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Abstract

The objective of this research is to enable safety-critical systems to simultaneously
learn and execute optimal control policies in a safe manner to achieve complex au-
tonomy. Learning optimal policies via trial and error, i.e., traditional reinforcement
learning, is difficult to implement in safety-critical systems, particularly when task
restarts are unavailable. Safe model-based reinforcement learning techniques based
on a barrier transformation have recently been developed to address this problem.
However, these methods rely on full-state feedback, limiting their usability in a real-
world environment. In this work, an output-feedback safe model-based reinforcement
learning technique based on a novel barrier-aware dynamic state estimator has been
designed to address this issue. The developed approach facilitates simultaneous
learning and execution of safe control policies for safety-critical linear systems. Sim-
ulation results indicate that barrier transformation is an effective approach to achieve
online reinforcement learning in safety-critical systems using output feedback.
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1 INTRODUCTION

Over the past decade, safe reinforcement learning has gained a lot of attention in the disciplines of robotics and controls. One
of the primary reasons for this focus is the increase in the expectation of autonomy in safety-critical systems in real-world
tasks. While unmanned autonomous systems have significant advantages, such as repeatability, precision, and lack of physical
weariness, over their non-autonomous and biological counterparts, they are often costly to construct and restore. To avoid failures
during the learning phase, methods that allow unmanned autonomous agents to learn to perform tasks with safety guarantees
are needed.

In the past, reinforcement learning (RL) has been demonstrated to be an effective approach for synthesizing online optimal
policies for known and unknown discrete/continuous-time dynamical systems1,2. However, due to sample inefficiencies, RL
often necessitates a large number of iterations. Model-based reinforcement learning (MBRL) techniques can enhance sample
efficiency in RL3,4,5. Generally MBRL techniques guarantee stability, not safety. In recent years, significant progress has been
made in developing safe model-based reinforcement learning (SMBRL) techniques to learn safe controllers for different classes
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of systems6,7,8,9,10,11,12,13,14,15,16. While Markov decision process (MDP) based SMBRL methods have been available for discrete
time systems with finite state and action spaces6,7,8,9, synthesizing online controllers for systems in continuous time, under
output feedback, while guaranteeing stability and safety is still a challenging problem.

SMBRL techniques that provide probabilistic safety guarantees for continuous-time (CT) stochastic systems have been studied
in results such as10,11,12; however, not all applications are conducive to probabilistic safety guarantees. Applications such as
manned aviation demand deterministic safety guarantees, and as such, online, real-time learning in such systems is challenging.
SMBRL techniques for CT deterministic systems have been studied in results such as13,14,15,16. In13, a SMBRL method has been
developed to synthesize a real-time safe controller online by incorporating the proximity penalty method developed in17 with
the framework of control barrier functions. While the control barrier function results in safety guarantees, the existence of a
smooth value function, in spite of a nonsmooth cost function, needs to be assumed16.

This paper is inspired by the nonlinear coordinate transformation first introduced in18. Leveraging the results of18, a barrier
transformation (BT) to construct an equivalent, unconstrained optimal control problem from a state-constrained optimal control
problem was introduced in14. The unconstrained problem was then solved using an adaptive optimal control method under
persistence of excitation (PE). To soften the restrictive PE requirement,15 utilized a MBRL formulation to yield a SMBRL
technique to synthesize safe controllers. However, the SMBRL method in15 requires exact model knowledge. To address this
limitation,16 extended the results of15 to yield a SMBRL solution to the online state-constrained optimal feedback control
problem under parametric uncertainty.

While results such as14,15,16 provide verified safe feedback controllers, they all rely on full-state feedback. Often in unknown
or/and adverse environments, the system may not have access to the full state variables. Therefore, development of methods to
synthesize safe controllers using BT-based SMBRL that depend on output feedback is needed. The primary challenge in output
feedback BT-based SMBRL is that the BT preserves neither the linearity nor the Brunovsky canonical form of the system.
As such, observer development in the transformed coordinates is difficult. While state estimation can be done in the original
coordinates, due to the nature of the BT, small estimation errors in the original coordinates do not translate to small errors in
the transformed coordinates. Since the controllers are designed in transformed coordinates, large state estimation errors in the
transformed coordinates can yield unexpected results. To achieve safe learning using output feedback,19 extended the results
in14,15,16 for nonlinear control-affine systems in Brunovsky canonical form, where the state comprises of the output and its
derivatives. This paper aims to extend the results in19 by developing a controller for partial observable state-constrained linear
systems, not necessarily in the Brunovski canonical form, with a more general output equation. To meet such an objective,
this paper develops a Luenberger-like BT-based adaptive observer1, and utilizing the observer, this paper develops an output
feedback SMBRL method for linear systems with an output matrix that satisfies Assumption 1 to learn feedback control policies
with guaranteed safety and stability during the learning and execution phases.

In the following, Section 2 formalizes the problem statement. Section 3.1 introduces the BT, and Section 3.2 details the
developed BT-based state estimator. Section 3.3 describes the SMBRL technique for synthesizing feedback control policies
in transformed coordinates. In Section 3.3, a Lypaunov-based analysis, in the transformed coordinates, is utilized to establish
practical stability of the closed-loop system resulting from the developed SMBRL technique. Guarantees that the safety require-
ments are satisfied in the original coordinates are also established. Simulation results in Section 4 show the performance of the
developed SMBRL approach.

2 PROBLEM FORMULATION

We consider the following continuous-time linear dynamical system.

𝑥̇ = 𝐴𝑥 + 𝐵𝑢, 𝑦 = 𝐶𝑥 (1)

where 𝑥 ∶= [𝑥1;… ; 𝑥𝑛] ∈ ℝ𝑛 is the system state, 𝐴 ∈ ℝ𝑛×𝑛 is the transition matrix, 𝐵 ∈ ℝ𝑛×𝑚 is the control effectiveness
matrix, 𝑢 ∈ ℝ𝑚 is the control input, 𝐶 ∈ ℝ𝑞×𝑛 is the output matrix, 𝑦 ∶= [𝑦1;… ; 𝑦𝑞] ∈ ℝ𝑞 is the measured output, and the
notation [𝑣;𝑤] is used to denote the vector [𝑣𝑇 𝑤𝑇 ]𝑇 . The following structure is imposed on the problem to make the barrier
transformation feasible.

1Classical Luenberger observer 20 can not be directly integrated into a BT-based SMBRL framework since the observer becomes infeasible in the transformed
coordinate due to the nonlinear structure of the BT.
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Assumption 1. For each 𝑗 ∈ {1,… , 𝑞}, there exists 𝑖 ∈ {1,… , 𝑛} such that 𝑦𝑗 = 𝑥𝑖.

Assumption 1 requires each output variable to be equal to one of the state variables. That is, every row of the matrix 𝐶 has
exactly one element equal to one, and the rest of the elements are zero. Since generally, 𝑞 is smaller than 𝑛, Assumption 1 requires
direct measurement of a subset of the state variables. Most autonomous systems commonly use sensors that directly measure
one or more state variables. For example, systems such as robot manipulators with encoders that measure angular position,
autonomous vehicles with GPS sensors that measure position, gyroscopes that measure angular velocities, and magnetometers
that measure yaw angles, electrical circuits equipped with ammeters all have in output matrices that satisfy Assumption 1.

The objective is to design an estimator to estimate the state online, using input-output measurements, and to simultaneously
estimate and utilize an output feedback optimal controller, 𝑢, such that starting from a given feasible initial condition 𝑥0, the
trajectories 𝑥(⋅) decay to a neighborhood of the origin, and satisfies 𝑥𝑖(𝑡) ∈ (𝑧𝑖, 𝑧𝑖),∀𝑖 = 1,… , 𝑛 for user-specified constants
𝑧𝑖 < 0 < 𝑧𝑖 define user-specified safety constraints.

The notation (⋅)𝑖 is used in the rest of the manuscript to denote the 𝑖th element of the vector (⋅), and the notation 𝐼𝑜 denotes
the identity matrix of size 𝑜.

