problem
for each player is coupled with the optimization problem for other players, and hence, in
general, an optimal solution in the usual sense does not exist, motivating the formulation
of alternative optimality criteria.

Differential game theory provides solution concepts for many multi-player, multi-
objective optimization problems [98—100]. For example, a set of policies is called a Nash
equilibrium solution to a multi-objective optimization problem if none of the players can
improve their outcome by changing their policy while all the other players abide by the
Nash equilibrium policies [101]. Thus, Nash equilibrium solutions provide a secure set of
strategies, in the sense that none of the players have an incentive to diverge from their
equilibrium policy. Hence, Nash equilibrium has been a widely used solution concept in
differential game-based control techniques.

In general, Nash equilibria are not unique. For a closed-loop differential game

(i.e., the control is a function of the state and time) with perfect information (i.e. all the
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players know the complete state history), there can be infinitely many Nash equilibria.
If the policies are constrained to be feedback policies, the resulting equilibria are called
(sub)game perfect Nash equilibria or feedback-Nash equilibria. The value functions
corresponding to feedback-Nash equilibria satisfy a coupled system of Hamilton-Jacobi
(HJ) equations [102—107].

If the system dynamics are nonlinear and uncertain, an analytical solution of the
coupled HJ equations is generally infeasible; hence, dynamic programming-based
approximate solutions are sought [56,58,87,108—112]. In this dissertation, a simulation-
based actor-critic-identifier (ACI) architecture is developed to obtain an approximate
feedback-Nash equilibrium solution to an infinite horizon N-player nonzero-sum dif-
ferential game online, without requiring PE, for a nonlinear control-affine system with
uncertain linearly parameterized drift dynamics.

For trajectory tracking problems in discrete-time systems, several approaches
have been developed to address the nonautonomous nature of the open-loop system.
Park et.al. [113] use generalized backpropagation through time to solve a finite horizon
tracking problem that involves offline training of neural networks (NNs). An ADP-based
approach is presented in [114] to solve an infinite-horizon optimal tracking problem
where the desired trajectory is assumed to depend on the system states. A greedy
heuristic dynamic programming based algorithm is presented in [86] which uses a
system transformation to express a nonautonomous system as an autonomous system.
However, this result lacks an accompanying stability analysis. ADP-based approaches
are presented in [115, 116] for tracking in continuous-time systems. In both the results,
the value function (i.e. the critic) and the controller (i.e. the actor) presented are time-
varying functions of the tracking error. However, since the problem is an infinite-horizon
optimal control problem, time does not lie on a compact set. NNs can only approximate
functions on a compact domain. Thus, it is unclear how a NN with time invariant basis

functions can approximate the time-varying value function and the policy.
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For problems with multiple agents, as the desired action by an individual agent de-
pends on the actions and the resulting trajectories of its neighbors, the error system for
each agent becomes a complex nonautonomous dynamical system. Nonautonomous
systems, in general, have non-stationary value functions. Since non-stationary functions
are difficult to approximate using parameterized function approximation schemes such
as NNs, designing optimal policies for nonautonomous systems is not trivial. To address
this challenge, differential game theory is often employed in multi-agent optimal control,
where solutions to coupled Hamilton-Jacobi (HJ) equations (c.f. [112]) are sought. Since
the coupled HJ equations are difficult to solve, some form of RL is often employed to get
an approximate solution. Results such as [58, 112, 117-120] indicate that ADP can be
used to generate approximate optimal policies online for multi-agent systems. Since the
HJ equations are coupled, all of these results have a centralized control architecture.

Decentralized control techniques focus on finding control policies based on local
data for individual agents that collectively achieve the desired goal, which, for the
problem considered in this effort, is tracking a desired trajectory while maintaining a
desired formation. Various methods have been developed to solve formation tracking
problems for linear systems (cf. [121—-125] and the references therein). For nonlinear
systems, MPC-based approaches ([126, 127]) and ADP-based approaches ( [128,
129]) have been proposed. The MPC-based controllers require extensive numerical
computations and lack stability and optimality guarantees. The ADP-based approaches
either require offline computations, or are suboptimal because not all the inter-agent
interactions are considered in the value function. In this dissertation, a simulation-based
ACI architecture is developed to cooperatively control a group of agents to track a
trajectory while maintaining a desired formation.

1.3 Outline of the Dissertation
Chapter 1 serves as the introduction. Motivation behind the results in the disserta-

tion is presented along with a detailed review of the state of the art.
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Chapter 2 contains a brief review of available techniques used in the application of
RL to deterministic continuous-time systems. This chapter also highlights the problems
and the limitations of existing techniques, thereby motivating the development in the
dissertation.

Chapter 3 implements model-based RL to solve approximate optimal regulation
problems online with a relaxed PE-like condition using a simulation-based ACI architec-
ture. The development is based on the observation that, given a model of the system,
model-based RL can be implemented by evaluating the Bellman error at any number of
desired points in the state space. In this result, a parametric system model is consid-
ered, and a CL-based parameter identifier is developed to compensate for uncertainty
in the parameters. Ultimately bounded (UB) regulation of the system states to a neigh-
borhood of the origin, and convergence of the developed policy to a neighborhood of the
optimal policy are established using a Lyapunov-based analysis, and simulations are
presented to demonstrate the performance of the developed controller.

Chapter 4 extends the results of Chapter 3 to obtain an approximate feedback-
Nash equilibrium solution to an infinite-horizon N-player nonzero-sum differential
game online, without requiring PE, for a nonlinear control-affine system with uncertain
linearly parameterized drift dynamics. It is shown that under a condition milder than
PE, uniformly ultimately bounded convergence of the developed control policies to the
feedback-Nash equilibrium policies can be established. Simulation results are presented
to demonstrate the performance of the developed technique without an added excitation
signal.

Chapter 5 presents an ADP-based approach using the policy evaluation (Critic)
and policy improvement (Actor) architecture to approximately solve the infinite-horizon
optimal tracking problem for control-affine nonlinear systems with quadratic cost. The
problem is solved by transforming the system to convert the tracking problem that has a

non-stationary value function, into a stationary optimal control problem. The ultimately
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bounded UB tracking and estimation result is established using Lyapunov analysis for
nonautonomous systems. Simulations are performed to demonstrate the applicability
and the effectiveness of the developed method.

Chapter 6 utilizes model-based reinforcement learning to extend the results of
Chapter 5 to systems with uncertainties in drift dynamics. A system identifier is used
for approximate model inversion to facilitate the formulation of a feasible optimal control
problem. Model-based reinforcement learning is implemented using a concurrent
learning-based system identifier to simulate experience by evaluating the Bellman
error over unexplored areas of the state space. Tracking of the desired trajectory
and convergence of the developed policy to a neighborhood of the optimal policy is
established via Lyapunov-based stability analysis. Simulation results demonstrate the
effectiveness of the developed technique.

Chapter 7 combines graph theory and differential game theory with the actor-
critic-identifier architecture in ADP to synthesize approximate online feedback-Nash
equilibrium control policies for agents on a communication network with a spanning tree.
NNs are used to approximate the policy, the value function, and the system dynamics.
UB convergence of the agents to the desired formation, UB convergence of the agent
trajectories to the desired trajectories, and UB convergence of the agent controllers to
their respective feedback-Nash equilibrium policies is established through a Lyapunov-
based stability analysis. Simulations are presented to demonstrate the applicability of
the proposed technique to cooperatively control a group of five agents.

Chapter 8 concludes the dissertation. A summary of the dissertation is provided
along with a discussion on open problems and future research directions.

1.4 Contributions

This section details the contributions of this dissertation over the state-of-the-art.
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1.4.1 Approximate Optimal Regulation

In RL-based approximate online optimal control, the HJB equation along with an
estimate of the state derivative (cf. [49,59] ), or an integral form of the HJB equation (cf.
[130]) is utilized to approximately evaluate the BE at each visited state along the system
trajectory. The BE provides an indirect measure of the quality of the current estimate of
the value function at each visited state along the system trajectory. Hence, the unknown
value function parameters are updated based on the BE along the system trajectory.
Such weight update strategies create two challenges for analyzing convergence. The
system states need to be PE, and the system trajectory needs to visit enough points in
the state space to generate a good approximation to the value function over the entire
operating domain. These challenges are typically addressed by adding an exploration
signal to the control input (cf. [43, 49, 130]) to ensure sufficient exploration in the
desired region of the state space. However, no analytical methods exist to compute the
appropriate exploration signal when the system dynamics are nonlinear.

In this dissertation, the aforementioned challenges are addressed by observing
that the restriction that the BE can only be evaluated along the system trajectories
is a consequence of the model-free nature of RL-based approximate online optimal
control. In particular, the integral BE is only meaningful as a measure of quality of the
value function if evaluated along the system trajectories, and state derivative estimators
can only generate estimates of the state derivative along the system trajectories using
numerical smoothing. However, if the system dynamics are known, the state derivative,
and hence, the BE can be evaluated at any desired point in the state space. Unknown
parameters in the value function can therefore be adjusted based on least square
minimization of the BE evaluated at any number of desired points in the state space. For
example, in an infinite-horizon regulation problem, the BE can be computed at sampled
points uniformly distributed in a neighborhood around the origin of the state space. The

results of this dissertation indicate that convergence of the unknown parameters in the
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value function is guaranteed provided the selected points satisfy a rank condition. Since
the BE can be evaluated at any desired point in the state space, sufficient exploration
can be achieved by appropriately selecting the points in a desired neighborhood.

If the system dynamics are partially unknown, an approximation to the BE can be
evaluated at any desired point in the state space based on an estimate of the system
dynamics. If each new evaluation of the BE along the system trajectory is interpreted
as gaining experience via exploration, an evaluation of the BE at an unexplored point
in the state space can be interpreted as a simulated experience. Learning based
on simulation of experience has been investigated in results such as [131-136] for
stochastic model-based RL; however, these results solve the optimal control problem
offline in the sense that repeated learning trials need to be performed before the
algorithm learns the controller, and system stability during the learning phase is not
analyzed. This dissertation furthers the state of the art for nonlinear, control-affine
plants with linearly parameterizable (LP) uncertainties in the drift dynamics by providing
an online solution to deterministic infinite-horizon optimal regulation problems. In this
dissertation, a CL-based parameter estimator is developed to exponentially identify the
unknown parameters in the system model, and the parameter estimates are used to
implement simulated experience by extrapolating the BE. The main contributions of this

chapter include:

e Novel implementation of simulated experience in deterministic nonlinear systems
using CL-based system identification.

e Detailed stability analysis to establish simultaneous online identification of sys-
tem dynamics and online approximate learning of the optimal controller, while
maintaining system stability. The stability analysis shows that provided the system
dynamics can be approximated fast enough, and with sufficient accuracy, simu-
lation of experience based on the estimated model implemented via approximate
BE extrapolation can be utilized to approximately solve an infinite-horizon optimal
regulation problem online are provided.

e For the first time ever, simulation results that demonstrate the approximate solution
of an infinite-horizon optimal regulation problem online for an inherently unstable

32



control-affine nonlinear system with uncertain drift dynamics without the addition of
an external ad-hoc probing signal.

1.4.2 N-player Nonzero-sum Differential Games

In [58], a PE-based integral reinforcement learning algorithm is presented to solve
nonzero-sum differential games in linear systems without the knowledge of the drift
matrix. In [112], a PE-based dynamic programming technique is developed to find
an approximate feedback-Nash equilibrium solution to an infinite-horizon N-player
nonzero-sum differential game online for nonlinear control-affine systems with known
dynamics. In [119], a PE-based ADP method is used to solve a two-player zero-
sum game online for nonlinear control-affine systems without the knowledge of drift
dynamics. In this dissertation, a simulation-based ACI architecture (cf. [59]) is used
to obtain an approximate feedback-Nash equilibrium solution to an infinite-horizon
N-player nonzero-sum differential game online, without requiring PE, for a nonlinear
control-affine system with uncertain LP drift dynamics. The contribution of this result is
that it extends the development in Chapter 3 to the more general N —player nonzero-
sum differential game framework.
1.4.3 Approximate Optimal Tracking

Approximation techniques like NNs are commonly used in ADP literature for
value function approximation. ADP-based approaches are presented in results such
as [115, 116] to address the tracking problem for continuous time systems, where the
value function, and the controller presented are time-varying functions of the tracking
error. However, for an infinite-horizon optimal control problem, the domain of the value
function is not compact. NNs can only approximate functions on a compact domain.
Thus, it is unclear how a NN with the tracking error as an input can approximate the
time-varying value function and controller.

For discrete time systems, several approaches have been developed to address

the tracking problem. Park et.al. [113] use generalized back-propagation through
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time to solve a finite horizon tracking problem that involves offline training of NNs. An
ADP-based approach is presented in [114] to solve an infinite-horizon optimal tracking
problem where the desired trajectory is assumed to depend on the system states.
Greedy heuristic dynamic programming based algorithms are presented in results such
as [86, 137, 138] which transform the nonautonomous system into an autonomous
system, and approximate convergence of the sequence of value functions to the optimal
value function is established. However, these results lack an accompanying stability
analysis. In this result, the tracking error and the desired trajectory both serve as inputs
to the NN for value function approximation. Effectiveness of the developed technique is

demonstrated via numerical simulations. The main contributions of this result include:

e Formulation of a stationary optimal control problem for infinite-horizon total-cost
optimal tracking control.

e Formulation and proof of the hypothesis that the optimal value function is a valid
candidate Lyapunov function when interpreted as a time-varying function of the
tracking error.

e New Lyapunov-like stability analysis to establish ultimate boundedness under
sufficient persistent excitation.

1.4.4 Model-based Reinforcement Learning for Approximate Optimal Tracking
This chapter extends the actor-critic method developed in the previous chapter
to solve an infinite-horizon optimal tracking problem for systems with unknown drift
dynamics using model-based RL. The development in the previous chapter relies on
minimizing the difference between the implemented controller and the steady-state con-
troller. The computation of the steady-state controller requires exact model knowledge.
In this chapter, a CL-based system identifier is developed generate an online approx-
imation to the steady-state controller. Furthermore, the CL-based system identifier is
also used to implement model-based RL to simulate experience by evaluating the BE
over unexplored areas of the state space. Effectiveness of the developed technique is

demonstrated via numerical simulations. The main contributions of this result include:
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e Extension of tracking technique to systems with uncertain drift dynamics via the
use of a CL-based system identification for approximate model inversion.

e Lyapunov-based stability analysis to show simultaneous system identification and
ultimately bounded tracking in the presence of uncertainties.

1.4.5 Differential Graphical Games

Various methods have been developed to solve formation tracking problems for
linear systems. An optimal control approach is used in [139] to achieve consensus
while avoiding obstacles. In [140], an optimal controller is developed for agents with
known dynamics to cooperatively track a desired trajectory. In [141] an inverse optimal
controller is developed for unmanned aerial vehicles to cooperatively track a desired
trajectory while maintaining a desired formation. In [142] a differential game-based
approach is developed for unmanned aerial vehicles to achieve distributed Nash
strategies. In [143], an optimal consensus algorithm is developed for a cooperative
team of agents with linear dynamics using only partial information. A value function
approximation based approach is presented in [128] for cooperative synchronization in a
strongly connected network of agents with known linear dynamics.

For nonlinear systems, an MPC-based approach is presented in [126], however,
no stability or convergence analysis is presented. A stable distributed MPC-based
approach is presented in [127] for nonlinear discrete-time systems with known nominal
dynamics. Asymptotic stability is proved without any interaction between the nodes,
however, a nonlinear optimal control problem need to be solved at every iteration to
implement the controller. An optimal tracking approach for formation control is presented
in [129] using single network adaptive critics where the value function is learned
offline. Online feedback-Nash equilibrium solution of differential graphical games in a
topological network of agents with continuous-time uncertain nonlinear dynamics has

remained an open problem. The contributions of this chapter are the following:

e Introduction of relative control error minimization technique to facilitate the formula-
tion of a feasible infinite-horizon total-cost differential graphical game.
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Development a set of coupled HJ equations corresponding to feedback-Nash
equilibrium solutions of differential graphical games.

Lyapunov-based stability analysis to show ultimately bounded formation tracking in
the presence of uncertainties.
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CHAPTER 2
PRELIMINARIES

2.1 Notation

Throughout the dissertation, R denotes n—dimensional Euclidean space, R-,,
denotes the set of real numbers strictly greater than ¢ € R, and R, denotes the set of
real numbers greater than or equal to a € R. Unless otherwise specified, the domain
of all the functions is assumed to be R-,. Functions with domain R, are defined by
abuse of notation using only their image. For example, the function z : R, — R"is
defined by abuse of notation as + € R", and referred to as = instead of z (¢). By abuse
of notation, the state variables are also used to denote state trajectories. For example,
the state variable x in the equation & = f (z) + w is also used as z (t) to denote the
state trajectory i.e., the general solution z : Ry — R"to & = f (z) 4+ u evaluated at
time t. Unless otherwise specified, all the mathematical quantities are assumed to be
time-varying. Unless otherwise specified, an equation of the form g (z) = f + h (y,t) is
interpreted as g (z (t)) = f(t) + h(y (t),t) forall t € R, and a definition of the form
g(z,y) & f(y) + h(x)forfunctionsg : AxB = C,f: B - Candh: A — C
is interpreted as g (z,y) = f(y) + h(z), ¥(z,y) € A x B. The only exception to the
aforementioned equation and definition notation is the definitions of cost functionals,
where the arguments to the cost functional are functions. The total derivative %(;)
is denoted by V f and the partial derivative % is denoted by V., f (z,y). Ann x n
identity matrix is denoted by 7,,, n x m matrices of zeros and ones are denoted by 0,,..,,
and 1,,..,., respectively, and 15 denotes the indicator function of the set S.

2.2 Problem Formulation

The focus of this dissertation is to obtain online approximate solutions to infinite-

horizon total-cost optimal control problems. To facilitate the formulation of the optimal

control problem, Consider a control-affine nonlinear dynamical system

t=f(x)+g(z)u, (2-1)
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where = € R™ denotes the system state, v € R™ denotes the control input, f : R” — R”
denotes the drift dynamics, and g : R™ — R"*™ denotes the control effectiveness matrix.
The functions f and ¢ are assumed to be locally Lipschitz continuous functions such
that f (0) = 0 and V f (x) is continuous and bounded for every bounded = € R". In the
following, the notation ¢“ (t; o, o) denotes a trajectory of the system in (2—1) under the
control signal » with the initial condition x, € R™ and initial time ¢, € R>,.

The control objective is to solve the infinite-horizon optimal regulation problem
online, i.e., to simultaneously design and utilize a control signal v online to minimize the

cost functional

[e.9]

T (z,u) 2 / r(z (r) 0 (7)) dr, (2-2)

to

under the dynamic constraint in (2—1) while regulating the system state to the origin. In

(2-2), r : R* x R™ — R, denotes the instantaneous cost defined as
r(z,u) 2 Q(x) + u' Ru, (2-3)

where @ : R" — R is a positive definite function and R € R™*™ is a constant positive
definite symmetric matrix.
2.3 Exact Solution

It is well known that if the functions f, g, and @ are stationary (time-invariant) and
the time-horizon is infinite, then the optimal control input is a stationary state-feedback
policy u (t) = £ (x (t)) for some function ¢ : R* — R™. Furthermore, the function that
maps each state to the total accumulated cost starting from that state and following a
stationary state-feedback policy, i.e., the value function, is also a stationary function.

Hence, the optimal value function V* : R — R, can be expressed as

oo

Vi@t [r@ ) ) dr 2-4)
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for all x € R, where U C R™ is the action space. Assuming an optimal controller exists,

the optimal value function can be expressed as

[ee]

Vi@ min [r(@ (i) u () dr (2-5)

The optimal value function is characterized by the corresponding HJB equation [1]

0 = min (VV (z) (f () + g (x) u) + 1 (2,u)), (2-6)

uelU

for all z € R™, with the boundary condition V' (0) = 0. Provided the HJB in (2—6) admits a
continuously differentiable solution, it constitutes a necessary and sufficient condition for
optimality, i.e., if the optimal value function in (2-5) is continuously differentiable, then it

is the unique solution to the HJB in (2-6) [144]. The optimal control policy v* : R" — R™

can be determined from (2—6) as [1]
o (z) = —%R‘lgT () (VV* ()7, Vo € R™. (2-7)
The HJB in (2—6) can be expressed in the open-loop form
VV* (2) (f (@) + g (@) w* (2)) + 7 (2, 0" (x)) = 0, (2-8)

for all z € R", and using (2—7), the HJB in (2-8) can be expressed in the closed-loop
form

YV (x) f (z) - iVV* () g () R™'g" () (VV* (2))" + Q (2) = 0. (2-9)

for all z € R™. The optimal policy can now be obtained using (2—7) if the HJB in (2-9)
can be solved for the optimal value function V*.
2.4 Value Function Approximation
An analytical solution of the HJB equation is generally infeasible; hence, an approxi-
mate solution is sought. In an approximate actor-critic-based solution, the optimal value

function V* is replaced by a parametric estimate 1/ <m, Wc> and the optimal policy u* by
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a parametric estimate @ (x, Wa> where W, € RE and W, € RE denote vectors of esti-
mates of the ideal parameters. The objective of the critic is to learn the parameters 17,
and the objective of the actor is to learn the parameters W,. Substituting the estimates
V and @ for V* and w* in (2-8), respectively, a residual error § : R" x RL x RL — R, called

the BE, is defined as
5 (x W, W) v <x W) (f (z) + g (2) @ (x W)) Y (xu <3c W)) . (2-10)

To solve the optimal control problem, the critic aims to find a set of parameters W,
and the actor aims to find a set of parameters W, such that § (ac, W, Wa> = 0, and
i (m, Wa> = —1R"¢g" (2) (Vf/ (x, WC>>T vz € R". Since an exact basis for value
function approximation is generally not available, an approximate set of parameters
that minimizes the BE is sought. In particular, to ensure uniform approximation of the
value function and the policy over an operating domain D C R", it is desirable to find

parameters that minimize the error E, : R x R — R defined as

E, (Wc, Wa> £ sup |9 <x, Wc, Wa>

z€D

Hence, in an online implementation of the deterministic actor-critic method, it is desir-
able to update the parameter estimates . and W, online to minimize the instantaneous

error E, (Wc (t), W, (t)) or the cumulative instantaneous error

E(t) 2 / E. <Wc (r), W, (T)> dr, (2-11)

while the system in (2—1) is being controlled using the control law « (t) =
i <x (1), W, (t)) .
2.5 RL-based Online Implementation
Computation of the BE in (2—10) and the integral error in (2—11) requires exact

model knowledge. Furthermore, computation of the integral error in (2—11) is generally
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infeasible. Two prevalent approaches employed to render the control design robust to
uncertainties in the system drift dynamics are integral RL (cf. [95] and [145]) and state
derivative estimation (cf. [59] and [146]).

Integral RL exploits the fact that forall 7 > 0 andt > t, + T, the BE in (6-2)
has an equivalent integral form 6, (t) = V (x t—T), W, (t)) -V (x (t), W, (t)) -
[l (@ (), u(r))dr, where u(t) = i (a: (t), W, (t)) , Vt € Rsy,. Since the integral form
does not require model knowledge, policies designed based on é;,,; can be implemented
without knowledge of f.

State derivative estimation-based techniques exploit the fact that if the system
model is uncertain, the critic can compute the BE at each time instance t using the

state-derivative z (t) as

5, (1) 2 v,V (:c (t), W, (t)) &) +r (:c (1), 0 (:1: (1), W, (t))) . (2-12)

If the state-derivative is not directly measurable, an approximation of the BE can be
computed using a dynamically generated estimate of the state-derivative. Note that
the integral form of the BE is inherently dependent on the state trajectory, and since
adaptive derivative estimators estimate the derivative only along the trajectory, the
derivative estimation-based techniques are also dependent on the state trajectory.
Hence, in techniques such as [59, 95, 145, 146] the BE can only be evaluated along the
system trajectory.

Since (2-8) constitutes a necessary and sufficient condition for optimality, the
BE serves as an indirect measure of how close the critic parameter estimates 1, are
to their ideal values; hence, in RL literature, each evaluation of the BE is interpreted
as gained experience. In particular, the critic receives state-derivative-action-reward
tuples (x (t),2 (t),u(t),r (x (t),u(t))) and computes the BE using (2—12). The critic
then performs a one-step update to the parameter estimates W, based on either the

instantaneous experience, quantified by the squared error 62 (¢), or the cumulative
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experience, quantified by the integral squared error

t

E,(t) = / 62 (1) dr, (2-13)

0
using a steepest descent update law. The use of the cumulative squared error is
motivated by the fact that in the presence of uncertainties, BE can only be evaluated
along the system trajectory; hence, F; (t) is the closest approximation to £ (¢) in (2-11)
that can be computed using the available information.

Intuitively, for E; (¢) to approximate E (t) over an operating domain, the state
trajectory z (¢) needs to visit as many points in the operating domain as possible. This
intuition is formalized by the fact that the use of the approximation F; (¢) to update the
critic parameter estimates is valid provided certain exploration conditions' are met. In
RL terms, the exploration conditions translate to the need for the critic to gain enough
experience in order to learn the value function. The exploration conditions can be
relaxed using experience replay, where each evaluation of the BE ¢, is interpreted
as gained experience, and these experiences are stored in a history stack and are
repeatedly used in the learning algorithm to improve data efficiency, however, a finite
amount of exploration is still required since the values stored in the history stack are
also constrained to the system trajectory.

