
Linear inverse reinforcement learning in continuous time and space

Rushikesh Kamalapurkar

Abstract— This paper develops a data-driven inverse rein-
forcement learning technique for a class of linear systems to
estimate the cost function of an agent online, using input-output
measurements. A simultaneous state and parameter estimator
is utilized to facilitate output-feedback inverse reinforcement
learning, and cost function estimation is achieved up to multi-
plication by a constant.

I. INTRODUCTION

Seamless cooperation between humans and autonomous
agents is a vital yet challenging aspect of modern robotic
systems. Effective cooperation between humans and au-
tonomous systems can be achieved if the autonomous sys-
tems are capable of learning to act by observing other cog-
nitive entities. Based on the premise that a cost (or reward)
function fully characterizes the intent of the demonstrator,
a method to learn the cost function from observations is
developed in this paper. The cost-estimation problem first
appears in [1] in a linear-quadratic regulation (LQR) setting,
and a solution is provided in [2] via linear matrix inequalities.
For nonlinear systems and cost functions, computation of
closed-form solutions is generally intractable, and hence,
approximate solutions are sought.

In [3]–[6], the cost function of a Markov decision process
(MDP) is learned using inverse reinforcement learning (IRL).
It is demonstrated that the IRL problem is inherently ill-
posed in the sense that it has multiple possible solutions,
including the trivial ones. To overcome the degeneracy,
the cost function that differentiates the optimal behavior
from the suboptimal behaviors by a margin is sought. In
[7] the maximum entropy principle (cf. [8]) is utilized to
solve the ill-posed IRL problem for deterministic MDPs.
In [9] a causal version of the maximum entropy principle
is developed and utilized to solve IRL problems in a fully
stochastic setting. An IRL algorithm based on minimization
of the Kullback-Leibler divergence between the empirical
distribution of trajectories obtained from a baseline policy
and the trajectories obtained from the cost-based policy is
developed in [10].

In the past two decades, Bayesian [11], natural gradient
[12], game theoretic [13], and feature construction based
methods [14] have also been developed for IRL. IRL is
extended to problems with locally optimal demonstrations in
[15] using likelihood optimization and to problems with non-
linear cost functions in [16] using Gaussian processes (GP).
Another GP-based IRL algorithm that increases the effi-
ciency and applicability of IRL techniques by autonomously
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segmenting the overall task into sub-goals is developed in
[17]. Over the years, intent-based approaches such as IRL
have been successfully utilized to teach UxVs and humanoid
robots to perform specific maneuvers in an offline setting [4],
[18], [19].

Offline approaches are ill suited for applications where
teams of autonomous agents with varying levels of autonomy
work together to achieve evolving tasks. For example, con-
sider a fleet of unmanned air vehicles where only a few of the
vehicles are remotely controlled by human operators and the
rest are fully autonomous and capable of synthesizing their
own control policies based on the task. If the tasks are subject
to change and are known only to the human operators, the
autonomous agents need the ability to identify the changing
objectives from observations in real-time.

Motivated by recent progress in real-time reinforcement
learning (see, e.g., [20]–[24]), this paper develops an output-
feedback IRL technique for a class of linear systems to
estimate the cost function online using input-output mea-
surements. The paper is organized as follows. Section II
details the notation used throughout the paper. Section III
formulates the problem. Section IV details the development
of a simultaneous state and parameter estimator that facili-
tates output-feedback cost estimation. Section V formulates
the error signal that is utilized in Section VI to achieve
online IRL. Section VII details the purging algorithm used
to facilitate IRL in conjunction with the state and parameter
estimator developed in Section IV. Section VIII analyzes
the convergence of the developed algorithm and Section X
concludes the paper.