3 MAIN RESULTS

In this paper, adaptive optimal control techniques developed for unconstrained optimal control problems are adapted to solve the
constrained optimal output feedback optimal control problem at hand. To facilitate conversion of a constrained optimal control
problem into an unconstrained one, we utilize the BT, first introduced in14.

3.1 Barrier Transformation
Given E < 0 < E , the function 𝑏(E ,E ) ∶ (E ,E ) → ℝ, referred to as barrier function (BF), is defined as 𝑏(E ,E )(Y ) ∶=

log
(

E (E−Y )
E (E−Y )

)

. The inverse of the BF on the interval (E ,E ) containing the origin is given by 𝑏−1
(E ,E )

(Y ) =
(

E E 𝑒Y −1
E 𝑒Y −E

)

. In this

paper, the barrier transformation is a nonlinear coordinate transformation, defined as 𝑠𝑖 ∶= 𝑏(𝑧𝑖,𝑧𝑖)(𝑥𝑖), and 𝑥𝑖 = 𝑏−1(𝑧𝑖,𝑧𝑖)
(𝑠𝑖),

where 𝑠𝑖 is the 𝑖th element of the transformed system state vector, 𝑠. Evaluating the derivative of the inverse of the barrier

function at 𝑠𝑖 yields
d𝑏−1(𝑧𝑖 ,𝑧𝑖)

(𝑠𝑖)

d𝑠𝑖
= 1

𝑇𝑖(𝑠𝑖)
, where 𝑇𝑖(𝑠𝑖) ∶=

𝑧2𝑖 𝑒
𝑠𝑖−2𝑧𝑖𝑧𝑖+𝑧

2
𝑖 𝑒

−𝑠𝑖

𝑧𝑖𝑧2𝑖 −𝑧𝑖𝑧
2
𝑖

. Let 𝑇 (𝑠) ∶= [𝑇1(𝑠1);… ; 𝑇𝑛(𝑠𝑛)].
Let 𝑧 = [𝑧1;… ; 𝑧𝑛], and 𝑧 = [𝑧1;… ; 𝑧𝑛]. In the following, for any vector L , comprised of components of 𝑥, such that L =

[(𝑥)𝑝;… ; (𝑥)𝑞], with 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛, the notation 𝑏(L ) is used to denote componentwise application of the barrier function with
the appropriate limits selected componentwise from the vectors 𝑧 and 𝑧. That is, 𝑏(L ) ∶= [𝑏((𝑧)𝑝,(𝑧)𝑝)((𝑥)𝑝);… ; 𝑏((𝑧)𝑞 ,(𝑧)𝑞)((𝑥)𝑞)].
Similarly, given any vector L , comprised of components of 𝑠, such that L = [(𝑠)𝑝,⋯ , (𝑠)𝑞]𝑇 , with 1 ≤ 𝑝 ≤ 𝑞 ≤ 𝑛, 𝑏−1(L ) ∶=
[𝑏−1((𝑧)𝑝,(𝑧)𝑝)((𝑠)𝑝);… ; 𝑏−1((𝑧)𝑞 ,(𝑧)𝑞)((𝑠)𝑞)]

𝑇 .

3.2 State Estimator
The first technical challenge is designing an estimator to generate safe estimates 𝑥̂ ∈ ℝ2𝑛 of the state variables 𝑥 online, using
input-output measurements. In this section, a barrier-based adaptive state estimator inspired by Luenberger observer20 has been
designed to generate estimates of 𝑥. The designed estimator is given by

̇̂𝑥𝑖 ∶= (𝐵𝑢)𝑖 +
1

𝑇𝑖(𝑏(𝑥̂𝑖))

(

𝐴𝑏(𝑥̂) + 𝐿
(

𝑦𝑚 − 𝐶𝑏(𝑥̂)
)

)

𝑖
. (2)

for 𝑖 = 1,… , 𝑛, where 𝑦𝑚 = 𝐶𝑏(𝑥) and 𝐿 ∈ ℝ𝑛×𝑞 is the gain matrix selected to make 𝐴 − 𝐿𝐶 Hurwitz. Note that the design
is motivated by the need to obtain the error bound in Lemma 2. Since the estimator needs to deal with the state constraints,
BT using the barrier function can be an effective way to address this challenge. Which will transfer the constrained state to the
unconstrained state. To transform the dynamics in (1) using the BT, the time derivative of the transformed state, 𝑠 ∈ ℝ𝑛, can be
computed as

𝑠̇ = 𝑇 (𝑠)⊙ (𝐴𝑥 + 𝐵𝑢) = 𝐹 (𝑠) + 𝐺(𝑠)𝑢 (3)
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where, ⊙ represents Hadamard product21, Chapter 1, 𝐹 (𝑠) ∶= 𝑇 (𝑠)⊙ 𝐴𝑏−1(𝑠), 𝐺(𝑠) ∶= 𝑇 (𝑠)⊙ 𝐵.
To transform the dynamics in (2) using the BT, the time derivative of the estimated transformed state, 𝑠̂ ∈ ℝ𝑛, can be computed

as
̇̂𝑠 = 𝑇 (𝑠̂)⊙ (𝐵𝑢) + 𝐴𝑠̂ + 𝐿

(

𝑦𝑚 − 𝐶𝑏(𝑥̂)
)

= 𝐴𝑠̂ + 𝐺(𝑠̂)𝑢 + 𝐿𝐶𝑠̃. (4)

Note that the relationship 𝑏(𝐶𝑥) = 𝐶𝑏(𝑥), leveraged in the computation above, is only true under Assumption 1.
In the transformed coordinates, the estimator error can be computed as

̇̃𝑠 = 𝐹 (𝑠) + 𝐺(𝑠)𝑢 − 𝐺(𝑠̂)𝑢 − 𝐴𝑠 + 𝐴𝑠̃ − 𝐿𝐶𝑠̃, (5)

with 𝑠̃ = 𝑠 − 𝑠̂, ̇̃𝑠 = 𝑠̇ − ̇̂𝑠.
A detailed analysis of the relationship between the trajectories of the transformed state and state-estimator dynamics and the

original state and state estimator dynamics is provided in Section 3.3.
The second technical challenge is designing an optimal output feedback controller such that starting from a given feasible

initial condition 𝑥0, the closed-loop trajectory 𝑥(⋅) decays to a neighborhood of the origin and satisfies 𝑥𝑖(𝑡) ∈ (𝑧𝑖, 𝑧𝑖),∀𝑡 ≥ 0,
where 𝑖 = 1, 2. Lemma 1 in Section 3.3 implies that if a feedback controller that practically stabilizes the transformed system in
(3) is designed, then the same feedback controller can be adapted to keep the trajectories of the original system within the safe
bounds. The following subsection develops a novel OF-SMBRL technique for synthesizing such a feedback controller.

3.3 Safe Model-based Reinforcement Learning
In the following, a controller that practically stabilizes (3) is designed as an estimate of a controller that minimizes the infinite
horizon cost

𝐽 (𝑢(⋅)) ∶=

∞

∫
0

𝑐(𝜙(𝜏, 𝑠0, 𝑢(⋅)), 𝑢(𝜏))𝑑𝜏, (6)

over the set  of piecewise continuous functions 𝑡 → 𝑢(𝑡), subject to (3), where 𝜙(𝜏, 𝑠0, 𝑢(⋅)) denotes the trajectory of (3),
evaluated at time 𝜏, starting from the state 𝑠0, and under the controller 𝑢(⋅). In (6), 𝑐(𝑠, 𝑢) ∶= 𝑄′(𝑠) + 𝑢𝑇𝑅𝑢 where 𝑅 ∈ ℝ𝑚×𝑚

is a symmetric positive definite (PD) matrix. For the optimal value function to be a Lyapunov function for the optimal policy,
it is assumed that 𝑄′ is PD. A state penalty function 𝑥 → 𝐸(𝑥), given in the original coordinates, can easily be transformed
into an equivalent state penalty 𝑄′(𝑠) = 𝐸(𝑏−1(𝑠)). Since the barrier function is monotonic and 𝑏(0) = 0, if 𝐸 is PD, then
so is 𝑄′. Furthermore, for applications with bounded control inputs, a non-quadratic penalty function similar to22, Eq. 17 can be
incorporated in (6).

