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Abstract: A supervisory control approach using hierarchical reinforcement learning (HRL)
is developed to approximate the solution to optimal regulation problems for a control-affine,
continuous-time nonlinear system with unknown drift dynamics. This result contains two
objectives. The first objective is to approximate the optimal control policy that minimizes the
infinite horizon cost function of each approximate dynamic programming (ADP) sub-controller.
The second objective is to design a switching rule, by comparing the approximated optimal
value functions of the ADP sub-controllers, to ensure that switching between subsystems yields a
lower cost than using one subsystem. An integral concurrent learning-based parameter identifier
approximates the unknown drift dynamics. Uniformly ultimately bounded regulation of the
system states to a neighborhood of the origin, and convergence of the approximate control
policy to a neighborhood of the optimal control policy, are proven using a Lyapunov-based
stability and dwell-time analysis.

1. INTRODUCTION

Supervisory control methods provide alternatives to
traditional continuously-tuned adaptive control laws and
are useful when traditional control methodologies based on
a single continuous controller do not provide satisfactory
performance Battistelli et al. (2012). Switching between
multiple controllers is orchestrated by a supervisory agent
that uses data obtained to dictate the active control
policy at each instance of time Battistelli et al. (2012).
The key difference between supervisory switching control
and standard adaptive algorithms based on continuous
tuning is the use of higher-level logic to control the lower-
level performance Hespanha (2001). Some of the first
supervisory control results were developed in Morse (1996)
and Morse (1997). Since then, the field of supervisory
control has expanded Vu and Liberzon (2010); Chong et al.
(2015); Leonessa et al. (2001).
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1-0169, AFRL grant FA8651-21-F-1027, Office of Naval Research
grant N00014-21-1-2481, and AFRL grant FA8651-21-F-1025. Any
opinions, findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily reflect
the views of the sponsoring agency.

Supervised switching can be used in the context of
optimality by using a hierarchy to optimize a certain
performance index. The infinite horizon value function
is a valuable metric to observe because it provides
the cost-to-go of implementing its respective optimal
controller Anderson and Moore (1971). Supervisory
control approaches have been used to obtain optimality
in Jing et al. (2021) and Pantelic and Lawford (2012).
Many results in this field do not consider nonlinear systems
because it is challenging to solve optimal control problems
for nonlinear systems. However, recent advancements in
Kamalapurkar et al. (2018); Jiang and Jiang (2017);
Lewis and Liu (2013) have created a framework for
approximating optimal control policies online, and these
methods can be integrated into a supervisory control
problem.

For unknown systems, i.e., the structure of the dynamics is
known, but it contains unknown parametric uncertainties,
the optimal value function cannot be determined offline;
hence, there is a need to approximate it online. Due to
the parametric uncertainties, it is difficult to know which
controller yields the lowest cost for the system. The focus
of this work is to develop a hierarchical agent that uses
the value function approximation of several approximately



optimal lower-level controllers as a metric to select which
controller should be active in the feedback loop; i.e, the
hierarchical agent selects the controller associated with the
least approximated cost-to-go at each instance in time.

For nonlinear systems, the Hamilton-Jacobi-Bellman
(HJB) equation can be used to determine the optimal
value function. However, there is not a general closed-
form solution to the HJB for nonlinear systems. Therefore,
approximate dynamic programming (ADP) has been
developed as a method to approximate the solution to
the HJB and has yet to be used in the context of
supervisory control. ADP uses a reinforcement learning-
based actor-critic framework to approximate the optimal
value function (and hence, the optimal controller) in real-
time Lewis and Liu (2013).

ADP uses a critic neural network (NN) to approximate the
optimal value function and an actor NN to approximate
the optimal control policy. The weights of the NN are
adjusted online using the Bellman error (BE) as a
performance metric. To facilitate improved online learning,
the BE can be evaluated at user-defined, off-trajectory
states within a compact set via BE extrapolation. BE
extrapolation can provide simulation of experience by
selecting an appropriate number of off-trajectory points
using the system model. However, if the system model
contains parametric uncertainties, then an estimate of
the system model can be used. An integral concurrent
learning (ICL)-based parameter identifier, as in Deptula
et al. (2020), is used in the feedback loop of the
hierarchical reinforcement learning (HRL) structure with
the supervisory agent to identify the unknown drift
dynamics online.