II. NOTATION

The n−dimensional Euclidean space is denoted by Rn.
Elements of Rn are interpreted as column vectors and (·)T
denotes the vector transpose operator. The set of positive
integers excluding 0 is denoted by N. For a ∈ R, R≥a
denotes the interval [a,∞) and R>a denotes the interval
(a,∞). Unless otherwise specified, an interval is assumed
to be right-open. If a ∈ Rm and b ∈ Rn then [a; b] denotes

the concatenated vector
[
a
b

]
∈ Rm+n. The notations and In

and 0n denote n × n identity matrix and the zero element
of Rn, respectively. Whenever clear from the context, the
subscript n is suppressed.

III. PROBLEM FORMULATION

Consider an agent under observation with linear dynamics
of the form

ṗ = q, q̇ = Ax+Bu, (1)



where p : R≥0 → Rn denotes the generalized position, q :
R≥0 → Rn denotes the generalized velocity, u : R≥0 →
Rm denotes the control input, x := [pT , qT ]T denotes the
state, and A ∈ Rn×2n and B ∈ Rn×m denote the unknown
constant system matrices. Assume that the pair (A′, B′) is

controllable, where A′ :=

[
0n×n In×n

A

]
, B′ :=

[
0n×m
B

]
.

The agent under observation executes a policy that minimizes
the infinite horizon cost

J (x0, u (·)) ,
∞̂

0

r (x (τ ;x0, u (·)) , u (τ)) dτ (2)

where τ 7→ x (τ ;x0, u (·)) denotes the trajectory of (1) under
the control signal u (·) starting from the initial condition x0
and r : R2n × Rm → R denotes the unknown instantaneous
cost function defined as r (x, u) = Q (x)+uTRu, where R ∈
Rm×m is a constant positive definite matrix and Q : R2n →
R2n is a positive definite function such that an optimal policy
u∗ : R2n → Rm exists. For ease of exposition, it is further
assumed that R = diag {r1, · · · , rm}, and a basis σ : R2n →
RL is known for Q such that for some W ∗Q ∈ RL,

Q (x) =
(
W ∗Q

)T
σQ (x) ,∀x ∈ R2n. (3)

The objective of the observer is to estimate the cost
function, r, using measurements of the generalized position
and the control input. In the following, a model-based
approximate dynamic programming approach is developed
to achieve the stated objective. To facilitate model-based
approximate dynamic programming, the state, x, and the
parameters, A and B, of the agent are estimated from the
input-output measurements using a simultaneous state and
parameter estimator. The state and the parameters are then
utilized in an approximate dynamic programming scheme to
estimate the cost.

IV. SIMULTANEOUS STATE AND PARAMETER ESTIMATOR

The simultaneous state and parameter estimator developed
by the authors in [25] is utilized in this result. This section
provides a brief overview of the same for completeness. For
further details, the readers are directed to [25].

To facilitate parameter estimation, let A1, A2 ∈ Rn×n be
matrices such that A =: [A1, A2]. The dynamics in (1) can
be rearranged to form the linear error system

F (t) = G (t) θ, ∀t ∈ R≥0. (4)

In (4), θ is a vector of unknown parameters, defined as θ ,[
vec (A1)

T
vec (A2)

T
vec (B)

T
]T
∈ R2n2+mn, where

vec (·) denotes the vectorization operator and the matrices
F : R≥0 → Rn and G : R≥0 → Rn×(2n2+mn) are defined
as

F (t) ,


p (t−T2−T1)−p (t−T1)

+p (t)−p (t−T2) ,
t∈ [T1+T2,∞) ,

0 t < T1 + T2.

G (t) ,
[
(F (t) � In)

T
(G (t) � In)

T
(U (t) � In)

T
]
,

where � denotes the Kronecker product. The matrices F , G,
and U are defined as F (t) := Ip (t) , G (t) := J p (t) −
J p (t− T1) , U (t) := Iu (t), for t ∈ [T1 + T2,∞), and
F (t) = G (t) = U (t) = 0, for t < T1+T2, where I := p 7→´ t
t−T2