Assuming that an optimal controller exists, let the optimal value function, denoted by 𝑉 ∗ ∶ ℝ𝑛 ×ℝ𝑞 → ℝ, be defined as

𝑉 ∗(𝑠) ∶= min
𝑢(⋅)∈[𝑡,∞)

∞

∫
𝑡

𝑐(𝜙(𝜏, 𝑠, 𝑢[0,𝜏)(⋅)), 𝑢(⋅))𝑑𝜏, (7)

where 𝑢𝐼 and 𝐼 are obtained by restricting the domains of 𝑢 and functions in 𝐼 to the interval 𝐼 ⊆ ℝ, respectively. Assuming
that the optimal value function is continuously differentiable, it can be shown to be the unique PD solution of the Hamilton-
Jacobi-Bellman (HJB) equation23, Theorem 1.5

min
𝑢∈ℝ𝑞

(

𝑉𝑠 (𝐹 (𝑠) + 𝐺(𝑠)𝑢) +𝑄′(𝑠) + 𝑢𝑇𝑅𝑢
)

= 0, (8)

where ∇(⋅) ∶=
𝜕
𝜕(⋅)

, and 𝑉(⋅) ∶= ∇(⋅)𝑉 . Furthermore, the optimal controller is given by the feedback policy 𝑢(𝑡) = 𝑢∗(𝜙(𝑡, 𝑠, 𝑢[0,𝑡)))
where 𝑢∗ ∶ ℝ𝑛 → ℝ𝑚 is defined as

𝑢∗(𝑠) ∶= −1
2
𝑅−1𝐺(𝑠)𝑇 (∇𝑠𝑉

∗(𝑠))𝑇 . (9)
Considering that analytical solutions to the HJB problem are often infeasible to compute, particularly for nonlinear systems,

parametric approximation methods are utilized to estimate the value function 𝑉 ∗ and the optimal policy 𝑢∗.
The optimal value function can be expressed as

𝑉 ∗ (𝑠) = 𝑊 𝑇 𝜎 (𝑠) + 𝜖 (𝑠) , (10)
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where 𝑊 ∈ ℝ𝑙 is an unknown vector of bounded weights, 𝜎 ∶ ℝ𝑛 → ℝ𝑙 is a vector of continuously differentiable nonlinear
activation functions24, Def. 2.1 such that 𝜎 (0) = 0 and ∇𝑠𝜎 (0) = 0, 𝑙 ∈ ℕ is the number of basis functions, and 𝜖 ∶ ℝ𝑛 → ℝ is the
reconstruction error. Using the universal function approximation property25, Theorem 1.5 of single layer neural networks (NNs),
it can be deduced that given the compact set 𝐵 (0, 𝜒) ⊂ ℝ𝑛 and a positive constant 𝜖 ∈ ℝ, there exists a number of basis
functions 𝑙 ∈ ℕ, and known positive constants 𝑊 and 𝜎 such that ‖𝑊 ‖ ≤ 𝑊 , sup𝑠∈𝐵(0,𝜒) ‖𝜖 (𝑠)‖ ≤ 𝜖, sup𝑠∈𝐵(0,𝜒) ‖‖∇𝑠𝜖 (𝑠)‖‖ ≤ 𝜖,
sup𝑠∈𝐵(0,𝜒) ‖𝜎 (𝑠)‖ ≤ 𝜎, and sup𝑠∈𝐵(0,𝜒) ‖‖∇𝑠𝜎 (𝑠)‖

‖

≤ 𝜎. Note that 𝐵 (0, 𝜒) is not assumed to be forward invariant. See Remark 2.
Using (8), a representation of the optimal controller using the same basis as the optimal value function can be derived as

𝑢∗ (𝑠)=−1
2
𝑅−1𝐺𝑇 (𝑠)

(

∇𝑠𝜎
𝑇 (𝑠)𝑊 +∇𝑠𝜖

𝑇 (𝑠)
)

. (11)

Since the ideal weights, 𝑊 , are unknown, an actor-critic technique is utilized in the following to estimate 𝑊 . Let the NN
estimates 𝑉 ∶ ℝ𝑛 ×ℝ𝑙 → ℝ and 𝑢̂ ∶ ℝ𝑛 ×ℝ𝑙 → ℝ𝑚 be defined as

𝑉
(

𝑠̂, 𝑊̂𝑐
)

∶= 𝑊̂ 𝑇
𝑐 𝜎 (𝑠̂) , (12)

𝑢̂
(

𝑠̂, 𝑊̂𝑎
)

∶= −1
2
𝑅−1𝐺𝑇 (𝑠̂) ∇𝑠̂𝜎

𝑇 (𝑠̂) 𝑊̂𝑎, (13)

where the critic weights, 𝑊̂𝑐 ∈ ℝ𝑙 and actor weights, 𝑊̂𝑎 ∈ ℝ𝑙 are estimates of the ideal weights, 𝑊 .
Using the estimate 𝑠̂ of the transformed state 𝑠 in (3) and substituting (12) and (13) into (8) for results in a residual term,

𝛿 ∶ ℝ𝑛 ×ℝ𝑙 ×ℝ𝑙 → ℝ, referred to as the Bellman error (BE), defined as

𝛿(𝑠̂, 𝑊̂𝑐 , 𝑊̂𝑎) ∶= 𝑉𝑠̂(𝑠̂, 𝑊̂𝑐)
(

𝐹 (𝑠̂) + 𝐺(𝑠̂)𝑢̂(𝑠̂, 𝑊̂𝑎)
)

+𝑄′(𝑠̂) + 𝑢̂(𝑠̂, 𝑊̂𝑎)𝑇𝑅𝑢̂(𝑠̂, 𝑊̂𝑎). (14)

To learn the approximation control policy, online RL algorithms traditionally require a PE condition4,26,27. It is typically impos-
sible to guarantee PE a priori and verify PE online. While impossible to ensure a priori, by utilizing the model’s virtual excitation,
stability and convergence of online RL can be established under a PE-like condition that can be validated online (by monitoring
the minimum eigenvalue of a matrix in the subsequent Assumption 2)5. The BE can be evaluated at any arbitrary point in the
state space using the system model. Virtual excitation can then be implemented by selecting a set of points

{

𝑟𝑘 ∣ 𝑘 = 1,⋯ , 𝑁
}

,
where 𝑟𝑘 ∈ 𝐵(0, 𝜒). The extrapolation state variables 𝑟𝑘 are assumed to be constant. However, the approach can be extended
in a straightforward manner to time-varying extrapolation state variables confined to a compact neighborhood of the origin.
Evaluating the BE at this set of state variables to yield

𝛿𝑘(𝑟𝑘, 𝑊̂𝑐 , 𝑊̂𝑎) ∶= 𝑉𝑟𝑘(𝑟𝑘, 𝑊̂𝑐)
(

𝐹 (𝑟𝑘) + 𝐺(𝑟𝑘)𝑢̂(𝑟𝑘, 𝑊̂𝑎)
)

+𝑄′(𝑟𝑘) + 𝑢̂(𝑟𝑘, 𝑊̂𝑎)𝑇𝑅𝑢̂(𝑟𝑘, 𝑊̂𝑎). (15)

To facilitate the analysis, the actor and critic weight estimation errors are defined as 𝑊̃𝑐 ∶= 𝑊 − 𝑊̂𝑐 and 𝑊̃𝑎 ∶= 𝑊 − 𝑊̂𝑎 and
substituting the estimates (10) and (11) into (8), and subtracting from (14), the BE that can be expressed in terms of the weight
estimation errors as

