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A hierarchical reinforcement learning-based control strategy is introduced to facilitate state
regulation for a hypersonic vehicle. To account for time-varying aerothermoelastic parameters
in real-time, a hierarchical switching policy selects a subsystem from a larger set of potential
subsystems. The selection depends on an approximation of the optimal value function of each
subsystem. Integral concurrent learning is used to approximate the parametric uncertainties
in each dynamical system. The approximate optimal control policy is proven to converge to a
neighborhood of the optimal control policy. Uniformly ultimately bounded stability of each
subsystem and stability of the overall switched system are proven using a Lyapunov-based
stability analysis and dwell-time analysis.

I. Introduction
Flight control design for hypersonic vehicles (HSVs) has several challenges. An extremely large operating envelope,

various multi-objective constrained phases of flight, and complex interactions between the fluid, thermal, and structural
dynamics of an HSV jeopardize traditional autopilot design methods [1]. Furthermore, the expense and difficulty
associated with characterizing these interactions underscore the importance of autopilot design methods capable of
maintaining strict performance metrics while operating in complex and highly uncertain environments. Results such as
[2] and [3] use linear-parameter-varying (LPV) HSV models where the HSV drift dynamics and control effectiveness are
represented by linear nominal matrices. Disturbance terms are added to represent the time-varying aerothermoelastic
parameters that can result in vehicle instability.

Optimal control is often used for aircraft control to synthesize a stabilizing controller. Optimal control problems are
used for complex systems by implementing the control across a large flight envelope using gain scheduling [4–6]. Linear
gain-scheduled optimal control based on linear quadratic (LQ) methods is well-established and meets the performance
and robustness design requirements on a point by point basis [7]. However, for large flight envelopes, questions may
arise as to whether the resulting set of gain tables will be computationally tractable and sufficiently dense to maintain
closed-loop performance and stability.

The optimal control policy depends on the optimal value function, which is the solution to the Hamilton Jacobi
Bellman (HJB) equation. For linear quadratic regulator (LQR) problems, the HJB equation is reduced to the algebraic
Riccati equation (ARE) [6]. Gain scheduling is based on flight envelope conditions, and, due to time-varying parameters

∗Graduate Research Assistant, Department of Mechanical and Aerospace Engineering; makumiw@ufl.edu
†Aerospace Controls Researcher, Aurora Flight Sciences, A Boeing Company; greene.max@aurora.aero
‡Research Engineer, Munitions Directorate, Eglin Air Force Base; zachary.bell.10@us.af.mil
§Research Aerospace Engineer, Munitions Directorate, Eglin Air Force Base; brendan.bialy@us.af.mil.
¶Assistant Professor, Department of Mechanical and Aerospace Engineering; rushikesh.kamalapurkar@okstate.edu.
�Professor, Department of Mechanical and Aerospace Engineering; wdixon@ufl.edu.

1



in the flight envelope, research has focused on switched control systems [8–10]. Switching has been investigated in the
context of LQR problems in [11–13]. However, in many applications, most systems are considered to be unknown, i.e.,
the structure of the dynamics is known but contains parametric uncertainties. It is difficult to evaluate the optimal value
function offline for unknown systems, thus motivating online and suboptimal adaptive methods.

This work provides a method for switching between subsystems online using the infinite horizon cost-to-go as a
metric to measure performance. Each subsystem consists of its own unique control policy, cost function, and set of
dynamics. Since the change in the dynamics resulting from aerothermoelastic effects can destabilize HSV controllers,
the nominal plant must be updated to accurately reflect the time-varying parameters in the plant dynamics. Due to
parameter uncertainties in the plant dynamics, the cost function that generates the most desirable state response for its
corresponding nominal model is unknown a priori. Motivated by the fact that there will be different instantaneous
cost functions in different regions of the flight envelope, and the fact that there is model uncertainty in the dynamics, a
hierarchical reinforcement learning (HRL) framework is used to select the appropriate approximately optimal controller
that minimizes each unknown system cost for the flight envelope. Since the infinite-horizon value function is the
cost-to-go from using an optimal controller, a hierarchical agent is tasked with selecting the approximate optimal value
function with the smallest cost-to-go. In the HRL architecture, the optimal value function approximations of several
subsystems are compared, and the hierarchical agent selects the subsystem, consisting of the control policy and model
dynamics, associated the lowest-valued cost-to-go to use in the control loop. Therefore, the control policy that results in
the lowest-valued approximated cost-to-go is used as the applied control policy for its corresponding model at each time
instance.

Due to the challenges of finding an analytical solution to the HJB equation, classical optimal control techniques are
of limited use on complex systems. Reinforcement learning (RL) tools are commonly used to approximate solutions
to optimal control problems. Approximate dynamic programming (ADP) is a RL method that uses an actor-critic
framework to approximate the solution to the HJB equation, i.e., the optimal value function, online [14]. ADP is suitable
for adaptive flight control applications that include system dynamics that contain parametric uncertainties. Actor and
critic neural networks (NNs) are used to approximate the optimal control policy and optimal value function, respectively,
in real-time.