At each instance in time, the HRL closed-loop system
switches between control policies, resulting in a switched
system. In general, switched systems are challenging to
analyze due to discontinuities and instantaneous growth
of the Lyapunov function(s) Liberzon (2003). Switching
between multiple stable subsystems can result in an
unstable switched system; hence, a switched systems
stability analysis is motivated Branicky (1998). Since
optimal value functions are generally distinct between
subsystems, and are a part of the candidate Lyapunov
function for each subsystem, a common Lyapunov function
cannot be constructed. Hence, a multiple Lyapunov
function-based approach is motivated. One way to ensure
stability using multiple Lyapunov functions is to ensure
that each subsystem remains active for a minimum amount
of time (i.e., a minimum dwell-time analysis Liberzon
(2003, Ch. 3)) or to establish an upper bound on the
number of switches in any given time interval (i.e., an
average dwell-time analysis Liberzon (2003, Ch. 3)). While
a switched ADP technique that uses a minimum dwell-
time analysis is available in Greene et al. (2020), the
analysis therein assumes that the optimal value function
is upper and lower bounded by quadratic functions. In
Greene et al. (2020, Assumption 6), a very restrictive
bound on the optimal value function in the Lyapunov
function is used to facilitate an exponential result;
however, for general nonlinear systems, the assumption
cannot be verified. The subsequent Lyapunov-based
switched system stability analysis relaxes that previous
assumption.

In this paper, an HRL-based framework is developed
that uses a hierarchical supervisory control strategy
to determine the policy corresponding to the lowest
cost-to-go between ADP controllers and optimizes the
corresponding subsystem. The hierarchical framework
identifies which controller should be active at a given
time and generates a switching signal indicating the most
desirable switching pattern based on comparing multiple
value function estimates. A Lyapunov-based dwell-time
analysis is used to establish stability while relaxing the
constraints and assumptions in Greene et al. (2020). The
dwell-time analysis uses a novel Lyapunov-based stability
theorem that is generally applicable to switched systems
where all subsystems can be shown to be uniformly
ultimately bounded (UUB) using multiple Lyapunov-like
functions.

2. PROBLEM FORMULATION

Consider a continuous-time, control-affine nonlinear
dynamical system

ẋ = f (x) + g (x)u (1)

where x ∈ Rn denotes the system state trajectory, u ∈ Rm

denotes the control input, f : Rn → Rn denotes the
drift dynamics, and g : Rn → Rn×m denotes the control
effectiveness.

Assumption 1. The function f is an unknown locally
Lipschitz function and f (0) = 0. Furthermore, ∇f : Rn →
Rn×n is continuous.

Assumption 2. The function g is a known locally Lipschitz
function, bounded such that 0 < ∥g (x)∥ ≤ g ∀x ∈ Rn,
where g ∈ R>0 is the supremum over all x of the maximum
singular values of g (x).

2.1 Control Objective

Let P ⊂ N with P < ∞ represent a family of subsystems,
and let the subscript p define the quantity or function
belonging to the pth subsystem of the overall system. Let
p ∈ P, where P ⊂ N and |P| < ∞ represent a family of
switched subsystems. The cost function

Jp (x, up) =

∫ ∞

t0

Qp (x) + uT
p Rpup dτ, (2)

denotes the cost of running subsystem p the entire time.
The cost function

Jp(t) (x, u) =

∫ ∞

t0

Qp(t) (x) + uT
p(t)Rp(t)up(t) dτ, (3)

denotes the cost of switching between subsystems. The
control objective is to solve the infinite horizon optimal
regulation problem online i.e. find an optimal control
policy u that minimizes the cost functional for the pth

subsystem and to design the switching rule so that the
cost in (3) is smaller than the cost in (2).

In (2), Qp : Rn → R≥0 is a positive definite (PD) cost
function where Qp satisfies qp (∥x∥) ≤ Qp (x) ≤ qp (∥x∥)
for qp, qp : R≥0 → R≥0, and Rp ∈ Rm×m is a user-defined

constant PD symmetric cost matrix.