𝛿 = −𝜔𝑇 𝑊̃𝑐 +
1
4
𝑊̃ 𝑇

𝑎 𝐺𝜎𝑊̃𝑎 + Δ, (16)

where Δ ∶= 1
2
𝑊 𝑇∇𝑠̂𝜎𝐺𝑅∇𝑠̂𝜖𝑇 + 1

4
𝐺𝜖 − ∇𝑠̂𝜖𝐹 , 𝐺𝑅 ∶= 𝐺𝑅−1𝐺𝑇 , 𝐺𝜖 ∶= ∇𝑠̂𝜖𝐺𝑅∇𝑠̂𝜖𝑇 , 𝐺𝜎 ∶= ∇𝑠̂𝜎𝐺𝑅−1𝐺𝑇∇𝑠̂𝜎𝑇 , and 𝜔 ∶=

∇𝑠̂𝜎
(

𝐹 + 𝐺𝑢̂
(

𝑠̂, 𝑊̂𝑎
))

. Similarly, (15) implies that

𝛿𝑘 = −𝜔𝑇
𝑘 𝑊̃𝑐 +

1
4
𝑊̃ 𝑇

𝑎 𝐺𝜎𝑘𝑊̃𝑎 + Δ𝑘, (17)

where, Δ𝑘 ∶= 1
2
𝑊 𝑇∇𝑟𝑘𝜎𝑘𝐺𝑅𝑘

∇𝑟𝑘𝜖
𝑇
𝑘 + 1

4
𝐺𝜖𝑘 − ∇𝑟𝑘𝜖𝑘𝐹𝑘, 𝐺𝜖𝑘 ∶= ∇𝑟𝑘𝜖𝑘𝐺𝑅𝑘

∇𝑟𝑘𝜖
𝑇
𝑘 , 𝜔𝑘 ∶= ∇𝑟𝑘𝜎𝑘

(

𝐹𝑘 + 𝐺𝑘𝑢̂
(

𝑧̂𝑘, 𝑊̂𝑎
))

, 𝐺𝜎𝑘 ∶=
∇𝑟𝑘𝜎𝑘𝐺𝑘𝑅−1𝐺𝑇

𝑘∇𝑟𝑘𝜎
𝑇
𝑘 , 𝐺𝑅𝑘

∶= 𝐺𝑘𝑅−1𝐺𝑇
𝑘 , 𝐹𝑘 ∶= 𝐹 (𝑟𝑘), 𝐺𝑘 ∶= 𝐺(𝑟𝑘), 𝐻𝑘 ∶= 𝐻(𝑟𝑘), 𝜎𝑘 ∶= 𝜎(𝑟𝑘), and 𝜖𝑘 ∶= 𝜖(𝑟𝑘).

Note that sup𝑠∈𝐵(0,𝜒) |Δ| ≤ 𝑑𝑎𝜖 and if 𝑟𝑘 ∈ 𝐵 (0, 𝜒) then |

|

Δ𝑘
|

|

≤ 𝑑𝑎𝜖𝑘, for some constant 𝑑𝑎 > 0, and the dependence of
various functions on the state, 𝑠̂, are omitted for brevity whenever it is clear from the context.

Using the extrapolated BEs 𝛿𝑘 from (15), the weights are updated according to

̇̂𝑊𝑐 = −
𝑘𝑐
𝑁

Γ
𝑁
∑

𝑘=1

𝜔𝑘

𝜌𝑘
𝛿𝑘, (18)

Γ̇ = 𝛽Γ −
𝑘𝑐
𝑁

Γ
𝑁
∑

𝑘=1

𝜔𝑘𝜔𝑇
𝑘

𝜌2𝑘
Γ, (19)
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and
̇̂𝑊𝑎 = −𝑘𝑎

(

𝑊̂𝑎−𝑊̂𝑐
)

+
𝑁
∑

𝑘=1

𝑘𝑐𝐺𝑇
𝜎𝑘
𝑊̂𝑎𝜔𝑇

𝑘

4𝑁𝜌𝑘
𝑊̂𝑐−𝑘𝑏𝑊̂𝑎, (20)

with Γ
(

𝑡0
)

= Γ0, where Γ ∶ ℝ≥𝑡0 → ℝ𝑙×𝑙 is a time-varying least-squares gain matrix, 𝜌𝑘 (𝑡) ∶= 1 + 𝛾𝜔𝑇
𝑘 (𝑡)𝜔𝑘 (𝑡), 𝛾 > 0 is a

constant positive normalization gain, 𝛽 ∈ ℝ+ is a constant forgetting factor, and 𝑘𝑐 , 𝑘𝑎, 𝑘𝑏 ∈ ℝ+ are constant adaptation gains.
The control commands sent to the system are then computed using the actor weights as

𝑢(𝑡) = 𝑢̂
(

𝑠̂(𝑡), 𝑊̂𝑎(𝑡)
)

, 𝑡 ≥ 0. (21)

The Lyapunov function needed to analyze the closed loop system defined by (3), (5), (18), (19), and (20) is constructed using
stability properties of (3) under the optimal feedback controller (9). To that end, the following section analyzes the optimal
closed-loop system.

Using the assumption that 𝑄′(𝑠) is PD,19, Theorem 1a, and the converse Lyapunov theorem for asymptotic stability28, Theorem 4.17,
the existence of a radially unbounded PD function  ∶ ℝ𝑛 → ℝ and a PD function 𝑊 ∶ ℝ𝑛 → ℝ is guaranteed such that

𝑠(𝑠)(𝐹 (𝑠)+𝐺(𝑠)𝑢∗(𝑠))≤−𝑊 (𝑠), (22)

for all 𝑠 ∈ ℝ𝑛. The functions  and 𝑊 are utilized in the following section to analyze the stability of the output feedback
approximate optimal controller.

To summarize, the controller in (21) is implemented by selecting a set of basis functions 𝜎, input parameters 𝑘𝑎 > 0, 𝑘𝑏 > 0,
𝑘𝑐 > 0 and 𝛽 > 0, and initial conditions 𝑠̂(0), 𝑊̂𝑐(0), Γ(0) and 𝑊̂𝑎(0), and using (13) where 𝑠̂(𝑡), 𝑊̂𝑐(𝑡), Γ(𝑡) and 𝑊̂𝑎(𝑡) are
computed by solving a system of differential equations, comprised of (4), (18), (19), and (20), respectively.

3.4 Stability Analysis
In the following lemma, the trajectories of the original system and the transformed system are shown to be related by the

barrier transformation provided the trajectories of the transformed system are complete16. As detailed in Lemma 1, the design
of the BT ensures that the trajectories of (1), (3), (2), and (4) are linked by the BT whenever the underlying state trajectories
𝑥(⋅) and 𝑠(⋅) and the initial conditions 𝑥̂0 and 𝑠̂0 are linked by the BT.
Lemma 1. If 𝑡 → Φ

(

𝑡; [𝑏(𝑥0); 𝑏(𝑥̂0)], 𝜁
)

is a complete Carathéodory solution to (3), and (4), starting from the initial condition
[𝑏(𝑥0); 𝑏(𝑥̂0)], under the feedback policy (𝑠̂, 𝑡) → 𝜁 (𝑠̂, 𝑡), and if 𝑡 → Λ

(

𝑡; [𝑥0; 𝑥̂0], 𝜉
)

is a Carathéodory solution to (1), and (2),
starting from the initial condition [𝑥0; 𝑥̂0], under the feedback policy (𝑥̂, 𝑡) → 𝜉(𝑥̂, 𝑡), defined as 𝜉(𝑥̂, 𝑡) = 𝜁 (𝑏(𝑥̂), 𝑡) then

Λ
(

𝑡; [𝑥0; 𝑥̂0], 𝜉
)

= 𝑏−1
(

Φ
(

𝑡; [𝑏(𝑥0); 𝑏(𝑥̂0)], 𝜁
))

for all 𝑡 ∈ ℝ≥0.

Proof. See19, Lemma 1.

Remark 1. The feedback 𝜉 is well-defined at 𝑥̂ only if 𝑏(𝑥̂) is well-defined, which is the case whenever 𝑥̂ is inside the barrier. As
such, the main conclusion of the lemma also implies that Λ(⋅, [𝑥0; 𝑥̂0], 𝜉) remains inside the barrier which indicates the safety
of the trajectories by satisfying the user-specified safety constraints. It is thus inferred from Lemma 1 that if the trajectories of
(3), and (2) are bounded and decay to a neighborhood of the origin under a feedback policy (𝑠̂, 𝑡) → 𝜁 (𝑠̂, 𝑡), then the feedback
policy (𝑥, 𝑡) → 𝜁

(

𝑏(𝑥̂), 𝑡
)

, when applied to the original system in (1), achieves the control objective stated in Section 2.