The Bellman error (BE) is a metric that indirectly measures the quality of the optimal value function approximation.
Continuous-time update laws update the weights to minimize the BE. By using a model-based formulation of ADP, the
BE can be calculated at user-defined off-trajectory states to perform simulation of experience via BE extrapolation [14].
BE extrapolation yields simultaneous exploration and exploitation to facilitate improved online-learning. For unknown
systems, an online data-driven system identifier can be used to estimate the system model. An integral concurrent
learning (ICL)-based parameter identifier is used to approximate the unknown drift dynamics online. Previous results
in [15] and [16] have used concurrent learning to approximate the uncertain parameters, but these methods require
knowledge of the highest order state derivative which may not always be available. ICL eliminates the need to estimate
the unmeasurable state derivatives [17].

A switched systems approach provides a framework for modeling changing aerothermoelastic parameters. Switched
systems can be difficult to analyze because of discontinuities and instantaneous growth of the Lyapunov function(s) [18].
Switching between stable subsystems can lead to instability of the overall switched system; therefore, the stability of the
switched system must be analyzed [19]. However, since each optimal value function, generally, is distinct between
subsystems, and the optimal value function is contained within each Lyapunov function, a multiple Lyapunov function
approach is necessary. One way to ensure stability in multiple Lyapunov function-based problems is via a dwell-time
analysis [20, Ch. 3]. A previous result that addresses switched ADP using a minimum dwell-time analysis [21] contains
constraints and assumptions that are unnecessarily restrictive. Therefore, a generalized Lyapunov-based dwell-time
analysis is developed in this paper that can be applied to any switched uniformly ultimately bounded (UUB) stable
subsystem that relaxes the constraints and assumptions in [21].

The idea of switching to account for the time varying parameters in HSVs was introduced for ADP in [22]. However,
in [22], the dynamics were known, it was assumed that the linear model was updated at every switch without a method
to facilitate the switching, and the analysis contained a restrictive dwell-time analysis. Motivated by the previous result
in [22], this paper introduces a method for switching between unknown dynamics and uses a generalized dwell-time
analysis. In this paper, an HRL agent is tasked with selecting the subsystem that facilitates the most desirable state
trajectory for a given flight condition. The hierarchical framework allows for the value function approximations of
multiple subsystems to be evaluated, and selects the subsystem which corresponds to the lowest-valued approximated
cost-to-go, resulting in the most desirable switching pattern. A Lyapunov-based switched subsystem stability analysis
proves UUB stability of the subsystems using multiple Lyapunov-like functions.
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Notation
For notational brevity, time-dependence is omitted while denoting trajectories of the dynamical systems. For

example, given the trajectories 𝑥 : R≥0 → R𝑚 and 𝑦 : R≥0 → R𝑛, the equation 𝑓 + ℎ (𝑦, 𝑡) = 𝑔 (𝑥) should be interpreted

as 𝑓 (𝑡) + ℎ ((𝑦 (𝑡)) , 𝑡) = 𝑔 (𝑥 (𝑡)). The gradient
[
𝜕 𝑓 (𝑥,𝑦)

𝜕𝑥1

𝑇
, . . . ,

𝜕 𝑓 (𝑥,𝑦)
𝜕𝑥𝑛

𝑇
]𝑇

is denoted by ∇𝑥 𝑓 (𝑥, 𝑦). Unless otherwise
specified, let ∇ ≜ ∇𝑦 . Both the Euclidean norm for vectors and the Frobenius norm for matrices are denoted by ∥·∥.
The cardinality of a set 𝐴 is denoted by |𝐴|. Let the subscript 𝑝 define the quantity or function belonging to the 𝑝th

subsystem of the overall system. Let 𝑝 ∈ P, where P ⊂ N and |P | < ∞ represent a family of switched subsystems.

II. HSV Dynamics
Consider the nonlinear equations of motion for an HSV including aerothermoelastic effects and structural dynamics

given in [23] as

¤𝑉 =
𝑇 cos (𝛼) − 𝐷

𝑚
− 𝑔 sin (\ − 𝛼) (1)

¤𝛼 =
𝐿 + 𝑇 sin (𝛼)

𝑚𝑉
+ 𝑞 + 𝑔

𝑉
cos (\ − 𝛼) (2)

¤𝑞 =
𝑀

𝐼𝑦𝑦
(3)

¤ℎ = 𝑉 sin (\ − 𝛼) (4)

¤\ = 𝑞 (5)

¥[𝑠,𝑖 = −2Z𝑠,𝑖𝜔𝑠,𝑖 ¤[𝑠,𝑖 − 𝜔2
𝑠,𝑖[𝑠,𝑖 + 𝑁𝑖 , (6)

where 𝑉 ∈ R denotes the forward velocity of the HSV, 𝑇 ∈ R≥0 denotes the thrust, 𝛼 ∈ R denotes the angle of attack,
𝐷 ∈ R≥0 denotes the drag, ℎ ∈ R≥0 denotes the altitude, 𝑚 ∈ R>0 denotes the HSV mass, 𝑔 ∈ R>0 denotes the
gravitational constant, \ ∈ R denotes the pitch angle, 𝐿 ∈ R≥0 denotes the lift, 𝑞 ∈ R denotes the pitch rate, 𝑀 ∈ R
denotes the pitching moment about the HSV body y-axis, 𝐼𝑦𝑦 ∈ R>0 denotes the moment of inertia about the body
y-axis, [𝑠,𝑖 ∈ R denotes the 𝑖th flexible structural mode displacement for 𝑖 ∈ {1, 2, 3} , Z𝑠,𝑖 , 𝜔𝑠,𝑖 , 𝑁𝑠,𝑖 ∈ R≥0 denote
the damping factor, natural frequency, and generalized elastic forces of the 𝑖th structural mode, respectively. The
concatenated state vector 𝑥 ∈ R11 includes the flight dynamic and structural dynamic states