The infinite horizon value function (i.e. the cost-to-go) for
the pth mode V ∗

p : Rn → R≥0 is defined as



V ∗
p (x) ≜ min

u∈U

∫ ∞

t

Qp (x) + uT
p Rpup dτ, (4)

where U ⊆ R is the action space for up.

Remark 1. While each subsystem has the same set of
dynamics, each has a different state penalty function Qp,
a different cost penalty matrix Rp and, thereby, a different
respective controller. There are a user-defined number of
cost functions that yield different desirable behavior, but
since (1) is unknown a priori, supervised switching between
the cost functions with different parameters will result in
different expressions for (4), which motivates selecting the
V ∗
p with the lowest value for the specific unknown system.

Assumption 3. The optimal value function V ∗
p is

continuously differentiable for all p ∈ P Kamalapurkar
et al. (2016).

The optimal value function is the solution to the
corresponding HJB equation

0 = ∇V ∗
p (x)

(
f (x) + g (x)u∗

p

)
+Qp (x) + u∗T

p Rpu
∗
p, (5)

where u∗
p : Rn → Rm is the optimal control policy for

the pth mode. The HJB equation in (5) has the boundary
condition V ∗

p (0) = 0. The optimal control policy u∗
p is

defined as

u∗
p (x) = −1

2
R−1

p g (x)
T (∇V ∗

p (x)
)T

. (6)

Remark 2. Under Assumptions 1-3, the optimal value
function is the unique PD solution of the HJB equation
for each system. The approximation of the PD solution
to the HJB is guaranteed by the appropriate selection of
Lyapunov-based update laws and initial weight estimates
Deptula et al. (2020).

2.2 Value Function Approximation

The optimal control policy in (6) requires knowledge of
the optimal value function, which is generally unknown
for nonlinear systems. Let Ω ⊂ Rn be a compact set. 1

Using the Universal Function Approximation Theorem,
the optimal value function can be approximated with an
NN in Ω as

V ∗
p (x) = WT

p ϕp (x) + ϵp (x) ∀x ∈ Ω, (7)

where Wp ∈ RL is a vector of unknown weights, ϕp :
Rn → RL is a user-defined vector of basis functions, 2

and ϵp : Rn → R is the bounded function reconstruction
error. Substituting (7) into (6), the NN representation of
the pth mode optimal control policy in (6) is

u∗
p (x) = −1

2
R−1

p g (x) (∇ϕp (x)Wp +∇ϵp (x))
T
. (8)

Assumption 4. There exists a set of known positive
constants W,ϕ,∇ϕ, ϵ,∇ϵ ∈ R>0 such that supp∈P ∥Wp∥ ≤
W, supx∈Ω, p∈P ∥ϕp (x)∥ ≤ ϕ, supx∈Ω, p∈P ∥∇ϕp (x)∥ ≤
∇ϕ, supx∈Ω, p∈P ∥ϵp (x)∥ ≤ ϵ, and supx∈Ω, p∈P ∥∇ϵp (x)∥ ≤
∇ϵ for all p Vrabie et al. (2013, Assumptions 9.1.c-e).

1 The subsequent stability analysis guarantees that if x is initialized
in an appropriately-sized subset of Ω, then it will stay in Ω.
2 For brevity, each subsystem uses the same number of elements in
the basis function vector L.

The critic weight estimate vector Ŵc,p ∈ RL is used to
approximate (7), resulting in the optimal value function

estimate V̂p : Rn × RL → R, defined as

V̂p

(
x, Ŵc,p

)
≜ ŴT

c,pϕp (x) . (9)

The actor weight estimate vector Ŵa,p ∈ RL is used to
approximate (8), resulting in the optimal control policy
estimate ûp : Rn × RL → Rm, defined as

ûp

(
x, Ŵa,p

)
≜ −1

2
R−1

p g (x)
T
(
∇ϕp (x)

T
Ŵa,p

)
. (10)

3. HIERARCHICAL AGENT

3.1 Switching Rule

The hierarchical agent is tasked with identifying which
policy minimizes the infinite horizon cost functional based
on a switching policy. The supervisory algorithm