´ σ
σ−T1

p (τ) dτ dσ, and J := p 7→
´ t
t−T2

(p (σ)) dσ.
For ease of exposition, it is assumed that a history stack,

i.e., a set of ordered pairs {(Fi,Gi)}Mi=1 such that

Fi = Giθ, ∀i ∈ {1, · · · ,M} , (5)

is available a priori. A history stack {(Fi,Gi)}Mi=1 is called
full rank if there exists a constant g ∈ R such that

0 < g < λmin {G } , (6)

where the matrix G ∈ R(2n2+mn)×(2n2+mn) is defined as
G :=

∑M
i=1 GTi Gi. The concurrent learning update law to

estimate the unknown parameters is then given by

˙̂
θ (t) = kθΓ (t)

M∑
i=1

GTi
(
Fi − Giθ̂ (t)

)
, (7)

where kθ ∈ R>0 is a constant adaptation gain and Γ :

R≥0 → R(2n2+mn)×(2n2+mn) is the least-squares gain
updated using the update law

Γ̇ (t) = β1Γ (t)− kθΓ (t)

M∑
i=1

GTi GiΓ (t) . (8)

Using arguments similar to [26, Corollary 4.3.2], it can be
shown that provided λmin

{
Γ−1 (0)

}
> 0, the least squares

gain matrix satisfies

Γ I(2n2+mn) ≤ Γ (t) ≤ Γ I(2n2+mn), (9)

where Γ and Γ are positive constants.
To facilitate parameter estimation based on a prediction

error, a state observer is developed in the following. To
facilitate the design, the dynamics in (1) are expressed in
the form ṗ (t) = q (t), q̇ (t) = Y (x (t) , u (t)) θ, where
Y : Rn × Rm → Rn×(2n2+mn) is defined as

Y (x, u) =
[
(p� In)

T
(q � In)

T
(u� In)

T
]
.

The adaptive state observer is then designed as

˙̂p (t) = q̂ (t) , p̂ (0) = p (0) ,

˙̂q (t) = Y (x (t) , u (t)) θ̂ (t) + ν (t) , q̂ (0) = 0, (10)

where p̂ : R≥0 → Rn, q̂ : R≥0 → Rn, x̂ : R≥0 → Rn, and
θ̂ : R≥0 → Rn are estimates of p, q, x, and θ, respectively,
ν is the feedback component of the identifier, to be designed
later, and the prediction error p̃ : R≥0 → Rn is defined as
p̃ (t) = p (t)− p̂ (t) .

The update law for the generalized velocity estimate
depends on the entire state x. However, using the structure of
the matrix Y and integrating by parts, the observer can be im-
plemented without using generalized velocity measurements.
Using an integral form of (10), the update law in (10) can



be implemented without generalized velocity measurements
as

q̂ (t) =

tˆ

0

(u (τ) � In)
T

vec
(
B̂ (τ)

)
dτ +

tˆ

0

ν (τ) dτ

+ q̂ (0) +

tˆ

0

(p (τ) � In)
T
(
vec
(
Â1 (τ)

)
−vec

(
˙̂
A2 (τ)

))
dτ

+(p (t)�In)
T
vec
(
Â2 (t)

)
−(p (0)�In)

T
vec
(
Â2 (0)

)
(11)

To facilitate the design of the feedback component ν, let

r (t) = q̃ (t) + αp̃ (t) + η (t) , (12)

where α > 0 is a constant observer gain and the signal
η is added to compensate for the fact that the generalized
velocity state, q, is not measurable. Based on the subsequent
stability analysis, the signal η is designed as the output of
the dynamic filter

η̇ (t) = −βη (t)− kr (t)− αq̃ (t) , η (0) = 0, (13)

and the feedback component ν is designed as

ν (t) = p̃ (t)− (k + α+ β) η (t) , (14)

where β > 0 and k > 0 are constant observer gains. The
design of the signals η and ν to estimate the state from output
measurements is inspired by the p−filter (cf. [27]). Similar
to the update law for the generalized velocity, using the the
fact that p̃ (0) = 0, the signal η can be implemented using
the integral form

η (t) = −
tˆ

0

(β + k) η (τ) dτ−
tˆ

0

kαp̃ (τ) dτ−(k + α) p̃ (t) .