While the estimates 1V, are being updated by the critic, the actor simultaneously
updates the parameter estimates 1, using a gradient-based approach so that the
quantity @ (a:, Wa> +1RgT (2) (VV (x, Wc>>T decreases. The weight updates are
performed online in real-time while the system is being controlled using the control law
u(t) =1u (a: (t), W, (t)) . Naturally, it is difficult to guarantee stability during the learning

phase. In fact, the use of two different sets parameters to approximate the value function

! The exploration conditions are detailed in the next section for a linear-in-the-
parameters (LIP) approximation of the value function.
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and the policy is motivated by the stability analysis. In particular, to date, the author is
unaware of any results that can guarantee stability during learning phase in an online
continuous-time deterministic implementation of RL-based actor-critic technique in
which only the the value function is approximated, and based on (2—7), the system is
controlled using the control law u = —3R™'¢" () <VV (x, Wc>)T.
2.6 LIP Approximation of the Value Function
For feasibility of analysis, the optimal value function is approximated using a LIP
approximation
1% <x, Wc> = WCTO‘ (x), (2-14)
where o : R® — R’ is a continuously differentiable nonlinear activation function such
that o (0) = 0 and o’ (0) = 0, and W, € R%, where L denotes the number of unknown

parameters in the approximation of the value function. Based on (2—7), the optimal

policy is approximated using the LIP approximation
~ 2 A 1 -1 T T T
a (x Wa> & SR (@) Vo (2) W (2-15)

The update law used by the critic to update the weight estimates is given by

A

W. = _ncrb_u(sta
p
. wa —
P= A=l =51 ) Lyn<ry IT (to)|| < T, (2-16)

where w £ Vo (1) 2 € R” denotes the regressor vector, p 2 1+vw'Tw € R, 1., 8,7 € Ryg
are constant learning gains, I' € R is a constant saturation constant, and I' is the least
squares gain matrix. The update law used by the actor to update the weight estimates is

derived using a Lyapunov-based stability analysis, and is given by

A - - - Vo (z)g(x) R g (2)VoT (z WawT
= o (1 17) — ety + YT @9 R ()9 )

(2-17)

Y
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Figure 2-1. Actor-critic architecture

where 7,1, 7.2 € R+ are constant learning gains. A block diagram of the resulting control
architecture is presented in Figure 2-1.

The stability analysis indicates that the sufficient exploration condition takes the
form of a PE condition that requires the existence of positive constants ¢) and 7" such

that the regressor vector satisfies

t+T

w (1) w’ (7) 5
Gl < / Tdﬂ (2-18)

forall t € R>y,.

Let W, £ W — W, and W, £ W — W, denote the vectors of parameter estimation
errors, where W € R’ denotes the constant vector of ideal parameters. Provided (2—18)
is satisfied, and under sufficient conditions on the learning gains and the constants 1

and T, the candidate Lyapunov function

_ 1 - I R
Vi (g: W, Wa> SV (@) + SWIT W+ WV,
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can be used to establish convergence of z (t), W, (t), and W, (¢) to a neighborhood of

zero as t — oo, when the system in (2—1) is controlled using the control law

w(t) =i (g; (t), W (t)) , (2-19)

and the parameter estimates W, and W, are updated using the update laws in (2—16)
and (2-17), respectively.
2.7 Uncertainties in System Dynamics
The use of the state derivative to compute the BE in (2—12) is advantageous
because it is easier to obtain a dynamic estimate of the state derivative than it is to
identify the system dynamics. For example, consider the high-gain dynamic state

derivative estimator

o= (ka+1) 7, (2—20)

where # € R” is an estimate of the state derivative, 7 £ z — 7 is the state estimation
error, and k, a € R are identification gains. Using (2—20), the BE in (2—12) can be

approximated by 4, as
5, (t) = V.,V (x (t), W, (t)) P +r(z(t),u).

The critic can then learn the value function weights by using an approximation of

cumulative experience, quantified by the integral error
t
E(t) = / 52 (r) dr, (2-21)
0

by using 4, instead of 4, in (2—16). Under additional sufficient conditions on the gains &

and «, the candidate Lyapunov function

o - R SO | 1
v, (x W, W, 7, xf) LV (@) 4 SWITT Wt SWIWa b 5875 + Safay,
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where z; £ 7 + ai, can be used to establish convergence of z (t), W. (t), W, (), #, and
xy to a neighborhood of zero, when the system in (2—1) is controlled using the control
law (2—19). This extension of the actor-critic method to handle uncertainties in the
system dynamics using derivative estimation is known as the ACI architecture. A block
diagram of the ACI architecture is presented in Figure 2-2.

In general, the controller in (2—19) does not ensure the PE condition in (2—18).
Thus, in an online implementation, an ad-hoc exploration signal is often added to
the controller (cf. [43, 49, 54]). Since the exploration signal is not considered in the
the stability analysis, it is difficult the ensure stability of the online implementation.
Moreover, the added probing signal causes large control effort expenditure and there
is no means to know when it is sufficient to remove the probing signal. The following
chapter addresses the challenges associated with the satisfaction of the condition in
(2—18) by using simulated experience along with the cumulative experience collected

along the system trajectory.
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CHAPTER 3
MODEL-BASED REINFORCEMENT LEARNING FOR APPROXIMATE OPTIMAL
REGULATION

In this chapter, a CL-based implementation of model-based RL is developed to
solve approximate optimal regulation problems online with a relaxed PE-like condition.
The development is based on the observation that, given a model of the system,
model-based RL can be implemented by evaluating the BE at any number of desired
points in the state space. In this result, a parametric system model is considered,
and a CL-based parameter identifier is developed to compensate for uncertainty in
the parameters. UB regulation of the system states to a neighborhood of the origin,
and convergence of the developed policy to a neighborhood of the optimal policy
are established using a Lyapunov-based analysis, and simulations are presented to
demonstrate the performance of the developed controller.

3.1 Motivation

An ACI architecture to solve optimal regulation problems was presented in Chapter
2, under the restrictive PE requirement in (2—18). The PE requirement is a consequence
of the attempt to achieve uniform approximation using information obtained along one
system trajectory. In particular, in order to approximate the value function, the critic
in the ACI method utilizes experience gained along the system trajectory, quantified
by the cumulative observed error in (2—13), instead of the total error in (2—11). The
critic in the ACI architecture is restricted to the use of experience gained along the
system trajectory because evaluation of the BE requires state derivatives, and the
dynamic state-derivative estimator can only estimate state derivatives along the system
trajectory.

If the system dynamics are known, or if a system identifier can be developed
to estimate the state derivative uniformly over the entire operating domain, then the

critic can utilize simulated experience along with gained experience to learn the value
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function. In particular, the BE in (2—10) can be approximated as
3X (3:, WC, Wa> £ fo/ (m, Wc) X (:L’,ﬁ (m, Wa)> +7r <:U, U (x, Wa>> ,

where X : R” x R™ — R" denotes the estimated dynamics that map the state action pair
<3c, U (x, Wa>) to the corresponding state derivative. Since the control effectiveness and
the control signal in (2—1) are known, a uniform parametric approximation f (x, é) of the
function f, where 6 denotes the matrix of parameter estimates, is sufficient to generate a
uniform estimate of the system dynamics. In particular, using f, the BE in (2—10) can be

approximated as
5 (x W, W, é) ER VA% <x W) (f <ac é) tg(2)a <x W)) +r (x @ (x W)) . (3-1)

Similar to Section 2.6, the cumulative gained experience can be quantified using the
integral error in (2—21), where 6, (1) = 0 (x (1), We (), W, (1) ,é(r)).

Given current parameter estimates W, (¢), W, (t) and 0 (¢), the approximate BE in
(3—1) can be evaluated at any point x; € R™. That is, the critic can gain experience
on how well the value function is estimated an any arbitrary point z; in the state space
without actually visiting z;. In other words, given a fixed state x; and a corresponding
planned action @ (xi, Wa>, the critic can use the estimated drift dynamics f (xi, Wa>
to simulate a visit to z; by computing an estimate of the state derivative at x;, resulting
in simulated experience quantified by the BE 4, (t) = 6 (:r;i, W, (t), W, (t) ,é(t)). The
simulated experience can then be used along with gained experience by the critic to
learn the value function. The motivation behind using simulated experience is that via
selection of multiple (say NV) points, the error signal in (2-21) can be augmented to yield

a heuristically better approximation E,; (¢), given by

t

B [ (#0435 ) an

0
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Figure 3-1. Simulation-based actor-critic-identifier architecture

to the desired error signal in (2—11). A block diagram of the simulation-based ACI
architecture is presented in Figure (2-2).

Online implementation of simulation of experience requires uniform online estima-
tion of the function f using the parametric approximation f (x, é), i.e., the parameter
estimates # need to converge to their true values 6. In the following, a system identi-
fier that achieves uniform approximation of f is developed based on recent ideas on
data-driven parameter convergence in adaptive control (cf. [92,93, 147]).

3.2 System ldentification
Let f (z°) = Y (x°) 0, for all z° € R", be a linear parameterization of the function

f,whereY : R" — R"*? is the regression matrix, and 6§ € R? is the vector of constant
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unknown parameters.! Let # € RP be an estimate of the unknown parameter vector 6.

To estimate the drift dynamics, an identifier is designed as

=Y (2)0+g(x)a+ k7, (3-2)

where the measurable state estimation error 7 is defined as & = = — %, and k, € R™*"
is a positive definite, constant diagonal observer gain matrix. From (2-1) and (3-2) the

identification error dynamics can be derived as
i=Y ()0 — k,Z, (3-3)

where 6 is the parameter identification error defined as 6 £ 6 — 4.
3.2.1 CL-based Parameter Update

In traditional adaptive control, convergence of the estimates 0 to their true values 6
is ensured by assuming that a PE condition is satisfied [89—91]. To ensure convergence
without the PE condition, this result employs a CL-based approach to update the
parameter estimates using recorded input-output data [92,93, 147].

For ease of exposition, the following system identifier development is based on the
assumption that the data required to perform CL-based system identification is available
a priori in a history stack. For example, data recorded in a previous run of the system
can be utilized, or the history stack can be recorded by running the system using a
different known stabilizing controller for a finite amount of time until the recorded data
satisfies the rank condition (3—4) detailed in the following assumption.

From a practical perspective, a recorded history stack is unlikely to be available

a priori. For such applications, the history stack can be recorded online. Provided

' The function f is assumed to be LP for ease of exposition. The system identifier can
also be developed using multi-layer NNs for non-LP functions. For example, a system
identifier developed using single-layer NNs is presented in Chapter 6.
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the system states are exciting over a finite time interval t € [to,t + ] (versust €

[to, 00) as in traditional PE-based approaches) until the history stack satisfies (3—4),
then a modified form of the controller developed in Section 3.3 can be used over the
time interval ¢ € [to, to + ﬂ, and the controller developed in Section 3.3 can be used
thereafter. The required modifications to the controller, and the resulting modifications to
the stability analysis are provided in Appendix A.

Assumption 3.1. [92, 93] A history stack #,, containing recorded state-action

pairs {(z;,u;) | j =1,---, M}, and corresponding numerically computed estimates

AL

{z;|j=1,---, M} of the state derivative z; = f (x;) + ¢ (z;) 4; that satisfies
M
rank (Z YjTYj> = p,
j=1

Il = @] < d. Vj (3-4)

is available a priori, where Y; =Y (z;), and d € R, is a positive constant.
Based on Assumption 3.1, the update law for the parameter estimates in (3—2) is

designed as
X M ~
0= FQY (I)Tli’ + F@/{Ze ZY}T (ij - gjﬁj - Y;Q) s (3—5)
j=1

where g; = g (z,), Iy € RP*? is a constant positive definite adaptation gain matrix, and
k¢ € R is a constant positive CL gain. From (2—1) and the definition of 6, the bracketed
term in (3-5), can be expressed as i, — g;i; — Y;0 = Y;0 + d;, where d; 2 &; — i, € R",
and the parameter update law in (3—5) can be expressed in the advantageous form

. M M
0 =ToY (2)" & + Doky (Z Y;.TY;) 0+ Toke » Y} d;. (3-6)

j=1 j=1
Even if a history stack is available a priori, the performance of the estimator may be

improved by replacing old data with new data. The stability analysis in Section 3.4

51



allows for a changing history stack through the use of a singular value maximizing
algorithm (cf. [93,147]).
3.2.2 Convergence Analysis

Let V5 : R™™ — R, be a positive definite continuously differentiable candidate

Lyapunov function defined as
PN R
Vol(z) = CEa + 59 r,"o, (3-7)

- 1T
where z = [:ET, GT} € R"*?. The following bounds on the Lyapunov function can be
established:

1 . 1 _
5 min (1,9) [l2]” < Vo (2) < 5 max (1,7) |12, (3-8)

where ~,7 € R denote the minimum and the maximum eigenvalues of the matrix I' .
Using (3—3) and (3—6), the Lyapunov derivative can be expressed as

M M
Vo = —Tky7 — 67k (Z YjTYj) 0 — k0" > Yd;. (3-9)

J=1 J=1

Let y € R be the minimum eigenvalue of (Zjﬂil YjTYj>. Since (Zﬁil YjTYj> is sym-
metric and positive semi-definite, (3—4) can be used to conclude that it is also positive
definite, and hence y > 0. Using (3—-8), the Lyapunov derivative in (3—9) can be bounded

as
o < ke 1 — o ]+ kot 4] (3-10)

In (3—10), dy = sz]‘il |Y;||, and k, € R denotes the minimum eigenvalue of the matrix
k.. The inequalities in (3—8) and (3—10) can be used to conclude that HéH and || z||
exponentially decay to an ultimate bound as t — oc.

The CL-based observer results in exponential regulation of the parameter and the

state derivative estimation errors to a neighborhood around the origin. In the following,
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the parameter and state derivative estimates are used to approximately solve the HJB
equation without the knowledge of the drift dynamics.
3.3 Approximate Optimal Control
3.3.1 Value Function Approximation
Approximations to the optimal value function V* and the optimal policy «* are
designed based on NN-based representations. A single layer NN can be used to

represent the optimal value function V* as
V*(2°) = WTa (2°) + € (2°), (3-11)

for all z° € R", where W € R” is the ideal weight matrix and o : R — R and ¢ : R"® — R
are introduced in (2—14).

Based on (3—11) a NN-based representation of the optimal controller is derived as
o (2°) = —%Rl g7 () (Vo© () W + Ve (2)) , (3-12)

for all z° € R". The NN-based approximations V : R” x RX — R of the optimal value
function in (3—11) and @ : R x RY — R™ of the optimal policy in (3—12) are given by
(2—14) and (2—15), respectively, where W, € RZ and W, € R’ are estimates of the ideal
weights 1. The use of two sets of weights to estimate the same set of ideal weights is
motivated by the stability analysis and the fact that it enables a formulation of the BE
that is linear in the value function weight estimates ., enabling a least squares-based
adaptive update law. Using the parametric estimates V and 4 of the value function

and the policy from (2—-14) and (2—15), respectively, and using the system identifier

developed in Section 3.2, the BE in (3—1) can be expressed as
St = wTWC +2TQx + 4" (x, Wa> Ru (:)3, Wa> ,

where w € R’ is the regressor vector defined as w £ Vo (1) (Y ()0 + g ()@ (x, Wa>> :
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3.3.2 Simulation of Experience via BE Extrapolation

In traditional RL-based algorithms, the value function estimate and the policy
estimate are updated based on observed data. The use of observed data to learn
the value function naturally leads to a sufficient exploration condition which demands
sufficient richness in the observed data. In stochastic systems, this is achieved using
a randomized stationary policy (cf. [43, 48, 49]), whereas in deterministic systems,
a probing noise is added to the derived control law (cf. [56, 57,59, 114, 115]). The
technique developed in this result implements simulation of experience in a model-
based RL scheme by using Yd as an estimate of the uncertain drift dynamics f to
extrapolate the approximate BE to unexplored areas of the state space. The following
rank condition enables the extrapolation of the approximate BE to a predefined set of
points {z; € R" | : =1,--- , N} in the state space.

Assumption 3.2. There exists a finite set of points {z; e R" | i = 1,--- , N} such that

N
0<c2 2 inf (A Z“’i—wiT (3-13)
= N tERZtO min — pl 3

where .., {-} denotes the minimum eigenvalue. In (3-13), p; = 1 + vw!Tw; € R
are normalization terms, where v € R is a constant positive normalization gain,

I' € RE*E s a time-varying least-squares gain matrix, R>;, £ [ty,o0), and w; =
Vo (z;) (Y (2:) 0+ g (z;) @ (g; W)) .

The rank condition in (3—13) depends on the estimates 6 and W,; hence, in general,
it is impossible to guarantee a priori. However, unlike the PE condition in previous
results such as [56, 57,59, 114, 115], the condition in (3—13) can be verified online at
each time ¢. Furthermore, the condition in (3—13) can be heuristically met by collecting
redundant data, i.e., by selecting more points than the number of neurons by choosing

N> L.
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To simulate experience, the approximate BE is evaluated at the sampled points

{z;|i=1,--- N} as

5” = w?WC + ZL‘ZTQIZ +ar (mi, Wa> Ru (xi, Wa> .
For notational brevity, the dependence of the functions f, Y, g, o, €, , i, &, and &,
on the state, time, and the weights is suppressed hereafter. A CL-based least-squares

update law for the value function weights is designed based on the subsequent stability

analysis as
I/Vc = _nclrggt T]C2F § wz(sth
P

T
~ (or- nclr7r) yepery D) < T. (3-14)

where 1, denotes the indicator function, I' € R., is the saturation constant, 5 € R. is
the forgetting factor, and 7.1, 7.2 € R.( are constant adaptation gains. The update law in

(3—14) ensures that the adaptation gain matrix is bounded such that
L <)) <T, Vt € Ruy, (3-15)

where I' € R is a constant. The policy weights are then updated to follow the value

function weights as?

: S 3 WGTW, WGT Wl
Wy = —7a1 (WQ—WC) — W + (’71 Wl 2”24Np Wi )Wc, (3-16)

2 Using the fact that the ideal weights are bounded, a projection-based (cf. [148]) up-

datelaw W, = proj {—nal (Wa - WC)} can be utilized to update the policy weights.

Since the policy weights are bounded a priori by the projection algorithm, a less complex
stability analysis can be used to establish the result in Theorem 3.1.
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where 1,1, 1.2 € R are positive constant adaptation gains, and G, £ VogR '¢"Vo' €
RLXL.

The update law in (3—14) is fundamentally different from the CL-based adaptive
update in results such as [92, 93], in the sense that the points {z; e R" |i=1,--- N}
are selected a priori based on prior information about the desired behavior of the sys-
tem, and using an estimate of the system dynamics, the approximate BE is evaluated
at {z; e R"|i=1,---,N}. Inthe CL-based adaptive update in results such as [92, 93],
the prediction error is used as a metric for learning. The prediction error depends on
measured or numerically computed values of the state derivative; hence, the prediction
error can only be evaluated at observed data points along the state trajectory.

3.4 Stability Analysis
To facilitate the subsequent stability analysis, the approximate BE is expressed in

terms of the weight estimation errors W, and W, as

~

~ U -1 1
oy = —wIW, —WTVveY6 + ZWaT G, W, + ZGE — Vef + 5WTvaneT, (3-17)

where G 2 gR™'¢" € R™™and G, 2 VeGVe" € R. Similarly, the approximate BE

evaluated at the sampled states {z; | i = 1,--- , N} can be expressed as
. 1 - .
O = —w; We + ZWaTGm‘Wa — W'V, Y0 + A, (3-18)

where Y; =Y (z;), and A; £ IW'Vo,G; Vel + 1G.; — Ve, f; € R is a constant.
Let Z ¢ R?>"*2L+P denote a compact set, and let y £ Z N R™. On the compact set

x C R™ the function Y is Lipschitz continuous; hence, there exists a positive constant
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Ly € R such that®
|Y (2)]| < Ly [|=||, Vo € x. (3-19)

Furthermore, using the universal function approximation property, the ideal weight
matrix W € R’ is bounded above by a known positive constant 17 in the sense that
W] < W and the function reconstruction error ¢ : R* — R is uniformly bounded over
x such that sup,.c, |€ (z°)| < €and sup,oc, | Ve (z°)] < Ve. Using (3-15), the normalized

regressor « can be bounded as

) |
o (0 H = 3T

(3-20)

For brevity of notation, for a function ¢ : R — R, define the operator (-) : R>y —

Rxo as & £ sup,.c, & (z°), and the following positive constants:

— N —_ —_—
s by [00Ve o S~ (el VoK -y LonalIVell o L
1 4 /—VE ’ 2 - AN /—V£ ) 3 4 /—UE ) 4 4 ell»

N T N
go & Ma2WINOGVEr + G|l |IS~newidif| 0 a Bl +Z(nca HGaiH>
’ 8y/vT ~— Np ||" " &AWL = \SNViL )’

1 1 — =
Vg & §WTGJ + §V€GTVUT + 797W2 +1.2W, q = Amin{@}
1 . (4 Nt Na+ 202, Koy 302 303 kod;
1 1 B0 D 9,. (3-21
K 2mm(2’ 37 6 4 ' 4nczg+2(77a1+277a2) 2y e (572

To facilitate the stability analysis, let V7, : R*""247 x Ry, — R, be a continuously

differentiable positive definite candidate Lyapunov function defined as

1~ S
Vi (Z,t) 2 V*(2) + §WCT W, + 5WaT W, + Vo (2), (3-22)

3 The Lipschitz property is exploited here for clarity of exposition. The bound in (3—19)
can be easily generalized to ||Y (x)|| < Ly (||z||) ||=], where Ly : R — R s a positive,
non-decreasing function.
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where V* is the optimal value function, V{, was introduced in (3—7) and
~ ~ 1T
7Z = |8, W wr ' o' .
Using the fact that V* is positive definite, (3—8), (3—15) and Lemma 4.3 from [149] yield
v(l[zel) <V (z2°t) <o (l[2°]]), (3-23)

forallt € Rs;, and for all Z° € R?>" 257, In (3-23), v,7 : Ry — Rsg are class K
functions.
The sufficient conditions for UB convergence are derived based on the subsequent

stability analysis as

Ta1 + 277a2

> 0, W . > 2t PR 2 S
6 ! ( 2 4 e 2~
W 4+ 11 + 2 (¥ 0, 9 A
%>C27 + Na1 + (;:Cl 2+ (U3/(3) )’ (3-24)

\/Z < (3-25)
U

where Z £ v~! (6 (max (HZ (to)]l , \/%))) r € Rs( denotes the radius of the set Z
defined as r £ Lsup {||lz — y|| | =,y € Z}, and (1, (>, (3 € R are known positive adjustable
constants. The Lipschitz constants in (3—19) and the NN function approximation

errors in (3—11) depend on the underlying compact set; hence, given a bound on the
initial condition Z (t,) for the concatenated state Z, a compact set that contains the
concatenated state trajectory needs to be established before adaptation gains satisfying
the conditions in (3—24) can be selected. In the following, based on the subsequent
stability analysis, an algorithm is developed to compute the required compact set,
denoted by Z c R*"*2L+7_ In Algorithm 3.1, the notation {(-)}, denotes the value of (-)
computed in the i iteration. Since the constants : and v; depend on Ly only through
the products Ly Ve and L<—§ Algorithm 3.1 ensures the satisfaction of the sufficient

condition in (3—25). The main result of this chapter can now be stated as follows.

58



Algorithm 3.1 Gain Selection

First iteration:

Givenz € Ry such that ||Z (to)| < z,let 2, £ {¢ e R* ™27 | ||¢|| < v~ (v(2))}. Using

Z,, compute the bounds in (3—21) and select the gains according to (3—24). If {\/UI} <
ta

z, set Z = Z, and terminate.
Second iteration:

If z < {\/vzl} ,let 2, £ {5 € R2F2LAp | ig|| < vt <‘( UL >)} Using Z,, compute

the bounds in (3—21) and select the gains according to (3—24). If ‘ g {Uil} ,set Z =
1

Z, and terminate.
Third iteration:

If {5}2 > {ﬁl}l increase the number of NN neurons to {L}, to ensure {Ly }, {Ve}, <

<. S ; {Lv} {Lv}
{Ly}Q{VE}Q,Vz = 1,.., N, increase the constant (3 to ensure {CSY}; < {CY}; and in-

crease the gain k, to satisfy the gain conditions in (3—24). These adjustments ensure

{1}5 < {1}, Set Z = {5 € R igf < v <@ ({ vﬁl} ))} and terminate.
2

s I

Theorem 3.1. Provided Assumptions (3.1) - (3.2) hold and gains q, 1.2, na2, and ky are
selected large enough using Algorithm 3.1, the observer in (3—2) along with the adaptive
update law in (3-5) and the controller in (2—15) along with the adaptive update laws in
(3—14) and (3—16) ensure that the state x, the state estimation error i, the value function

weight estimation error W, and the policy weight estimation error W, are UB.

Proof. The time derivative of (3—22) along the trajectories of (2—1), (3-3), (3—-6), (3—14),
and (3—16) is given by

N

. . ~ W a ¢ Wi = ~ S ~ 2

Vi =VV (f+gt) - WF (—77(;1;(51, - % Z ;5&) -w] <—7]a1 (Wa - Wc) - 77a2Wa)
i=1 1"

1 - B wa B 5 ~ ~ _ N 5 5 M
- SWIT <5p — et (r 7 r)) IW, — &k, & — kof” (Z Yf}g) 0 — k0" > Y/d;

j 1 Jj=1

T (UdG TW,w? Z N2 GL.W T > . (3-26)

4N p;

Substituting for the approximate BEs from (3—17) and (3—18), using the bounds in
(3—19) and (3—-20), and using Young’s inequality, the Lyapunov derivative in (3—26) can
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be upper-bounded as

) 2 112
Vi < =3 — 22 i | - A B2l (L= ) i
2
NeaC CUW +na U3 Hxll ’ = 12 Koy 0y H H
( 3 U+ G + 5 G W, 1 Cl — U533 || x|
MNa1 + 27](12 197 HW”) 2 319% 319% k@dg 1
Y ||| + 2= + + 5% 4 2q,.
( 6 T H H 477022 2 (nal + 27]&2) 2g 4
(3-27)

Provided the gains are selected based using Algorithm 3.1, the Lyapunov derivative in

(3—27) can be upper-bounded as

Vi< —ulz|?, vzl =, /= >0, (3-28)
[

forallt > 0andVZ € Z. Using (3—23), (3—25) and (3—28), Theorem 4.18 in [149]
can now be invoked to conclude that Z is UB in the sense that limsup,_, . || Z (t)]] <
vt (6 (\/%)) Furthermore, the concatenated state trajectories are bounded such
that || Z (t)|| < Z for all t € Rs,,. Since the estimates 1V, approximate the ideal weights
W, the definitions in (3—12) and (2—15) can be used to conclude that the policy @

approximates the optimal policy u*.# O

3.5 Simulation
This section presents two simulations to demonstrate the performance and the
applicability of the developed technique. First, the performance of the developed
controller is demonstrated through approximate solution of an optimal control problem
that has a known analytical solution. Based on the known solution, an exact polynomial

basis is used for value function approximation. The second simulation demonstrates

4 If H,,4 is updated with new data, (3—3) and (3-6) form a switched system. Provided
H;q is updated using a singular value maximizing algorithm, (3—28) can be used to es-
tablish that V7, is a common Lyapunov function for the switched system (cf. [93]).
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the applicability of the developed technique in the case where the analytical solution,
and hence, the basis for value function approximation is unknown. In this case, since
the optimal solution is unknown, the optimal trajectories obtained using the developed
technique are compared with optimal trajectories obtained through a numerical optimal
control technique.
3.5.1 Problem with a Known Basis

The performance of the developed controller is demonstrated by simulating a
nonlinear, control-affine system with a two dimensional state » = [x;, x5]7. The system

dynamics are described by (2—1), where [57]

a
T1 T2 0 0 b 0
f- 2 e (3-29)
0 0 a1 (1 — (cos(2z1)+2)7) c cos (2x1) + 2
d

where a, b, ¢, d € R are positive unknown parameters. The parameters are selected as®
a=—-1,b=1,¢=—-0.5and d = —0.5. The control objective is to minimize the cost in
(2—4), where Q = 4> and R = 1. The optimal value function and optimal control for the
system in (3—29) are given by V*(z) = 127 + 23, and u*(z) = —(cos(2x1) + 2)z, (cf. [57]).