𝑥 ≜
[
Δ𝑉 Δ𝛼 𝑞 Δℎ Δ\ [𝑠,1 ¤[𝑠,1 [𝑠,2 ¤[𝑠,2 [𝑠,3 ¤[𝑠,3

]𝑇
,

where Δ denotes the difference between the state and its respective trim condition. The HSV aerodynamic and structural
modes are coupled such that 𝑇, 𝐿, and 𝐷, depend on the structural modes [𝑠,𝑖 . The modulus of elasticity linearly
decreases as the HSV temperature increases [24]. The change in the modulus of elasticity alters the structural damping
ratio Z𝑠,𝑖 and natural frequency 𝜔𝑠,𝑖 , which, in turn, significantly alters the structural dynamic responses (i.e., ¥[𝑠,𝑖) [24].

A. LPV Model
The aforementioned HSV dynamics are modeled as a controllable LPV system including uncertainty from unmodeled

effects, given in [2] and [24] as

¤𝑥 = 𝐴 (𝜌 (𝑡)) 𝑥 + 𝐵 (𝜌 (𝑡)) 𝑢 + 𝑑 (𝑡) 𝑦 = 𝐶𝑥 (7)

where 𝐴 (𝜌 (𝑡)) ∈ R11×11 is the unknown LPV state matrix, 𝜌 (𝑡) ∈ R≥0 is the unknown time-dependent temperature
profile of the HSV, 𝐵 (𝜌 (𝑡)) ∈ R11×2 is the LPV control effectiveness matrix, 𝑢 ∈ R2 is the subsequently defined control
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input, 𝑑 (𝑡) ∈ R11 is a time-varying uncertainty and disturbance term, 𝑦 ∈ R5 is the measurable states, and 𝐶 ∈ R5×11 is

the output matrix. The control input 𝑢 ≜
[
𝛿𝑒 𝛿𝑐

]𝑇
consists of the deflection angle of the elevators and canards from

their trim condition. The HSV fuel equivalence ratio and diffuser area ratio are fixed at their operational trim condition.

The outputs for this example are selected as 𝑦 ≜
[
Δ𝑉 Δ𝛼 𝑞 Δℎ Δ\

]𝑇
.

Let 𝑝 ∈ P ⊂ N represent the total number of nominal dynamic models. The state matrix and control effectiveness
matrix are represented from [2] as

𝐴 (𝜌 (𝑡)) = 𝐴𝑝 + 𝑤𝑝 (𝜌 (𝑡)) (8)

𝐵 (𝜌 (𝑡)) = 𝐵𝑝 + 𝑣𝑝 (𝜌 (𝑡)) , (9)

where 𝐴𝑝 ∈ R11×11 is the 𝑝th nominal state matrix, 𝐵𝑝 ∈ R11×2 is the 𝑝th nominal control effectiveness matrix, and
𝑤𝑝 (𝜌 (𝑡)) ∈ R11×11 is an unknown parameter-varying disturbance term associated with the 𝑝th nominal state matrix,
and 𝑣𝑝 (𝜌 (𝑡)) ∈ R11×2 is an unknown parameter-varying disturbance term associated with the 𝑝th nominal control
effectiveness matrix. The matrices 𝐴 (𝜌 (𝑡)) and 𝐵 (𝜌 (𝑡)) are time-varying since the temperature profile 𝜌 (𝑡) in (8)
and (9) is time-varying.

B. Measurable States
The nominal HSV dynamics are represented by 𝐴𝑝 and 𝐵𝑝; however, some states in 𝑥, such as the structural dynamic

modes [𝑠,𝑖 and ¤[𝑠,𝑖 for all 𝑖, may not be measurable. To facilitate the subsequent analysis, the structural dynamic modes
are upperbounded, and thus collected into the disturbances 𝑑 (𝑡). To reflect this change, the matrices 𝐴𝑝,𝑦 ∈ R5×5,
𝐵𝑝,𝑦 ∈ R5×2, and 𝐶𝑦 ∈ R5×5 represent the nominal HSV dynamics that correspond only to the measurable states.

Recall, the output is defined as 𝑦 ≜
[
Δ𝑉 Δ𝛼 𝑞 Δℎ Δ\

]𝑇
. The disturbances are assumed to be negligible

such that ∥𝑑 (𝑡)∥ = 0,
𝑤𝑝 (𝜌 (𝑡))

 = 0,
𝑣𝑝 (𝜌 (𝑡))

 = 0 for all 𝑝 ∈ P . The reduced-order model used for the control
development is

¤𝑦 = 𝐶𝑦𝐴𝑝,𝑦𝑦 + 𝐶𝑦𝐵𝑝,𝑦𝑢. (10)

While this paper neglects disturbances; in practice these disturbances will be nonzero. Results such as [25] have
investigated different update laws to account for the disturbances, but not in the context of switched ADP. Future work
aims to explicitly compensate for nonzero disturbances in the switched ADP framework.