σ ≜ argminp∈P

{
V̂p

(
x, Ŵc,p

)}
(11)

returns the number of the subsystem associated with
the smallest approximated cost-to-go, computed using
estimates of the optimal value function corresponding to
each subsystem. The switched signal in (11) will switch
in real-time; therefore, to guarantee closed-loop stability
of the overall system, a subsequently defined dwell-time
condition must be satisfied. The optimal value function
approximations are used to quantitatively compare all
individual ADP controllers p ∈ P in real-time. The
switching rule in (11) evaluates all of the approximated
costs-to-go and selects the applied control input u in (1)
as

u = ûσ

(
x, Ŵa,p

)
, (12)

that corresponds to the smallest optimal value function
approximation at a given time. The goal is to determine
which control policy provides the least approximate cost-
to-go for the system.

3.2 System Identification

In addition to approximating the optimal value function
for each subsystem, there is also uncertainty in the
drift dynamics, and those uncertain parameters are
approximated using system identification. To facilitate the
online system identification, assume the drift dynamics f
are linearly parameterizable such that f (x) = Y (x) θ,
where Y : Rn → Rn×s is the known regression matrix and
θ ∈ Rs is a vector of constant unknown parameters. Let

θ̂ ∈ Rs be an approximation of the unknown parameter
vector θ, which is updated according to the subsequently
defined parameter update policy. The uncertain drift

dynamics f are approximated by f̂ : Rn × Rs → Rn

which is defined as f̂
(
x, θ̂
)

≜ Y (x) θ̂. 3 The parameter

estimate θ̂ is updated with the ICL-based update policy
Parikh et al. (2019)

3 All subsystem controllers have the same dynamical system. The
system parameters are being identified strictly in one drift dynamics
model.



˙̂
θ (t) ≜ kICLΓθ

M∑
j=1

YT
j

(
x (tj)− x (tj −∆t)− Uj − Yj θ̂

)
,

(13)

where kICL ∈ R>0 and Γθ ∈ Rs×s are user-
selected PD constants, Yj ≜ Y (tj) , Uj ≜
U (tj), Y (t) ≜

∫ t

max[t−∆t,0]
Y (x (τ)) dτ , and U (t) ≜∫ t

max[t−∆t,0]
g (x (τ))u (τ) dτ . The parameter update law

in (13) can be rewritten in an analytical form as

˙̂
θ = kICLΓθ

M∑
j=1

YT
j Yj θ̃, (14)

where θ̃ ≜ θ − θ̂ is the parametric error.

Assumption 5. A history stack of recorded state and

control inputs {x (tj) , u (tj)}Mj=1 is available that satisfies

Y ≜ λmin

{∑M
j=1 YT

jYj

}
> 0 and ensures the finite

excitation condition in Parikh et al. (2019) is satisfied a
priori. 4

System Identifier

HRL Agent
σ

ADP
Controller 1

ADP
Controller 

…
ADP

Controller 2

…
…

Applied Controller

Low-Level Controllers

High-Level Logic

System Dynamics

Dynamics

State-
Action 
Tuple

History Stack

Fig. 1. The high-level logic in the hierarchical supervisory
control architecture contains the HRL agent and the
system identifier. The HRL agent evaluates the family
of V̂ps and outputs the number of the subsystem
with the lowest value function approximation. The
system identifier approximates the uncertain model
parameters that are used to update the actor and
critic weight estimates. Each ADP controller contains
a different cost function, and the objective is to
minimize each subsystem’s respective cost-to-go. The
selected controller in (12) is applied to the dynamical
system in (1). Then history stack data is provided
to the high-level system identifier, the new state is
provided to the low-level ADP controllers, and the
policy in (12) is evaluated again.

4 The a priori availability of the history stack is used for ease of
exposition but is not necessary Kamalapurkar et al. (2016).