(15)
Using a Lyapunov-based analysis, it can be shown that the

developed parameter and state estimation results in exponen-
tial convergence of the state and parameter estimation errors
to zero. For a detailed analysis of the developed state and
parameter estimator, see [25].

V. INVERSE BELLMAN ERROR

Since the agent under observation makes optimal deci-
sions, and since the Hamiltonian H : R2n×R2n×Rm → R,
defined as H (x, y, u) , yT (A′x+B′u)+r (x, u), is convex
in u, the control signal, u (·), and the state, x (·), satisfy the
Hamilton-Jacobi-Bellman equation

H
(
x (t) ,∇x (V ∗ (x (t)))

T
, u (t)

)
= 0,∀t ∈ R≥0, (16)

where V ∗ : R2n → R denotes the unknown optimal value
function. The objective of inverse reinforcement learning is
to generate an estimate of the unknown cost function, r.
To facilitate estimation of the cost function, let V̂ : R2n ×
RP → R,

(
x, ŴV

)
7→ ŴT

V σV (x) be a parametric estimate

of the optimal value function, where ŴV ∈ RP are unknown
parameters, and σV : R2n → RP are known continuously

differentiable features. Assume that given any compact set
χ ⊂ R2n and a constant ε > 0, sufficiently many features
can be selected to ensure the existence of ideal parameters
W ∗V ∈ RP such that the error ε : R2n → R, defined as
ε (x) := V (x)− V̂ (x,W ∗V ), satisfies supx∈χ |ε (x)| < ε and
supx∈χ |∇xε (x)| < ε. Using the estimates Â1, Â2, B̂, ŴV ,
ŴQ, and ŴR of the parameters A1, A2, B, W ∗V , W ∗Q, and
WR := [r1, · · · , rm]

T , respectively, and the estimate x̂ of the
state, x, in (16), the inverse Bellman error δ′ : R2n ×Rm ×
RL+P+m × R2n2+mn → R is obtained as

δ′
(
x̂, u, Ŵ , θ̂

)
=ŴT

V ∇xσV (x̂)
(
Â′x̂+ B̂′u

)
+ ŴT

QσQ (x̂)

+ ŴT
Rσu (u) , (17)

where σu (u) :=
[
u21, · · · , u2m

]
, Â′ :=

[
0n×n In×n
Â1 Â2

]
, and

B̂′ :=

[
0n×m
B̂

]
. Rearranging,

δ′
(
x̂, u, Ŵ ′, θ̂

)
=
(
Ŵ ′
)T

σ′
(
x̂, u, θ̂

)
, (18)

where Ŵ ′ :=
[
ŴV ; ŴQ; ŴR

]
, σ′

(
x̂, u, θ̂

)
:=[

∇xσV (x̂)
(
Â′x̂+ B̂′u

)
;σQ (x̂) ;σu (u)

]
. The following

section details the developed model-based inverse
reinforcement learning algorithm.

VI. INVERSE REINFORCEMENT LEARNING

The IRL problem can be solved by computing the esti-
mates Ŵ that minimize the inverse Bellman error in (18).
To facilitate the computation, the values of x̂, u, and θ̂
are recorded at time instances {ti < t}Ni=1 to generate the
values {σ̂′t (ti)}Ni=1, where N ∈ N, N >> L + P + m,
and σ̂′t (t) := σ′

(
x̂ (t) , u (t) , θ̂ (t)

)
. The data in the history

stack can be collected in a matrix form to yield

∆′ = Σ̂′Ŵ ′, (19)

where ∆′ := [δ′t (t1) ; · · · ; δ′t (tN )], δ′t (t) :=

δ′
(
x̂ (t) , u (t) , Ŵ ′, θ̂ (t)

)
, and Σ̂′ :=[

(σ̂′t)
T

(t1) ; · · · ; (σ̂′t)
T

(tN )
]
. Note that the solution

Ŵ ′ = 0 trivially minimizes ∆′, which is to say that if the
cost function is identically zero then every policy is optimal.
Hence, as stated, the IRL problem is clearly ill-posed. In
fact, the cost functions r (x, u) and Kr (x, u), where K
is a positive constant, result in identical optimal policies
and state trajectories. Hence, even if the trivial solution is
discarded, the cost function can only be identified up to
multiplication by a positive constant using the trajectories
x (·) and u (·).