III. Control Development

A. Control Objective
The control objective is to solve the infinite-horizon optimal regulation problem online, i.e. find an optimal control

policy 𝑢 that minimizes the cost functional for the 𝑝th subsystem

𝐽𝑝 (𝑦, 𝑢) =
∫ ∞

𝑡0

𝑦𝑇𝑄𝑝𝑦 + 𝑢𝑇𝑅𝑝𝑢 𝑑𝜏, (11)

while regulating the system states to the origin and to switch to the subsystem with the lowest-valued cost-to-go. In
(11), 𝑄𝑝 ∈ R5×5 and 𝑅𝑝 ∈ R2×2 are user-defined constant positive definite (PD) symmetric cost matrices. The infinite
horizon value function (i.e. the cost-to-go) for the 𝑝th mode 𝑉∗

𝑝 : R5 → R≥0 is defined as

𝑉∗
𝑝 (𝑦) ≜ min

𝑢( ·) ∈U

∫ ∞

𝑡

𝑦𝑇𝑄𝑝𝑦 + 𝑢𝑇𝑅𝑝𝑢 𝑑𝜏, (12)

where U ⊆ R2 is the set of admissible controllers [14].
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Remark 1. Each subsystem, generally has a different cost function made up of a state penalty function 𝑄𝑝 and a cost
penalty matrix 𝑅𝑝 , a different developed optimal control policy, and a different dynamic model. Due to the parametric
uncertainty in (10), the developed method switches between multiple user-defined cost functions to assess which
controller generates the most desirable behavior for the unknown parameters by selecting 𝑉∗

𝑝 with the lowest value in
real time. The selected controller is applied to its corresponding set of dynamics, thus facilitating switching between
dynamic models as the time-varying parameters change.

Assuming that the optimal value function is continuously differentiable for each 𝑝 ∈ P, then the optimal control
policy 𝑢∗𝑝 : R5 → R2 is defined as

𝑢∗𝑝 (𝑦) = −1
2
𝑅−1
𝑝

(
𝐶𝑦𝐵𝑝,𝑦

)𝑇 (
∇𝑉∗

𝑝 (𝑦)
)𝑇

. (13)

The optimal value function and the optimal control policy satisfy the HJB equation

0 = ∇𝑉∗
𝑝 (𝑦)

(
𝐶𝑦𝐴𝑝,𝑦𝑦 + 𝐶𝑦𝐵𝑝,𝑦𝑢

∗
𝑝

)
+ 𝑦𝑇𝑄𝑝𝑦 + 𝑢∗𝑇𝑝 𝑅𝑝𝑢

∗
𝑝 , (14)

which has the boundary condition 𝑉∗
𝑝 (0) = 0.

B. Value Function Approximation
The solution to the HJB in 14, i.e., the optimal value function is difficult to find for LPV systems. Parametric

methods, specifically NNs, can be used to approximate the optimal value function in real-time. Let Ω ⊂ R5 be a compact
set.∗ The optimal value function can be approximated with an NN in Ω by invoking the Stone-Weierstrass Theorem [26]
to obtain

𝑉∗
𝑝 (𝑦) = 𝑊𝑇

𝑝 𝜙𝑝 (𝑦) + 𝜖𝑝 (𝑦) ∀𝑦 ∈ Ω, (15)

where 𝑊𝑝 ∈ R15 is a vector of unknown weights, 𝜙𝑝 : R5 → R15 is a user-defined vector of basis functions,† and
𝜖𝑝 : R5 → R is the bounded function reconstruction error. By substituting (15) into (13), the NN representation of the
𝑝th mode optimal control policy in (13) becomes

𝑢∗𝑝 (𝑦) = −1
2
𝑅−1
𝑝 𝐶𝑦𝐵𝑝,𝑦

(
∇𝜙𝑝 (𝑦)𝑇 𝑊𝑝 + ∇𝜖𝑝 (𝑦)

)𝑇
. (16)

Assumption 1. There exists a set of known positive constants 𝑊, 𝜙,∇𝜙, 𝜖,∇𝜖 ∈ R>0 such that sup𝑝∈P
𝑊𝑝

 ≤ 𝑊,

sup𝑦∈Ω, 𝑝∈P
𝜙𝑝 (𝑦)

 ≤ 𝜙, sup𝑦∈Ω, 𝑝∈P
∇𝜙𝑝 (𝑦)

 ≤ ∇𝜙, sup𝑦∈Ω, 𝑝∈P
𝜖𝑝 (𝑦) ≤ 𝜖 , and sup𝑦∈Ω, 𝑝∈P

∇𝜖𝑝 (𝑦) ≤ ∇𝜖
for all 𝑝 [27, Assumptions 9.1.c-e].‡

Assumption 2. The ideal weights 𝑊𝑝 in (15) and (16) are unknown a priori; hence, an approximation of 𝑊 is sought
using actor and critic weight estimates.