4. BELLMAN ERROR

The BE indicates how close the actor and critic weight
estimates are to their ideal weight values. By substituting

the approximate optimal value function V̂p

(
x, Ŵc,p

)
and

approximate optimal control policy ûp

(
x, Ŵa,p

)
into (5),

the BE δ̂p : Rn × RL × RL × Rs → R is defined as

δ̂p

(
x, Ŵc,p, Ŵa,p, θ̂

)
≜ Qp (x)

+ ûp

(
x, Ŵa,p

)T
Rpûp

(
x, Ŵa,p

)
+∇V̂p

(
x, Ŵc,p

)(
Y (x) θ̂ + g (x) ûp

(
x, Ŵa,p

))
. (15)

While (15) is used for implementation, to facilitate the
subsequent stability analysis, the BE can be expressed in
terms of the weight approximation errors W̃c,p ≜ Wp −
Ŵc,p and W̃a,p ≜ Wp − Ŵa,p. Subtracting (5) from (15)
and substituting (7)-(10), the analytical form of the BE in
(15) can be expressed as

δ̂p

(
x, Ŵc,p, Ŵa,p, θ̂

)
= −ωT

p W̃c,p −WT
p ∇ϕpY (x) θ̃

+
1

4
W̃T

a,pGϕ,p (x) W̃a,p +Op (x) ,

(16)

where ωp : Rn × RL × Rs → Rn is ωp

(
x, Ŵa,p, θ̂

)
≜

∇ϕp (x)
(
f̂
(
x, θ̂
)
+ g (x) ûp

(
x, Ŵa,p

))
and Op (x) ≜

1
2∇ϵp (x)GR,p∇ϕp (x)

T
Wp + 1

4Gϵ,p − ∇ϵp (x) f (x). The

functions GR,p, Gϕ,p, and Gϵ,p are defined as GR,p (x) ≜
gp (x)R

−1
p gp (x)

T , Gϕ,p (x) ≜ ∇ϕp (x)GR,p (x)∇ϕp (x)
T ,

and Gϵ,p (x) ≜ ∇ϵp (x)GR,p (x)∇ϵp (x)
T
respectively.

Bellman Error Extrapolation

As described in Kamalapurkar et al. (2016), the BE in
(15) can be calculated at any user-defined point in the
state space using a user-selected state xi, the critic weight
estimate Ŵc,p, and the actor weight estimate Ŵa,p. To
estimate the value function over the compact set, the
estimate of the system model from the aforementioned
online system identifier is used to evaluate the BE
along a set of off-trajectory points via BE extrapolation.
BE extrapolation yields simultaneous exploration and
exploitation, and can provide simulation of experience,
enabling faster policy learning.

To facilitate sufficient exploration, the BE is
extrapolated from the user-defined off-trajectory points

{xi : xi ∈ Ω}Np

i=1, where Np ∈ N denotes a user-specified
number of total extrapolation trajectories in the compact
set Ω. Each subsystem p has its own distinct set of gain
values, data, and update laws.

Assumption 6. On the compact set, Ω, a finite set of off-

trajectory points {xi : xi ∈ Ω}Np

i=1 are user-selected such

that 0 < cp ≜ inf
t∈R≥0

λmin

{
1
Np

∑Np

i=1

ωi,pω
T
i,p

ρ2
i,p

}
for all

p ∈ P, where ρi,p = 1 + νpω
T
i,pΓpωi,p, νp ∈ R>0 is a user-

defined gain, Γp : RL×L is a time-varying least-squares



gain matrix, and cp is a constant scalar lower bound
of the value of each input-output data pair’s minimum
eigenvalues for the pth subsystem Kamalapurkar et al.
(2016).

5. UPDATE LAWS FOR ACTOR AND CRITIC
WEIGHTS

The actor and critic weights for each subsystem are
updated simultaneously via BE error extrapolation. In
the subsequent weight update laws, ηc,p, ηa1,p, ηa2,p, λp ∈
R>0 are positive constant adaptation gains, and Γp, Γp ∈
R>0 denote lower and upper bounds for Γp. The critic

update law for the pth mode
˙̂
Wc,p ∈ RL is defined as

˙̂
Wc,p ≜ −ηc,pΓ

1

Np

Np∑
i=1

ωi,p

ρi,p
δi,p. (17)

The actor update law for the pth mode
˙̂
Wa,p ∈ RL is

defined as
˙̂
Wa,p ≜ −ηa1,p

(
Ŵa,p − Ŵc,p

)
− ηa2,pŴa,p

+ ηc,p
1

Np

Np∑
i=1

GT
ϕi,pŴa,pω

T
i,p

4ρi,p
Ŵc,p. (18)