To facilitate the identifier design, thirty data points are recorded using a singular
value maximizing algorithm (cf. [93]) for the CL-based adaptive update law in (3-5). The
state derivative at the recorded data points is computed using a fifth order Savitzky-
Golay smoothing filter (cf. [150]).

To facilitate the ADP-based controller, the basis function ¢ : R? — R3 for value
function approximation is selected as o = { 23, Tix, 23 } Based on the analytical

solution, the ideal weights are 7 = [0.5, 0, 1]”. The data points for the CL-based update

® The origin is an unstable equilibrium point of the unforced system i = f ().
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law in (3—14) are selected to be on a 5 x 5 grid on a 2 x 2 square around the origin. The
learning gains are selected as 7.1 = 1, 2 = 15, 1,1 = 100, 1,2 = 0.1, v = 0.005, k, =
101542, I'y = 201444, and ky = 30. The policy and the value function weight estimates are
initialized using a stabilizing set of initial weights as W, (0) = W, (0) = [1, 1, 1]" and the
least squares gain is initialized as I" (0) = 100/3+3. The initial condition for the system
state is selected as = (0) = [-1, —1]", the state estimates # are initialized to be zero, the
parameter estimates § are initialized to be one , and the history stack for CL is recorded
online.

Figures 3-2 - 3-4 demonstrates that the system state is regulated to the origin, the
unknown parameters in the drift dynamics are identified, and the value function and the
policy weights converge to their true values. Furthermore, unlike previous results, an

ad-hoc probing signal to ensure PE is not required.

State Trajectory Control Trajectory

0.4 w w w \ 2.5 ‘ : :
02 [ 2
15
T 1
0.5

| or
Al
-1 : . : : -0.5 : ; : :
2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Figure 3-2. System state and control trajectories generated using the developed method
for the system in Section 3.5.1.

3.5.2 Problem with an Unknown Basis
To demonstrate the applicability of the developed controller, a nonlinear, control-

affine system with a four dimensional state = = [z, xo, 3, 74]7 is simulated. The system
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Value Function Weights

Policy Weights

0 2 4 6 8 10
Time (s)

Time (s)

Figure 3-3. Actor and critic weight trajectories generated using the developed method
for the system in Section 3.5.1 compared with their true values. The true
values computed based on the analytical solution are represented by dotted

lines.

dynamics are described by (2—1), where

" 0, 0, 0, 0 fa
Xy fd2
f= + 0, 0, 0, 0
_M—lvm s |: M*l’ M1 1 D fa
L Tyq ] - = _fsQ
T - T
9= Ho, 0] , {0, 0| » (M‘I)T} (3-30)

In (83=30), D £ diag [x3, 4, tanh (x3), tanh (x4)] and the matrices M, V,,, F;, F, € R?*?

. D1+ 2p3ca, P2+ p3co fa, 0
are definedas M £ JF, &  Vin
P2 + p3ca, P2 0, fa
—p3SaTy, —DP3S2 (T3 + x4) fsitanh (x3), 0
,and F;
P3S23, 0 0, fsatanh (z3)

co = cos(x3), so = sin(xg), p1 = 3.473, p» = 0.196, and p3 = 0.242, and fy1, fao,

fs1, fs2 € R are positive unknown parameters. The parameters are selected as f;; = 5.3,
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Unknown Parameters in Drift Dynamics

1.5
1 ¥y
0.5
s 0
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® i,
* 0,
-1.5 ‘
0 2 4 6 8 10

Time (S)

Figure 3-4. Drift parameter estimate trajectories generated using the developed method
for the system in Section 3.5.1 compared to the actual drift parameters. The
dotted lines represent true values of the drift parameters.

fao = 1.1, fq = 8.45,and f,, = 2.35. The control objective is to minimize the cost in
(2—4), where @ = diag ([10, 10, 1, 1]) and R = diag ([1, 1]).
To facilitate the ADP-based controller, the basis function o : R* — R!° for value

function approximation is selected as

— 2 2 2 2
o(x) = T1X3, Ty, T3To, T4y, T1Xo, 43, Ti, T3, T3, Tj

The data points for the CL-based update law in (3—14) are selected to be on a 3x3x3x3
grid around the origin, and the policy weights are updated using a projection-based
update law. The learning gains are selected as 1., = 1, .2 = 30, 7,1 = 0.1, v = 0.0005,
k, = 1014, T'y = diag(]90, 50, 160, 50]), and k, = 1.1. The least squares gain is initialized
as I' (0) = 10007, and the policy and the value function weight estimates are initialized
as W, (0) = W, (0) =[5, 5, 0,0, 0, 0, 25, 0, 2,2]" . The initial condition for the system

state is selected as  (0) = [1, 1, 0, 0], the state estimates # are initialized to be zero,
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Figure 3-5. System state and control trajectories generated using the developed method
for the system in Section 3.5.2.

the parameter estimates 6 are initialized to be one, and a history stack containing thirty
data points is recorded online using a singular value maximizing algorithm (cf. [93]) for
the CL-based adaptive update law in (3-5). The state derivative at the recorded data
points is computed using a fifth order Savitzky-Golay smoothing filter (cf. [150]).
Figures 3-5 - 3-7 demonstrates that the system state is regulated to the origin, the
unknown parameters in the drift dynamics are identified, and the value function and
the policy weights converge. The value function and the policy weights converge to the

following values.
W* =W* =[24.7, 1.19, 2.25, 2.67, 1.18, 0.93, 44.34, 11.31, 3.81,0.10]" . (3-31)

Since the true values of the value function weights are unknown, the weights in
(3—31) cannot be compared to their true values. However, a measure of proxim-

ity of the weights in (3—31) to the ideal weights 17 can be obtained by compar-

ing the system trajectories resulting from applying the feedback control policy

u* (z) = —iR'g" (z) Vo' (z) W* to the system, against numerically computed opti-

mal system trajectories. In Figure 3-8, the numerical optimal solution is obtained using
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Value Function Weights Policy Weights
50 w w w w 50 ‘ ‘ :

40

30

20¢

W.(t)

10

0N
-10+ V/'
_20 L L L L L L L L
0 10 20 30 40 50 0 10 20 30 40 50
Time (s) Time (s)

Figure 3-6. Actor and critic weight trajectories generated using the developed method
for the system in Section 3.5.2. Since an analytical optimal solution is not
available, the weight estimates cannot be compared with their true values.

Unknown Parameters in Drift Dynamics

0 10 20 30 40 50
Time (s)
Figure 3-7. Drift parameter estimate trajectories generated using the developed method

for the system in Section 3.5.2 compared to the actual drift parameters. The
dotted lines represent true values of the drift parameters.
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Figure 3-8. State and control trajectories generated using feedback policy @* ()
compared to a numerical optimal solution for the system in Section 3.5.2.

an infinite-horizon Gauss pseudospectral method (cf. [9]) using 45 collocation points.
Figure 3-8 indicates that the weights in (3—31) generate state and control trajectories
that closely match the numerically computed optimal trajectories.
3.6 Concluding Remarks

An online approximate optimal controller is developed, where the value function is
approximated without PE via novel use of a CL-based system identifier to implement
simulation of experience in model-based RL. The PE condition is replaced by a weaker
rank condition that can be verified online from recorded data. UB regulation of the
system states to a neighborhood of the origin, and convergence of the policy to a
neighborhood of the optimal policy are established using a Lyapunov-based analysis.
Simulations demonstrate that the developed technique generates an approximation to
the optimal controller online, while maintaining system stability, without the use of an
ad-hoc probing signal. The Lyapunov analysis suggests that the convergence critically
depends on the amount of collective information available in the set of BEs evaluated at

the predefined points. This relationship is similar to the conditions on the strength and

67



the interval of PE that are required for parameter convergence in adaptive systems in
the presence of bounded or Lipschitz additive disturbances.

The control technique developed in this chapter does not account for additive
external disturbances. Traditionally, optimal disturbance rejection is achieved via
feedback-Nash equilibrium solution of an H,, control problem. The H,, control problem
is a two-player zero-sum differential game problem. Motivated by the need to accom-
plish disturbance rejection, the following chapter extends the results of this chapter to
obtain feedback-Nash equilibrium solutions to a more general N —player nonzero-sum

differential game.
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CHAPTER 4
MODEL-BASED REINFORCEMENT LEARNING FOR ONLINE APPROXIMATE
FEEDBACK-NASH EQUILIBRIUM SOLUTION OF N-PLAYER NONZERO-SUM
DIFFERENTIAL GAMES

In this chapter, a CL-based ACI architecture (cf. [59]) is used to obtain an approx-
imate feedback-Nash equilibrium solution to an infinite-horizon N-player nonzero-sum
differential game online, without requiring PE, for a nonlinear control-affine system with
uncertain LP drift dynamics.

A system identifier is used to estimate the unknown parameters in the drift dynam-
ics. The solutions to the coupled HJ equations and the corresponding feedback-Nash
equilibrium policies are approximated using parametric universal function approximators.
Based on estimates of the unknown drift parameters, estimates for the Bellman errors
are evaluated at a set of pre-selected points in the state-space. The value function and
the policy weights are updated using a concurrent learning-based least-squares ap-
proach to minimize the instantaneous BEs and the BEs evaluated at pre-selected points.
Simultaneously, the unknown parameters in the drift dynamics are updated using a his-
tory stack of recorded data via a concurrent learning-based gradient descent approach.
It is shown that under a condition milder than PE, UB convergence of the unknown drift
parameters, the value function weights and the policy weights to their true values can
be established. Simulation results are presented to demonstrate the performance of the
developed technique without an added excitation signal.

4.1 Problem Formulation and Exact Solution

Consider a class of control-affine multi-input systems

N
T=f(x)+ Zgi () ug, (4-1)
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where = € R” is the state and u; € R™: are the control inputs (i.e. the players). In (4—1),
the unknown function f : R* — R” is LP' , the functions g, : R® — R™*™i are known,
locally Lipschitz continuous and uniformly bounded, the function f is locally Lipschitz,

and f (0) = 0. Define a cost functional

o0

Ji (Tiy Uiy oy uy) = /ri (x; (0),u; (0))do (4-2)
0
where r; : R” x R™ x --. x R™ — R, denotes the instantaneous cost defined as
i (2, ug, . uy) 2 2T Qi + Zj.vzl uj Rijuj, where Q; € R™" and R;; € R™*™ are constant
positive definite matrices. The objective of each agent is to minimize the cost functional

in (4—2). To facilitate the definition of a feedback-Nash equilibrium solution, let
U2 {{u;:R" = R™ i=1,..N} | {uy,.,ux} is admissible with respect to (4—1)}

be the set of all admissible tuples of feedback policies. A tuple {u, ..,uy} is called
admissible if the functions u; are continuous for all « = 1, .., NV, and result in finite costs
Jiforalli=1,. N.Let ;"™ "™} Rn _ R, denote the value function of the i*" player

with respect to the tuple of feedback policies {@;,..,uy} € U, defined as

o0

VN () & /Ti (¢ (1,2), 0 (¢ (1,2)), ..., un (& (1, 2))) dT, (4-3)

t
where ¢ (7, x) for 7 € [t,00) denotes the trajectory of (4—1) obtained using the feedback
controller u; (1) = w; (¢ (7, x)) and the initial condition ¢ (t,z) = z. In (4-3), r; :
R™ x R™ x --- x R™ — R, denotes the instantaneous cost defined as r; (z, u;, .., ux) =

2TQir + I ul Riju;, where Q; € R™™ is a positive definite matrix. The control

! The function f is assumed to be LP for ease of exposition. The system identifier can
also be developed using multi-layer NNs. For example, a system identifier developed
using single-layer NNs is presented in Chapter 6.
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objective is to find an approximate feedback-Nash equilibrium solution to the infinite-
horizon regulation differential game online, i.e., to find a tuple {uf, ..,u} } € U such that

foralli € {1,.., N}, for all z € R", the corresponding value functions satisfy

V*

)

(;E) N V;{uf,u;,..,u;‘,..,u}‘\,} (Jj) S ‘/i{ui‘,uQ,‘.,ﬂi,..,u}‘\,} (I)

for all w; such that {uf, ul, .., w;,..,uy} € U.

Provided a feedback-Nash equilibrium solution exists and provided the value
functions are continuously differentiable, an exact closed-loop feedback-Nash
equilibrium solution {u}, .., u%} can be expressed in terms of the value functions

as [100,103,104,107,112]

1
uf (2%) = =S Byl (a°) (VV] ()", ¥a® € R, (4-4)

1

and the value functions {V}*, .., V¥} are the solutions to the coupled HJ equations

N N
[L’OTQixO 4 Z ivv;* (.IO) Gij (l‘o) (V‘/;* (mo)) _ _VV* Z GJ VV* ))T
—1 —
+ V7 (2%) f(2°) = 0, (4-5)

forallz° € R™. In(4-5), G; (z°) £ g, (2°) R;jlng (z°) and Gy (2°) =
g9; (z°) R}, 1RURH g7 (z°). The HJ equations in (4-5) are in the so-called closed-loop

form; they can be expressed in an open-loop form as

N

N
2 Qi + ) i () Ry (¢°) + VV/ (2°) f (a°) + WV (2°) Y g5 (2%) 0} (%) = 0,
j=1 J=1
for all z° € R™.
4.2 Approximate Solution
Computation of an analytical solution to the coupled nonlinear HJ equations in (4-5)

is, in general, infeasible. Hence, similar to Chapter 3, a parametric approximate solution

{f/l (x, Wd> VN (x, VVdV)} is sought. Based on {f/l (:v, Wcl) o Vn (x, WcN> }
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an approximation {111 (:c, Wa1> Uy (x, WaN>} to the closed-loop feedback-Nash

equilibrium solution is computed, where W.; € RPw:_i.e., the value function weights,
and W,; € RPw:, j.e., the policy weights, denote the parameter estimates. Since the
approximate solution, in general, does not satisfy the HJ equations, a set of residual

errors §; : R™ x RPwvi x RP"1x ... x RPW~n — R, called BEs, is defined as
A ~ ~ N A
G (10, Wt Wary =+ Waw ) 207 Qua 0 a7 (2, Way ) Rty (2, W2y
j=1
N
Vi (W) (@) + VT (20, W) D5 (@) g (W), (4-6)
j=1

and the approximate solution is recursively improved to drive the BEs to zero. The com-
putation of the BEs in (4-6) requires knowledge of the drift dynamics f. To eliminate this
requirement, and to enable simulation of experience via BE extrapolation, a concurrent
learning-based system identifier is developed in the following section.
4.2.1 System Ildentification

Let f (z°) = Y (x°) 0, for all z° € R", be the linear parameterization of the drift
dynamics, where Y : R — R™*?¢ denotes the locally Lipschitz regression matrix, and
0 € Rre denotes the vector of constant, unknown drift parameters. The system identifier
is designed as

R N

F=Y(2)0+ > gi(x)u;+ kyd, (4-7)

=1

where the measurable state estimation error 7 is defined as & = = — &, k, € R™" s

a positive definite, constant diagonal observer gain matrix, and € R denotes the
vector of estimates of the unknown drift parameters. In traditional adaptive systems,

the estimates are updated to minimize the instantaneous state estimation error, and
convergence of parameter estimates to their true values can be established under a
restrictive PE condition. In this result, a concurrent learning-based data-driven approach

is developed to relax the PE condition to a weaker, verifiable rank condition as follows.
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Assumption 4.1. [92, 93] A history stack H,, containing state-action tuples
{(zj,u;) |i=1,---,N, j=1,---, My} recorded along the trajectories of (4—1) that
satisfies

My

rank (Z YjTYj> = pe,

j=1
is available a priori, where Y; =% (x;), and p, denotes the number of unknown
parameters in the drift dynamics.

To facilitate the concurrent learning-based parameter update, numerical methods

are used to compute the state derivative i, corresponding to (:cj, ul]) The update law

for the drift parameter estimates is designed as
. M, N
0 =TgY" i +Toky » V" (jsj = giui; — }gé) , (4-8)
j=1 i=1
where g;, £ g; (z;), Ty € RP*7 s a constant positive definite adaptation gain matrix, and
k¢ € R is a constant positive concurrent learning gain. The update law in (4—8) requires
the unmeasurable state derivative ;. Since the state derivative at a past recorded point
on the state trajectory is required, past and future recorded values of the state can be
used along with accurate noncausal smoothing techniques to obtain good estimates of
;. In the presence of derivative estimation errors, the parameter estimation errors can
be shown to be UUB, where the size of the ultimate bound depends on the error in the
derivative estimate [93].
To incorporate new information, the history stack is updated with new data. Thus,
the resulting closed-loop system is a switched system. To ensure the stability of the
switched system, the history stack is updated using a singular value maximizing

algorithm (cf. [93]). Using (4—1), the state derivative can be expressed as

N
x] - E gijuij - Y707
i=1
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and hence, the update law in (4—8) can be expressed in the advantageous form
L Mo ~
6 =—TpY "7 — ko (Z Yf}g) 6, (4-9)
j=1
where £ 0 — 0 denotes the drift parameter estimation error. The closed-loop dynamics

of the state estimation error are given by
i =Y0— ki (4-10)

4.2.2 Value Function Approximation
The value functions, i.e., the solutions to the HJ equations in (4-5), are continuously
differentiable functions of the state. Using the universal approximation property of NNs,

the value functions can be represented as

Vi (2%) = Wo (2°) + e (2°). (4-11)

2

for all z° € R™, where W; € RP": denotes the constant vector of unknown NN weights,
o; : R* — RPw: denotes the known NN activation function, py; € N denotes the
number of hidden layer neurons, and ¢; : R® — R denotes the unknown function
reconstruction error. The universal function approximation property guarantees that over
any compact domain C c R", for all constant ¢;, Ve; > 0, there exists a set of weights
and basis functions such that ||W;|| < W, sup,cc ||o; (z)|| < 4, sup,ec || Voi ()| < Vo,
sup,cc || (z)|| <& and sup,. | Ve ()| < Ve, where W;,5;, Vo;, &, Ve; € R are positive
constants. Based on (4—4) and (4—11), the feedback-Nash equilibrium solutions are
given by

1
u; (2°) = —§R,;L.1giT () (VO’Z-T () W; + VeiT (:CO)) , Va° e R™. (4-12)

The NN-based approximations to the value functions and the controllers are defined

as

~

Vi <x, Wa) = Wgai (), (x, Wm> = —%Rflg? (2) Vol (z) W, (4-13)

(23 3
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The use of two different sets {Wm} and {Wm} of estimates to approximate the same
set of ideal weights {I;} is motivated by the subsequent stability analysis and the fact
that it facilitates an approximate formulation of the BEs that is affine in the value function
weights, enabling least squares-based adaptation. Based on (4—13), measurable
approximations 4; : R x RPWi x RPwix, ... x RPWn x RP* — R to the BEs in (4-6) are

defined as
N
5 (2. W W W 8) 2 W [ Vo, (2)Y ()0 — ~ 5" Vo, (1) G (2) Vo (2) W,
i (2 Wets War, o+ W, 0) 2 WE (Vo (@)Y (2)0 = 5 Y Vo (2) G () Vo () Wy
j=1
N 1. R
+2TQix + Z ZWaTjVUj () Gij () VojT (x) W, (4-14)
j=1

The following assumption, which in general is weaker than the PE assumption, is
required for convergence of the concurrent learning-based value function weight
estimates.
Assumption 4.2. Foreachi € {1,.., N}, there exists a finite set of M, points
{z;; e R" | j =1,.., M} such that

(1. (e {2y 2001
c 2 > 0, (4-15)

=T sz

where \,,;, denotes the minimum eigenvalue, and ¢,; € R is a positive constant. In
(4-15),
U A o
Wb = VoY) — 23 VoGl (Vo) Wy,
j=1
where the superscript ik indicates that the function is evaluated at + = z;, and
pE 214 v, (wF)" Tuwk, where v; € R is the normalization gain and T'; € RP:<Fw: is the

adaptation gain matrix.
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The concurrent learning-based least-squares update law for the value function

weights is designed as

2 Wi ¢ Ucziri (CYES
We = —Ucliri;(;m' T ML 7527
7 @i g Vi
wiw! _
Bz i = Teli zp—r I{HF II<T; } ||F (tO)“ S Fi7 (4_1 6)

where w; = Vo, (2)Y (2)0 — 130, Voi () G; (x) VoT (2) We; (t), pi & 14 viw] Tiw;,
1, denotes the indicator function, T'; > 0 € R is the saturation constant, 3; € R is the
constant positive forgetting factor, 7.1;, n.2; € R are constant positive adaptation gains,

and the instantaneous BEs 4,; and 6% are defined as

A ~ A

5 () 2 6, (x (), W (£) , War (1), -, Wan (1) ,é(t)) ,

of (1) £ 6; (%lm Wei (), War (£), -+, Wan (2) ,é(t)) :

The policy weight update laws are designed based on the subsequent stability

analysis as
: Y 7o (WF)
W = s (W= W) = madbi 332 37§96l (V) Wi
k: 19=1 J:z 7

N
1 T
+ Zgncwaj (¢) Gy (2) VoT (x )WT Wg . (4-17)

where 1,15, 742; € R are positive constant adaptation gains. The forgetting factor j; along
with the saturation in the update law for the least-squares gain matrix in (4—16) ensure
(cf. [91]) that the least-squares gain matrix I'; and its inverse are positive definite and

bounded for all i € {1,.., N} as

L, <||T; ()| < Ty, Vt € Rsy, (4-18)
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where [; € R is a positive constant, and the normalized regressor is bounded as

Wi

Pi

1
< .
-2 vV vl

For notational brevity, state-dependence of the functions f, ¢;, v}, G;, G;j, 0;, Y, e and V*

and is suppressed hereafter.
4.3 Stability Analysis
Subtracting (4-5) from (4—14), the approximate BE can be expressed in an unmea-

surable form as

N N N

O =w Wai + ) }lWaijajGijvngaj =Y W Ryu; =YV f = VVY g

=1 j=1 j=1

Substituting for V* and «* from (4—11) and (4-12) and using f = Y0, the approximate

BE can be expressed as

N N

. 5 1. . 1

Si=w Wei + wajvajGijvafWaj ~W/'VoiY0—VeYo—> ZWjT Vo;G;Val W;
—

j=1

N N
1 1
Z —& GVl W, — Z CVel + 5 Y VG Ve + 5 ) WV, VoW,

j=1 j=1

N N
1 1
+3 Y VeG Vol W, + 5 Y WI'Vo,G;Ve],
=1 =1
Adding and subtracting 1WZ%Vo,G;; Vol W; + w! W; yields

N N
. | . . 1 7
o = —w] Wy + 1 > WhN0o,GyVo W, — 3 > (WI'Ve:G; — W/'Vo,Gy;) Vo, W

j=1

—WIVo,YO — Ve YO+ A, (4-19)

where A; £ 13 (WIVo,G; — WIVo,Gy) Vel + 330 WIVo,G Vel +
%ZL Ve GiVe] — ZQ | 1€,Gi; Ve[ . Similarly, the approximate BE evaluated at the

selected points can be expressed in an unmeasurable form as
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N
A ~ oo~ ] o o ) ~
0 = T W + A = WIVoY R0 — 23 (WYl G = WVt Giy) (Vo) W,

J=1

N
Z szzk V )T Waj, (4_20)

n-lklli

where the constant A* € R is defined as A¥ & —€*Yi*g + A, To facilitate the stability
analysis, a candidate Lyapunov function is defined as

1~ N
Vi, = ZV* ZWng 1Wm ZWTWGZ + a: P4 EQTF(;le_ (4-21)

=1

Since V;* are positive definite, the bound in (4—18) and Lemma 4.3 in [149] can be used

to bound the candidate Lyapunov function as

v(l[Z°) £V (2°t) <v (|1Z2°|]) (4-22)
~ AT
for all Z° — [x WL LW W ..,WgN,gz,e} e R¥2NSimwitmo and 1,7 : Rag — Rag

are class K functions. For any compact set Z ¢ RN 2.rwitro define

1 1
éwiTVUiGjVU]T + §VEZGJVO'JT

) . L4 = max (Sup ”vgJGUVUJ H)

11 £ max <sup
i \zez

Y] ZeZ

a Neily Ve A (

= Imnax

lyi = ———F—, L2 la
4 Vzr 7‘1]

Ne2iW} ik i ik i ik\ T
+Z 41\;961;)2 (3W] VoGl — 2w VoG (Vo))

77111'%' (3I/VjVUjGij — 2VVZ»TVUz‘Gj) VUJ'T
Pi

sup
Zez

N N
13 & max <2u2 % > (W]'Voi+ Ve) G Ve] — 411 > (2W/Vo;+€)) G Vel )
" € ij=1 ij=1

L 2 @’ L B Ne2; MaXy Hvagkyiknwl” 1y 2 i (Ne1s +7702i)Wz’L4
4\/v;L; — 8y/viL;

4/l
s Mt SUPzez || + e maxy ||AF]|

2 V y’LEi

N
I (% neicy 20015+ Na2i Koy 22, 120
JAN X1 A 91 102
=35 P 7k$7 y A |y L= + + y 4—23
K Qmm(Q 4 8 2 )" ZZ 2Na1itNa2i Ne2iCa; 13 )

Y

Loi = (LlN + (Ma2i + t8) Wz) , L =
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where ¢; denotes the minimum eigenvalue of Q;, y denotes the minimum eigenvalue of
Zé‘i"l Y'Yj, k, denotes the minimum eigenvalue of k., and the suprema exist since -
is uniformly bounded for all Z, and the functions G;, G;, 0;, and Ve, are continuous. In
(4-23), Ly € Rs( denotes the Lipschitz constant such that ||V (w)|| < Ly ||w|| for all
w € Z N R". The sufficient conditions for UB convergence are derived based on the

subsequent stability analysis as

& > 2[/5i7

Ne2iCi > 25 + 2C1L7; + t2CaN + g1 + 2C3L6i7,
2L2N
G

207 L6i—
o T (4-24)

1
where Z £ y! (U (max (HZ (to)]l \/%))) and (i, (2, (3 € R are known positive

adjustable constants. Furthermore, the compact set Z satisfies the sufficient condition

\ﬁ <r (4-25)
Uy

where r € R, denotes the radius of the set Z.