The critic weight estimate vector �̂�𝑐,𝑝 ∈ R15 is used to derive the approximate optimal value function �̂�𝑝 :
R5 × R15 → R, defined as

�̂�𝑝

(
𝑦, �̂�𝑐,𝑝

)
≜ �̂�𝑇

𝑐,𝑝𝜙𝑝 (𝑦) . (17)

The actor weight estimate vector �̂�𝑎,𝑝 ∈ R15 is used to derive the approximate optimal control policy �̂�𝑝 : R5×R15 → R,
defined as

�̂�𝑝

(
𝑦, �̂�𝑎,𝑝

)
≜ −1

2
𝑅−1
𝑝

(
𝐶𝑦𝐵𝑝,𝑦

)𝑇 (
∇𝜙𝑝 (𝑦)𝑇 �̂�𝑎,𝑝

)
. (18)

IV. Hierarchical Agent

A. Switching Algorithm
The hierarchical agent uses the value function approximations of several suboptimal lower-level controllers as a

metric to select the applied feedback control policy and the active nominal model. The hierarchical agent selects the
∗The subsequent stability analysis guarantees that if 𝑦 is initialized in an appropriately-sized subset of Ω, then it will stay in Ω.
†For brevity, each subsystem has the same number of elements in the basis function vector 𝐿.
‡The assumption can be met, for example, by selecting polynomials as basis functions (see [28, Theroem 1.5]).
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subsystem associated with the lowest-valued approximated cost-to-go at each instance in time using the switching signal

𝜎 ≜ argmin𝑝∈P
{
�̂�𝑝

(
𝑦, �̂�𝑐,𝑝

)}
. (19)

The switching signal in (19) facilitates switching in real time and outputs the number of the subsystem that corresponds
to the lowest-valued approximated cost-to-go. The optimal value function approximations for all the individual ADP
subsystems 𝑝 ∈ P are quantitatively compared in real-time, and the applied control input 𝑢 is selected as

𝑢 = �̂�𝜎

(
𝑦, �̂�𝑎,𝑝

)
. (20)

The selected control policy will be implemented as the controller in the active nominal model at each instance in time,
as seen in Figure 1.

B. System Identification
System identification is used to approximate the uncertain parameters in the drift dynamics. To facilitate online

system identification, let 𝐶𝑦𝐴𝑝,𝑦𝑦 = 𝑌𝑝 (𝑦) \𝑝 where 𝑌𝑝 : R5 → R5×4 is the known regression matrix, and \𝑝 ∈ R4 is a
vector of constant unknown parameters. Let the approximation of the uncertain drift dynamics 𝐶𝑦𝐴𝑝,𝑦𝑦 be denoted as
𝐶𝑦 �̂�𝑝𝑦 and be defined as 𝐶𝑦 �̂�𝑝,𝑦𝑦 ≜ 𝑌𝑝 (𝑦) \̂𝑝 , where \̂𝑝 ∈ R4 is an approximation of the unknown parameter vector
\𝑝 . The parameter estimate \̂𝑝 is updated using the following ICL-based update law [17]

¤̂\𝑝 ≜ 𝑘 𝑝,𝐼𝐶𝐿Γ𝑝,\

𝑀∑︁
𝑗=1

Y𝑇
𝑝, 𝑗

(
𝑦
(
𝑡 𝑗

)
− 𝑦

(
𝑡 𝑗 − Δ𝑡

)
−U𝑝 𝑗 − Y𝑝, 𝑗 \̂𝑝

)
, (21)

where 𝑘 𝑝,𝐼𝐶𝐿 ∈ R>0 and Γ𝑝,\ ∈ R4×4 are user-selected PD constants, Y𝑝, 𝑗 ≜ Y𝑝

(
𝑡 𝑗

)
, U𝑝, 𝑗 ≜ U𝑝

(
𝑡 𝑗

)
, Y𝑝 (𝑡) ≜∫ 𝑡

max[𝑡−Δ𝑡 ,0] 𝑌𝑝 (𝑦 (𝜏)) 𝑑𝜏 , and U𝑝 (𝑡) ≜
∫ 𝑡

max[𝑡−Δ𝑡 ,0] 𝐶𝑦𝐵𝑝,𝑦𝑢 (𝜏) 𝑑𝜏 . The parameter update law in (21) can be
rewritten in an analytical form as

¤̂\𝑝 = 𝑘 𝑝,𝐼𝐶𝐿Γ𝑝,\

𝑀∑︁
𝑗=1

Y𝑇
𝑝, 𝑗Y𝑝, 𝑗 \̃𝑝 , (22)

where \̃𝑝 ≜ \𝑝 − \̂𝑝 is the parametric error.

Assumption 3. A history stack of recorded state and control inputs
{
𝑦
(
𝑡 𝑗

)
, 𝑢

(
𝑡 𝑗

)}𝑀𝑝

𝑗=1 is available that satisfies

Y
𝑝
≜ _min

{∑𝑀
𝑗=1 Y𝑇

𝑝, 𝑗
Y𝑝, 𝑗

}
> 0 and ensures the finite excitation condition in [17] is satisfied a priori for all

subsystems 𝑝 ∈ P.

V. Bellman Error
The BE is a measure of suboptimality representing how close the actor and critic weight estimates are to their

ideal weight values. By substituting (17), (18), and the approximated drift dynamics 𝐶𝑦 �̂�𝑝𝑦 into (14), the BE
𝛿𝑝 : R5 × R15 × R15 × R4 → R is defined as

𝛿𝑝
(
𝑦, �̂�𝑐,𝑝 , �̂�𝑎,𝑝 , \̂

)
≜ 𝑦𝑇𝑄𝑝𝑦 + �̂�𝑝

(
𝑦, �̂�𝑎,𝑝

)𝑇
𝑅𝑝�̂�𝑝

(
𝑦, �̂�𝑎,𝑝

)
+ ∇�̂�𝑝

(
𝑦, �̂�𝑐,𝑝

) (
𝑌𝑝 (𝑦) \̂𝑝 + 𝐶𝑦𝐵𝑝,𝑦 �̂�𝑝

(
𝑦, �̂�𝑎,𝑝

) )
.