The least-squares gain matrix update law of the pth mode
Γ̇p ∈ RL×L is defined as

Γ̇p ≜

λpΓp −
ηc,pΓp

Np

Np∑
i=1

ωi,pω
T
i,pΓp

ρ2i,p

 · 1{Γp≤∥Γp∥≤Γp},

(19)

where 1{·} denotes the indicator function. 5 , 6

The update laws in (17)-(19) are always active for
each subsystem regardless of a subsystem’s activity or
inactivity. Hence, the update laws will update each
subsystem p’s weight estimates and least-squares gain
matrix even if subsystem p is not active. Since the update
laws are always learning for each subsystem, convergence
of the states of each subsystem can be proven concurrently.

6. STABILITY ANALYSIS

6.1 Subsystem Stability Analysis

To facilitate the stability analysis, a concatenated
state z ∈ Rn+2L|P|+s is defined as z ≜[
xT , W̃T

c,1, . . . , W̃
T
c,p, W̃

T
a,1, . . . , W̃

T
a,p, θ̃

T
]T

, and the

candidate Lyapunov function VL,p : Rn+2L|P|+s → R≥0 is
defined as

VL,p (z) ≜ V ∗
p (x) +

1

2

∑
p∈P

W̃T
c,pΓ

−1
p W̃c,p

+
1

2

∑
p∈P

W̃T
a,pW̃a,p +

|P|
2

θ̃TΓ−1
θ θ̃. (20)

5 The on-trajectory points can be included in the weight update
laws, such as in Kamalapurkar et al. (2016), but to focus the
Lyapunov-based analysis, only off-trajectory BE extrapolation is
performed.
6 Using (19) ensures that each Γp ≤ ∥Γp∥ ≤ Γp for all t ∈ R>0.

According to Kamalapurkar et al. (2018, Lemma 4.3),
(20) can generally be bounded as α1,p (∥z∥) ≤ VL,p (z) ≤
α2,p (∥z∥) using class K functions α1,p, α2,p : R≥0 → R≥0.
The normalized regressors

ωp

ρp
and

ωi,p

ρi,p
are bounded as

supt∈R≥0

∥∥∥ωp

ρp

∥∥∥ ≤ 1
2
√

νpΓp

and supt∈R≥0

∥∥∥ωi,p

ρi,p

∥∥∥ ≤ 1
2
√

νpΓp

for all x ∈ Ω and xi ∈ Ω, respectively. The function GR,p

is bounded as supx∈Ω ∥GR,p∥ ≤ G
2

pλmax

{
R−1

p

}
, Gϕ,p is

bounded as supx∈Ω ∥Gϕ,p∥ ≤
(
∇ϕGp

)2
λmax

{
R−1

p

}
, and

Y (x) is bounded as supx∈Ω ∥Y (x)∥ ≤ Y . To facilitate the
subsequent analysis, define r ∈ R>0 to be the radius of a
compact ball Br ∈ Rn+2L|P|+s centered at the origin.

Theorem 1. Let x (·) denote the trajectory of the pth

subsystem for a fixed p. Provided the control policy
in (10) is used, the weight update laws in (17)-(19)
are implemented, Assumptions (1)-(6) hold, and the
conditions

ηa1,p + ηa2,p ≥ 5

4
√
νpΓp

ηc2,pWGϕ,p (21)

cp ≥ 3
ηa1,p
ηc2,p

+
3η2c,pW

2

4ηc,pνpΓp

(
∇ϕ

2
Y

2

kICLY
+

5Gϕ,p
2

16 (ηa1,p + ηa2,p)

)
(22)

v−1
L,p (Lp) < α−1

2,p (α1,p (r)) (23)

are satisfied for each individual subsystem, where Lp is
a positive constant that depends on the NN bounding
constants in Assumption 4, then the state x, every critic
weight estimate error W̃c,p ∀p ∈ P, every actor weight

estimate error W̃a,p ∀p ∈ P, and the parameter estimation

error θ̃ are UUB. Hence, each control policy ûp converges
to a neighborhood of its respective optimal control policy
u∗
p.