2Na1i + Nazi > 4tg +

kgg >

Since the NN function approximation error and the Lipschitz constant L, depend
on the compact set that contains the state trajectories, the compact set needs to be
established before the gains can be selected using (4—24). Based on the subsequent
stability analysis, an algorithm is developed to compute the required compact set
(denoted by Z) based on the initial conditions. In Algorithm 4.1, the notation {w},
for any parameter w denotes the value of  computed in the " iteration. Since the
constants : and v; depend on Ly only through the products Ly Ve; and Ly (3, Algorithm
4.1 ensures the satisfaction of the sufficient condition in that
Theorem 4.1. Provided Assumptions 4.1-4.2 hold and the control gains satisfy the

sufficient conditions in (4—24), where the constants in (4—23) are computed based on
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Algorithm 4.1 Gain Selection
First iteration:

Given z € R such that || Z (to)|| < z, let 2, =
{f c R22N Zi{pw; b 4o | I1€] < vt (E(z))}. Using Z,, compute the bounds in (4—23)

and select the gains according to (4—24). If { i} < z, set Z = Z; and terminate.
1

vy

Second iteration:

If 2 < {\/Uzl}l let 2, £ {5 e RPN Edrwi 4w | el < o (@ ({ﬁ}))} Using

Z,, compute the bounds in (4—23) and select the gains according to (4—24). If {\/UI} <
t)a

U

{ L} , set Z = Z, and terminate.
1
Third iteration:

If {\/;1}2 > {\/Uil}l increase the number of NN neurons to {py;}, to en-
sure {Ly}, {Vei}, < {Lyv},{Ve},,¥i = 1,.,N,decrease the constant (s
to ensure {Ly }, {(3};5 < {Ly},{¢},, and increase the gain ky to satisfy the
gain conditions in (4—24). These adjustments ensure {.}, < {¢},. Set Z =

2n+2sz‘{pWi}3+P6 -1 [ = L ;
{5 eR L€l <wv (v ({ﬁh))} and terminate.

the compact set Z selected using Algorithm 4.1, the system identifier in (4—7) along with

the adaptive update law in (4-8) and the controllers u; (t) = u; (:c (t), Wy (t)) along
with the adaptive update laws in (4—16) and (4—17) ensure that the state x, the state
estimation error i, the value function weight estimation errors W.,; and the policy weight
estimation errors W,; are UB, resulting in UB convergence of the controllers u; to the

feedback-Nash equilibrium controllers u} (z).

Proof. The derivative of the candidate Lyapunov function in (4—21) along the trajectories

of (4-1), (4-9), (4-10), (4-16), and (4—17) is given by
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+

Mgz; N w
>y = Wi WV Gl (vo—;ik)T) (4-26)

1
Z ci k

k=1 j=1
Substituting the unmeasurable forms of the BEs from (4—19) and (4-20) into (4-26) and
using the triangle inequality, the Cauchy-Schwarz inequality and Young’s inequality, the
Lyapunov derivative in (4—26) can be bounded as

N
V-3 Lt _me o s = A (P ) o

=1 =1

C’L

N N
- lri Lo i
+ Zbgz | 3 v [ - 30 (% ) el Z ( )]
=1 i=1 Cl <3
N 1c2iCosi 1
- Z <% — U5 — Qubri — LQCQ 770,11 C3L6i ||$H> HWCZ
=1
al 2Ma1i + 1 toN
als a2 2 T
—_— T g — — 4-27
D> (Zractos _, - 22) (4-27)
Provided the sulfficient conditions in (4—24) hold and the conditions
nc?igxi 1 1
— > 5 + Qi + §L2C2N + 5 lati + Gatei ||z
koy L7z’ LG@
A 4-28
R i (4-28)
hold for all Z € Z. Completing the squares in (4-27), the bound on the Lyapunov
derivative can be expressed as
’ e Ne2iCoi 277(111 + Na2i 2 k.gy
Ve Z o —Z - P (2 )
<—ullz|?, YIZ| >, /Ui, ZeZ. (4-29)
l

Using (4—22), (4—25), and (4—29), Theorem 4.18 in [149] can be invoked to conclude
that limsup,_, . || Z (¢)|| < v™* (@ <\/vzl)) . Furthermore, the system trajectories are
bounded as || Z ()| < Z for all t € Rs,. Hence, the conditions in (4—24) are sufficient for

the conditions in (4—28) to hold for all ¢t € R>,.
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The error between the feedback-Nash equilibrium controller and the approximate

controller can be expressed as
\ 1 s _
i (2 (6)) = wi O] < 5 17ll 7V (| Wi ()| + V)

foralli = 1,..,N, where g £ sup,.||g: (z°)||. Since the weights W,; are UB, UB
convergence of the approximate controllers to the feedback-Nash equilibrium controller

is obtained. n

Remark 4.1. The closed-loop system analyzed using the candidate Lyapunov function in
(4—21) is a switched system. The switching happens when the history stack is updated
and when the least-squares regression matrices I'; reach their saturation bound. Similar
to least squares-based adaptive control (cf. [91]), (4—21) can be shown to be a common
Lyapunov function for the regression matrix saturation, and the use of a singular value
maximizing algorithm to update the history stack ensures that (4—21) is a common
Lyapunov function for the history stack updates (cf. [93]). Since (4—21) is a common
Lyapunov function, (4—22), (4—25), and (4—29) establish UB convergence of the switched
system.
4.4 Simulation

441 Problem Setup

To portray the performance of the developed approach, the concurrent learning-

based adaptive technique is applied to the nonlinear control-affine system [112]
&= f(z)+g1(x)ur + g2 () ug, (4-30)

where z € R?, uy,uy € R, and

To — 2[131
f= —3xy — X + 125 (cos (2x1) + 2)? )

1, (sin (422) + 2)°
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0 0
g1 = y 92 =
cos (21) + 2 sin (42%) + 2

The value function has the structure shown in (4-3) with the weights @, = 2Q, = 21,
and Ry; = Ris = 2Ry = 2Ry = 2. The system identification protocol given in Section
4.2.1 and the concurrent learning-based scheme given in Section 4.2.2 are implemented
simultaneously to provide an approximate online feedback-Nash equilibrium solution to
the given nonzero-sum two-player game.
4.4.2 Analytical Solution

The control-affine system in (4—30) is selected for this simulation because it is
constructed using the converse HJ approach [12] such that the analytical feedback-

Nash equilibrium solution of the nonzero-sum game is

T T
0.5 22 0.25 22
‘/1* = 0 T1T2 ) ‘/2* = 0 T1T9 s
1 22 0.5 22

and the feedback-Nash equilibrium control policies for player 1 and player 2 are

T T
2¢1 0 0.5 2¢1 0 0.25
* | * L
uyp = _§R11191T Ty T 0 |, u= _§R22192T Ty X 0
0 29 1 0 2x9 0.5

Since the analytical solution is available, the performance of the developed method can
be evaluated by comparing the obtained approximate solution against the analytical
solution.

4.4.3 Simulation Parameters

The dynamics are linearly parameterized as f (z) = Y (z) 0, where

To X1 0 0 0 0
Y (z) =

0 0 x1 my x9(cos(2xq)+ 2)2 To (cos (2x1) + 2)2

83



Table 4-1. Learning gains for for value function approximation

Player 1 Player 2

v 0.005 0.005
Te1 1.0 1.0
Te2 1.5 1.0
Not 10.0 10.0
No 0.1 0.1
3 3.0 3.0
T 10,000.0  10,000.0

is known and the constant vector of parameters § = [1,-2, -1, -1, 1, —ﬂT is assumed
to be unknown. The initial guess for ¢ is selected as 6 (t;) = 0.5 x 1gy;. The system
identification gains are selected as k, = 5, I'y = diag (20, 20, 100, 100, 60, 60), ky = 1.5.

A history stack of 30 points is selected using a singular value maximizing algorithm

(cf. [93]) for the concurrent learning-based update law in (4-8), and the state derivatives
are estimated using a fifth order Savitzky-Golay filter (cf. [150]). Based on the structure
of the feedback-Nash equilibrium value functions, the basis function for value function
approximation is selected as o = [2%, z,15, 237, and the adaptive learning parameters
and initial conditions are shown for both players in Tables 4-1 and 4-2. Twenty-five points

lyingonab x 5 grid on a 2 x 2 square around the origin are selected for the concurrent

learning-based update laws in (4—16) and (4—17).

Table 4-2. Initial conditions for the system and the two players

Player 1 Player 2

A

W, (to) 3,3,3]T [3,3,3]”
W, (to) 3,3,3]" [3,3,3]”
T (to) 10075 10075
z (to) Lt Lt
 (to) [0,0/"  [0,0]"
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4.4.4 Simulation Results
Figures 4-1 and 4-2 show the rapid convergence of the actor and critic weights
to the approximate feedback-Nash equilibrium values for both players, resulting in the

value functions and control policies

— _T — -— — _T — -—
0.5021 22 2t 0 0.4970
1__
Vi(x) = | —0.0159 179 ,ﬂl(x)=—§Rulng T, T —0.0137 |
0.9942 22 0 2z, 0.9810
o - S -
0.2510 2?2 2, 0 0.2485
_ 1__
Va(z) = | —0.0074 T179 >u2(x)=—§R221ggT T, T —0.0055
0.4968 22 0 2z, 0.4872

Figure 4-3 demonstrates that (without the injection of a PE signal) the system identifi-
cation parameters also approximately converged to the correct values. The state and
control signal trajectories are displayed in Figure 4-4.

Player 1 Value Function Weights Player 1 Actor Weights

3.5

u V?cl,l = Wal,l
6 v Wcl,Q I v Wal,Q I
5 [ ] Wcl’g | 25 L J Wa,1,3 |

Wt ()

Time (s) Time (s)

Figure 4-1. Trajectories of actor and critic weights for player 1 compared against their
true values. The true values computed based on the analytical solution are
represented by dotted lines.
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Player 2 Actor Weights

Player 2 Value Function Weights

35 . 35 —
B W B Wi
V¥ Wepal] vV Waaz ||
® Wes| 25 ® Was ||

Waa(t)

Time (s) Time (s)

Figure 4-2. Trajectories of actor and critic weights for player 2 compared against their
true values. The true values computed based on the analytical solution are

represented by dotted lines.

Unknown Parameters in Drift Dynamics

-3 w w w w
2 4 6 8 10
Time (s)

Figure 4-3. Trajectories of the estimated parameters in the drift dynamics compared
against their true values. The true values are represented by dotted lines.
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State Trajectory Control Policies

H I
x2

—Player 1|

Player 2

"0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Figure 4-4. System state trajectory and the control trajectories for players 1 and 2
generated using the developed technique

4.5 Concluding Remarks

A concurrent learning-based adaptive approach is developed to determine the
feedback-Nash equilibrium solution to an N-player nonzero-sum game online. The
solutions to the associated coupled HJ equations and the corresponding feedback-Nash
equilibrium policies are approximated using parametric universal function approximators.
Based on estimates of the unknown drift parameters, estimates for the Bellman errors
are evaluated at a set of preselected points in the state-space. The value function
and the policy weights are updated using a concurrent learning-based least-squares
approach to minimize the instantaneous BEs and the BEs evaluated at the preselected
points. Simultaneously, the unknown parameters in the drift dynamics are updated
using a history stack of recorded data via a concurrent learning-based gradient descent
approach.

The simulation-based ACI technique developed in this chapter and Chapter 3
achieves approximate optimal control for autonomous system and stationary cost
functions. Extension of the ACI techniques to optimal trajectory tracking problems

presents unique challenges for value function approximation due to the time-varying
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nature of the problem. The following chapter describes the challenges and presents
a solution to extend the ACI architecture to solve infinite-horizon trajectory tracking

problems.
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CHAPTER 5
EXTENSION TO APPROXIMATE OPTIMAL TRACKING

ADP has been investigated and used as a tool to approximately solve optimal
regulation problems. For these problems, function approximation techniques can be
used to approximate the value function because it is a time invariant function. In tracking
problems, the tracking error, and hence the value function, is a function of the state and
an explicit function of time. Approximation techniques like NNs are commonly used in
ADP literature for value function approximation. However, NNs can only approximate
functions on compact domains, thus leading to a technical challenge to approximate the
value function for a tracking problem because the infinite-horizon nature of the problem
implies that time does not lie on a compact set. Hence, the extension of this technique
to optimal tracking problems for continuous-time nonlinear systems has remained a
non-trivial open problem.

In this result, the tracking error and the desired trajectory both serve as inputs to
the NN. This makes the developed controller fundamentally different from previous
results, in the sense that a different HIB equation must be solved and its solution, i.e.
the feedback component of the controller, is a time-varying function of the tracking
error. In particular, this chapter addresses the technical obstacles that result from the
time-varying nature of the optimal control problem by including the partial derivative
of the value function with respect to the desired trajectory in the HJB equation, and
by using a system transformation to convert the problem into a time-invariant optimal
control problem in such a way that the resulting value function is a time-invariant
function of the transformed states, and hence, lends itself to approximation using a NN.
A Lyapunov-based analysis is used to prove ultimately bounded tracking and that the
enacted controller approximates the optimal controller. Simulation results are presented
to demonstrate the applicability of the presented technique. To gauge the performance

of the proposed method, a comparison with a numerical optimal solution is presented.
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5.1 Formulation of Time-invariant Optimal Control Problem
Consider the class of nonlinear control-affine systems described in (2-1). The
control objective is to track a bounded continuously differentiable signal z, € R™. To
quantify this objective, a tracking error is defined as e = x — 4. The open-loop tracking

error dynamics can then be written as
e=f(x)+g(@)u—iqg (5-1)

The following assumptions are made to facilitate the formulation of an approximate
optimal tracking controller.
Assumption 5.1. The function g is bounded, the matrix ¢ (xz°) has full column rank for all
z° € R, and the function ¢g* : R* — R™*" defined as ¢+ £ (ng)_1 ¢" is bounded and
locally Lipschitz.
Assumption 5.2. The desired trajectory is bounded such that ||z4]| < d € R, and
there exists a locally Lipschitz function h; : R* — R™ such that z;, = hy(z4) and
9(za) 9" (xa) (ha (za) — [ (xa)) = ha(xa) — f (a), Vt € Ry

The steady-state control policy u; : R® — R™ corresponding to the desired
trajectory x4 is

ug (tq) = gy (ha (va) — fa), (5-2)

where g £ gt (z4) and f; £ f (z,4). To transform the time-varying optimal control
problem into a time-invariant optimal control problem, a new concatenated state ¢ € R*®
is defined as [86]

C& [eT,xdT]T. (5-3)

Based on (5—1) and Assumption 5.2, the time derivative of (5-3) can be expressed as

C=F()+G)n (5-4)
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where the functions F : R?" — R?", G : R?** — R?**™ and the control © € R™ are

defined as

fle+zg) —ha(zg) +9g(e+ xq)ug(x e+
F(C)é ( d) d(za) +g( ) uq (Tq) | G(()é g(e+zq) , ,Uéu_ud(xd)-

haq (z4) Onxm
(5-9)
Local Lipschitz continuity of f and ¢, the fact that f (0) = 0, and Assumption 5.2 imply
that 7/ (0) = 0 and F is locally Lipschitz. The objective of the optimal control problem
is to minimize the cost functional J (¢, ), introduced in (2—2), subject to the dynamic
constraints in (5—4) while tracking the desired trajectory. For ease of exposition, let the
function Q : R*™ — R, in (2-3) be defined as Q (¢) = ¢TQ¢, where Q € R*™*?"is a

constant matrix defined as

— Onxn
Q £ Q ) (5_6)

Oan OTLXTL
where ) € R™ " is a positive definite symmetric matrix of constants with the minimum

eigenvalue ¢ € R.. Thus, the reward r : R*" x R™ — R is given by

r (¢ p) £¢TQC+ p" Ry (5-7)

5.2 Approximate Optimal Solution
Similar to the development in Chapter 2, assuming that a minimizing policy exists
and assuming that the optimal value function satisfies V* € C' and V* (0) = 0, the local

cost in (5—7) and the dynamics in (5—4), yield the optimal policy x* : R** — R™ as

§(¢7) = 5 RGT () (VY (), V¢ € R (5-9
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where V* : R*" — R, denotes the optimal value function defined as in (2—4) with the
local cost defined in (5-7)." The policy in (5-8) and the value function VV* satisfy the

HJB equation [1]

VVE () (F () + G () p™ (7)) + 7 (¢ m™ (¢7) = 0, (5-9)

V¢ € R*", with the initial condition V* (0) = 0.

The value function V* can be represented using a NN with L neurons as
V() =WTa (¢°) +¢(¢%), Y¢° e R*" (5-10)

where W € R’ is the constant ideal weight matrix bounded above by a known positive
constant W € R in the sense that |IV| < W, ¢ : R** — R” is a bounded continuously
differentiable nonlinear activation function, and ¢ : R?** — R is the function reconstruction
error [151,152].

Using (5-8) and (5—10) the optimal policy can be represented as

§(C) = —3 RGN () (VT ()W + Ve (), Ve e BPL (5-11)

Based on (5-10) and (5—11), the NN approximations to the optimal value function and

the optimal policy are defined as
9 I A 13T ~ I A 1 -1 ~T T T
V(GW) 2 Wio(©,  a(¢Wa) 2 —RIGT OV (OWa  (5-12)

where W, € RE and W, € R~ are estimates of the ideal neural network weights . The
use of two separate sets of weight estimates 1, and W, for W is motivated by the fact

that the BE is linear with respect to the value function weight estimates and nonlinear

! Since the closed-loop system corresponding to (5—4) under a feedback policy is au-
tonomous, the cost-to-go, i.e., the integral in (2-5) is independent of initial time. Hence,
the value function is only a function of (.
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with respect to the policy weight estimates. Use of a separate set of weight estimates for
the value function facilitates least squares-based adaptive updates.
The controller for the dynamics in (5—4) is u (t) = i1 <C (t), W, (t)), and the controller

implemented on the actual system is obtained from (5-2), (5-5), and (5-12) as
1 -1 ~T T > +
U= —ER G (C) Vo (C) Wa + 94 (hd (ﬂfd) — fd) . (5_1 3)

Using the approximations /i and V in (5-9) for 1.* and V*, respectively, the BE in

(2—12), is given in a measurable form by

0= VeV () (G, (5-14)

where the derivative ¢ is measurable because the system model is known. For no-
tational brevity, state-dependence of the functions hy, F, G, V*, u*, o, and e and the
arguments to the functions /i, and V are suppressed hereafter. The value function
weights are updated to minimize f(f 62 (p) dp using a normalized least squares update

law? with an exponential forgetting factor as [91]

A w
c— c 57 —1
W L 1+ vwfTw ' (5-15)
wwt
= —p, (AT 4T ,
7 ( * 14+ vwiTw )

where v, 7. € R are constant positive adaptation gains, w € R” is defined as w £ Vo(,

and )\ € (0, 1) is the constant forgetting factor for the estimation gain matrix I' € RX*L,

2 The least-squares approach is motivated by faster convergence. With minor modifi-
cations to the stability analysis, the result can also be established for a gradient descent
update law.
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The policy weights are updated to follow the critic weights® as

A

Wa = =t (Wa = W2 ) =z, (5-16)

where 7.1,7.20 € R are constant positive adaptation gains. The following assumption
facilitates the stability analysis using PE.

Assumption 5.3. The regressor ¢ : R>, — R defined as ¢ = satisfies the

v 1+vwTTw
PE condition, i.e., there exist constants 7', ¢ € R such that v1 < [ 4 (1) ()" dr*

t

Using Assumption 5.3 and [91, Corollary 4.3.2] it can be concluded that
plrxr <T(t) <Plpxr, ¥t € Ry (5-17)

where p, ¢ € R are constants such that 0 < ¢ < ©.> Based on (5-17), the regressor

vector can be bounded as

1
[ @) < \/T_(p, vt € Rx,. (5-18)

Using (5-10), (5—11), and (5—-14), an unmeasurable form of the BE can be written
as

. 1.~ | 1
6 = —Wrow+ ZWf GoW, + ZvegveT + 5WTvagveT — VeF, (5-19)

3 The least-squares approach cannot be used to update the policy weights because
the BE is a nonlinear function of the policy weights.

* The regressor is defined here as a trajectory indexed by time. This definition sup-
presses the fact that different initial conditions result in different regressor trajectories.
Assumption 5.3 describes the properties of one specific trajectory starting from one
specific initial condition. Naturally, the final result of the chapter also describes limiting
properties of one specific state trajectory. That is, the final result is not uniform in the
initial conditions.

5> Since the evolution of 1 is dependent on the initial condition, the constants % and @
depend on the initial condition.
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where G £ GR'G" and G, £ VoGR'G"Vo". The weight estimation errors for
the value function and the policy are defined as W, £ W — W, and W, £ W — W,,
respectively.
5.3 Stability Analysis

Before stating the main result of the chapter, three supplementary technical lemmas
are stated. To facilitate the discussion, let Y € R?"*2L be a compact set, and let
Z £ Y NnR*2L, Using the universal approximation property of NNs, on the compact set
Y NR*", the NN approximation errors can be bounded such that supocyngen |e (¢%)] < €
and supgoeynren | Ve ((°)] < Ve, where € € R and Ve € R are positive constants. Using
Assumptions 5.1 and 5.2 and the fact that on the compact set Y N R?", there exists
a positive constant Ly € R such that® supocyqgen [|[F (¢°)|] < Lr [|C°]] , the following

bounds are developed to aid the subsequent stability analysis:

Ve WTVeo —
H(z + +VeLpllzall < v, [1Goll <t [[VEGVET]| < s,

5 ) v

1 1
“§WTQU + §VEQVUT < s, (5-20)

1 1
< 14, szegveT + §WTVUQV6T

where 11, 12,13, 14, 15 € R are positive constants.
5.3.1 Supporting Lemmas

The contribution in the previous section was the development of a transformation
that enables the optimal policy and the optimal value function to be expressed as a
time-invariant function of (. The use of this transformation presents a challenge in the
sense that the optimal value function, which is used as the Lyapunov function for the

stability analysis, is not a positive definite function of ¢, because the matrix Q is positive

¢ Instead of using the fact that locally Lipschitz functions on compact sets are Lips-
chitz, it is possible to bound the function F as ||[F (¢)|| < p(|[C]) [I<]l, where p : Rsq —
R is non-decreasing. This approach is feasible and results in additional gain condi-
tions.
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semi-definite. In this section, this technical obstacle is addressed by exploiting the fact
that the time-invariant optimal value function V* : R?" — R can be interpreted as a

time-varying map V;* : R x R>; — R, such that

Vi (e, t) £V (5-21)

foralle € R™ and for all ¢ € R,. Specifically, the time-invariant form facilitates the
development of the approximate optimal policy, whereas the equivalent time-varying
form can be shown to be a positive definite and decrescent function of the tracking error.
In the following, Lemma 5.1 is used to prove that V,* : R” x R>, — R is positive definite
and decrescent, and hence, a candidate Lyapunov function.

Lemma 5.1. Let B, denote a closed ball around the origin with the radius a € R.,. The

optimal value function V;* : R™ x R, — R satisfies the following properties

V(e t) > u(llell), (5-22a)
Vi (0,1) =0, (5-22b)
V(e t) <o((lell), (5—22¢)

Vt € Rsg andVe € B, wherev : [0,a] - R>o andv : [0,a] — Rs, are class K functions.
Proof. See Appendix B.1. O

Since the stability analysis is subject to the PE condition in Assumption 5.3, the
behavior of the system states is examined over the time interval [t,¢ + T'|. The following
two lemmas establish growth bounds on the tracking error and the actor and the critic
weights.

T
Lemma5.2. Let Z = [GT wr Wg} , and suppose that Z (t) € Z, forall T € [t,t + T).
Then, the NN weights and the tracking errors satisfy

2

+ @ (5-23)

— inf _Jle(®)|* < —wo sup |le()|*+ @ T? sup HWa(T)
TE[tt+T] TE[tt+T] TE[t,t+T]
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- 2 - 2 - 2
— inf ||W, (7')” < —tws3 sup HWQ (1) H +wy inf  ||[W.(7) H +ws sup |le(7) ||2
TE[t,t+T] T€[t,t+T) TE[tt+T] TE[t,t+T)]
+ We, (5—24)
where
3 B 2  18(Lnainep(VeLpdtis)T2) — 2
e = (1_6L(77a1+77a2)2T2) S GLTI(QLlTQ o — 18(na1an¢WLFT2)2
3 2 y W4 (1—6L(UCET)2/(V£)2) ’ 5 V£<1—6L(HC¢T)2/(V£)2) s
o — (176n2TQL%>’ oy — 3n2T2(dLF+Supt||gg;(hdfj:j)fégR_IGTVUTthd||)2-
Proof. See Appendix B.2. O

T
Lemma5.3. Let Z £ [GT wr WQT} , and suppose that Z () € Z, forall € [t,t + T].
Then, the critic weights satisfy

t+T t+T t+T

_/HWépwuszﬁ—QW7HWC 2~|—w8/H6H2d7+3Lg/))Wa(a)“4da+w9T, (5-25)
t t t

v2p® 21272 2 272 12
WhereW7: W,Wgzigﬁ LF’ and WQZQ(L5+€ LFd )

Proof. See Appendix B.3.