(23)

To facilitate the subsequent stability analysis, the BE can also be expressed in terms of the mismatch between the
estimates and the ideal values defined as �̃�𝑐,𝑝 ≜ 𝑊𝑝 − �̂�𝑐,𝑝 and �̃�𝑎,𝑝 ≜ 𝑊𝑝 − �̂�𝑎,𝑝 . Subtracting (14) from (23) and
substituting (15)-(18), the analytical form of the BE in (23) can be expressed as

𝛿𝑝
(
𝑦, �̂�𝑐,𝑝 , �̂�𝑎,𝑝 , \̂

)
= −𝜔𝑇

𝑝�̃�𝑐,𝑝 −𝑊𝑇
𝑝∇𝜙𝑝𝑌𝑝 (𝑦) \̃𝑝 + 1

4
�̃�𝑇

𝑎,𝑝𝐺𝜙,𝑝 (𝑦) �̃�𝑎,𝑝 +𝑂 𝑝 (𝑦) , (24)

6



where 𝜔𝑝

(
𝑦, �̂�𝑎,𝑝 , \̂

)
≜ ∇𝜙𝑝 (𝑦)

(
𝑌𝑝 (𝑦) \̂𝑝 + 𝐶𝑦𝐵𝑝,𝑦 �̂�𝑝

(
𝑦, �̂�𝑎,𝑝

) )
and Θ𝑝 (𝑦) ≜ 1

2∇𝜖𝑝 (𝑦)𝐺𝑅,𝑝∇𝜙𝑝 (𝑦)𝑇 𝑊𝑝 +
1
4𝐺 𝜖 , 𝑝 − ∇𝜖𝑝 (𝑦) 𝐶𝑦𝐴𝑝,𝑦𝑦. The functions 𝐺𝑅,𝑝, 𝐺𝜙,𝑝, and 𝐺 𝜖 , 𝑝 are defined as 𝐺𝑅,𝑝 (𝑦) ≜ 𝐶𝑦𝐵𝑝,𝑦𝑅

−1
𝑝

(
𝐶𝑦𝐵𝑝,𝑦

)
𝑇 ,

𝐺𝜙,𝑝 (𝑦) ≜ ∇𝜙𝑝 (𝑦)𝐺𝑅,𝑝 (𝑦) ∇𝜙𝑝 (𝑦) 𝑇 , and 𝐺 𝜖 , 𝑝 (𝑦) ≜ ∇𝜖𝑝 (𝑦)𝐺𝑅,𝑝 (𝑦) ∇𝜖𝑝 (𝑦)𝑇 respectively.
As described in [15], the BE in (23) can be calculated along any set of off-trajectory points in the state space using a

user-selected state 𝑥𝑖 , the critic weight estimate �̂�𝑐,𝑝, the actor weight estimate �̂�𝑎,𝑝, and the estimate of the system
model from the aforementioned online system identifier via BE extrapolation. BE extrapolation yields simultaneous
exploration and exploitation, enabling faster policy learning. To facilitate sufficient exploration, the BE is extrapolated
from the user-defined off-trajectory points {𝑦𝑖 : 𝑦𝑖 ∈ Ω}𝑁𝑝

𝑖=1 , where 𝑁𝑝 ∈ N denotes a user-specified total number of
extrapolation points in the compact set Ω. Each subsystem 𝑝 has its own distinct set of gain values, data, and update
laws.

Assumption 4. On the compact set, Ω, a finite set of user-selected, off-trajectory points {𝑦𝑖 : 𝑦𝑖 ∈ Ω}𝑁𝑝

𝑖=1 exists such that

0 < 𝑐
𝑝
≜ inf

𝑡∈R≥0
_min

{
1
𝑁𝑝

∑𝑁𝑝

𝑖=1
𝜔𝑖,𝑝𝜔

𝑇
𝑖,𝑝

𝜌2
𝑖,𝑝

}
for all 𝑝 ∈ P, where 𝜌𝑖, 𝑝 = 1 + a𝑝𝜔

𝑇
𝑖, 𝑝

Γ𝑝𝜔𝑖, 𝑝 , a𝑝 ∈ R>0 is a user-defined

gain, Γ𝑝 : R15×15 is a time-varying least-squares gain matrix, and 𝑐
𝑝

is a constant scalar lower bound of the value of
each input-output data pair’s minimum eigenvalues for the 𝑝th subsystem [15].

VI. Update Laws for Actor and Critic Weights
The actor and critic weights for each subsystem are updated simultaneously via BE error extrapolation. Using the

extrapolated BE error, the actor and critic weight estimates for the 𝑝thsubsystem are updated according to the critic
update law for the 𝑝th mode ¤̂𝑊𝑐,𝑝 ∈ R15,