The proof is available upon request.

Remark 3. See Kamalapurkar et al. (2016) for insight
into satisfying the gain conditions in (21) and (22). See
Kamalapurkar et al. (2016, Algorithm 1) for insight into
selecting the size of the compact set Ω.

6.2 Switched UUB Stability Analysis

Since the unknown optimal value function V ∗
p (x) in (20)

is different for each subsystem, (20) is not a common
Lyapunov function. The previous theorem proves stability
of the individual subsystems, but not stability of the
overall switched system. The Lyapunov function for the
switched system may instantaneously increase due to
the increase in the optimal value function and the real-
time updates of the weights. The HRL strategy includes
switching between individually UUB subsystems with
multiple Lyapunov functions; hence, a dwell-time analysis
is necessary to prove the convergence of the overall system
Liberzon (2003, Ch. 3).

Theorem 2. Let ẋ = fp (x, t) be a finite family of UUB
subsystems and Vp : Rn × R≥0 → R be a family of
corresponding Lyapunov-like functions that satisfy

α1,p (∥x∥) ≤ Vp (x, t) ≤ α2,p (∥x∥) , (24)



∂Vp

∂t
+

∂Vp

∂x
(f (x, t) + g (x, t)up (x, t)) ≤ −Wp (x) , (25)

and

max
p∈P

α2,p (µp) < min
p∈P

α1,p (r) (26)

for all x ∈ Λp, p ∈ P, and t ≥ 0, where Λp ≜
{x | 0 ≤ µp ≤ ∥x∥ ≤ r}, α1,p, α2,p : [0, r] → R≥0 are
class K functions, r is the radius of a compact ball
Br, µp is the radius of a compact ball Bµp

, and Wp :

Rn → R≥0 is a continuous PD function. Let c1 (t) ≜
α2,σ(ti)

(∥x(ti)∥)−α
1,σ(t−i )

(∥x(ti)∥)

κ . If the conditions in (24)-
(26) and the minimum dwell-time condition

τ (ti) ≥
{
c1 (t) ∀Vσ(ti) (x (ti) , ti) > α

> 0 ∀Vσ(ti) (x (ti) , ti) ≤ α
(27)

are satisfied for all p ∈ P and for every switching
instant ti ∈ tσ, where Vj represents the Lyapunov
function of the jth subsystem, κ is a subsequently
defined positive constant, and ti ∈ tσ represents a
general switching instance, then the trajectories of the
switched system ẋ = f (x, t) + g (x, t)up (x, t) initialized

in the set
{
x | ∥x∥ ≤ minp,q∈P α−1

2,p (α1,q (r))
}

converge

to a bounded region such that limt→∞ ∥x (t)∥ ≤
maxp,q∈P α−1

1,p (α2,q (µq)).

The proof is available upon request.

6.3 Application to Switched ADP

As proved in Theorem 1, each individual subsystem is
UUB; i.e., each subsystem satisfies (24) and (25). In
addition, to apply Theorem 2, (26) and (27) must also
be satisfied. Hence, following the switching policy in
(11) and given that the dwell-time condition in (27) is
satisfied, then Theorem 2 can be applied to show that
lim supt→∞ ∥z (t)∥ ≤ maxp,q∈P α−1

1,p (α2,q (µq)). Moreover,

since z ∈ L∞, it follows that x, W̃c,1, . . . , W̃c,|P|, W̃a,1,

. . . , W̃a,|P|, θ̃ ∈ L∞; hence, x, Ŵc,1, . . . , Ŵc,|P|, Ŵa,1, . . . ,

Ŵa,|P|, θ̂ ∈ L∞ and u ∈ L∞.

7. CONCLUSION

An HRL-based supervisory control strategy is developed
to approximate solutions to multiple infinite horizon
regulation problems for nonlinear continuous-time control-
affine systems online. A supervisory switching policy
is used to switch between the control policy with the
least approximated cost-to-go in real-time. Stability of
each subsystem is proven via a Lyapunov-based stability
analysis. The overall switched system is proven to be
stable in the sense that the system states converge to
a neighborhood of the origin and the applied policy
converges to a neighborhood of the selected optimal policy.
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