5.3.2 Gain Conditions and Gain Selection
This section details sufficient gain conditions derived based on a stability analysis
performed using the candidate Lyapunov function V;, : R"*2 x Ry, — R defined as

Vi (Z,t) 2 Vi (e, t) + AWIT'W, + LWIW,. Using (5-17) and Lemma 5.1,
v ([[2°]) < Vi (2°,8) <w([|2°]]) (5-26)

VZ° € By, Vt € R, Where v, : [0,0] — R>o and 7; : [0,0] — R, are class K functions,

and B, c R"*2L denotes a ball of radius b € R, around the origin, containing Z.
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_ 2
To facilitate the discussion, define 1,12 2 Nu1 + Moy ¢ = ("“2:/—:4)

A WeNa12+2w2g+Nc™9

T
an <L1)2 + %Lg, ™10 3 + 1, 4 £ |:eT WCT WaT:| ,and

wi £ £ min(nywr, 2wl @sna2T). Let Zy € Ry, denote a known constant

bound on the initial condition such that || Z (¢y)|| < Zy, and let

7 &yt <U_l (max (ZO, w10T>> + LT) . (5-27)
- wn

The sufficient gain conditions for the subsequent Theorem 5.1 are given by’

c 7 — —_ o 2 u
Mtz > max | muée + ooy 3032 |, & > 2VeLp, me> i, g Tl
4 Vf /\152 - N7

WsNa12 1

’ §ncw87 ncLFﬂfl) )

g>max(

; 1 ve 1 Ta12
T < min , - , . 5-28
( V6Lnae V6Lnp 2v/nLr \/6L77212 + 8gw1> ( )

Furthermore, the compact set Z satisfies the sufficient condition
7Z <, (5—-29)

where r £ 1sup, .z ||z — y|| denotes the radius of Z. Since the Lipschitz constant and
the bounds on NN approximation error depend on the size of the compact set Z, the
constant Z depends on r; hence, feasibility of the sufficient condition in (5-29) is not
apparent. Algorithm 5.1 details an iterative gain selection process in order to ensure
satisfaction of the sufficient condition in (5-29). In Algorithm 5.1, the notation {=}, for
any parameter w denotes the value of @ computed in the i*" iteration. Algorithm 5.1

ensures satisfaction of the sufficient condition in (5-29).

7 Similar conditions on v and T' can be found in PE-based adaptive control in the
presence of bounded or Lipschitz uncertainties (cf. [153, 154]).

98



Algorithm 5.1 Gain Selection

First iteration:

Given Z, € Ry suchthat [|Z (to)| < Zo, let 2 = {0 € R | o] < Bio ™ (0 (Z0)) }
forsome 5, > 1. Using Z;, compute the bounds in (5-20) and (5-27), and select the
gains according to (5-28). If {Z} < v ! (Wi (|| Z])) , set Z = Z; and terminate.
Second iteration:

t{Z}, > Bt @(zl) let2 2 {oeR+2h ||gf| < 8, {Z},}. Using 2,,
compute the bounds in (5—-20) and (5-27) and select the gains according to (5—28).

It {Z}, < {Z},, set Z = Z, and terminate.

Third iteration:

it {Z}, > {Z},, increase the number of NN neurons to {L}, to yield a lower function
approximation error {Ve}, such that {Lr}, {Ve}, < {Lp}, {Ve},. Theincrease inthe
number of NN neurons ensures that {¢}, < {.},. Furthermore, the assumption that the
PE interval {T'}, is small enough such that {L},{T'};, < {T},{Lr}, and {L},{T}, <

{T}l{L}lensuresthat{ﬂ}g < {ﬂ}l,andhence, {Z}, < p{Z}.Setz =

w11 - w11

{o e R2Ws | o]l < 2 {Z},} and terminate.

5.3.3 Main Result

Theorem 5.1. Provided that the sufficient conditions in (5—-28) and (5—-29) are satis-

fied and Assumptions 5.1 - 5.3 hold, the controller in (5—13) and the update laws in
(5—-15) - (5—16) guarantee that the tracking error is ultimately bounded, and the error

e () — p* (€ (¢))|| is ultimately bounded as t — oc.

Proof. The time derivative of V is V, = VV*F+VV*Gji+ W T-'W,— LWIT-'IT-WW, -
WQTWG. Using (5-19) and the facts that VV*F = —VV*Gu* — r (¢, ") and VV*G =

—2u*T R yields
: T «T «T A T TTT Ne iz, r7p-117 1z pww’ =
Vi = —e" Qe+ p™ Ru™ —2p™ Ry — n W™ W, — >‘7Wc r—w.+ 577¢Wc TWC
ok Wy 1~ . 1 1
—WIW, 4 e D <—WaT GoW, — VeF + -VeGVe" + —WTVJQV6T> , (5-30
V14+vwlTw \ 4 4 2 ( )

where p £ 1 4 vw'Tw. Using (5-15), (5-19) and the bounds in (5-18) - (5-20) the

Lyapunov derivative in (5—30) can be bounded above on the set Z as

. 1 - 2 u -2 . - . Ve - 2
Vi < =2 el = gne [ W] = 222 || + (2007 + ) | W —%(1—5—6)“%%
1
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2

2 (g- ncLFW&) el - _( N nal)
el 52
+770 (L1+L2W >HWC wH_}_ZL37

il

1
- 5 <77a12 — Nar&2 —

where &1, & € R are known adjustable positive constants. Provided the sufficient
conditions in (5-28) are satisfied, completion of squares yields

2

+1. (5-31)

. q s 1 T H2 Na12 ||+%
V < = — =7 M/ — M/a

The inequality in (5—-31) is valid provided Z (¢) € Z. Integrating (5-31) and using Lemma
5.3 and the gain conditions in (5-28) yields

t+T
1 ~ 2 q 1
Ve(Z(@+T)t+T) = V(20,0 < —gnvws W0 = § [ el ar+ Snmy
t+T )
_77212 T)H dr + T,

t

provided Z (1) € Z, ¥r € [t,t+ T]. Using the facts that — [ [le (1) || dr <
2 2
~Tinf, ey |le (7)]* and — t+T HW )H dr < =Tinf ¢y pim HW“ T H , and Lemma

5.2 yield

TMWF?

16 HW ®)

2 ?ﬂ377a12T

Vi (Z(t+T),t+T) =V, (Z(t),1) < —

i

woqT
L el

provided Z (1) € Z, Vr € [t,t +T]. Thus, Vi, (Z (t+T) ,t+T) -V, (Z (t),t) < 0 provided
| Z ()| > \/% and Z (1) € Z,V¥7 € [t,t + T]. The bounds on the Lyapunov function in
(5-26) yield Vi (Z (t + T),t + T) — Vi, (Z (1) ,1) < 0 provided V. (Z (t),1) > 7 (\/?)
and Z (1) € Z, Vr € [t,t + T].

Since Z (t,) € Z, (5-31) can be used to conclude that V7, (Z (t,) ,t) < . The
sufficient condition in (5-29) ensures that v, ™' (V7 (Z (t) ,to) +¢T) < r; hence,

Z(t) € Zforallt € [to,to + T]. I Vi, (Z (o) t0) > U—l(,/wa) then Z (t) € 2
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forallt € [to,to + T)implies Vi, (Z (to+T),to+T) — VL (Z (to) ,to) < 0; hence,
u (Vi (Z(to+T),to+T)+:T) < r.Thus, Z(t) € Zforallt € [ty + Tty + 27].

Inductively, the system state is bounded such that sup,c(y ) [|Z (¢)|| < r and ultimately

T
lim sup ||Z (¢)]| < v~ " (v_l ( “10 ) + LT) .
t—o00 - w11

5.4 Simulation

bounded® such that

Simulations are performed on a two-link manipulator to demonstrate the ability of
the presented technique to approximately optimally track a desired trajectory. The two

link robot manipulator is modeled using Euler-Lagrange dynamics as

T T
where ¢ = [ o ¢ 1 and g = [ Qi Go 1 are the angular positions in radians
and the angular velocities in radian/s respectively. In (5-32), M € R**2 denotes

the inertia matrix, and V,, € R?*2 denotes the centripetal-Coriolis matrix given by

= Vi = , Where ¢; = cos (q2) ,
D2 + P3C2 D2 P3S2q1 0

sy = sin(q), p1 = 3.473 kg.m?, p, = 0.196 kg.m?, and p; = 0.242 kg.m?, and

A |P1F2psca p2+psce VoA —p3Sagz  —p3S2 (41 + G2)

T
Fy = diag { 5.3, 1.1 } Nm.s and F; (¢) = [ 8.45tanh (¢1), 2.35tanh (qy) 1 Nm are the

models for the static and the dynamic friction, respectively.

T
The objective is to find a policy i that ensures that the state = £ {ql, ¢, 1, q'z]

T
tracks the desired trajectory x4 (t) = [0.5005(225), 0.33cos (3t), —sin(2t), —sin(Bt)] :

8 If the regressor 1 satisfies a stronger u-PE assumption (cf. [155, 156]), the tracking
error and the weight estimation errors can be shown to be uniformly ultimately bounded.
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while minimizing the cost [~ (¢” Qe + i f1) dt, where @ = diag [107 10, 2, 2]. Using
(5-2) - (5-5) and the definitions

7T

T
A . L3 h A
f= w3, 2y, M= (=V, — Fy) — F » d = |\wg3, Tas, —4xar, —9Ta2|

91 = HO O]T, {0, O]T, M<Id):|u g Ho, O]T, {0, or, (M‘l)Tﬁ5—33)

the optimal tracking problem can be transformed into the time-invariant form in (5-5).

The two major challenges in the application of ADP to systems such as (5—-33)
include selecting an appropriate basis for the value function approximation and ensuring
that the regressor « introduced in Assumption 5.3 is PE. Due to the size of the state
space and the complexity of the dynamics, obtaining an analytical solution to the HJB
equation for this problem is prohibitively difficult. Furthermore, since the regressor is a
complex nonlinear function of the states, it is difficult to ensure that it remains PE. As a
result, this serves as a model problem to demonstrate the applicability of ADP-based
approximate online optimal control.

In this effort, the basis selected for the value function approximation is a polynomial

basis with 23 elements given by

1
=5 ¢ & & Ga GG eu GG G& Q¢ Q¢ G¢ G¢
T
GG GG GE GG GG GE GG GG GE GE CZC%} - (5-34)

The control gains are selected as 7,; = 5, 7,2 = 0.001, 5. = 1.25, A = 0.001, and

v = 0.005, and the initial conditions are x (0) = { 1.8 1.6 0 0} = 10 X 19341,
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Figure 5-1. State and error trajectories with probing signal.

W, (0) = 6 x 1y3x1, and I' (0) = 2000/25. To ensure PE, a probing signal

_2.55tcmh(2t) (2032'71 (\/@M) cos (\/2_O7rt) ]

+6sin (18¢°t) + 20cos (40t) cos (21t))
p(t) = (5-35)
0.01tanh(2t) (205m (\/ 1327rt) cos (\/Emf)

+6sin (8et) + 20cos (10t) cos (11t))

is added to the control signal for the first 30 seconds of the simulation [57].

It is clear from Figure 5-1 that the system states are bounded during the learning
phase and the algorithm converges to a stabilizing controller in the sense that the
tracking errors go to zero when the probing signal is eliminated. Furthermore, Figure 5-2
shows that the weight estimates for the value function and the policy are bounded and
they converge. Thus, Figures 5-1 and 5-2 demonstrate that an approximate optimal
policy can be generated online to solve an optimal tracking problem using a simple
polynomial basis such as (5-34), and a probing signal that consists of a combination of
sinusoidal signals such as (5-35).

The NN weights converge to the following values

W,=W,= 8336 2.37 27.0 2.78 —2.83 0.20 14.13 29.81 18.87 4.11 3.47
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Figure 5-2. Evolution of value function and policy weights.

T
6.69 9.71 1558 497 1242 11.31 329 1.19 —199 4.55 —-0.47 0.56

Note that the last sixteen weights that correspond to the terms containing the desired
trajectories (s, - - - , (s are non-zero. Thus, the resulting value function V' and the resulting
policy /1 depend on the desired trajectory, and hence, are time-varying functions of the
tracking error. Since the true weights are unknown, a direct comparison of the weights
in (5.4) with the true weights is not possible. Instead, to gauge the performance of the
presented technique, the state and the control trajectories obtained using the estimated
policy are compared with those obtained using Radau-pseudospectral numerical optimal
control computed using the GPOPS software [7]. Since an accurate numerical solution
is difficult to obtain for an infinite-horizon optimal control problem, the numerical optimal
control problem is solved over a finite horizon ranging over approximately 5 times the
settling time associated with the slowest state variable. Based on the solution obtained
using the proposed technique, the slowest settling time is estimated to be approximately
20 seconds. Thus, to approximate the infinite-horizon solution, the numerical solution is

computed over a 100 second time horizon using 300 collocation points.
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Figure 5-3. Hamiltonian and costate of the numerical solution computed using GPOPS.
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Time(s)

Figure 5-4. Control trajectories /i (¢) obtained from GPOPS and the developed
technique.
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Tracking Error
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Time(s)

Figure 5-5. Tracking error trajectories e (¢) obtained from GPOPS and the developed
technique.

As seen in Figure 5-3, the Hamiltonian of the numerical solution is approximately
zero. This supports the assertion that the optimal control problem is time-invariant. Fur-
thermore, since the Hamiltonian is close to zero, the numerical solution obtained using
GPOPS is sufficiently accurate as a benchmark to compare against the ADP-based
solution obtained using the proposed technique. Note that in Figure 5-3, the costate
variables corresponding to the desired trajectories are nonzero. Since these costate
variables represent the sensitivity of the cost with respect to the desired trajectories, this
further supports the assertion that the optimal value function depends on the desired
trajectory, and hence, is a time-varying function of the tracking error.

Figures 5-4 and 5-5 show the control and the tracking error trajectories ob-
tained from the developed technique (dashed lines) plotted alongside the numerical
solution obtained using GPOPS (solid lines). The trajectories obtained using the

developed technique are close to the numerical solution. The inaccuracies are a
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result of the facts that the set of basis functions in (5-34) is not exact, and the pro-
posed method attempts to find the weights that generate the least total cost for the
given set of basis functions. The accuracy of the approximation can be improved
by choosing a more appropriate set of basis functions, or at an increased computa-
tional cost, by adding more basis functions to the existing set in (5—34). The total cost
e (e )" Qe (t) + p ()" Ru (t)) dt obtained using the numerical solution is found to
be 75.42 and the total cost [~ (e )" Qe (t) + ()" Ru (t)) dt obtained using the de-
veloped method is found to be 84.31. Note that from Figures 5-4 and 5-5, it is clear that
both the tracking error and the control converge to zero after approximately 20 seconds,
and hence, the total cost obtained from the numerical solution is a good approximation
of the infinite-horizon cost.
5.5 Concluding Remarks

An ADP-based approach using the policy evaluation and policy improvement
architecture is presented to approximately solve the infinite-horizon optimal tracking
problem for control-affine nonlinear systems with quadratic cost. The problem is
solved by transforming the system to convert the tracking problem that has a time-
varying value function, into a time-invariant optimal control problem. The ultimately
bounded tracking and estimation result was established using Lyapunov analysis for
nonautonomous systems. Simulations are performed to demonstrate the applicability
and the effectiveness of the developed method. The developed method can be applied
to high-dimensional nonlinear dynamical systems using simple polynomial basis
functions and sinusoidal probing signals. However, the accuracy of the approximation
depends on the choice of basis functions and the result hinges on the system states
being PE. Furthermore, computation of the desired control in (5-2) requires exact model
knowledge. The following chapter uses model-based RL ideas from Chapter 3 to relax

the PE requirement and to allow for uncertainties in the system dynamics.
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CHAPTER 6
MODEL-BASED REINFORCEMENT LEARNING FOR APPROXIMATE OPTIMAL
TRACKING

In this chapter, the tracking controller developed in Chapter 5 is extended to solve
infinite-horizon optimal tracking problems control-affine continuous-time nonlinear
systems with uncertain drift dynamics using model-based RL. In Chapter 5, model
knowledge is used in the computation of the BE and in the computation of the steady-
state control signal. In this chapter, a CL-based system identifier is used to simulate
experience by evaluating the BE over unexplored areas of the state space. The system
identifier is also utilized to approximate the steady-state control signal. A Lyapunov-
based stability analysis is presented to establish simultaneous identification and
trajectory tracking. Effectiveness of the developed technique is demonstrated via
numerical simulations.

6.1 Problem Formulation and Exact Solution

Consider the concatenated nonlinear control-affine system described by the
differential equation (5—4). Similar to Chapter 5, the objective of the optimal control
problem is to minimize the cost functional J (¢, 1), introduced in (2—2), subject to the
dynamic constraints in (5—4) while tracking the desired trajectory. In this chapter, a more
general form of the reward signal is considered. The reward signal r : R?" x R™ — R is
given by

(¢ p) 2 Q)+ ' Ry,
where the function Q : R>" — R is defined as
— e A
Q =@ (e), Vzg € R", (6-1)

Xq

where @ : R — R is a continuous positive definite function that satisfies

a(lle’ll) = @Q(e?) <q(lle°]]), Ve € R"
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where ¢ : R — Randg: R — R are class K functions.

Using the estimates V' (C, Wc> and /1 (C, Wa) in (5-9) the BE can be obtained as
5 (¢ WesWa) 29V (W) (FIO+G Qi (¢ Wa)) +7(Cin(¢Wa)). (6-2)

In this chapter, simulation of experience via BE extrapolation is used to improve data
efficiency, based on the observation that if a dynamic system identifier is developed to
generate an estimate Fy (C, é) of the drift dynamics F, an estimate of the BE in (6-2)
can be evaluated at any ¢ € R2". That is, using £, experience can be simulated by
extrapolating the BE over unexplored off-trajectory points in the operating domain.
Hence, if an identifier can be developed such that £’ approaches F exponentially
fast, learning laws for the optimal policy can utilize simulated experience along with
experience gained and stored along the state trajectory.

If parametric approximators are used to approximate F, convergence of F' to F is
implied by convergence of the parameters to their unknown ideal values. It is well known
that adaptive system identifiers require PE to achieve parameter convergence. To relax
the PE condition, a CL-based (cf. [92,93, 97, 147]) system identifier that uses recorded
data for learning is developed in the following section.

6.2 System Identification

On any compact set C ¢ R” the function f can be represented using a NN as
f @) =0"0; (Y 21) + € (2°), Va© € R” (6-3)

where z; £ {1 (xO)Tr € R" 9 € R and Y € R™1*P denote the unknown
output-layer and hidden-layer NN weights, o, : R? — RP*! denotes a bounded NN basis
function, ¢, : R” — R" denotes the function reconstruction error, and p € N denotes the
number of NN neurons. Using the universal function approximation property of single
layer NNs, given a constant matrix Y such that the rows of o (Y”z;) form a proper

basis, there exist constant ideal weights 6 and known constants 6, &, and €, € R such
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that [|6]]» < @ < oo, sup,occ [léo (z°)]| < &, and supgoec [[Vaoeo (2°)]| < €, where [|-[|
denotes the Frobenius norm.
Using an estimate 6 € RP*" of the weight matrix 6, the function f can be approxi-

mated by the function f : R2» x Rrt1xn —, R" defined as
F(¢.0) 2870 (). (6-4)

T
where oy : R** — RP™! is defined as oy () = o4 | YT [ 1 el 427 } ) Based on (6-3),

an estimator for online identification of the drift dynamics is developed as
& =005 () + g (z)u + ki, (6-5)

where & £ 2 — #,and k € Ris a positive constant learning gain. The following
assumption facilitates CL-based system identification.
Assumption 6.1. [92] A history stack containing recorded state-action pairs {z;, uj}j,”il

along with numerically computed state derivatives {@};‘il that satisfies

M
Amin <Z aij?]) =09 > 0,
j=1

|12 — i)l < d, Vj (6-6)

is available a priori. In (6-6), of; £ oy (YT [1 xf] T) , d € Ris aknown positive
constant, and A, (-) denotes the minimum eigenvalue.
The weight estimates 6 are updated using the following CL-based update law:
) M T
0 =Tyor (Y21) & + kTo Y oy (xj — gu; — éTafj) , (6-7)
j=1
where k, € R is a constant positive CL gain, and I'y € RP*1*P*1 is a constant, diagonal,

and positive definite adaptation gain matrix.
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To facilitate the subsequent stability analysis, a candidate Lyapunov function

LO : R x RpHIX — R is selected as
V (f é)-— lj f'+’1tr<é r 15) (6 8)
0 ) 92 9 0 )

where 6 £ ¢ — § and tr (-) denotes the trace of a matrix. Using (6-5)-(6—7), the following

bound on the time derivative of 1V}, is established:
. ~112 |~
Vo < —k 171 ~ koo |9]| -+ N2 + koda ||| . (6-9)

where dy = d " [loo;| + 30, (||eej|| ||a(,j||). Using (6-8) and (6-9) a Lyapunov-based
stability analysis can be used to show that § converges exponentially to a neighborhood
around 4.

Using (6—4), the BE in (6—2) can be approximated as

5 (¢ WelWa0) 2 Vv () (£ (6.0) + RO+ G (© i (6 Ha) ) +Q ()

S (AANTA (AR
where

N\ A ~ A Onxl
Fy (C.0) 2 | 6700 () = 9 (@) g* () 070y ,
Td

Onxl

T
and Fy (¢) £ { (—ha+ g (e +x4) gt (xq) ha)" BT } . The optimal tracking problem is

thus reformulated as the need to find estimates i and V online, to minimize the error

I

E@ (WC,WG> 2 sup

CeR?n

5 (CW We)
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for a given 6, while simultaneously improving 6 using (6—7), and ensuring stability of the

system in (2—1) using the control law
=i (¢ W)+ (¢.9). (6-10)

where

A

tg (g, é) 2 gt (hd . eTagd) , (6-11)

T
and 09d S O <|:01><n ;lei| )

6.3 Value Function Approximation
Since V* and p* are functions of the state ¢, the minimization problem stated in
Section 6.2 is infinite-dimensional, and hence, intractable. To obtain a finite-dimensional
minimization problem, the optimal value function is represented over any compact

operating domain C ¢ R?" using a NN as

V(¢ =W (¢°) +e(¢?), V¢* € R

where W ¢ R* denotes a vector of unknown NN weights, o : R?® — R’ denotes

a bounded NN basis function, ¢ : R** — TR denotes the function reconstruction

error, and L € N denotes the number of NN neurons. Using the universal function
approximation property of single layer NNs, there exist constant ideal weights W and
known constants W, €, and Ve € R such that ||| < W < oo, supeee |l€ (¢°)] < € and
suPgoce | Ve (C7)]] < Ve

Using (5-8), a NN representation of the optimal policy is obtained as

§(¢7) = 5 RGT () (VoT ()W + VM (), Ve e BR?. (6-12)
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Using estimates W, and W, for the ideal weights W, the optimal value function and the

optimal policy are approximated as
3 T A 15/T N i s 1 —1 T T 7
V(cW) 2 Wlo(Q), (W) 23ROV (W (613

Using (5-2), (6—11), and (6—10), the virtual controller . for the concatenated system in

(5—4) can be expressed as'
o= (CWa) + 9507 00a + g coa (6-14)

where €0d =S €p (ZL’d)
6.4 Simulation of Experience
The following assumption facilitates simulation of experience.

Assumption 6.2. [97] There exists a finite set of points {(; € C|i=1,---, N} such that

0<c2 1 wmr (o i“’iwg (6-15)
= N t€RS min £ 0; )

where p; 2 1+ vw!Tw, € R, and w; 2 Vo (¢) (Fg (g é) Y R(G)+G(G) (g W)) .

Using Assumption 6.2, simulation of experience is implemented by the weight

update laws
: W a n N w
V.= —p.T2§ — 12 Y _
WC Tle1 pat N r ; 0; 6t17 (6 16)
wwT _
= ﬂr - 7]0111711 ]—{”FHSf}v ||F (tO)” < F7 (6_1 7)

2 A A . B G Waw o G Waw
Wo = —Na1 (Wa - WC) — Na2Wa + (77 1 Z Ne2 i ) W., (6-18)

! The expression in (6—14) is developed to facilitate the stability analysis, whereas the
equivalent expression in (6—10) is implemented in practice.
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where w £ Vo (¢) (Fe (g,é) +FR(O)+G(Q)p (C, Wa>), I' € RE¥L s the least-
squares gain matrix, I' € R denotes a positive saturation constant, 3 € R denotes the
forgetting factor, 7.1, 7c2, 7.1, 7.2 € R denote constant positive adaptation gains, 11,
denotes the indicator function of the set {-}, G, £ ¢/ (¢) G (¢) R*GT (¢) (Vo (¢))", and
p 21+ vw'Tw, where v € R is a positive normalization constant. In (6—16)-(6—18) and
in the subsequent development, for any function ¢ ((, -), the notation ¢;, is defined as

& = €(¢, ), and the instantaneous BEs 5; and o,; are defined as

~

ORI SORIACRUAGRAG) (6-19)

and &, (t) £ 6 (Q, W, (t), W, (t) ,é(t)). The saturated least-squares update law in (6-17)

ensures that there exist positive constants 7,75 € R such that
YT <7 Ve R (6-20)

6.5 Stability Analysis

If the state penalty function Q is positive definite, then the optimal value function V*
is positive definite, and serves as a Lyapunov function for the system in (5—4) under the
optimal control policy n*; hence, V* is used (cf. [57,59, 145]) as a candidate Lyapunov
function for the closed-loop system under the policy /1. Based on the definition in (6—1),
the function @, and hence, the function V* are positive semidefinite; hence, the function
V* is not a valid candidate Lyapunov function. However, the results in Chapter 5 can
be used to show that a nonautonomous form of the optimal value function denoted by

V*:R™ x R — R, defined as

R e
Vi (e,t) = V” , Ve e R", t € R,

Td (t)
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is positive definite and decrescent. Hence, V;* (0,¢) = 0, V¢ € R and there exist class K

functionsv: R — Rand v : R — R such that
v([le’l]) < V(e t) <u(|le°]), (6-21)

for all e € R™ and for all t € R.

To facilitate the stability analysis, a concatenated state Z ¢ R>*+2L+7(r+1) jg defined

as
A ¥ ¥ ~ T g
ZE T W W T (vec (9)) ,
and a candidate Lyapunov function is defined as
J ~ | ~
Vi(Z,8) 2V, (e,t) + SWIT Wt SWIWa+ Vo (0,7) (6-22)

where vec (-) denotes the vectorization operator and V; is defined in (6-8). Us-

ing (6-8), the bounds in (6—20) and (6—21), and the fact that tr <§TF;15) -

<vec (é))T (T,' ® L) (vec (é)) the candidate Lyapunov function in (6—22) can
be bounded as

u (12°]) < Vi (2°,1) <o (12°]]) , (6-23)

for all Ze € R +2L+n(pt) and for all t € R, where v, : R - Rand 7 : R — R are class K
functions.