To remove the aforementioned ambiguity without loss of
generality, the first element of ŴR is assumed to be known.
The inverse BE in (18) can then be expressed as

δ′
(
x̂, u, Ŵ , θ̂

)
= ŴTσ′′

(
x̂, u, θ̂

)
+ r1σu1 (u) , (20)

where σui (u) denotes the ith element of the
vector σu (u), the vector σ−u denotes σu, with



the first element removed, and σ′′
(
x̂, u, θ̂

)
:=[

∇xσV (x̂)
(
Â′x̂+ B̂′u

)
;σQ (x̂) ;σ−u (u)

]
.

The closed-form optimal controller corresponding to (2)
provides the relationship

− 2Ru (t) = (B′)
T ∇xσV (x (t))W ∗V + (B′)

T ∇xε (x (t)) ,
(21)

which can be expressed as

−2r1u1 (t) + ∆u1 = σB1ŴV

∆u− = σ−BŴV + 2 diag (u2, · · · , um) Ŵ−R ,

where σB1 and u1 denote the first rows and σ−B and u−

denote all but the first rows of σB := (B′)
T ∇xσV (x) and u,

respectively, and R− := diag ([r2, · · · , rm]). For notational

brevity let σ :=

[
σ′′,

[
σTB
Θ

]]
, where

Θ :=

[
0m×2n,

[
01×m−1

2 diag ([u2, · · · , um])

]]T
The history stack can then be utilized to generate the linear

system
− Σu1 = Σ̂Ŵ −∆′, (22)

where Ŵ :=
[
ŴV ; ŴQ; Ŵ−R

]
, Σ̂ :=[

σ̂Tt (t1) ; · · · ; σ̂Tt (tN )
]
, and Σu1 :=

[σ′u1 (u (t1)) ; · · · ;σ′u1 (u (tN ))], where σ̂t (τ) :=

σ
(
x̂ (τ) , u (τ) , θ̂ (τ)

)
, σ′u1 :=

[
σu1; 2r1u1; 0(m−1)×1

]
, and

the vector Ŵ−R denotes ŴR with the first element removed.
At any time instant t, provided the history stack G (t)

satisfies
rank

(
Σ̂
)

= L+ P +m− 1, (23)

then a least-squares estimate of the weights can be obtained
as

Ŵ (t) = −
(

Σ̂T Σ̂
)−1

Σ̂TΣu1. (24)

To improve numerical stability of the least-squares solution,
the data recoded in the history stack is selected to maximize
the condition number of Σ̂ while ensuring that the vector Σu1
remains nonzero. The data selection algorithm is detailed in
Fig. 1.

VII. PURGING TO EXPLOIT IMPROVED STATE AND
PARAMETER ESTIMATES

Since the matrices Σ̂ and ∆′ are functions of the state
and parameter estimates, the accuracy of the least-squares
solution in (24) depends on the accuracy of the state and
parameter estimates recoded in G. The state and parameter
estimates are likely to be poor during the transient phase of
the estimator dynamics. As a result, a least-squares solution
computed using data recorded during the transient phase of
the estimator may be inaccurate. Based on the observation
that the state and the parameter estimates exponentially
decay to the origin, a purging algorithm is developed in the
following to remove erroneous state and parameter estimates
from the history stack.