The following PE-like rank condition is utilized in the stability analysis.

Assumption 2. There exists a constant 𝑐1 > 0 such that the set of points
{

𝑟𝑘 ∈ ℝ𝑛 ∣ 𝑘 = 1,… , 𝑁
}

satisfies

𝑐1𝐼𝑙 ≤ inf
𝑡∈ℝ≥𝑇

(

1
𝑁

𝑁
∑

𝑘=1

𝜔𝑘 (𝑡)𝜔𝑇
𝑘 (𝑡)

𝜌2𝑘 (𝑡)

)

. (23)

Similar to the PE condition traditionally used in online optimal control (see, e.g.,29), Assumption 2 cannot be guaranteed a
priori as 𝜔𝑘 is a function of the estimates 𝑠̂ and 𝑊̂𝑎. Online verification of the PE condition would require knowledge of a 𝛿𝑡 > 0
and computation of the integral ∫ 𝑡+𝛿𝑡

𝑡
𝜔(𝜏)𝜔𝑇 (𝜏)

𝜌2(𝜏)
d𝜏 at each 𝑡, to check if it has a sufficiently large minimum eigenvalue. Even if the

integrals could be efficiently computed, finding a 𝛿𝑡 > 0 such that the integrals have a sufficiently large minimum eigenvalue for
all 𝑡 is typically infeasible, making the PE condition impossible to verify online. On the other hand, at each time instant 𝜏, given
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the state and parameter estimates, one can easily compute the minimum eigenvalue of 𝜔𝑘(𝜏)𝜔𝑇
𝑘 (𝜏)

𝜌2𝑘(𝜏)
and check whether it is greater

than 𝑐1. As such, at any given 𝜏 ≥ 𝑇 , by keeping track of the smallest minimum eigenvalue recorded over [𝑇 , 𝜏], it is possible
to verify the condition 𝑐1𝐼𝑙 ≤ inf 𝑡∈[𝑇 ,𝜏]

(

1
𝑁

∑𝑁
𝑘=1

𝜔𝑘(𝑡)𝜔𝑇
𝑘 (𝑡)

𝜌2𝑘(𝑡)

)

.
Furthermore, if the minimum eigenvalue does not satisfy the lower bound, one can either perturb the set of points

{

𝑟𝑘 ∈ ℝ𝑛 ∣ 𝑘 = 1,… , 𝑁
}

or collect more points to improve the minimum eigenvalue without injecting an excitation signal into
the system. Since 𝜆min

(

∑𝑁
𝑘=1

𝜔𝑘(𝑡)𝜔𝑇
𝑘 (𝑡)

𝜌2𝑘(𝑡)

)

is non-decreasing in the number of samples, 𝑁 , Assumption 2 can be met, heuristically,
by increasing 𝑁 . This flexibility makes Assumption 2 much easier to work with than the PE condition.

It is established in4, Lemma 1 that under Assumption 2 and provided 𝜆min
{

Γ−1
0

}

> 0, the update law in (19) ensures that the
least squares gain matrix satisfies

Γ𝐼𝐿 ≤ Γ (𝑡) ≤ Γ𝐼𝐿,∀𝑡 ∈ ℝ≥0 and some Γ,Γ > 0 (24)

Using (3), the orbital derivative of the PD function  introduced in (22), along the trajectories of (3), under the controller
𝑢 = 𝑢̂

(

𝑠̂, 𝑊̂𝑎
)

, is given by ̇
(

𝑠, 𝑠̃, 𝑊̃𝑎
)

= 𝑠 (𝑠)
(

𝐹 (𝑠) + 𝐺 (𝑠) 𝑢̂
(

𝑠̂, 𝑊̂𝑎
))

, where 𝑠̃ ∶= 𝑠 − 𝑠̂.
Using (22) and the facts that 𝐺 is bounded, the basis functions 𝜎 are bounded, and the value function approximation error 𝜖

and its derivative with respect to 𝑠, 𝑠̂ are bounded on compact sets, the time-derivative of  can be bounded as

̇
(

𝑠, 𝑠̃, 𝑊̃𝑎
)

≤ −𝑊 (𝑠) + 𝜄1𝜖 + 𝜄2 ‖𝑠̃‖ ‖‖𝑊̃𝑎
‖

‖

+ 𝜄3 ‖‖𝑊̃𝑎
‖

‖

+ 𝜄4 ‖𝑠̃‖ , (25)

for all 𝑊̂𝑎 ∈ ℝ𝑙, for all 𝑠 ∈ 𝐵(0, 𝜒), and for all 𝑠̂ ∈ 𝐵(0, 𝜒), where 𝜄1,⋯ , 𝜄4 are positive constants.
Let Θ

(

𝑊̃𝑐 , 𝑊̃𝑎, 𝑡
)

∶= 1
2
𝑊̃ 𝑇

𝑐 Γ−1 (𝑡) 𝑊̃𝑐 +
1
2
𝑊̃ 𝑇

𝑎 𝑊̃𝑎. The orbital derivative of Θ along the trajectories of (18) - (20) is given by

Θ̇
(

𝑊̃𝑐 , 𝑊̃𝑎, 𝑡
)

= 𝑊̃ 𝑇
𝑐 Γ−1 ̇̃𝑊𝑐 −

1
2
𝑊̃ 𝑇

𝑐 Γ−1Γ̇Γ−1𝑊̃𝑐 + 𝑊̃ 𝑇
𝑎

̇̃𝑊𝑎, (26)

where ̇̃𝑊𝑐 = − ̇̂𝑊𝑐 , and ̇̃𝑊𝑎 = − ̇̂𝑊𝑎.
Provided the extrapolation state variables are selected such that 𝑟𝑘 ∈ 𝐵(0, 𝜒), ∀𝑘 = {1,… , 𝑁}, the orbital derivative in (26)
can be bounded by

Θ̇
(

𝑊̃𝑐 , 𝑊̃𝑎, 𝑡
)

≤ −𝑘𝑐𝑐 ‖‖𝑊̃𝑐
‖

‖

2 −
(

𝑘𝑎 + 𝑘𝑏
)

‖

‖

𝑊̃𝑎
‖

‖

2 + 𝑘𝑐 𝜄8𝜖 ‖‖𝑊̃𝑐
‖

‖

+ 𝑘𝑐 𝜄5 ‖‖𝑊̃𝑎
‖

‖

2 +
(

𝑘𝑐 𝜄6 + 𝑘𝑎
)

‖

‖

𝑊̃𝑐
‖

‖

‖

‖

𝑊̃𝑎
‖

‖

+
(

𝑘𝑐 𝜄7 + 𝑘𝑏𝑊
)

‖

‖

𝑊̃𝑎
‖

‖

, (27)

for all 𝑡 ≥ 0, where 𝜄5,… , 𝜄8 are positive constants that are independent of the learning gains, 𝑊 denotes an upper bound on
the norm of the ideal weights 𝑊 , and 𝑐 = inf 𝑡≥0 𝜆min

{(

𝛽
2𝑘𝑐

Γ−1 (𝑡) + 1
2𝑁

∑𝑁
𝑘=1

𝜔𝑘𝜔𝑇
𝑘

𝜌𝑘

)}

. Assumption 2 and (24) guarantee that
𝑐 > 0. The following Lemma develops a bound on a Lyapunov-like function of the state estimation errors to be utilized in this
stability analysis.