To facilitate the stability analysis, given any compact set y ¢ R**+2L+n(+1) con-
taining an open ball of radius p € R centered at the origin, a positive constant . € R is

defined as

2
(7701 77(:2)” ”GG” H(” TGG V€G7VUT)H 7702”

A 16,/vT 4 H G, H WIVoG, Vel
L= + |5+ |——
(nal + 7)(12) 2 2
2
3((WTVaGai]l + [VeGaill) 75 + koda) 2T
+ Ner +1e2)” || Al €
+ HWTVJng eed||, + Thoog + e o

+||VeGay esa|| (6-24)
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where G, £ GR'GT, and G, £ VG, (Ve)". Let v, : R — R be a class K function such
that

2

A+ 52 e (i)

(nal + 77(12

q(llel) | meac
2 +

u (121) < :

+

C

The sufficient gain conditions used in the subsequent Theorem 6.1 are

o () <7 (u(p) (6-25)
3 (Nes + 1) W[V | 752
nese > 2112 7741,3WWFH 17 (6-26)
- _ 2
3(7701 +7702) WHGUH 3 (7701 +7702) WHGO'H
. w2) > o . 627
(Ma1 + Na2) $\/iT +Q77c2 8oL + Na1 ( )

In (6—24)-(6—27), for any function @ : R® — R, € N, the notation ||=z||, denotes

sup,e e @ (y)[| @and 75 = (ol + || g9: ||l

The sufficient condition in (6—25) requires the set x to be large enough based on
the constant .. Since the NN approximation errors depend on the compact set y, in
general, for a fixed number of NN neurons, the constant . increases with the size of
the set x. However, for a fixed set y, the constant . decreases with decreasing function
reconstruction errors, i.e., with increasing number of NN neurons. Hence a sufficiently
large number of NN neurons is required to satisfy the condition in (6—25).
Theorem 6.1. Provided Assumptions 5.2-6.2 hold, and the control gains are selected
based on (6-25)-(6—-27), the controller in (6—10), along with the weight update laws
(6—16)-(6—18), and the identifier in (6—5) along with the weight update law (6—7) en-
sure that the system states remain bounded, the tracking error is uniformly ultimately

bounded, and that the control policy [ converges to a neighborhood around the optimal

control policy p*.
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Proof. Using (5—-4) and the fact that V,* (e (t) ,t) = V* (¢ (t)), Vt € R, the time-derivative

of the candidate Lyapunov function in (6—22) is

. ~ X 1 ~ . ~ - A .
V=V V*F+Gu") — WIT'W, — §WCTF‘1FF‘1WC —WIW, + Vo + VV*Gu — VV*Gu*
(6—28)

Using (5-9), (6—12), (6—13), and (6—14) the expression in (6—28) is bounded as
. _ ~ X 1 ~ . ~ ~ X . 1 ~
Vi <—Q(¢) —WIT'W, — §WCTF‘1FF‘1WC —~WIW, + Vo + 5 (WG, +VeG, Vo) W,
- ~ 1 1
+WIVoGgt 0" o4q + VeGgy 0" 0pq + EGE + §WTV0GTV€T +WTVoGgfega — (,u*)T Ru*

+ VeGglega. (6-29)

The approximate BE in (6—19) is expressed in terms of the weight estimation errors as

~

- 1 ~ -
6 = —w' W, — W'VaF;+ ZWf G, W, + A, (6-30)

where F; £ F, (c, é) and A = O (¢, Ve, ). Using (6-30), the bound in (6-9) and the
update laws in (6—16)-(6—18), the expression in (6—29) is bounded as

N
. — 2 Wild; 2 ~ s ~
Vi< -Q(0) - ZWT?VQ ” SV~ koo 0] = O+ ) W, — b
- W N . 1 - nw- N
—aWT —WTVaFg F a WIW, + 0eeWIW + anWcT CWIG,W, - W %JWTU;F&
p.

=1

TﬂcZ T Tnc2 T nch Waw TICQG Waw
+Z W WGMWJrW Z A W( Z o, W,

+ ||Z[| + Kody H H WTG + VG, Vo) W, + WIVoGgr0  oga+VeGy, 0" 09a+ 506

~ 1
+ ﬁchg%A + §WTVO'GTV€T + WTVUGgC}LEQd + VeGygl €pa

Segregation of terms, completion of squares, and the use of Young’s inequalities yields

kg@
3

~112
(nal + 7](12 9

F

7]02 c

Vi <-Q() -
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———2
_ Ne2C _ 3 (7702 + 7701)2 WQHVO-H 0_92 H
4 16/{Z9@V£

< Na1 + 7](12) (ncl + 7702 W| ) H

<<HWTV0G9 H + HVeng H) o, + k9d9>

— 2
1 e 2) W Go ~
. <(n1+nz) [ ||+m1>‘

CNe2 8y/vl’ dkgog
2
3 (Me14+1:2) W |Gy || + H(WTGa-i'VEGrVUT)H + 77«12||VV||) 9
N ( 164/ + (1 + )2 JJA]] €”
(nal + 7]0,2) 4V£7702Q Qk
1 1
+ HEGE + H§WTV0GTV6T + HWTVUngegdH + HVeng@dH, (6-31)

for all Z € x. Provided the sufficient conditions in (6—26)-(6—27) are satisfied, the

expression in (6—31) yields
Vi <o (I1Z1), Y121l = vt (2 (6-32)

for all Z € . Using (6—23), (6—25), and (6—32) Theorem 4.18 in [149] can be invoked to
conclude that every trajectory Z (t) satisfying || Z (to)|| < " (v (p)), is bounded for all

t € R and satisfies limsup, .. [|Z #)|| < v (@ (v, (1)) -

L]
6.6 Simulation
6.6.1 Nonlinear System
The effectiveness of the developed technique is demonstrated via numerical
simulation on a nonlinear system of the form (5—4), where
Iy
0, 60y 03 0
f= 9 . g= : (6-33)
0, 05 0Og cos (2x1) + 2

xo (cos (2x1) + 2)

The ideal values of the unknown parameters are ¢, = —1,0, = 1,605 = 0, 0, = —0.5,

05 = 0, and 6; = —0.5. The control objective is to follow a desired trajectory, which is the
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solution of the initial value problem

while ensuring convergence of the estimated policy /i to a neighborhood of

the policy 1*, such that the control law x (t) = p* (¢ (¢)) minimizes the cost

J7° (7 (¢) diag ([10, 10]) e (t) + (1 (t))?) dt, subject to the dynamic constraint in (5-4).
The value function is approximated using the polynomial basis o (¢) =

€2, €2, e2a2,, 202, €22, €232, e1e5]” , and the unknown drift dynamics are approxi-

mated using the basis o4 (z) = [z1, 72, 7 (cos (2z1) + 2)]7. Learning gains for system

identification and value function approximation are selected as

Ny = 0.1, Nea = 2.5, N1 = 1, Mas = 0.01, B = 0.3, v = 0.005, T = 100000, k = 500,

Ty = I3, T (0) = 50001, ke = 20,

To implement BE extrapolation, error values {Q}fil are selected to be uniformly spaced
overthe a2 x 2 x 2 x 2 hypercube centered at the origin. The history stack required
for CL contains ten points, and is recorded online using a singular value maximizing
algorithm (cf. [93]), and the required state derivatives are computed using a fifth order
Savitzky-Golay smoothing filter (cf. [150]).

The initial values for the state and the state estimate are selected to be z (0) =
[1,2]T and 2 (0) = [0,0]%, respectively. The initial values for the NN weights for the
value function, the policy, and the drift dynamics are selected to be 5 x 1,, 3 x 17, and
0¢, respectively. Since the system in (6—33) has no stable equilibria, the initial policy
i (¢, 06x1) is not stabilizing. The stabilization demonstrated in Figure 6-1 is achieved via

fast simultaneous learning of the system dynamics and the value function.
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Figure 6-1 and 6-2 demonstrates that the controller remains bounded, the tracking
error is regulated to the origin, and the NN weights converge. In Figure 6-3, the dashed
lines denote the ideal values of the NN weights for the system drift dynamics.

Tracking Error Control Trajectory
1.2 : : ‘ ‘ 3 : : ‘

6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Figure 6-1. System trajectories generated using the proposed method for the nonlinear
system.

Figure 6-4 demonstrates satisfaction of the rank conditions in (6—6) and (6—15).
The rank condition on the history stack in (6—6) is ensured by selecting points using a
singular value maximization algorithm, and the condition in (6—15) is met via oversam-
pling, i.e., by selecting 160 points to identify 9 unknown parameters. Unlike previous
results that rely on the addition of an ad-hoc probing signal to satisfy the PE condition,
this result ensures sufficient exploration via BE extrapolation.

Since an analytical solution of the optimal tracking problem is not available for
the nonlinear system in (6—33), the value function and the policy weights cannot be
compared against their ideal values. However, a measure of proximity of the obtained
weights W; to the ideal weights 1 can be obtained by comparing the system trajecto-
ries resulting from applying the feedback control policy /i (¢) = —1R'GT (¢) Vo™ (¢) W
for fixed weights W* to the system, against numerically computed optimal system tra-

jectories. Figure 6-5 shows that the control and error trajectories resulting from the
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Value Function Weights Policy Weights

0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Figure 6-2. Value function and the policy weight trajectories generated using the
proposed method for the nonlinear system. Since an analytical solution of
the optimal tracking problem is not available, weights cannot be compared
against their ideal values

obtained weights are close to the numerical solution. The numerical solution is obtained
from GPOPS optimal control software [7] using 300 collocation points.

A comparison between the learned weights and the optimal weights is possible for
linear systems provided the dynamics h, of the desired trajectory are also linear.
6.6.2 Linear System

To demonstrate convergence to the ideal weights, the following linear system is

simulated:

-1 1 0
i = z+ | | u (6-34)
—0.5 0.5 1
The control objective is to follow a desired trajectory, which is the solution of the initial

value problem

while ensuring convergence of the estimated policy & to a neighborhood of

the policy 1*, such that the control law x (t) = p* (¢ (¢)) minimizes the cost
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Drift Dynamics NN Weights
1.5 ‘ ‘ : : -

<
<
<
1
> o4 N
>
<4

Time (S)

Figure 6-3. Trajectories of the unknown parameters in the system drift dynamics for the
nonlinear system. The dotted lines represent the true values of the
parameters.

Jo° (7 (¢) diag ([10, 10]) e (t) + (1 (t))?) dt, subject to the dynamic constraint in (5-4),

over u e U.

The value function is approximated using the polynomial basis o ({) =

(€2, €3, e1ea, €1Tq1, €alan, €174z, €2Zq1]!, and the unknown drift dynamics is approxi-

mated using the linear basis oy (z) = |21, z,]" . Learning gains for system identification

and value function approximation are selected as

ey = 0.5, Ny = 10, N1 = 10, 1as = 0.001, B = 0.1, v = 0.005, T = 100000, k = 500,

Ly =1, I'(0) = 100017, kg = 10,

To implement BE extrapolation, error values {ei}?il are selected to be uniformly spaced
ina 5 x5 grid on a 2 x 2 square around the origin, and the points {z, (tj)}]li1 are selected

along the desired trajectory such that the time instances ¢, are linearly spaced over the
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Minimum Singular Value of CL History Stack Minimum Eigenvalue of BE Extrapolation Matrix
12 \ \ \ \ 0.06 \ \ \ \

10t 1 0.05

8r 1 0.04f

6 1 0.03}

4r 1 0.02

2r 1 0.01f

0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)

Figure 6-4. Satisfaction of Assumptions 6.1 and 6.2 for the nonlinear system.

1

interval [0.1, 27]. The set of points {( ifl is then computed as {(;} = [GT ] (tj)r},
i=1,---,25,5 = 1,--- ,11. The history stack required for CL contains ten points,

and is recorded online using a singular value maximizing algorithm (cf. [93]), and the
required state derivatives are computed using a fifth order Savitzky-Golay smoothing
filter (cf. [150]).

The linear system in (6—34) and the linear desired dynamics result in a linear time-
invariant concatenated system. Since the system is linear, the optimal tracking problem
reduces to an optimal regulation problem, which can be solved by solving the resulting
algebraic Riccati equation. The optimal value function is given by V (¢) = ¢* P;¢, where

the matrix F; is given by
443 067 0 O

0.67 291 0 0O
0 0 00
0 0 00

Using the matrix P, the ideal weighs corresponding to the selected basis can be

computed as W = [4.43, 1.35, 0, 0, 2.91, 0, 0].
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Control Trajectory Tracking Error

2.5 : 1 ‘ : :
R 1 - ADP —e, - ADP
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Figure 6-5. Comparison between control and error trajectories resulting from the
developed technique and a numerical solution for the nonlinear system.

Figures 6-6 - 6-8 demonstrate that the controller remains bounded, the tracking
error goes to zero, and the weight estimates W,, W, and 6 go to their true values,
establishing the convergence of the approximate policy to the optimal policy. Figure 6-9
demonstrates satisfaction of the rank conditions in (6—6) and (6—15).

6.7 Concluding Remarks

A concurrent-learning based implementation of model-based RL is developed to
obtain an approximate online solution to infinite-horizon optimal tracking problems for
nonlinear continuous-time control-affine systems. The desired steady-state controller is
used to facilitate the formulation of a feasible optimal control problem, and the system
state is augmented with the desired trajectory to facilitate the formulation of a stationary
optimal control problem. A CL-based system identifier is developed to remove the
dependence of the desired steady-state controller on the system drift dynamics, and to
facilitate simulation of experience via BE extrapolation.

The design variable in (5-5) and inversion of the control effectiveness matrix is
necessary because the controller does not asymptotically go to zero, causing the total

cost to be infinite for any policy. The definition of i and the inversion of the control
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Tracking Error Control Trajectory
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Figure 6-6. System trajectories generated using the proposed method for the linear
system.

effectiveness matrix can be avoided if the optimal control problem is formulated in terms
of a discounted cost. An online solution of the discounted cost optimal control problem is
possible by making minor modifications to the technique developed in this chapter.

The history stack in Assumption 6.1 is assumed to be available a priori for ease of
exposition. Provided the system states are exciting over a finite amount of time needed
for collection, the history stack can be collected online. For the case when a history
stack is not available initially, the developed controller needs to be modified during the
data collection phase to ensure stability. The required modifications are similar to those
described in Appendix A. Once the condition in Assumption 6.1 is met, the developed
controller can be used thereafter.

Technical challenges similar to the optimal tracking problem are encountered while
dealing with multiple interacting agents. Since the trajectory of one agent is influenced
by other agents, the value function becomes time-varying. The following chapter
extends the simulation-based ACI method to obtain an approximate feedback-Nash
equilibrium solution to a class of graphical games based on ideas developed in previous

chapters.
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Policy NN Weights

Value function NN Weights

15 - 15 -
u Wcl u Wal
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10 0 2 4 6 8 10
Time (s) Time (s)
Figure 6-7. Value function and the policy weight trajectories generated using the
proposed method for the linear system. Dotted lines denote the ideal values

generated by solving the LQR problem.

Drift Dynamics NN Weights

1.5 =
m 4(1,1)
v 0(2,1)

—vy—v— ©® ((1,2)|y
* 6(2,2)

Time (s)

Figure 6-8. Trajectories of the unknown parameters in the system drift dynamics for the
linear system. The dotted lines represent the true values of the parameters.
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Figure 6-9. Satisfaction of Assumptions 6.1 and 6.2 for the linear system.
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CHAPTER 7
MODEL-BASED REINFORCEMENT LEARNING FOR ONLINE APPROXIMATE
FEEDBACK-NASH EQUILIBRIUM SOLUTION OF DIFFERENTIAL GRAPHICAL
GAMES

Efforts in this chapter seek to combine differential game theory with the ADP
framework to determine forward-in-time, approximate optimal controllers for formation
tracking in multi-agent systems with uncertain nonlinear dynamics. A continuous
control strategy is proposed, using communication feedback from extended neighbors
on a communication topology that has a spanning tree. The simulation-based ACI
architecture from Chapter 3 is extended to cooperatively control a group of agents to
track a trajectory in a desired formation using ideas from Chapter 6.

7.1 Graph Theory Preliminaries

Consider a set of N autonomous agents moving in the state space R". The control
objective is for the agents to track a desired trajectory while maintaining a desired
formation. To aid the subsequent design, another agent (henceforth referred to as the
leader) is assumed to be traversing the desired trajectory, denoted by z, € R™. The
agents are assumed to be on a network with a fixed communication topology modeled
as a static directed graph (i.e. digraph).

Each agent forms a node in the digraph. The set of all nodes excluding the leader
is denoted by N = {1,--- N} and the leader is denoted by node 0. If node i can receive
information from node j then there exists a directed edge from the ;j* to the i** node
of the digraph, denoted by the ordered pair (j,). Let E denote the set of all edges.
Let there be a positive weight a;; € R associated with each edge (j,7). Note that
a;; # 0ifandonly if (j,7) € E. The digraph is assumed to have no repeated edges
i.e. (i,7) ¢ E,Vi, which implies a;; = 0,Vi. Note that a;, denotes the edge weight
(also referred to as the pinning gain) for the edge between the leader and an node .
Similar to the other edge weights, a;o # 0 if and only if there exists a directed edge

from the leader to the agent i. The neighborhood sets of node i are denoted by N_;
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and \;, definedas V_; 2 {j € N'| (j,i) € E} and N; = N_; U {i}. To streamline the
analysis, a graph connectivity matrix A € R¥*V is defined as A £ [a;; | i,j € N],
a diagonal pinning gain matrix .4, € RY*V is defined as A, = diag (ay) | i € N,
an in-degree matrix D ¢ R"*" is defined as D = diag (d;), where d; £ Y., aij,
and a graph Laplacian matrix £ € RV*V is definedas £ £ D — A. The graph is
said to have a spanning tree if given any node i, there exists a directed path from
the leader 0 to node i. A node j is said to be an extended neighbor of node i if there
exists a directed path from node j to node i. The extended neighborhood set of node
i, denoted by S_;, is defined as the set of all extended neighbors of node i. Formally,
Si=2{jeN|j#iAIn <N, {15} CN[{G51), (G d2) s+ 5 Uns)} C 27} Let
S; 2 S_; U {i}, and let the edge weights be normalized such that > ja;=1forallieN.
Note that the sub-graphs are nested in the sense that S; C S; for all j € S;.

7.2 Problem Formulation

The state z; € R™ of each agent evolves according to the control-affine dynamics
T = fi (Ti) + gi (23) ws, (7-1)

where u; € R™ denotes the control input and f; : R — R" and g; : R® — R™*™: are
locally Lipschitz continuous functions.
Assumption 7.1. The group of agents follows a virtual leader whose dynamics are
described by iy = fo (z9), Wwhere f, : R* — R" is a locally Lipschitz continuous function.
The function f,, and the initial condition x (to) are selected such that the trajectory x, (¢)
is bounded for all £ € R, .

The control objective is for the agents to maintain a predetermined formation
around the leader while minimizing a cost function. For all i € N/, the i*" agent is
aware of its constant desired relative position z4; € R™ with respect to all its neighbors
J € N_;, such that the desired formation is realized when z; — z; — x4, forall i,j € N.

To facilitate control design, the formation is expressed in terms of a set of constant
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vectors {z4 € R"},_\, Where each x4, denotes the constant final desired position of
agent ¢ with respect to the leader. The vectors {x4},.,- are unknown to the agents
not connected to the leader, and the known desired inter agent relative position can
be expressed in terms of {40 };c\ @S Taij = Taio — Zgjo- The control objective is thus
satisfied when z; — x40 + z, for all i« € N. To facilitate control design, define the local
neighborhood tracking error signal

€; = Z a;; ((xi — ;) — Taij) - (7-2)

JE{OIUN_;

To facilitate analysis, the error signal in (7-2) is expressed in terms of the unknown

leader-relative desired positions as

i = Z aij ((z; — 2aio) — (T — Tgjo)) - (7-3)
JE{OJUN_;
T
Stacking the error signals in a vector £ £ [ el el . ek } € R"N the equation in

(7-3) can be expressed in a matrix form

E=((L+A)®IL,) (X — Xy — X), (7-4)
T T
where X = {xlT, xd, x%] cR™W, X; = [1:510, Thoos o, a:dTNol € R,
T
X = [ b, 2, o) a2l } e R"Y, I, denotes an n x n identity matrix, and @ denotes

the Kronecker product. Using (7—4), it can be concluded that provided the matrix

(L+ Ap) ® I,) € R*V*nN s nonsingular, ||£]| — 0 implies z; — x40 + 0 for all 4, and
hence, the satisfaction of the control objective. The matrix ((£ + Ay) ® 1,,) can be shown
to be nonsingular provided the graph has a spanning tree with the leader at the root. To
facilitate the formulation of an optimization problem, the following section explores the

functional dependence of the state value functions for the network of agents.

130



7.2.1 Elements of the Value Function

The dynamics for the open-loop neighborhood tracking error are

G= > g (fi (i) + gi (@) wi — £ (x7) — g5 () ).
JE{OYUN
Under the temporary assumption that each controller u; is an error-feedback controller,
i.e. u; (t) =u,; (e (t),t), the error dynamics are expressed as
Gi= Y ay (fi(w) +gi (i) i (i t) = fi (25) = g5 (25) 5 (e5,1)) -
FE{OYUN—;

Thus, the error trajectory {e; (¢)},-, , where t, denotes the initial time, depends
on iy (e; (t),t),Vj € N;. Similarly, the error trajectory {e; (¢)},Z, depends on
ay, (ex (1) , 1), Yk € Nj. Recursively, the trajectory {e; (t)},=, depends on i; (e; (1), 1),
and hence, on ¢; (t),Vj € S;. Thus, even if the controller for each agent is restricted to
use local error feedback, the resulting error trajectories are interdependent. In particular,
a change in the initial condition of one agent in the extended neighborhood causes a
change in the error trajectories corresponding to all the extended neighbors. Conse-
quently, the value function corresponding to an infinite-horizon optimal control problem
where each agent tries to minimize [ (Q (e; (1)) + R (u; (1))) dr, where Q : R* — R
and R : R™ — R are positive definite functions, is dependent on the error states of
all the extended neighbors. In other words, the infinite-horizon value of an error state
depends on error states of all the extended neighbors; hence, communication with ex-
tended neighbors is vital for the solution of an optimal control problem in the presented
framework.
7.2.2 Optimal Formation Tracking Problem

When the agents are perfectly tracking the desired trajectory in the desired forma-
tion, even though the states of all the agents are different, the time-derivatives of the
states of all the agents are identical. Hence, in steady state, the control signal applied

by each agent must be such that the time derivatives are all identical. In particular, the

131



relative control signal v;; € R™ that will keep node i in its desired relative position with
respect to node j, i.e., z; = x; + x4;, must be such that the time derivative of z; is the
same as the time derivative of z;. Using the dynamics of the agent from (7—1), and
substituting the desired relative position z; + z4; for the state x;, the relative control
signal u;; must satisfy

fi (@) + 2aij) + gi (75 + waij) wiy = 5. (7-5)

The relative steady-state control signal can be expressed in an explicit form provided the
following assumption is satisfied.
Assumption 7.2. The matrix g; (x) is full rank for all i € N and for all z € R", further-

more, the relative steady-state control signal expressed as
uiy = fij (x5) + 9i5 ()

satisfies (7-5) along the desired trajectory, where f;; (z;) =
g () + zaiy) (f; () = fi (25 + zai)) € R™, g5 () £ 6 (2 + waij) g; (x5) € R™™,
go(x) = 0forallz € R*, u; = 0foralli € A, and g (x) denotes the Moore-Penrose
pseudoinverse of the matrix g; (x) for all z € R™.

To facilitate the formulation of an optimal formation tracking problem, define the

control error p; € R™ as

j2% =S Z Q45 (U,Z — uij) . (7—6)

JEN_;U{0}
In the reminder of this chapter, the control errors {1, } will be treated as the design

variables. In order to implement the controllers {u;} using designed control errors {y;},
it is essential to invert (7—6). To facilitate the inversion, let S £ {1,---  s;}, where

s; = |S|- Let \; : S — S; be a bijective map such that ), (1) = i. For notational brevity,

T
let (), denote the concatenated vector [(-)f1 NOIEEE ,(-)fgi} ,let (-)s_. denote the
T . .
concatenated vector [(-)fg . ,(-)fsi] ,let " denote 3.\ 0. let A denote ); (4),

T T
let & 2 el 27| e R™s+D andlet&_; £ |eL . z7,| € R"i. Then, the control error
STy S_ Ty
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Zkesg m

vector us, € R ' can be expressed as
ps, = ZLyi (&) us, — F; (&) (7-7)

where the matrix .%,; : Rt — REkes? k¥ kes? ™k s defined as

Ap
> a/\}jImAp TANIN2GNIN2 (%3) T AN gL (x/\fi>
A2 I
ey a | Tomn () 2T Wil m A g (T
gz( z) - )
At I
TayiaLgasial (Tal ) TAxtix20y% 52 | T2 DY ayvijlm,s;
L : : : -

and F, : R+ R-+€s? ™% is defined as

A

T
R = [ SN an iy (ag) e N axsij e (25) } '

Assumption 7.3. The matrix .Z; (&; (t)) is invertible for all t € R.

Assumption 7.3 is a controllability like condition. Intuitively, Assumption 7.3 requires
the control effectiveness matrices to be compatible to ensure the existence of relative
control inputs that allow the agents to follow the desired trajectory in the desired
formation.