¤̂𝑊𝑐,𝑝 ≜ −[𝑐,𝑝Γ
1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

𝜔𝑖, 𝑝

𝜌𝑖, 𝑝
𝛿𝑖, 𝑝 , (25)

the actor update law for the 𝑝th mode ¤̂𝑊𝑎,𝑝 ∈ R15,

¤̂𝑊𝑎,𝑝 ≜ −[𝑎1, 𝑝
(
�̂�𝑎,𝑝 − �̂�𝑐,𝑝

)
− [𝑎2, 𝑝�̂�𝑎,𝑝 + [𝑐,𝑝

1
𝑁𝑝

𝑁𝑝∑︁
𝑖=1

𝐺𝑇
𝜙𝑖, 𝑝

�̂�𝑎,𝑝𝜔
𝑇
𝑖, 𝑝

4𝜌𝑖, 𝑝
�̂�𝑐,𝑝 , (26)

and the least-squares gain matrix update law of the 𝑝th mode ¤Γ𝑝 ∈ R15×15,

¤Γ𝑝 ≜
©«_𝑝Γ𝑝 −

[𝑐,𝑝Γ𝑝

𝑁𝑝

𝑁𝑝∑︁
𝑖=1

𝜔𝑖, 𝑝𝜔
𝑇
𝑖, 𝑝

Γ𝑝

𝜌2
𝑖, 𝑝

ª®¬ · 1{
Γ𝑝≤∥Γ𝑝∥≤Γ𝑝

} , (27)

where [𝑐,𝑝 , [𝑎1, 𝑝 , [𝑎2, 𝑝 , _𝑝 ∈ R>0 are positive constant adaptation gains, Γ𝑝 , Γ𝑝 ∈ R>0 denote lower and upper
bounds for Γ𝑝 , and 1{ ·} denotes the indicator function.

The update laws in (25)-(27) are always active for each subsystem regardless of whether a subsystem is active or
inactive. Therefore, the update laws will update each subsystem 𝑝’s weight estimates and least-squares gain matrix even
if subsystem 𝑝 is not active. Convergence of the states of each subsystem can be proven concurrently since the update
laws are simultaneously learning for each subsystem.

VII. Stability Analysis
In a switched system, the stability of the individual subsystems does not guarantee stability of the overall switched

system [19]. Hence, the switching signal must be properly designed to ensure the stability of the overall switched
system. In addition to the stability of the individual subsystems, the stability of the switched system must be analyzed.
The following development analyzes the dynamics in (10) using the control policy in (20) and the update laws in (22),
(25)-(27).
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A. Subsystem Stability Analysis

To facilitate the stability analysis, let 𝑧 ≜
[
𝑦𝑇 , �̃�𝑇

𝑐,1, . . . , �̃�
𝑇
𝑐,𝑝 , �̃�

𝑇
𝑎,1, . . . , �̃�

𝑇
𝑎,𝑝 , \̃

𝑇
1 , . . . , \̃

𝑇
𝑝

]𝑇
denote a concatenated

state, and let 𝑉𝐿,𝑝 : R5+34 | P | → R≥0 be a candidate Lyapunov function for the 𝑝th mode defined as

𝑉𝐿,𝑝 (𝑧) ≜ 𝑉∗
𝑝 (𝑦) +

1
2

∑︁
𝑝∈P

�̃�𝑇
𝑐,𝑝Γ

−1
𝑝 �̃�𝑐,𝑝 + 1

2

∑︁
𝑝∈P

�̃�𝑇
𝑎,𝑝�̃�𝑎,𝑝 + 1

2

∑︁
𝑝∈P

\̃𝑇𝑝Γ
−1
\, 𝑝 \̃𝑝 . (28)

According to [14, Lemma 4.3], (28) can be bounded as 𝛼1, 𝑝 (∥𝑧∥) ≤ 𝑉𝐿,𝑝 (𝑧) ≤ 𝛼2, 𝑝 (∥𝑧∥) using class K functions
𝛼1, 𝑝 , 𝛼2, 𝑝 : R≥0 → R≥0. The normalized regressors 𝜔𝑝

𝜌𝑝
and 𝜔𝑖,𝑝

𝜌𝑖,𝑝
are bounded as sup𝑡∈R≥0

 𝜔𝑝

𝜌𝑝

 ≤ 1
2
√
a𝑝Γ𝑝

and

sup𝑡∈R≥0

 𝜔𝑖,𝑝

𝜌𝑖,𝑝

 ≤ 1
2
√
a𝑝Γ𝑝

for all 𝑦 ∈ Ω and 𝑦𝑖 ∈ Ω, respectively. The function 𝐺𝑅,𝑝 is bounded as sup𝑦∈Ω
𝐺𝑅,𝑝

 ≤

𝐺
2
𝑝_max

{
𝑅−1
𝑝

}
,𝐺𝜙,𝑝 is bounded as sup𝑦∈Ω

𝐺𝜙,𝑝

 ≤
(
∇𝜙𝐺 𝑝

)2
_max

{
𝑅−1
𝑝

}
, and𝑌 (𝑦) is bounded as sup𝑦∈Ω ∥𝑌 (𝑦)∥ ≤

𝑌 . To facilitate the subsequent analysis, define 𝑟 ∈ R>0 to be the radius of a compact ball B𝑟 ∈ R5+34 | P | centered at the
origin.