Lemma 2. Let 𝑉𝑠𝑒 ∶ ℝ𝑛 → ℝ≥0 be a continuously differentiable candidate Lyapunov function defined as 𝑉𝑠𝑒(𝑠̃, 𝑡) ∶= 𝑠̃𝑇𝑃 𝑠̃
where 𝑃 is a PD matrix that satisfies 𝑃 (𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑃 = −𝜁 for some PD matrix 𝜁 . Provided 𝑠̂(𝑡) ∈ 𝐵(0, 𝜒),
𝑠(𝑡) ∈ 𝐵(0, 𝜒) for all 𝑡, and 𝐹 , 𝐺 are locally Lipschitz continuous on 𝐵(0, 𝜒) for 𝜒 > 0, the orbital derivative of 𝑉𝑠𝑒 along the
trajectories of (5), under the controller in (21), can be upper-bounded as 𝑉̇𝑠𝑒(𝑠̃, 𝑠, 𝑊̃𝑎, 𝑡) ≤ −

(

𝜆𝑚𝑖𝑛(𝜁 ) −𝜛2
)

‖𝑠̃‖2+𝜛1‖𝑠̃‖‖𝑠‖+
𝜛3‖𝑠̃‖‖𝑊̃𝑎‖ +𝜛4‖𝑠̃‖ where 𝜛1;⋯ ;𝜛4 are Lipschitz constants.

Proof. See Appendix 6.1.

Remark 2. The bound on 𝑉̇𝑠𝑒 established above is only valid if 𝑠 and 𝑠̂ remain in 𝐵(0, 𝜒). The fact that 𝑠 and 𝑠̂ remain in 𝐵(0, 𝜒)
if trajectories of the closed loop are initialized sufficiently close to the origin is proven rigorously in Theorem 1 using standard
local uniform ultimate boundedness results (see, e.g.,28, Theorem 4.18).

Utilizing the results from (25), (27) and Lemma 2, the following theorem can be obtained

Theorem 1. Provided Assumptions 1 and 2 hold, and 𝐹 , 𝐺 are locally Lipschitz continuous on 𝐵(0, 𝜒) for 𝜒 > 0, the gains are
selected large enough to ensure that the sufficient condition (39), introduced in Appendix 6.2 holds, the matrix 𝑀+𝑀𝑇 , defined
in (36) is PD, and the weights 𝑊̂𝑐 , Γ, and 𝑊̂𝑎 are updated according to (18), (19), and (20), respectively, then the estimation
errors 𝑊̃𝑐 , 𝑊̃𝑎, and the trajectories of the transformed system in (3), under the controller in (21), are locally uniformly ultimately
bounded.
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Proof. See Appendix 6.2

Remark 3. The sufficient condition in (39) and the matrices 𝑆 and 𝑀 depend on the upper and lower bounds of the optimal value
function. Such bounds can be difficult to obtain in practice. This limitation stems from the use of the optimal value function as
a component of the candidate Lyapunov function and is present in all online adaptive optimal control results rely on the optimal
value function (see, e.g.,30,31,23,32,33).

The main conclusion of the Lemma 1 (see Remark 1) implies that if the trajectories of (3) and (4) are bounded and decay to a
neighborhood of the origin under a feedback policy (𝑠̂, 𝑡) → 𝜁 (𝑠̂, 𝑡), then the same feedback policy, when applied to the original
system in (1), achieves the control objective stated in Section 2. Theorem 1 proves that the trajectories of (3) and (4) under
the controller in (21), are locally uniformly ultimately bounded. Therefore, it can be concluded that the controller in (21) can
be utilized in the original coordinates to keep the trajectories of the original system within the safe bounds to meet the second
technical challenge of this paper.

4 SIMULATION

This section applies the proposed OF-SMBRL framework to an output feedback controller synthesis problem for a linearized
F-16 aircraft longitudinal dynamical system. The linearized F-16 aircraft longitudinal dynamical system31 is described by (1),
where

𝐴 =
⎡

⎢

⎢

⎣

−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

⎤

⎥

⎥

⎦

, 𝐵 =
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

, 𝐶 =
[

1 0 0
]

.

The goal is to learn a stabilizing output feedback control law that drives the state variables to the origin while respecting the
state constraints. In this experiment, the state is expressed as 𝑥 = [𝑥1; 𝑥2; 𝑥3] = [𝛼; 𝑞; 𝛿𝑒] where 𝛼 denotes the angle of attack
[rad]; 𝑞 is the pitch rate [rad/sec]; 𝛿𝑒 is the elevator deflection angle [rad]. The objective is to satisfy the user picked constraints
that are 𝑥1 ∈ (𝑧1, 𝑧1), 𝑥2 ∈ (𝑧2, 𝑧2), and 𝑥3 ∈ (𝑧3, 𝑧3) where 𝑧1 = 𝑧2 = 𝑧3 = −1, 𝑧1 = 𝑧3 = 1 and 𝑧2 = 0.3. The system is required
to remain in the user-specified bound during the entire duration of the experiment.

To synthesize the controller, the infinite horizon cost in (6) is minimized with 𝑄′(𝑠) = 𝑠𝑇𝑄𝑠 where 𝑄 = 10𝐼2 and 𝑅 = 1.
The basis functions for value function approximation are selected as 𝜎(𝑠̂) = [𝑠̂1𝑠̂2; 𝑠̂1𝑠̂3; 𝑠̂2𝑠̂3; 𝑠̂21; 𝑠̂

2
2; 𝑠̂

2
3]. The initial conditions

for the state variables are selected as 𝑥(0) = [𝛼0; 𝑞0; 𝛿𝑒0] = [0.95; 0; 0.90]. The initial conditions for the estimated state variables
are 𝑥̂(0) = [0.75; −0.75; 0.75], and the initial guesses for the weights are 𝐿 = [1; 1; 1], Γ(0) = 𝐼6, 𝑊̂𝑎(0) = [1; 1; 1; 1; 1; 1],
𝑊̂𝑐(0) = [1; 1; 1; 1; 1; 1],𝐾𝑐 = 100,𝐾𝑎1 = 100,𝐾𝑎2 = 1, and 𝛽 = 0.1. The simulation uses 125 fixed Bellman error extrapolation
points in a 0.8×0.6 ×0.8 cube around the origin of the 𝑠−coordinate system. Since the critic and the actor are trained in the
transformed coordinates where the system is nonlinear, the true actor and critic weights are unknown.

Figure 1 (a) and Figure 1 (b) indicate that the system state 𝑥 remains inside the user-specified safe set under the developed
OF-SMBRL scheme, whereas an observer-based LQR solution34 results in violation of the state constraints. Figure 1 (c) shows
that the state estimation errors also converge to zero. As observed from the results in Figure 1 (d), the unknown weights for
critic converge to constant values. Since the true actor and critic weights are unknown, the final values that the critic weights
converge to in Figure 1 (d) cannot be compared against the true weights. The simulation results indicate that the developed
method successfully achieves the stated control objectives.

Remark 4. In this paper, a controller synthesis method for output feedback LQR problems under inequality constraints on
the state variables is developed. To the best of our knowledge, online solutions to the state-constrained output feedback LQR
problem do not exist in the literature, and as such, we are unable to directly compare the developed method to other output-
feedback techniques. However, we have included Figure 1 (a) and Figure 1 (b), where the developed method is compared against
a baseline unconstrained output-feedback LQR controller that uses a standard Luenberger observer to generate estimates of the
system state.
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Figure 1 Plot (a) represents a phase portrait of the F-16 aircraft longitudinal dynamical system’s state variables in the original
coordinates using OF-SMBRL and observer-based LQR solution34. The boxed area represents the user-selected safe set. The
planes of the box indicate the user-selected safety boundary. Plot (b) shows that the observer-based LQR solution violates the
user-selected safety boundary. However, OF-SMBRL satisfies the safety boundary. The yellow region indicates an unsafe region.
Plot (c) shows the effectiveness of the developed state estimator. It shows the estimation errors between the original and estimated
state variables under selected nominal gains. Plot (d) presents the estimates of the critic weights under selected nominal gains.