Using Assumption 7.3, the control vector can be expressed as

us, = Lyt (&) ps, + L Fi (&)

K3

Let . denote the (A, (k))™ block row of .Z,;'. Then, the controller u; can be imple-
mented as

and for any j € NV_,,
uj = L2 (&) ps, + LF; (&) . (7-9)
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Using (7-8) and (7-9), the error and the state dynamics for the agents can be repre-

sented as

& = Fi (&) +9 (&) ps,, (7-10)
and

t; = Fi (&) + Gi (&) ps;, (7-11)
where Z; (&) 2 S ay (fi (x:) — fi (x5) + (95 (2:) L5 (&) — g5 () L5 (&) Fi (£))),

Fi (€
G (&) 2 Y aij (g (1) L3 (&) — g5 () L35 (&), Fi (&) & fi (i) + g (w:) L (€) Fy (€,
and G; (£) 2 g; (z:) L (£)).
Lethﬁﬁ

(t to, Zo) and hul Ho-

' (t, 0, Eo) denote the trajectories of (7—10) and

(7—11), respectively, with the initial time ¢,, initial condition &; () = &0, and policies
T

i, - RMe+D 5 R™iand let and H; = [(he)gi , th}] . Define a cost functional

o0

Ty (enis) 2 / (e (o), i (0)) do (7-12)

0
where 7; : R* x R™ — R, denotes the local cost defined as r; (e;, 1) = Q; (e;) + ul Ripui,
where ); : R — R is a positive definite function and R, € R™*™ is a constant
positive definite matrix. The objective of each agent is to minimize the cost functional in
(7—12). To facilitate the definition of a feedback-Nash equilibrium solution, define value

functions V; : R+ — R, as

o0

v ) 2 / r (b e &) (W (0,8)) ) do, (7-18)
t
where the notation V ' (&) denotes the total cost-to-go under the policies 7ig,,

starting from the state &;. Note that the value functions in (7—13) are time-invariant
because the dynamical systems {¢; = .Z; (&) + ¥; (&) ,ugj}jes_ and i; = F; (&) +

G: (&) ns, together form an autonomous dynamical system.
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A graphical feedback-Nash equilibrium solution within the subgraph S; is defined
as the tuple of policies {; : R" ) — Rm-i}jes_ such that the value functions in (7—13)
satisfy

IR s

VIENEVTTTT(E) SV (E),

J

forall j € S;, for all £ € R™*+1) and for all admissible policies 11;. Provided a feedback-
Nash equilibrium solution exists and the value functions (7—13) are continuously
differentiable, the feedback-Nash equilibrium value functions can be characterized in

terms of the following system of HJ equations:

SOV () (F5 (E0) + G5 (E0) s, (€0)) + Va Vit (€0) (Fi (€7) + Gu (€0) s, (£1))

JES;

+Q; (&) + " (&) Raps; (€7) = 0, V&7 € R"HY, - (7-14)

K3 7

where Q, : R"¢i*) — R is defined as Q, (&) = Q; (e;)-
Theorem 7.1. Provided a feedback-Nash equilibrium solution exists and that the value
functions in (7—13) are continuously differentiable, the system of HJ equations in (7—14)

constitutes a necessary and sufficient condition for feedback-Nash equilibrium.

Proof. Consider the cost functional in (7—12), and assume that all the extended neigh-
bors of the i*" agent follow their feedback-Nash equilibrium policies. The value function

corresponding to any admissible policy i, can be expressed as
ps ([eF. €n]") = / ry (h““ CARAN? (”H““ (a,t,é'i)>) do.
t

Treating the dependence on £_; as explicit time dependence define

—ﬁ; 7/>L‘*S_i

3 3

(er,1) & V75 ([eF, €% 0)"). (7-15)

for all e; € R™ and for all ¢ € R>,. Assuming that the optimal controller that minimizes

(7—12) when all the extended neighbors follow their feedback-Nash equilibrium policies

* ok
70

exists, and assuming that the optimal value function V; £ V,""°~ exists and is
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continuously differentiable, optimal control theory for single objective optimization

problems (cf. [144]) can be used to derive the following necessary and sufficient

condition
Za(: ) (92 (&) + % (&) ws, <82)) + z@%) = Qi (&) + ;" (&) Ripr (). (7-16)

Using (7—-15), the partial derivative with respect to the state can be expressed as

OV, (e;,t) Vi (&)
(9ei n 861 ’

(7-17)

for all e; € R™ and for all t € R+, and the partial with respect to time can be expressed

as

v (&)
3@-

W =D, 6@—;‘” (% (&) +9; (&) s, (€i>)+ (Fi (&) +Gi (&) 1%, ()

(7-18)

JES—i

foralle; € R™ andforallt € Rs,. Substituting (7—17) and (7—18) into (7—16) and

repeating the process for each i, the system of HJ equations in (7—14) is obtained. O

Minimizing the HJ equations using the stationary condition, the feedback-Nash

equilibrium solution is expressed in the explicit form

() = =R (4 €) (Ve (€)= SR (6 E) (VL €) (7-19)

JES;

for all (£7) € R"=*1), where ¢/ = %8;% and G/ £ gi%“—j. Since solution of the system
of HJ equations in (7—14) is generally infeasible, the feedback-Nash value functions and
the feedback-Nash policies are approximated using parametric approximation schemes
as V, (&-, WCZ) and /i; (&», Wm> respectively where IW,; € R and W,; € RE are
parameter estimates. Substitution of the approximations V; and ji; in (7—14) leads to a

set of BEs ¢, defined as

o (et (1)) 2 S w0 (i) (26 + 4 €, (£ (1), )
JES; J
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+ inf/i (51, Wcz) (-7:@ (&) +Gi (&) fis, (&' <Wa> Sz)) — (51', Waz) Riji; (51, Waz)
— Qi (ei) .

Approximate feedback-Nash equilibrium control is realized by tuning the estimates V;
and /i; so as to minimize the Bellman errors §;. However, computation of §; and that
of u;; in (7—6) requires exact model knowledge. In the following, a CL-based system
identifier is developed to relax the exact model knowledge requirement. In particular, the
developed controllers do not require the knowledge of the system drift functions f;.

7.3 System Identification

On any compact set y C R” the function f; can be represented using a NN as
fi (@) = 6] 0; () + €gi (), (7-20)

forallz € R", where §; € RF*1*" denote the unknown output-layer NN weights,

og; : R* — RF*1 denotes a bounded NN basis function, ¢, : R* — R” denotes the
function reconstruction error, and P, € N denotes the number of NN neurons. Using
the universal function approximation property of single layer NNs, provided the rows of
og; (x) form a proper basis, there exist constant ideal weights ¢; and positive constants
0; € Rand &; € R suchthat ||6;]|, < 6; < oo and SUp,¢, |l€0i (7)]| < €3, where ||-[|
denotes the Frobenius norm.

Assumption 7.4. The bounds 6, and &, are known for all i € \.

Using an estimate §, € RF+1x" of the weight matrix 6;, the function f; can be
approximated by the function f; : R* x RPit1xn _s R defined by f; <az,é> 2 0704 (2).
Based on (7—20), an estimator for online identification of the drift dynamics is developed
as

T = éiTCTei (@) + gi () wi + ki, (7-21)

where #; £ z; — #;, and k; € R is a positive constant learning gain. The following

assumption facilitates CL-based system identification.
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Assumption 7.5. [92] A history stack containing recorded state-action pairs {xz, u; } P

along with numerically computed state derivatives {xk}k that satisfies

My,
>\min (Z Ugi (O'gz)T> — % > O,
k=1
|&F — &F|| < di, V&, (7-22)

is available a priori. In (7-22), of; £ 04; (2F), dp; € R is a known positive constant, and
Amin () denotes the minimum eigenvalue.

The weight estimates 6; are updated using the following CL-based update law:

Mo;

9 = k92F91 of (78 — gFul — 0 o} +F6i09i ;) I} (7-23)
01 [t} 01

where gf £ g; (zF), ko; € R is a constant positive CL gain, and Ty, € R F1>Fitl is g
constant, diagonal, and positive definite adaptation gain matrix.
To facilitate the subsequent stability analysis, a candidate Lyapunov function

Voi : R* x RE+Ixn 4 R s selected as
~ N A 1 ~T~ T 1
Vor (%5, 05) 2 53T + tr (rr3ta.) . (7—-24)

where 6, £ 6, — 6, and tr () denotes the trace of a matrix. Using (7—21)-(7-23), the

following bound on the time derivative of 1, is established:

. ~ 12 1l ~
Voir < —Fk; || &) — keoioe: ||0: - + €5 [|Zi]| + Koidg; ||0;

, (7-295)
F

where dp; 2 d; S0

ok |l + e (||eki|| |ek]|)- Using (7—24) and (7-25), a Lyapunov-
based stability analysis can be used to show that 6; converges exponentially to a
neighborhood around 6;.

7.4 Approximation of the BE and the Relative Steady-state Controller

Using the approximations f; for the functions f;, the BEs can be approximated as
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In (7—26),

Z; <5i; ési) éZiaz-j (fz (371'7 éz‘) —fj (xj, éj)) +Ziaij (gi (i) "E/ﬂgii_gj () g;z) F, (SZ-, éSi) )

F (51', é&) 2 0709 (x:) + g; () ggzzﬁ’z <5z', é&) ;
T

. . . . . T . . ~\\7T
Fi (gia ‘981-) = |:<Z:)\Z aA%ijgj (33)\11, 9)\%, Zj, 9]>> PR (Z)\l a)\jijf)\:ij (JCA?, 9)\?' y Ly (9]>> ] )
fz’j <$i,éi,$j,éj) 2 g () + Taij) <fg (xjaéj) — fi <l‘j + xdij,éz‘» :
The approximations E, % and F; are related to the original unknown function as
Fz‘ (&,0s,) + Bi (&) = F, (&), 32@ (&,0s,) + B (&) = % (&), and -7}2 (&,0s,) +
B; (&) = F; (&), where B;, %;, and B; are O ((€)s, ) terms that denote bounded function
approximation errors.

Using the approximations f, an implementable form of the controllers in (7-8) is

expressed as
us, = fg;l (&) fis, (8Z7 (Wa> S-) + "E’ﬂg;lﬁ;‘ (&, 0s,) - (7-27)
Using (7-7) and (7—27), an unmeasurable form of the virtual controllers implemented on

the systems (7-10) and (7—11) is given by
Hs; = HUs; (&', (Wa> S¢> — F; (51‘, 9&) — B; (51) . (7-28)

7.5 Value Function Approximation

On any compact set y € R*:*1 the value functions can be represented as

Vi (€)= W0y (E7) + & (£7), V&7 € R, (7-29)

(2
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where W; € R are ideal NN weights, o; : R**+1) — R are NN basis functions

and ¢; : R+ — R are function approximation errors. Using the universal function
approximation property of single layer NNs, provided o; (£7) forms a proper basis, there
exist constant ideal weights 17; and positive constants IV; € R and &, Ve; € R such that
IWil] < W; < 00, supgoe, 6 (€7)]] < &, and supgoe, [|[Vei (€7)]| < Ve

Assumption 7.6. The constants &, Ve;, and W, are known for all i € A/,

Using (7—19) and (7—29), the feedback-Nash equilibrium policies can be repre-

sented as
1 1
Hi (€7) = — R Goi (E)) Wi = SR 'Ga (€7) , VE? € ™Y,
where
i T T i T
Goi (€) 2 Y (% (£) (Ve,00(8)) + (G (€) (Vaoi (&))"
JES;
and

G (E) 2 Y (9(&)" (Ve (€)' + (G (E)) (Vo ()

JES;

The value functions and the policies are approximated using NNs as
. NN X . A 1 .
Vi <5z'> Wcz’) = W0 (&), i (51', Wai) = —§Ri Goi (E) Was. (7-30)

7.6 Simulation of Experience via BE Extrapolation

A consequence of Theorem 7.1 is that the BE provides an indirect measure of
how close the weights W.; and W,; are to the ideal weights W;. From a reinforcement
learning perspective, each evaluation of the BE along the system trajectory can be
interpreted as experience gained by the critic, and each evaluation of the BE at points
not yet visited can be interpreted as simulated experience. In previous results such
as [95,112,119,128, 157], the critic is restricted to the experience gained (in other words
BEs evaluated) along the system state trajectory. The developmentin [112,119, 128,
157] can be extended to employ simulated experience; however, the extension requires

exact model knowledge. In results such as [95], the formulation of the BE does not allow
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for simulation of experience. The formulation in (7—26) employs the system identifier
developed in Section 7.3 to facilitate approximate evaluation of the BE at off-trajectory
points.

To simulate experience, each agent selects a set of points {&£F }24:1 and evaluates
the instantaneous BE at the current state, denoted by 5, and the instantaneous state at

the selected points, denoted by Sfi. The BEs Sti and 5§ are defined as

~

5 (1) 26, (a (1), W (1), (Wa (t))Si , (é (t))S) ,
5k (1) £ 6, <5f, W (1), (W (t))Si , (é (t))&) .

Note that once {e;}, ;. and z; are selected, the i" agent can compute the states of
all the remaining agents in the subgraph. For notational brevity, the arguments to the
functions o;, % 4. G, Fi, i, Ggi, Gei, and g; are suppressed hereafter.

The critic uses simulated experience to update the value function weights using a

least squares-based update law

M.
2 Wi o 2l Wf a
We = —Uclirif5ti e ‘ BV fi,
i i o Mi
d win-T —
=Gl — ncliri7ri 1{||pi||§fi}7 1T (to) || < T, (7-31)

where p; = 1 + vw! Tyw;, I'; € RE*Li denotes the time-varying least-squares learning
gain, I'; € R denotes the saturation constant, and 7.1;, 7.2, 8i, ; € R are constant
positive learning gains. In (7-31),
wi 2 Y Voo (F5+ Gy, ) + Vaoi (Fi+ Gifis,)
JES;

2 STV ok (B all)) + Voot (FE gk,

JES;
where for a function ¢; (£;, (+)), the notation ¢* indicates evaluation at & = £F;i.e.,

oF 2 (Ei’“, (-)). The actor updates the policy weights using the following update law
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derived based on a Lyapunov-based stability analysis:

. o
W nanWaz + nclzGT R; 1G01Wa1 D; Wcz + - Z T]CQZ ) R;chﬁiWai (QZI@) WCi

o1
)

— TNali (Waz - Wcz> , (7-32)

where 7,15, M.2; € R are constant positive learning gains. The following assumption

facilitates simulation of experience

Assumption 7.7. [97] For each i € W/, there exists a finite set of M; points {&F ]]:[1

' W@ ()@
(lnfteR>o ()‘min { kM:l P(k—(t))})>
A k2

pi= i

such that

> 0,

where i, denotes the minimum eigenvalue, and p; € R is a positive constant.
7.7 Stability Analysis
To facilitate the stability analysis, the left hand side of (7—14) is subtracted from

(7—26) to express the BE in terms of weight estimation errors as

51&1‘ = _Wgwi - I/Vz‘Tvxio-i (gz) JT:.z <gz> éS) + - WTGZsz IGUzWaz - WTGZsz IGUZW(M

WY Vo (€)% (&.05) + WIS Vo )gns< W)+

JES; JES;

I 5
+ WV (E) GiRs, (Wa) . (7-39)

7

~

where () 2 () = (), A = 0((@),. (Vo). (@)s,), and Rs, 2

diag ({R;}IGC{A;, e ,R;Jj GZAS_].D is a block diagonal matrix. Consider a set of ex-
tended neighbors S, correspc;nding to the p!" agent. To analyze asymptotic properties of
the agents in S, consider the following candidate Lyapunov function

Vi (Zy 1) 2 3" Visles,0) 4 32 g AT Wt 30 S W+ 30 Vi (3,8) . (7-34)

1€SY lGSp zGSp i€Sy
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where Z, € Rnsit2Lisitn(PitDs) jg defined as
Al (\T [ NT _\717"
7,2 [ () () a8 veo (3s)]
P Sp Sp P

vec (-) denotes the vectorization operator, and V;; : R x R — R is defined as
A * T T T
Vie(est) 2 V7 [k, 2f 0]"). (7-35)

Ves, € R™i vVt € R. Since V;¥ depends on t only through uniformly bounded leader
trajectories, Lemmas 1 and 2 from [146] can be used to show that V}; is a positive
definite and decrescent function. Thus, using Lemma 4.3 from [149], the following

bounds on the candidate Lyapunov function in (7—34) are established
v ([|Z5]]) < Vi (25.1) <7 ([|5]]) (7-36)

for all Zo € REnsit2Lisitn(Pitl)s) and for all ¢, where vy, 7y, : R — R are class K functions.
To facilitate the stability analysis, given any compact ball x,, C R2si+2Lisitn(Pitlsi of
radius r, € R centered at the origin, a positive constant ¢+, € R is defined as

2

J— ]
a2 8 (koo + [A7]B7]) 5 (s + )2 |2

Lpéz 62_ki+ oo +Z &

€Sy €Sy

AN coipi

1
+2.3

Vo Vi (&) GRs.es, + Y Ve, Vit (&) 4R es,

JES;

2
A ¢ na%wi)

‘ WS Wl GL R Goi

0i o1

3 (%‘ (Mexi + Me2i)
2

i€S,

4 (Na1i + Na2i)

2

€S,

Y

S VLV (E) 9B, + VLV (€) 6B

JES;

where for any function @ : R' — R, | € N, the notation |||/, denotes sup,c, g [|@ (¥)]l

and A?, B?, and A% are uniformly bounded state-dependent terms. Let v, : R — R be a
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class K function such that

1 Ne2iPi ||~ |2 1 (Mari + Na2i) |5, |2 1 koiog: || ~ 12
v ([ Z,]) §+—Z — ||Wei —Z— Wai +—Z 0;
2 4 5 2 4 3 2 4 3 F
1€Sp 1€Sp €S
1 1 ki . 9
s> alllel)+5 > 3 1@,
icS, i€S,

where ¢; : R — R are class K functions such that ¢; (Jle]|) < Q; (e), Ve € R*, Vi € N. The

sufficient gain conditions used in subsequent Theorem 7.2 are

2 2
Ne2iPi < Z 3spljes; (Mei + 77021')2 HA%;LQH Hlewa

(7-37)
5 jes, 4k9j%
2 lac 2 2
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3 jes, 167]02;’& Ane2ipi
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+ ;
4
vt () <57 (up (1)) (7-38)

where A}, B/#°, and Aj¢ are uniformly bounded state-dependent terms.

Theorem 7.2. Provided Assumptions 7.1-7.7 hold and the sufficient gain conditions
in (7-37)-(7-38) are satisfied, the controller in (7—30) along with the actor and critic
update laws in (7-31) and (7—32), and the system identifier in (7-21) along with the
weight update laws in (7—23) ensure that the local neighborhood tracking errors e; are
ultimately bounded and that the policies [i; converge to a neighborhood around the

feedback-Nash policies 1} for all i € N

Proof. The time derivative of the candidate Lyapunov function in (7—34) is given by

Vip = 30 Vi (e 1) — 5 S0 WATT D W = SO WAT W — WA,

i€S, i€S, €S, €S,

+3 Vi (x 9) . (7-39)

i€Sp
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Using (7—-25), the update laws in (7-31) and (7—32), and the definition of V}; in (7—35),

the derivative (7—39) can be bounded as

p S Y VO VE(E) (Fi+ Gins,) + > Vi Vi (E) (Fi+ Gins,) + Y _ kordor ||6; .
1€Sy jES; €S 1€Sy
-5 Z WC{FZ < nclzrz i F ) IWCZ Z <_7]a1i (Wai - Wcz) - naQiWai>
ZGSp 1€Sp
n M1 (wk)T A
- Z ncleTGZz i 1G01Waz Wcz + - Z 621 1Gk W Z—chz
163 zeS k:l Pi
Wis  Neail Mi -2
-2 war (—ncunp—?@ T 6@) Z b |13 —Z koioas || 6|+ @i 1]
! s i€Sp

i€S,

(7-40)

Using (7—14), (7—28), and (7—-33), the derivative in (7—40) can be bounded as
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Using the Cauchy-Schwarz inequality, the Triangle inequality, and completion of

squares, the derivative in (7—41) can be bounded as
Vip < =i (1 Z,]1) (7-42)

forall Z, € x, suchthat || Z,| > v,'(1,). Using the bounds in (7-36), the sufficient
condition in (7—38), and the derivative in (7—42), Theorem 4.18 in [149] can be invoked
to conclude that every trajectory Z, () satisfying || 2, (to)|| < v, ~* <% (rp)>, is bounded
for all ¢ € R and satisfies limsup, .. |12, ()I| < v, (T (v, (1)) -

Since the choice of the subgraph S, was arbitrary, the neighborhood tracking errors
e; are ultimately bounded for all i € N. Furthermore, the weight estimates W converge
to a neighborhood of the ideal weights 1W;; hence, invoking Theorem 7.1, the policies
f1; converge to a neighborhood of the feedback-Nash equilibrium policies .} for all

1€ N. O

7.8 Simulations
This section provides two simulation examples to demonstrate the applicability
of the developed technique. The agents in both the examples are assumed to have
the communication topology as shown in Figure 7-1 with unit pinning gains and edge

weights. The motion of the agents in the first example is described by identical nonlinear
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Figure 7-1. Communication topology a network containing five agents.

one-dimensional dynamics, and the motion of the agents in the second example is
described by identical nonlinear two-dimensional dynamics.
7.8.1 One-dimensional Example

The dynamics of all the agents are selected to be of the form (7—1) where f; (z;) =
Oi2; + 00z, and g; (z;) = (cos(2x;1) +2) foralli = 1,--- 5. The ideal values of the
unknown parameters are selected to be ¢;; = 0 and 0, = 1, for all i. The agents start
at z; = 2 for all 7, and their final desired locations with respect to each other are given
by xdi; = 0.5, xdy; = —0.5, xdys = —0.5, and zds3 = —0.5. The leader traverses an
exponentially decaying trajectory z, (t) = e %!*!. The desired positions of agents 1 and 3

with respect to the leader are x40 = 0.75 and x 430 = 1, respectively.
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State trajectories

2.5

0 5 10 15 20 25 30
Time (s)

Figure 7-2. State trajectories for the five agents for the one-dimensional example. The
dotted lines show the desired state trajectories.
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Table 7-1. Simulation parameters for the one-dimensional example.

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5
0, 10 10 10 10 10
R; 0.1 0.1 0.1 0.1 0.1

Lo 1y 55 Lo 1y 99 o9
0(€)  Hel deb. 116}, ded e ed, b, delag)t 21V g% B 3l 5 it 66
ejry, 3]’ e3r3, esel, €5, )’

z; (0) 2 2 2 2 2
%; (0) 0 0 0 0 0
Wci (0) 14 141 140 154 3 x 1gy;
Wai (0)  1sa 141 141 151 3 X 1gyg
9@' ( ) 02><1 O2><1 02><1 02><1 O2><1
I'; (0) 50014 50014 50014 500175 500175
Neti 0.1 0.1 0.1 0.1 0.1
Ne2i 10 10 10 10 10
Nali 5 5 5 5 5
Na2i 0.1 0.1 0.1 0.1 0.1
v; 0.005 0.005 0.005 0.005 0.005
o; I 0.815 I I I
k; 500 500 500 500 500
ko 30 30 25 20 30




Error trajectories
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Figure 7-3. Tracking error trajectories for the agents for the one-dimensional example.

Table 7-1 summarizes the optimal control problem parameters, basis functions,
and adaptation gains for the agents. For each agent i, five values of ¢;, three values of
x;, and three values of errors corresponding to all the extended neighbors are selected
for BE extrapolation, resulting in 5 x 3° total values of &;. All agents estimate the
unknown drift parameters using history stacks containing thirty points recorded online
using a singular value maximizing algorithm (cf. [93]), and compute the required state
derivatives using a fifth order Savitzky-Golay smoothing filter (cf. [150]).

Figures 7-2 - 7-4 show the tracking error, the state trajectories compared with the
desired trajectories, and the control inputs for all the agents demonstrating convergence
to the desired formation and the desired trajectory. Note that agents 2, 4, and 5 do not
have a communication link to the leader, nor do they know their desired relative position
from the leader. The convergence to the desired formation is achieved via cooperative

control based on decentralized objectives. Figures 7-5 - 7-9 show the evolution and
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Control trajectories

T
— U1

10

15
Time (s)

20

25

30

Relative control error rajectories

10 w
[—
— i
0 —
—Hs
_10 4
_20 L
=t -30
_40 L
_50 L
_60 L
=70 : : : ‘ ‘
0 5 10 15 20 25 30

Time (s)

Figure 7-4. Trajectories of the control input and the relative control error for all agents for

Critic weights

the one-dimensional example.
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Figure 7-5. Value function weights and drift dynamics parameters estimates for agent 1

for the one-dimensional example. The dotted lines in the drift parameter plot
are the ideal values of the drift parameters.
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Critic weights Drift parameters
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Figure 7-6. Value function weights and drift dynamics parameters estimates for agent 2
for the one-dimensional example. The dotted lines in the drift parameter plot
are the ideal values of the drift parameters.
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Figure 7-7. Value function weights and drift dynamics parameters estimates for agent 3

for the one-dimensional example. The dotted lines in the drift parameter plot

are the ideal values of the drift parameters.
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Figure 7-8. Value function weights and drift dynamics parameters estimates for agent 4
for the one-dimensional example. The dotted lines in the drift parameter plot
are the ideal values of the drift parameters.
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Figure 7-9. Value function weights and drift dynamics parameters estimates for agent 5

for the one-dimensional example. The dotted lines in the drift parameter plot

are the ideal values of the drift parameters.

153



Phase portrait

4 ‘
= Agent 1
I Agent 2
3| o Agent 3
Agent 4
2 & Agent 5 :
- - -Leader

Figure 7-10. Phase portrait in the state-space for the two-dimensional example. The
actual pentagonal formation is represented by a solid black pentagon, and
the desired desired pentagonal formation around the leader is represented
by a dotted black pentagon.

convergence of the value function weights and the unknown parameters in the drift
dynamics.

7.8.2 Two-dimensional Example

In this simulation, the dynamics of all the agents are assumed to be exactly known,

and are selected to be of the form (7—1) where foralli =1,--- |5,
—X;1 + o SiH(Q.CCﬂ) + 2 0
Ji (xz) = ) Ji (%) -
—0.5x;1 — 0.5x;5(1 — (cos(2z41) + 2)?) 0 cos(2x;1) + 2

The agents start at the origin, and their final desired relative positions are given by

zdis = [—0.5, 1]T rdo; = [05, —1]T, rdsz = [05, 1]T, and rdsz = [—1, 1]T
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Table 7-2. Simulation parameters for the two-dimensional example

Agent 1 Agent 2 Agent 3 Agent 4 Agent 5

Qi 1015 1015 1015 101, 101,

R’i [2 [2 [2 [2 [2
Lo 2 2 2 Lo 2 1[2€§17 2es51 €59, 26?27
—[2611, 26116127 2612, —[2621, 2621622, 26227 1 2 2 —[2641, 2641642, 2642, 2
22 2 22 2 5[2631’ 2e31652, 2¢5, 22 2 €41 2ea1€42, €5y,

o (&) €315 2€21€92, €39, €11, 2€11€12, €y, 9 9 9 o €51, 2€31€32, €39 2 o )

2.2 2.2 2 2 2 2 €31731, €32T31, 2 9 9 9 €31, 4€31€32, €39,
€111, €121 €21T21, €221, e2 02, e2yz2,]T €41T415 €a2T415 2 g2 o2 2
G%ﬁ%w G%QfE%Q]T 6313532’ engEgz]T sl T 64211%2127 eiﬂiz]T 21 217 22 ghT
€51T50, €50T50)

ZEAz‘ (0) 0241 0241 0251 021 021

Wei (0)  Liox1 Liox1 2 X 171 5 X 1iox1 3 X 11341

Wai (0)  Ligxa 1051 2 X 1751 5 X Lipx1 3 X L13x1

I'; (0) 5001 50014 50014 50015 50015

TMeli 0.1 0.1 0.1 0.1 0.1

1e2i 2.5 5 2.5 2.5 2.5

Nali 2.5 0.5 2.5 2.5 2.5

Na2i 0.01 0.01 0.01 0.01 0.01

Vi 0.005 0.005 0.005 0.005 0.005




Phase portrait in error space
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Figure 7-11. Phase portrait of all agents in the error space for the two-dimensional
example.