1: if an observed, estimated or queried data point (x∗, u∗)
is available at t = t∗ then

2: if the history stack is not full then
3: add the data point to the history stack

4: else if κ
((

Σ̂ (i← ∗)
)T(

Σ̂ (i← ∗)
))
<ξ1κ

(
Σ̂T Σ̂

)
,

for some i, and ‖Σu1 (i← ∗)‖ ≥ ξ2 then
5: add the data point to the history stack
6: $ ← 1
7: else
8: discard the data point
9: $ ← 0

10: end if
11: end if

Fig. 1. Algorithm for selecting data for the history stack. The
constants ξ1 ≥ 0 and ξ2 > 0 are tunable thresholds. The
operator κ (·) denotes the condition number of a matrix. For the
matrix Σ̂ =

[
σ̂T
t (t1) ; · · · ; σ̂T

t (ti) ; · · · ; σ̂T
t (tN )

]
, Σ (i← ∗) :=[

σ̂T
t (t1) ; · · · ; σ̂T

t (t∗) ; · · · ; σ̂T
t (tN )

]
and for the vector Σu1 =

[σu1 (u (t1)) ; · · · ;σu1 (u (ti)) ; · · · ;σu1 (u (tN ))], Σu1 (i← ∗) :=
[σu1 (u (t1)) ; · · · ;σu1 (u (t∗)) ; · · · ;σu1 (u (tN ))].

An indicator, η, that quantifies the quality of the cur-
rent state and parameter estimates using a guess-and-check
method is used to purge and update the history stack and to
update the estimate Ŵ according to the algorithm detailed
in Fig. 2. The algorithm begins with an empty history stack
and an initial estimate of the weights W0. Values of x̂, u, θ̂,
and η are recorded in the history stack using the algorithm
detailed in Fig. 1, where η (t) is assumed to be infinite for
t < T . The estimate Ŵ is held at the initial guess until the
history stack is full. Then, it is updated using (24) every time
a new data point is added to the history stack.

Communication with the entity under observation, wher-
ever possible can be easily incorporated in the developed
framework. In the query-based implementation of the de-
veloped algorithm, the observed input-output trajectories
are utilized to learn the dynamics of the UxV. Instead of
using the estimated state and control trajectories for cost
estimation, control actions, ui of the entity under observation
in response to randomly selected states, xi, are queried. If
the queried state-input pair improves the condition number
of the history stack then it is stored in the history stack and
utilized for cost estimation.

VIII. ANALYSIS

A detailed analysis of the simultaneous state and
parameter estimator is excluded for brevity, and is available
in [25]. To facilitate the analysis of the IRL algorithm, let
Σ := [σ (x (t1) , u (t1) , θ) ; · · · ;σ (x (tM ) , u (tM ) , θ)] and
let Ŵ ∗ denote the least-squares solution of ΣŴ = −Σu1.
Furthermore, let W denote an appropriately scaled
version of the ideal weights, i.e, W := W/r1. Provided
the rank condition in (23) is satisfied, the inverse
HJB equation in 16 implies that ΣW = −Σu1 − E,
where E := [∇xε (x (t1)) (Ax (t1) +Bu (t1));



1: Ŵ (0)←W0, s← 0

2: if κ
(

Σ̂T Σ̂
)
< κ1 and $ = 1 then

3: Ŵ (t)← −
(

Σ̂T Σ̂
)−1

Σ̂TΣu1
4: else
5: Hold Ŵ at the previous value
6: end if
7: if κ

(
Σ̂T Σ̂

)
< κ2 and η (t) < η (t) then

8: empty the history stack
9: s← s+ 1

10: end if

Fig. 2. Algorithm for updating the weights and the history stack. The
constants κ1 > 0 and κ2 > 0 are tunable thresholds, the index s
denotes the number of times the history stack was purged, and η (t) :=
min {η (t1) , · · · , η (tM )}.