5 CONCLUSION

This paper presents a novel framework that utilizes a new barrier-based adaptive state estimator to yield a safe MBRL-based
online, approximate optimal controller synthesizing technique for safety-critical linear systems, under output feedback. BT, a
transformation method to transform a constrained optimal control problem into an unconstrained optimal control problem, facili-
tates existing MBRL techniques to obtain safe optimal controllers in the original coordinate. The newly designed Luenberger-like
state estimator enables the SMBRL framework to provide an OF-SMBRL controller that guarantees the state variables of the
original system remain within the safety bounds. Regulation of the system state variables to a neighborhood of the origin and
convergence of the estimated policy to a neighborhood of the optimal policy is established using a Lyapunov-based stability
analysis.

While the simulation results are promising, safety violations are possible due to unmodeled uncertainties in the system dy-
namics and/or the environment. Furthermore, the simulation study indicates that the technique is sensitive to initial guesses of
the unknown policy and the unknown value function, as predicted by the local stability result. Future research targeting these
limitations will pave the way for the barrier transformation approach in safety-critical applications such as autonomous driving
and manned aviation.
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6 APPENDIX

6.1 Proof of Lemma 2
Lemma 2. Let 𝑉𝑠𝑒 ∶ ℝ𝑛 → ℝ≥0 be a continuously differentiable candidate Lyapunov function defined as 𝑉𝑠𝑒(𝑠̃, 𝑡) ∶= 𝑠̃𝑇𝑃 𝑠̃
where 𝑃 is a PD matrix that satisfies 𝑃 (𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑃 = −𝜁 for some PD matrix 𝜁 . Provided 𝑠̂(𝑡) ∈ 𝐵(0, 𝜒),
𝑠(𝑡) ∈ 𝐵(0, 𝜒) for all 𝑡, and 𝐹 , 𝐺 are locally Lipschitz continuous on 𝐵(0, 𝜒) for some 𝜒 > 0, the orbital derivative of 𝑉𝑠𝑒
along the trajectories of (5), under the controller in (21), can be upper-bounded as 𝑉̇𝑠𝑒(𝑠̃, 𝑠, 𝑊̃𝑎, 𝑡) ≤ −

(

𝜆𝑚𝑖𝑛(𝜁 ) −𝜛2
)

‖𝑠̃‖2 +
𝜛1‖𝑠̃‖‖𝑠‖ +𝜛3‖𝑠̃‖‖𝑊̃𝑎‖ +𝜛4‖𝑠̃‖ where 𝜛1;⋯ ;𝜛4 are Lipschitz constants.
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Proof. The estimator error in the transformed coordinate can be computed as
̇̃𝑠 = 𝐹 (𝑠) + 𝐺(𝑠)𝑢̂ − 𝐺(𝑠̂)𝑢̂ − 𝐴𝑠 + 𝐴𝑠̃ − 𝐿𝐶𝑠̃. (28)

The orbital derivative can be expressed as

𝑉̇𝑠𝑒 = 𝑠̃𝑇𝑃 ̇̃𝑠 + ̇̃𝑠𝑇𝑃 𝑠̃. (29)

Using (28), we can rewrite (29) as

𝑉̇𝑠𝑒 = 𝑠̃𝑇𝑃 (𝐹 (𝑠) + 𝐺(𝑠)𝑢̂ − 𝐺(𝑠̂)𝑢̂ − 𝐴𝑠 + 𝐴𝑠̃ − 𝐿𝐶𝑠̃) + (𝐹 (𝑠) + 𝐺(𝑠)𝑢̂ − 𝐺(𝑠̂)𝑢̂ − 𝐴𝑠 + 𝐴𝑠̃ − 𝐿𝐶𝑠̃)𝑇 𝑃 𝑠̃ (30)

which yields

𝑉̇𝑠𝑒 = 𝑠̃𝑇𝑃 (𝐴 − 𝐿𝐶)𝑠̃ + 𝑠̃𝑇𝑃𝐹 (𝑠) + 𝑠̃𝑇𝑃 𝐺̃(𝑠, 𝑠̂)𝑢̂ − 𝑠̃𝑃𝐴𝑠 + 𝑠̃𝑇 (𝐴 − 𝐿𝐶)𝑇𝑃 𝑠̃ + (𝑠̃𝑇𝑃𝐹 (𝑠))𝑇 + (𝑠̃𝑇𝑃 𝐺̃(𝑠, 𝑠̂)𝑢̂)𝑇 − (𝑠̃𝑃𝐴𝑠)𝑇 .
(31)

We can rewrite (31) as

𝑉̇𝑠𝑒 = 𝑠̃𝑇
(

𝑃 (𝐴 − 𝐿𝐶) + (𝐴 − 𝐿𝐶)𝑇𝑃
)

𝑠̃ + 𝑠̃𝑇𝑃𝐹 (𝑠) +
(

𝑠̃𝑇𝑃𝐹 (𝑠)
)𝑇 − 𝑠̃𝑃𝐴𝑠 − (𝑠̃𝑃𝐴𝑠)𝑇 − 𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂

(

𝑠, 𝑊̃𝑎
)

+ 𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂
(

𝑠, 𝑊̃𝑎
)

− 𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂
(

𝑠̂, 𝑊̃𝑎
)

− 𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂ (𝑠,𝑊 ) + 𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂ (𝑠̂,𝑊 ) + 𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂ (𝑠,𝑊 )

−
(

𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂(𝑠, 𝑊̃𝑎)
)𝑇 +

(

𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂(𝑠, 𝑊̃𝑎)
)𝑇 −

(

𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂(𝑠̂, 𝑊̃𝑎)
)𝑇 −

(

𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂ (𝑠,𝑊 )
)𝑇

+
(

𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂(𝑠̂,𝑊 )
)𝑇 +

(

𝑠̃𝑇𝑃 𝐺̃ (𝑠, 𝑠̂) 𝑢̂(𝑠,𝑊 )
)𝑇 . (32)

Using the Cauchy-Schwarz inequality and the fact that 𝐹 , 𝐺 are locally Lipschitz continuous on 𝐵(0, 𝜒), we have

𝑉̇𝑠𝑒 ≤ −𝜆𝑚𝑖𝑛(𝜁 )‖𝑠̃‖2 +𝜛1‖𝑠̃‖‖𝑠‖ +𝜛2‖𝑠̃‖‖𝑠̃‖ +𝜛3‖𝑠̃‖‖𝑊̃𝑎‖ +𝜛4‖𝑠̃‖ (33)

where 𝜛1;⋯ ;𝜛4 are Lipschitz constants.
From (33), we obtain the desired bound

𝑉̇𝑠𝑒 ≤ −
(

𝜆𝑚𝑖𝑛(𝜁 ) −𝜛2
)

‖𝑠̃‖2 +𝜛1‖𝑠̃‖‖𝑠‖ +𝜛3‖𝑠̃‖‖𝑊̃𝑎‖ +𝜛4‖𝑠̃‖. (34)

6.2 Proof of Theorem 1
Theorem 1. Provided Assumptions 1 and 2 hold, and 𝐹 , 𝐺 are locally Lipschitz continuous on 𝐵(0, 𝜒) for 𝜒 > 0, the gains are
selected large enough to ensure that the sufficient condition (39), introduced in Appendix 6.2 holds, the matrix 𝑀+𝑀𝑇 , defined
in (36) is PD, and the weights 𝑊̂𝑐 , Γ, and 𝑊̂𝑎 are updated according to (18), (19), and (20), respectively, then the estimation
errors 𝑊̃𝑐 , 𝑊̃𝑎, and the trajectories of the transformed system in (3), under the controller in (21), are locally uniformly ultimately
bounded.

Proof. The candidate Lyapunov function for the closed-loop system is selected as

𝑉𝐿 (𝑍, 𝑡) ∶=  (𝑠) + Θ
(

𝑊̃𝑐 , 𝑊̃𝑎, 𝑡
)

+ 𝑉𝑠𝑒 (𝑠̃) , (35)

where 𝑍 ∶=
[

𝑠𝑇 𝑊̃ 𝑇
𝑐 𝑊̃ 𝑇

𝑎 𝑠̃𝑇
]𝑇 .

Let  ⊂ ℝ2𝑛 be a compact set defined as

 ∶=
{

(𝑠, 𝑠̃) ∈ ℝ2𝑛 ∣ ‖𝑠‖ + ‖𝑠̃‖ ≤ 𝜒
}

.