Theorem 1. The state 𝑦, every critic weight estimate error �̃�𝑐,𝑝 ∀𝑝 ∈ P, every actor weight estimate error �̃�𝑎,𝑝 ∀𝑝 ∈ P,
and every parameter estimation error \̃𝑝 ∀𝑝 ∈ P are UUB while each subsystem is active, provided the control policy
in (18) is used, the weight update laws in (25)-(27) are implemented, Assumptions (1)-(4) hold, and the conditions

[𝑎1, 𝑝 + [𝑎2, 𝑝 ≥ 5

4
√︃
a𝑝Γ𝑝

[𝑐,𝑝𝑊𝐺𝜙,𝑝 (29)

𝑐
𝑝
≥ 3

[𝑎1, 𝑝

[𝑐,𝑝
+

3[2
𝑐,𝑝𝑊

2

4[𝑐,𝑝a𝑝Γ𝑝

(
∇𝜙2

𝑌
2

𝑘 𝐼𝐶𝐿Y
+

5𝐺𝜙,𝑝

2

16
(
[𝑎1, 𝑝 + [𝑎2, 𝑝

) ) (30)

𝑣−1
𝐿,𝑝

(
𝐿𝑝

)
< 𝛼−1

2, 𝑝
(
𝛼1, 𝑝 (𝑟)

)
(31)

are satisfied for each individual subsystem, where 𝐿𝑝 is a positive constant that depends on the NN bounding constants
in Assumption 1. Therefore, each control policy �̂�𝑝 converges to a neighborhood of its respective optimal control policy
𝑢∗𝑝 .

Proof. Using the HJB equation in (14), the BE in (24), the gain conditions in (29) and (30), and the weight update laws
in (25)-(27), the time derivative of (28) can be bounded as

¤𝑉𝐿,𝑝 ≤ −𝑣𝐿,𝑝 (∥𝑧∥) ∀ ∥𝑧∥ ≥ 𝑣−1
𝐿,𝑝

(
𝐿𝑝

)
(32)

for all 𝑝 ∈ P and 𝑡 ∈ R>0, where

𝑣𝐿,𝑝 ≜
1
2
𝑞
𝑝
∥𝑦∥2 +

∑︁
𝑝∈P

[
1
12

[𝑐,𝑝𝑐𝑝

�̃�𝑐,𝑝

2 + 1
20

(
[𝑎1, 𝑝 + [𝑎2, 𝑝

) �̃�𝑎,𝑝

2 + 1
4
𝑘 𝐼𝐶𝐿,𝑝Y𝑝

\̃𝑝2
]
. (33)

Using (32), 𝑣𝐿,𝑝 (∥𝑧∥), and (31), [29, Theorem 4.18] can be invoked to conclude that 𝑧 is UUB such that
lim sup𝑡→∞ ∥𝑧∥ ≤ 𝛼−1

1, 𝑝

(
𝛼2, 𝑝

(
𝑣−1
𝐿,𝑝

(
𝐿𝑝

) ))
and the control policy �̂�𝑝 converges to a neighborhood of the op-

timal control policy 𝑢∗𝑝. Since 𝑧 ∈ L∞, it follows that 𝑦, �̃�𝑐,1, ..., �̃�𝑐, | P | , �̃�𝑎,1, ..., �̃�𝑎, | P | , \̃1, ..., \̃ | P | ∈ L∞;
hence, 𝑦, �̂�𝑐,1, . . . , �̂�𝑐, | P | , �̂�𝑎,1, . . . , �̂�𝑎, | P | , \̂1, ..., \̂ | P | ∈ L∞ and 𝑢 ∈ L∞. Additionally, every trajectory 𝑧 that
is initialized in the ball B𝑟 is bounded such that 𝑧 ∈ B𝑟 , ∀𝑡 ∈ R≥0, ∀𝑝 ∈ P. Since 𝑧 ∈ B𝑟 , the states
𝑦, �̃�𝑐,1, ..., �̃�𝑐, | P | , �̃�𝑎,1, ..., �̃�𝑎, | P | , \̃1, ..., \̃ | P | similarly lie in a compact set. □

Remark 2. See [15] for insight into satisfying the gain conditions in (29) and (30). See [15, Algorithm 1] for insight
into selecting the size of the compact set Ω.
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B. Switched UUB Stability Analysis
Theorem 1 proves the stability of the individual subsystems, but does not guarantee stability of the overall switched

system. The Lyapunov function for the switched system may instantaneously increase due to changes in the optimal
value function and real-time updates of the weights. Since the unknown optimal value function𝑉∗

𝑝 (𝑦) in (28) is different
for each subsystem, the aforementioned UUB subsystems contain multiple Lyapunov functions, thus preventing (28)
from being a common Lyapunov function. Due to switching between multiple Lyapunov functions, a dwell-time analysis
is necessary to prove convergence of the overall system [20, Ch. 3]. The proof is available upon request.

VIII. Conclusion
This paper investigates the application of an HRL-based switched ADP control framework applied to a HSV vehicle

to account for time-varying aerothermoelastic effects in the flight envelope. An HRL-based switching law is used to
switch between subsystems by selecting the controller with the least approximated cost-to-go at each time instance.
Each individual subsystem is proven to be UUB via a Lyapunov-based stability analysis, and the stability of the overall
switched system is proven via a dwell-time analysis.
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Figure 1 The hierarchical logic in the control loop contains the HRL agent and the system identifiers. The HRL
agent compares the approximate optimal value function �̂�𝑝 for each control policy and returns the number of
the subsystem with the lowest value function approximation. The system identifiers approximate the unknown
dynamics of each subsystem to be used in the actor and critic weight estimates. The control execution level
contains a family of ADP controllers, each containing a unique cost function, with the goal of minimizing each
subsystem’s respective cost-to-go. The control input with the lowest approximated cost-to-go is selected at the
hierarchical level and applied to the corresponding dynamical system in (10). The history stack data is then
provided to the system identifiers, the new state is provided to the ADP controllers, and the control policy in (20)
is evaluated again.
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