· · · ; ∇xε (x (tM )) (Ax (tM ) +Bu (tM ))]. That is,∥∥∥W +
(
ΣTΣ

)−1
ΣTΣu1

∥∥∥ ≤
∥∥∥(ΣTΣ

)−1
ΣTE

∥∥∥. Since

Ŵ ∗ is a least squares solution,
∥∥∥W − Ŵ ∗∥∥∥ ≤∥∥∥(ΣTΣ

)−1
ΣTE

∥∥∥.

Let Σ̂s, Σu1s , and Ŵs denote the regression matrices
and the weight estimates corresponding to the sth history
stack, respectively, and let Σs denote the ideal regres-
sion matrix where x̂ (ti) and θ̂ (ti) in Σ̂s are replaced
with the corresponding ideal values x (ti) and θ. Let Ŵ ∗s
denote the least-squares solution of ΣsŴ = −Σu1s .
Provided Σ̂s satisfies the rank condition in (23), then∥∥∥W − Ŵ ∗s ∥∥∥ ≤ ∥∥∥(ΣTs Σs

)−1
ΣTs E

∥∥∥. Furthermore, Ŵs −

Ŵ ∗s =

(((
Σ̂Ts Σ̂s

)−1
Σ̂Ts

)
−
((

ΣTs Σs
)−1

ΣTs

))
Σu1s

Since the estimates x̂ and θ̂ exponentially converge to x
and θ, respectively, the function (x, θ) 7→ σ (x, u, θ) is
continuous for all u, and under the rank condition in (23),
the function Σ 7→

(
ΣTΣ

)−1
ΣT is continuous, it can be

concluded that Ŵs → Ŵ ∗s as s → ∞, and hence, the error
between the estimates Ŵs and the ideal weights W is O (ε)
as s→∞.

IX. SIMULATION

To verify the performance of the developed method, a
linear quadratic optimal control problem is selected where

A =

[
1 1 −1 1
5 1 1 1

]
, B =

[
1 3
0 1

]
.

The weighing matrices in the cost function are selected as
Q = diag ([1, 2, 3, 6]) and R = [20, 10], where R (1, 1)
is assumed to be known. The observed input-output trajec-
tories, along with a prerecorded history stack are used to
implement the simultaneous state and parameter estimation
algorithm in Section IV. The design parameters in the system
identification algorithm are selected using trial and error as
M = 150, T1 = 1s, T2 = 0.8sk = 100, α = 20, β = 10,
β1 = 5, kθ = 0.3/M , and Γ (0) = 0.1 ∗ IL+P+m−1.
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Fig. 3. Generalized position estimation error.
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Fig. 4. Generalized velocity estimation error.
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Fig. 5. Estimation error for the unknown parameters in the system
dynamics.
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Fig. 6. Estimation error for the unknown parameters in the cost function.

The behavior of the system under the optimal controller
u (t) = R−1 (B′)

T
Px (t) is observed, where P ∈ R2n×2n is

the solution to the algebraic Riccati equation corresponding
to (2). At each time step, a random state vector x∗ is selected
and the optimal action u∗ corresponding to the random state
vector is queried from the entity under observation. The
queried state-action pairs (x∗, u∗) are utilized in conjunction
with the estimated state-action pairs (x̂ (t) , u (t)) to imple-
ment the IRL algorithm developed in Section VI.

Figs. 3 and 4 demonstrate the performance of the devel-
oped state estimator and Fig. 5 illustrates the performance
of the developed parameter estimator. The estimation errors
in the generalized position, the generalized velocity, and the
unknown plant parameters exponentially decay to the origin.
Fig. 6 indicates that the developed IRL technique can be
successfully utilized to estimate the cost function of an entity
under observation.

X. CONCLUSION

A data-driven inverse reinforcement learning technique
is developed for a class of linear systems to estimate the
cost function of an agent online, using input-output mea-
surements. A simultaneous state and parameter estimator is
utilized to facilitate output-feedback inverse reinforcement
learning, and cost function estimation is achieved up to
multiplication by a constant. A purging algorithm is utilized
to update the stored state and parameter estimates and bounds
on the cost estimation error are obtained.
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