Whenever, (𝑠, 𝑠̃) ∈ , it can be concluded that 𝑠, 𝑠̂ ∈ 𝐵(0, 𝜒). As a result, (25), (27), and (33) imply that whenever𝑍 ∈ ×ℝ2𝑙,
the orbital derivative of the candidate Lyapunov function along the trajectories of (3), (5), (18), (19), (20), under the controller
(21), can be bounded as

𝑉̇𝐿 (𝑍, 𝑡) ≤ −𝑊 (𝑠) + 𝜄1𝜖 + 𝜄2 ‖𝑠̃‖ ‖‖𝑊̃𝑎
‖

‖

+ 𝜄3 ‖‖𝑊̃𝑎
‖

‖

+ 𝜄4 ‖𝑠̃‖ − 𝑘𝑐𝑐 ‖‖𝑊̃𝑐
‖

‖

2 −
(

𝑘𝑎 + 𝑘𝑏
)

‖

‖

𝑊̃𝑎
‖

‖

2 + 𝑘𝑐 𝜄8𝜖 ‖‖𝑊̃𝑐
‖

‖

+𝑘𝑐 𝜄5 ‖‖𝑊̃𝑎
‖

‖

2 +
(

𝑘𝑐 𝜄6 + 𝑘𝑎
)

‖

‖

𝑊̃𝑐
‖

‖

‖

‖

𝑊̃𝑎
‖

‖

+
(

𝑘𝑐 𝜄7 + 𝑘𝑏𝑊
)

‖

‖

𝑊̃𝑎
‖

‖

−
(

𝜆𝑚𝑖𝑛(𝜁 ) −𝜛2
)

‖𝑠̃‖2

+
(

𝜛1
)

‖𝑠̃‖‖𝑠‖ +𝜛3‖𝑠̃‖‖𝑊̃𝑎‖ +𝜛4‖𝑠̃‖,
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which can be re-expressed as,

𝑉̇𝐿 (𝑍, 𝑡) ≤ −𝑊 (𝑠) + 𝜄1𝜖 + (𝜄2 +𝜛3) ‖𝑠̃‖ ‖‖𝑊̃𝑎
‖

‖

− 𝑘𝑐𝑐 ‖‖𝑊̃𝑐
‖

‖

2 −
(

𝑘𝑎 + 𝑘𝑏 − 𝑘𝑐 𝜄5
)

‖

‖

𝑊̃𝑎
‖

‖

2 + 𝑘𝑐 𝜄8𝜖 ‖‖𝑊̃𝑐
‖

‖

+
(

𝑘𝑐 𝜄6 + 𝑘𝑎
)

‖

‖

𝑊̃𝑐
‖

‖

‖

‖

𝑊̃𝑎
‖

‖

+
(

𝑘𝑐 𝜄7 + 𝑘𝑏𝑊 + 𝜄3
)

‖

‖

𝑊̃𝑎
‖

‖

+ (𝜄4 +𝜛4) ‖𝑠̃‖ −
(

𝜆𝑚𝑖𝑛(𝜁 ) −𝜛2
)

‖𝑠̃‖2 +𝜛1‖𝑠̃‖‖𝑠‖,

using Young’s inequality

𝑉̇𝐿 (𝑍, 𝑡) ≤ −𝑊 (𝑠) + 1
2
(𝜛1)‖𝑠‖2 + 𝜄1𝜖 + (𝜄2 +𝜛3) ‖𝑠̃‖ ‖‖𝑊̃𝑎

‖

‖

+ (𝜄4 +𝜛4) ‖𝑠̃‖ − 𝑘𝑐𝑐 ‖‖𝑊̃𝑐
‖

‖

2 −
(

𝑘𝑎 + 𝑘𝑏 − 𝑘𝑐 𝜄5
)

‖

‖

𝑊̃𝑎
‖

‖

2

+ 𝑘𝑐 𝜄8𝜖 ‖‖𝑊̃𝑐
‖

‖

+
(

𝑘𝑐 𝜄6 + 𝑘𝑎
)

‖

‖

𝑊̃𝑐
‖

‖

‖

‖

𝑊̃𝑎
‖

‖

+
(

𝑘𝑐 𝜄7 + 𝑘𝑏𝑊 + 𝜄3
)

‖

‖

𝑊̃𝑎
‖

‖

−
(

𝜆𝑚𝑖𝑛(𝜁 ) −
1
2
𝜛1 −𝜛2

)

‖𝑠̃‖2,

where 𝑧 ∶=
[

‖

‖

𝑊̃𝑐
‖

‖

‖

‖

𝑊̃𝑎
‖

‖

‖𝑠̃‖
]𝑇 . Provided the matrix 𝑀 +𝑀𝑇 is PD,

𝑉̇𝐿 (𝑍, 𝑡) ≤ −𝑊 (𝑠) + 1
2
(𝜛1)‖𝑠‖2 −𝑀 ‖𝑧‖2 + 𝑆 ‖𝑧‖ + 𝜄1𝜖,

where 𝑀 ∶= 𝜆min

{

𝑀+𝑀𝑇

2

}

, 𝑆 = ‖𝑆‖∞, and the matrices 𝑀 and 𝑆 are defined as

𝑆 ∶=

⎡

⎢

⎢

⎢

⎣

𝑘𝑐 𝜄8𝜖
(

𝑘𝑐 𝜄7 + 𝑘𝑏𝑊 + 𝜄3
)

𝜄4 +𝜛4

⎤

⎥

⎥

⎥

⎦

𝑇

, 𝑀 ∶=
⎡

⎢

⎢

⎣

𝑘𝑐𝑐 0 0
−
(

𝑘𝑐 𝜄6 + 𝑘𝑎
) (

𝑘𝑎 + 𝑘𝑏 − 𝑘𝑐 𝜄5
)

0
0 −(𝜄2 +𝜛3) 𝜆𝑚𝑖𝑛(𝜁 ) −

1
2
𝜛1 −𝜛2

⎤

⎥

⎥

⎦

𝑇

. (36)

Letting 𝑀 =∶ 𝑀1 + 𝑀2, and letting  ∶ ℝ2𝑛+2𝑙 → ℝ be defined as  (𝑍) = −𝑊 (𝑠) + 1
2
(𝜛1)‖𝑠‖2 − 𝑀1 ‖𝑧‖

2, with
𝑊 (𝑠) > 1

2
(𝜛1)‖𝑠‖2, the orbital derivative can be bounded as

𝑉̇𝐿 (𝑍, 𝑡) ≤ − (𝑍) , ∀ ‖𝑍‖ (37)

such that ‖𝑍‖ > 1
2

(

𝑆
𝑀2

+
√

𝑆
2

𝑀2
2
+ 𝜄21𝜖

2

𝑀2
2

)

=∶ 𝜇, ∀𝑍 ∈ 𝐵
(

0, 𝜒
)

, for all 𝑡 ≥ 0, and some 𝜒 such that 𝐵(0, 𝜒) ⊆  ×ℝ2𝑙.

Using the bound in (24) and the fact that the converse Lyapunov function is guaranteed to be time-independent, radially
unbounded, and PD,28, Lemma 4.3 can be applied to conclude that

𝑣 (‖𝑍‖) ≤ 𝑉𝐿 (𝑍, 𝑡) ≤ 𝑣 (‖𝑍‖) , (38)

for all 𝑡 ∈ ℝ≥0 and for all 𝑍 ∈ ℝ2𝑛+2𝑙, where 𝑣, 𝑣 ∶ ℝ≥0 → ℝ≥0 are class  functions.
Provided the learning gains, the domain radii 𝜒 and 𝜒 , and the basis functions for function approximation are selected such

that 𝑀 +𝑀𝑇 is PD and
𝜇 < 𝑣−1

(

𝑣
(

𝜒
))

, (39)
then Theorem 4.18 from28 can be invoked to conclude that Z is locally uniformly ultimately bounded. Since the estimates 𝑊̂𝑎
approximate the ideal weights 𝑊 , the policy 𝑢̂ approximates the optimal policy 𝑢∗.
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