The relative positions are designed such that the final desired formation is a
pentagon with the leader node at the center.

The leader traverses a sinusoidal trajectory trajectory z( (t) = [2sin(¢), 2sin(t) +
2cos(t)]”. The desired positions of agents 1 and 3 with respect to the leader are
rq10 = [—1, 0] and z 430 = [0.5, —1]%, respectively.

Table 7-2 summarizes the optimal control problem parameters, basis functions,
and adaptation gains for the agents. For each agent i, nine values of ¢;, x;, and errors
corresponding to all the extended neighbors are selected for BE extrapolation in uniform

3 x 3gridinal x 1square around the origin, resulting in 9 x 9% total values of &;.
Figures 7-10 - 7-16 show the tracking error, the state trajectories, and the control

inputs for all the agents demonstrating convergence to the desired formation and the

desired trajectory. Note that agents 2, 4, and 5 do not have a communication link
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Virtual control trajectory for Agent 1

Control trajectory for Agent 1
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Figure 7-12. Trajectories of the control input and the relative control error for Agent 1 for

the two-dimensional example.

Control trajectory for Agent 2

22 H22

Virtual control trajectory for Agent 2
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Figure 7-13. Trajectories of the control input and the relative control error for Agent 2 for
the two-dimensional example.
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Virtual control trajectory for Agent 3

Control trajectory for Agent 3

UJ(t)

0 2 4 6 8 10 0 2 4 6 8 10
Time (s) Time (s)
Figure 7-14. Trajectories of the control input and the relative control error for Agent 3 for
the two-dimensional example.

Control trajectory for Agent 4 Virtual control trajectory for Agent 4
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Figure 7-15. Trajectories of the control input and the relative control error for Agent 4 for
the two-dimensional example.
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Control trajectory for Agent 5 Virtual control trajectory for Agent 5
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Figure 7-16. Trajectories of the control input and the relative control error for Agent 5 for
the two-dimensional example.

Actor weights
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Figure 7-17. Value function weights and policy weights for agent 1 for the
two-dimensional example.
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Critic weights Actor weights
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Figure 7-18. Value function weights and policy weights for agent 2 for the
two-dimensional example.
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Figure 7-19. Value function weights and policy weights for agent 3 for the
two-dimensional example.
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Figure 7-20. Value function weights and policy weights for agent 4 for the
two-dimensional example.
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Figure 7-21. Value function weights and policy weights for agent 5 for the
two-dimensional example.
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to the leader, nor do they know their desired relative position from the leader. The
convergence to the desired formation is achieved via cooperative control based on
decentralized objectives. Figures 7-17 - 7-21 show the evolution and convergence of
the value function weights and the policy weights for all the agents. Since an alternative
method to solve this problem is not available to the best of the author’s knowledge, a
comparative simulation cannot be provided.
7.9 Concluding Remarks

A simulation-based ACI architecture is developed to cooperatively control a group
of agents to track a trajectory while maintaining a desired formation. Communication
among extended neighbors is needed to implement the developed method. Since an
analytical feedback-Nash equilibrium solution is not available, the presented simulation
does not demonstrate convergence to feedback-Nash equilibrium solutions. To the
best of the author’s knowledge, alternative methods to solve differential graphical game

problems are not available in the literature; hence, a comparative simulation is infeasible.
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CHAPTER 8
CONCLUSIONS

RL is a powerful tool for online learning and optimization, however, the application
of RL to dynamical systems is challenging from a control theory perspective. The
challenges take three different forms: analysis and design challenges, applicability
challenges, and implementation challenges.

Since the controller is simultaneously learned and used online, unique analysis
challenges arise in establishing stability during the learning phase. Furthermore,
RL-based controllers are hard to design owing to the necessary tradeoffs between
exploration and exploitation, which also complicate the stability analysis owing to the
fact that in general, the learned controller does not meet the exploration demands,
necessitating the addition of an exploration signal. In the case of deterministic nonlinear
systems, an explicit characterization of the necessary exploration signals is hard
to obtain; hence, the exploration signal is generally left out of the stability analysis,
defeating the purpose of the stability analysis.

Applicability challenges spring from the fact that RL in continuous-state systems is
usually realized using value function approximation. Since the action that a controller
takes in a particular state depends on the value of that state, the control policy depends
on the value function; hence, a uniform approximation of the value function over the
entire operating domain is vital for the control design. Results that use parametric ap-
proximation techniques for value function approximation are ubiquitous in literature.
Since parametric approximators can only generate uniform approximations over com-
pact domains, approximation becomes challenging if the value function is time-varying
and if the time horizon is infinite. Hence, traditional RL methods are not applicable for
trajectory tracking applications, network control applications, and other applications that

exhibit time-varying value functions.
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The results of this dissertation partially address the aforementioned challenges
via the development new innovative model-based RL methods and rigorous Lyapunov-
based methods for stability analysis. In Chapter 3, a data-driven model-based RL
technique that does not require an added exploration signal is developed to solve
infinite-horizon total-cost optimal regulation problems for uncertain control-affine
nonlinear systems. In Chapter 4, the data-driven model-based RL technique is extended
to obtain feedback-Nash equilibrium solutions to N —player nonzero-sum differential
games, without external ad-hoc application of an exploration signal. In chapters 3 and 4,
sufficient exploration is simulated by using an estimate of the system dynamics obtained
using a data-driven system identifier to extrapolate the BE to unexplored areas of the
state-space. A set of points in the state space is selected a priori for BE extrapolation,
and the value function is approximated using a time-varying regressor matrix computed
based on the selected points. The developed result relies on a sufficient condition on
the minimum eigenvalue of a time-varying regressor matrix. While this condition can
be heuristically satisfied by choosing enough points, and can be easily verified online,
it cannot, in general, be guaranteed a priori. Further research is required to investigate
the existence of a set of points that guarantees that the resulting regressor matrix has
a uniform a positive minimum singular value. The fact that the convergence rate of
the value function approximation depends on the aforementioned minimum singular
value motivates further research into a priori selection of and online adjustments to the
set of points used for BE extrapolation. For example, threshold-based algorithms can
be employed to ensure sufficient exploration by selecting new points if the minimum
singular value of the regressor falls below a certain threshold.

In Chapter 5, RL-based methods are extended to a class of infinite-horizon optimal
trajectory tracking problems where the value function is time-varying. Provided that
the desired trajectory is the output of an autonomous dynamical system, the optimal

control problem can be formulated so that the vale function depends on time only
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through the desired trajectory. Value function approximation is then achieved by using
the desired trajectory along with the tracking error as training inputs. A Lyapunov-based
stability analysis is developed based by proving that the time-varying value function
is a Lyapunov function for the optimal closed-loop error system. The developed result
relies on the assumption that a steady-state controller that can make the system exactly
track the desired trajectory exists, and that it can be computed by inversion of the
system dynamics. Inversion of system dynamics requires exact model knowledge.
Motivated by the need to obtain an optimal tracking solution for uncertain systems, a
data-driven system identifier is developed for approximate model inversion in Chapter 6.
The data-driven system identifier is also used to extrapolate the BE, thereby removing
the need for an added exploration signal from the tracking controller developed in
Chapter 5. The developed technique requires knowledge of the dynamics of the desired
trajectory. The fact that in many real world control applications, the desired trajectory
is generated online using a trajectory planner module, motivates the development of
an optimal tracking controller robust to uncertainties in the dynamics of the desired
trajectory. Further research is required to apply RL-based methods to time-varying
systems that cannot be transformed into stationary systems on compact domains using
state augmentation. In adaptive control, it is generally possible to formulate the control
problem such that PE along the desired trajectory is sufficient to achieve parameter
convergence. In the ADP-based tracking problem, PE along the desired trajectory would
be sufficient to achieve parameter convergence if the BE can be formulated in terms of
the desired trajectories. Achieving such a formulation is not trivial, and is a subject for
future research.

In Chapter 7, the RL-based methods are extended to obtain feedback-Nash equi-
librium solutions to a class of differential graphical games using ideas from chapters
3 - 6. It is established that in a cooperative game based on minimization of the local

neighborhood tracking errors, the value function corresponding to the agents depends
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on information obtained from all their extended neighbors. A set of coupled HJ equa-
tions are developed that serve as necessary and sufficient conditions for feedback-Nash
equilibrium, and closed-form expressions for the feedback-Nash equilibrium policies are
developed based on the HJ equations. The fact that the developed technique requires
each agent to communicate with all of its extended neighbors motivates the search for a
decentralized method to generate feedback-Nash equilibrium policies.

In all the chapters of this dissertation, parametric approximation techniques are
used to approximate the value functions. Parametric approximation of the value function
requires selection of appropriate basis functions. Selection of basis functions for
general nonlinear systems is a nontrivial open problem, even if the system dynamics
are known. Implementation of RL-based controllers for general nonlinear systems is
difficult because the basis functions and the exploration signal needs to be selected
using trial-and-error, with very little insights to be gained from domain knowledge about
the system. Note that a uniform approximation of the value function over the entire
domain is required only if an optimal controller is desired. For real-time sub-optimal
control, a good approximation of the value function over a small neighborhood of the
current state is sufficient. This motivates the development of basis functions that follow
the system state, and are capable of approximating the value function over a small
domain. Analysis of convergence and stability issues arising from the use of moving

basis functions is a subject for future research.
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APPENDIX A
ONLINE DATA COLLECTION (CH 3)

The history stack #,;, that satisfies conditions in (3—4) can be collected online
provided the controller in (2—15) results in the system states being sufficiently exciting
over a finite time interval [t,, t, 4+ ] C R." During this finite time interval, since a history
stack is not available, an adaptive update law that ensures fast convergence of 4 to
zero without PE cannot be developed. Hence, the system dynamics cannot be directly
estimated without PE. Since extrapolation of the BE to unexplored areas of the state
space requires estimates of the system dynamics, without PE, such extrapolation is
infeasible during the time interval [, to + ].

However, evaluation of the BE along the system trajectories does not explicitly
depend on the parameters 6. Estimation of the state derivative is enough to evaluate
the BE along system trajectories. This motivates the development of the following state

derivative estimator.

Zi‘f = gu+kfjf +,Uf,

oy = (kray +1) 2y, (A-1)

where i; € R" is an estimate of the state z, #; = = — iy, and ky, ay,7; € Ry are
constant estimation gains. To facilitate the stability analysis, define a filtered error signal
re€R"asr 2 i+ asi;, where i; £ i — ;. Using (2-1) and (A-1) the dynamics of the
filtered error signal can be expressed as i+ = —kyr + 5 + V. ff + V. fgu + ozﬁcf. The

instantaneous BE in (2—12) can be approximated along the state trajectory using the

! To collect the history stack, the first M values of the state, the control, and the cor-
responding numerically computed state derivative are added to the history stack. Then,
the existing values are progressively replaced with new values using a singular value
maximization algorithm.
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state derivative estimate as
5y = wIWey + 2" Qu +a” <x Waf) Ri <3c Waf) , (A-2)

where w; € R’ is the regressor vector defined as w; £ Vo () z;. During the interval
[to, to + ﬂ, the value function and the policy weights can be learned based on the
approximate BE in (A—2) provided the system states are exciting, i.e., if the following
assumption is satisfied.
Assumption A.1. There exists a time interval [to, to + ﬂ C R and positive constants
1, T € R such that closed-loop trajectories of the system in (2—1) with the controller in
(2—-15) along with the weight update laws

: Wi e wpwy

Wep = =neTy—=05, Ty = ATy — Ucfffp—fffa

P

A

War = —Nary <Wa - Wc> - ﬂanWa, (A=3)

where p; £ 1+ viw; T jwy is the normalization term, 7417, nazs, 7er, Vs € R are constant
positive gains and I'; € RX* is the least-squares gain matrix, and the state derivative
estimator in (A—1) satisfies

t+T

VI, < / Wy (7) by (7T dr, Vit € [to,to + 7] | (A—4)

wf

A/ 1+I/fw3:1—‘fwf

of time instances {t; - - -t} C [to, o + ¢] such that the history stack #;; containing the

where 1; £ € RY is the regressor vector. Furthermore, there exists a set
values of state-action pairs and the corresponding numerical derivatives recorded at
{t1 - - - tp } satisfies the conditions in Assumption (3.1).

Conditions similar to (A—4) are ubiquitous in online approximate optimal control
literature. In fact, Assumption A.1 requires the regressor ¢; to be exciting over a finite
time interval, whereas the PE conditions used in related results such as [57-59, 114,

158] require similar regressor vectors to be exciting over all t € R,.
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On any compact set x C R™ the function f is Lipschitz continuous; hence, there

exist positive constants Ly, Ly € R such that
If @) < Ly ||=]] and [[Vof (2)]| < Lg,
for all z € x. The update laws in (A—3) along with the excitation condition in (A—4) ensure
that the adaptation gain matrix is bounded such that
Ly < Ty @)l < Ty, ¥t € Rog, (A-5)
where (cf. [91, Proof of Corollary 4.3.2))

Ly = min {0 T, Ain (Tf (t0)) } e T

The following positive constants are defined for brevity of notation.

WTG, + LVeGTVoT

L _
Us £ %HgR_lgTVUTH, Uy £ 5 + Na2y W,
SWTVoGVe + G| 39y 5O
,19 é || € , é 2 . 19 + e +19 + 8 7
10 1 Lf TlefV10 1 (na1f i nan) 4 4k:f
1 r " o k
2 2° 4 3 35

To facilitate the stability analysis, Let V,; : R3"*2L x R5; — Rsq be a continuously

differentiable positive definite candidate Lyapunov function defined as
Vir (Zpt) 2V (1) + SWED (0 Wop + WMy + 2%y 1 o7 A6
Lf( f7)_ (SL’)+§ cff() cf+§ af af+§xf£l}f+§r r. (—)
Using the fact that V* is positive definite, (A—-5) and Lemma 4.3 from [149] yield

oy (1 Z51) < Vg (Zy, 1) < op ([1241]) (A=7)
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forallt € Ry, andforall Z; € R3" 2L, In (A-7), v, Uy Rsg — Ry are class
~ ~ T
K functions and Z = |z, Wk, W1, if, rT} . The sulfficient conditions for UUB

convergence are derived based on the subsequent stability analysis as

3Maty  3UsCs 3nesl|lGoll= 2 < =2 5L3f)
- - Z q> 202 (2, Ve 4 2ok
2C4 2 4 I/frf f g f g / 4l€f

(nalf + 77a2f) >

9 _ 3a3
k¢ > 5max 2y af + 2Uch2||VUH27 —
2G5 4

1 —9———9
) 3 Cl{_ > 6Uch2||VU|| ) ﬁEf > 277(11(1’%4'8)
f
where Z; £ v (Uf (max <||Zf (to)]l %))) and (4, (s € R are known positive
adjustable constants. An algorithm similar to Algorithm 3.1 is employed to select the
gains and a compact set Z; C R¥ 2L such that
Ly 1.
— < —diam (Zy). (A-9)
Ui f 2
Theorem A.1. Provided the gains are selected to satisfy the sufficient conditions
in (A—8) based on an algorithm similar to Algorithm 3.1, the controller in (2—15), the
weight update laws in (A-3), the state derivative estimator in (A—1), and the excitation

condition in (A—4) ensure that the state trajectory x, the state estimation error z;, and

the parameter estimation errors W, and W,; remain bounded such that
1Z; W) < Zy, Wt € [to, to+1] .

Proof. Using techniques similar to the proof of Theorem 3.1, the time derivative of the

candidate Lyapunov function in (A—6) can be bounded as

. [2
Vg < —ug 1 Z511, V11241 2 ,/ﬁ, (A-10)

in the domain Z;. Using (A7), (A-9), and (A—10), Theorem 4.18 in [149] is used to
show that Z; is UUB, and that || Z; (t)|| < Z, Vt € [to, o + 1] . O

During the interval [to, o + t], the controller in (2-15) is used along with the weight

update laws in Assumption A.1. When enough data is collected in the history stack to
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satisfy the rank condition in (3—4), the update laws from Section (3.3) are used. The
bound Z, is used to compute gains for Theorem 3.1 using Algorithm 3.1. Theorems 1
and 2 establish UUB regulation of the system state and the parameter estimation errors

for the overall switched system.
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APPENDIX B
PROOF OF SUPPORTING LEMMAS (CH 5)

B.1 Proof of Lemma 5.1
The following supporting technical lemma is used to prove Lemma 5.1.
Lemma B.1. Let D C R" contain the origin and let= : D x R>, — R be positive

definite. Ift — = (x,t) is uniformly bounded for allx € D and ifx — Z=(z,t) is

continuous, uniformly int, then = is decrescent in D.

Proof. Since = (z, ) is bounded, uniformly in ¢, sup,cg_, {Z (z,¢)} exists and is unique for
all bounded z. Let the function o : D — R, be defined as
a(z) £ sup {=(z,0)}. (B-1)
tGRzO

Since © — = (z,t) is continuous, uniformly in ¢, Ve > 0, 3¢ (z) > 0 such that Vy € D,
dDXRZO ((x7 t) ) (y> t)) << (ZL’) = dRZU (E (ZL', t) 75 (ya t)) <ég, (B_2)

where dy, (-, -) denotes the standard Euclidean metric on the metric space M. By the

definition of da; (-, ), dpxrs, ((2,1), (y,t)) = dp (v, y) . Using (B-2),
dp (z,y) <s(z) = |=(x,t) —E(y,t)] <e. (B-3)

Given the fact that = is positive, (B—-3) implies = (z,t) < Z(y,t) + cand = (y,t) <

E (z,t) 4+ ¢ which from (B—1) implies o (z) < a (y) + ¢ and « (y) < a(z) + ¢, and hence,

from (B-3), dp (z,y) < s () = |a(z) —a(y)| < e. Since = is positive definite, (B-1)

can be used to conclude « (0) = 0. Thus, = is bounded above by a continuous positive

definite function; hence, = is decrescent in D. N
Based on the definitions in (5-3)-(5-6) and (5-21), V;* (e,t) > 0, Vvt € R>, and

Ve € B, \ {0}.The optimal value function V* ([O, xff]T) is the cost incurred when starting

with e = 0 and following the optimal policy thereafter for an arbitrary desired trajectory

xq. Substituting z (t9) = x4 (to), 1 (to) = 0 and (5-2) in (5—4) indicates that ¢ (¢y) = 0.
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Thus, when starting from e = 0, a policy that is identically zero satisfies the dynamic
constraints in (5—4). Furthermore, the optimal cost is V* ([0,1:5 (to)]T> = 0, Vg (to)
which, from (5—-21), implies (5—22b). Since the optimal value function V;* is strictly
positive everywhere but at e = 0 and is zero at e = 0, V,* is a positive definite function.
Hence, Lemma 4.3 in [149] can be invoked to conclude that there exists a class K
function v : [0,a] — R such that v (|le]|) < Vi (e, t), Vt € R5p and Ve € B,.

Admissibility of the optimal policy implies that V* ({) is bounded over all compact
subsets K c R*". Since the desired trajectory is bounded, ¢t — V;* (e, t) is uniformly
bounded for all e € B,. To establish that e — V;* (e, t) is continuous, uniformly in ¢, let
Xe, C R™ be a compact set containing e,. Since z, is bounded, =, € x.,, where y,, C R"
is compact. Since V* : R?" — R is continuous, and x., x x., C R*" is compact, V* is
uniformly continuous on ., x x,,,. Thus, Ve > 0, 3¢ > 0, such that v [e7,27]" | [eT,27]" €
Xeo X Xags ey xxa, ([eOT,a:ﬂT, [elT,xdT]T> <¢ = dp (V* ([ef,wﬂT> LV ([elT,xdT}T>> <
e. Thus, for each e, € R", there exists a ¢ > 0 independent of z,, that establishes the
continuity of ¢ — V* ([eT,:cg]T) ate,. Thus, e — V* ([eT,xdT}T> is continuous,
uniformly in x,, and hence, using (5—21) e — V;* (e, t) is continuous, uniformly in ¢.
Using Lemma B.1 and (5—22a) and (5—22b), there exists a positive definite function
a : R" — Rsgsuch that Vi* (e, t) < a(e), V(e t) € R" x Rso. Lemma 4.3 in [149]
indicates that there exists a class K function v : [0,a] — R>, such that a(e) < v (]le|]),
which implies (5—22c).

B.2 Proof of Lemma 5.2

Using the definition of the controller in (14), the tracking error dynamics can be

expressed as

1 ~ 1
&= f+ §gR’1GTU’TWa + 995 (ha — fa) — 5gR*lGTU’TW — hy.
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On any compact set, the tracking error derivative can be bounded above as

el < Le |

+ L€7

where L, = Ly ||zq4]| + ||gg;lr (hg — fa) — %gR_lGTJ’TW — hdH and Ly = % HgR‘lGTJ’TH.
Using the fact that e and W, are continuous functions of time, on the interval [t, t + T7,
the time derivative of e can be bounded as
lel < e sup_Jle(r)l+ Lw_sup_ | Wa ()| + Le.
TElt,t+T] rE[Lt+T]
Since the infinity norm is less than the 2-norm, the derivative of the j* component of ¢ is
bounded as

¢ <Le sw e +Lw sw | W ()| + L.
FE[LALT] TE[Lt+T]

Thus, the maximum and the minimum value of e; are related as

sup |e; (7)] < inf \ej(T)|+<LF sup |le(7)|| +Lw sup HW )H—i—Le> T.

TE[t,t+T] Te[t,t+T] TE[tt+T] TE[tt+T]

Squaring the above expression and using the inequality (z + y)* < 222 + 2i

2
sup e; (7)[?<2 inf |e; (7)]*+2( Le sup |le(7)|+Lw sup HW“ (T)H+Le T
T€[t,t+T) TE[LIHT] Tt t+T] TE[t,t+T]

Summing over j, and using the the facts that sup,c;, .,y |l (7)]|*<

n 2 . n 2 . 2
Zj:l SUP7¢[t,t+T) le; ()" and infrepr 1) Zj:l e (7)< infrep iy e (T)II,

TE[tt+T] TE[t,t+T) TE[tt+T] TE[tt+T]

2
~ 2
sup |le (7)]|?<2 inf |le(7)] +2<LF sup |le (7)||*+Lw sup HWa (1) ‘ +Le> nT?.

Using the inequality (z + y + 2)* < 322 + 3y + 322, (5-23) can be obtained. Using a

similar procedure on the update law for 1,

sup

2 - (1 — 6N (N1 + T]a2)2 T2) H ~
o 2 TE[t,t+T]

— inf HWQ(T)

TELt+T)

2
7) H 3N, WRT?

N 2
+3NnZ, sup HWC(T)H T°
TE[t,t+T]
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Similarly, the dynamics for 1V, yield

. 2 2 _ . 2 G6NT?*2%2 (¢ Lpd + 15)°
sup ||W. (T)H < N inf HWC (7’)” + P
€[t t+T] (1 %) TE[tI+T] vo <1 _ 27552 )

6NT?252e L2,
ey Sup le (7)|I*. (B-5)
v (1 _ %> rE[tAHT]

Substituting (B-5) into (B—4), (5—24) can be obtained.
B.3 Proof of Lemma 5.3

The integrand on the LHS can be written as
WE (7)o () = WE @) () + (W (7) = WE () (7).

Using the inequality (z +y)* > 12? — y? and integrating,

t+T

[ (W@ em) ar= 5wt ( [ @) df) W (1)

t
2

(= Er

Substituting the dynamics for 1, from (20) and using the PE condition in Assumption 3,

t+T t+T T

/ (W7 (7)o () dr > S0WE (0 W, (1) - / <( / (—UCF (0) ¥ (0) " (o) We (o)

t t t

nl' (o) ¢ (o) A(o) nl' (o) ¢ (o )WTQU
V141 (0) T (0)w(o) 4\/1+W (o) w (o)
L) ()¢ (0) F (o) ) dgﬂ, m)i
Y1+ (0) T (0)w(o)

where A 2 1¢/Ge™ + LW To'Ge'™. Using the inequality (z +y +w — 2)* < 222 + 6y% +

6w? + 622,
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/2(]”WT< )¢ (o) " (o) T <>w<7>d0)2d7
o (e,
_6/ (/UFT\/1+W; oL ))w(T)do) dr
67T(/77WT()\/ (o) W, ()wT() ()wmda)Zdr
l+wvw(o

t t U 0)

Using the Cauchy-Schwarz inequality, the Lipschitz property, the fact that <1,

\/ 1+v wTFw -
and the bounds in (23),

7T<WCT () (T)>2d7 > %QVVCT (YW, (t) — 6 7T (/T 775;@(10) 0

H da/ VTT (o)1) (7 ))2d0) dr

/6ne (/F )2 do/ I (o) v <>)2do—>df

Thus,

t+T t+T

[ (W nem) arz -zgag [ -y / (W7 (0)¢(0)) dodr

t t t
, t+T
—l——QWCT () W, (t) — 3n2A*G22T°% — 60212 A% 2/ T —t) /HW H dodr

t
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t+T T
— 62’ L2 AR / (r —1) / le||? dodr — 3n? A*@2* L2d>T?,
t

t

where A = \/L@ Changing the order of integration,
4T 4T
- 2 1 - - - 2
[ (W @wm) dr = 0T Wi - awr [ (W00 (o) do

t t
t+T t+T

_ - 4
3P AYRR LT / le (0)|2 do — 3n2 2 AYGT? / W) do
t t
— R AV (Lg n E’2L2Fd2> .

Reordering the terms, (5-25) is obtained.
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