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Abstract: In recent years, data-driven methods for the analysis of nonlinear systems have
flourished. Derived from machine learning techniques, these methods allow one to analyze,
predict, and control the behavior of a nonlinear system without prior model knowledge. The
only requirement are data taken from the nonlinear system of interest; moreover, data-driven
models are particularly useful for complex nonlinear systems and have seen success in many
branches of engineering, from modal decomposition of fluid flows to designing stabilizing
controllers for nonlinear systems. In particular, this thesis will focus on the extension of two
of these data-driven methods: dynamic mode decomposition (DMD) and kernelized principal
component analysis (KPCA).

DMD, which relies on representing a nonlinear system as an infinite-dimensional linear oper-
ator, has seen success in predicting the behavior of both continuous-time and discrete-time
nonlinear systems without prior model knowledge; however, the extension of DMD methods
to discrete-time, controlled nonlinear systems is nontrivial. In this thesis, we develop a novel
operator representation of discrete-time, control-affine nonlinear dynamical systems. The
representation is learned using recorded snapshots of the system state resulting from arbi-
trary, potentially open-loop control inputs. We thereby extend the predictive capabilities of
dynamic mode decomposition to discrete-time nonlinear systems that are affine in control.

KPCA is typically a data-driven dimensionality reduction technique that allows one to study
a nonlinear system via a reduced-order model in a higher-dimensional space; however, KPCA
can be used for fault detection in nonlinear systems without prior model knowledge. Reliable
operation of automatic systems is heavily dependent on the ability to detect faults in the
underlying dynamics. While traditional model-based methods have been widely used for
fault detection, data-driven approaches have garnered increasing attention due to their ease
of deployment and minimal need for expert knowledge. In the latter portion of this thesis,
we develop a novel fault detection method using KPCA with the occupation kernel as the
feature map. Occupation kernels result in feature maps that are tailored to the measured
data, have inherent noise-robustness due to the use of integration, and can utilize irregularly
sampled system trajectories of variable lengths for PCA.
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CHAPTER I

INTRODUCTION

1.1 Motivation

In recent years, machine learning has flourished in applications to dynamical systems: appli-

cations ranging from dynamic mode decomposition (DMD) (e.g. [6, 12, 27, 30]), DMD-based

feedback law design [35,36], and fault detection [7,19]. In this thesis, we will derive two new

applications: a DMD method for discrete-time control-affine dynamical systems and a fault

detection method which extends kernelized principal component analysis (KPCA) by using

a feature map that encodes entire trajectories into a Hilbert space.

In the second chapter of this thesis, a novel representation of discrete-time control-affine

nonlinear systems as infinite-dimensional linear operators over reproducing kernel Hilbert

spaces (RKHSs) is introduced. This effort is inspired by the method first developed in [30],

which introduced similar operator representations for continuous-time dynamical systems.

The idea of representing a nonlinear system as an infinite-dimensional linear operator in

Hilbert space was first put forth by B.O. Koopman in [10] and the resulting composition

operator is aptly known as the Koopman operator. This higher-dimensional space is typically

referred to as the feature space or lifted space and the Koopman operator acts as a composition

operator on the lifted space. In recent years, dynamic mode decomposition (DMD) and other

data-driven methods have seen a resurgence due to the abundance of data and increased the

availability of computational power [13]. An example of the application of DMD can be seen

in the fluid mechanics community, where modal decomposition of fluid flows is accomplished

[32], [16]. In a more general sense, DMD is intimately connected to the Koopman operator
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as DMD is one method used to approximate the Koopman operator associated with the

dynamical system [16], [37].

The Koopman approach is amenable to spectral methods in linear operator theory in cer-

tain cases, e.g. see [5], but spectral convergence cannot be guaranteed in general; therefore,

Koopman DMD methods are pseudo-spectral numerical methods. Despite this theoreti-

cal limitation, Koopman DMD and Liouville DMD methods in both continuous and discrete

time have been shown to exhibit remarkable predictive accuracy over finite-time horizons [13].

Moreover, Koopman DMD allows one to study dynamical systems without direct knowledge

of the dynamics, as Koopman DMD is strictly data driven and requires no knowledge of

the dynamical system [13]. For measurements corrupted by noise or in the case of stochas-

tic systems, robust approximations of the Koopman operator can be formulated [34]. The

ultimate goal of DMD is to develop a data-driven model via an eigendecomposition of the

Koopman operator, under the assumption that the full-state observable (the identity func-

tion) is in the span of the eigenfunctions [5]. The addition of control adds greater difficulty

to data-driven methods like DMD, as the Koopman operator associated with the dynam-

ical system depends upon the control input. Furthermore, in discrete time, the Koopman

operator is generally not linear in its symbol, which makes separating the influence of the

controller from the drift dynamics challenging. Despite the difficulty, there have been several

successful methods for generalizing Koopman DMD for dynamical systems with control in

results such as [6], [8, 12, 27, 28, 40].

In the third chapter of this thesis, we extend KPCA to make use of trajectories generated

by a dynamical system as a fundamental unit of data. Principal component analysis (PCA)

diagonalizes the covariance matrix associated with the fault-free training data (i.e. training

data taken from the normal operating regime of a dynamical system). The idea of using the

covariance matrix in PCA is that we can obtain orthogonal, uncorrelated variables (i.e. the

eigenvectors of the covariance matrix) that allow us to describe the directions of maximum

variance in our dataset. The dominant eigenvectors of the covariance matrix can be used
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to effectively reduce the dimension of a dataset because typically the number of principal

components required to describe the variance in the dataset is far less than the dimension

of the dataset. A key limitation of PCA is that it fails to capture nonlinear relationships

present in the data. Kernelized PCA remedies this limitation by lifting the data to a higher-

dimensional feature space via a (nonlinear) feature map [33]. PCA is then applied in the

feature space, resulting in nonlinear principal components [33]. Fault detection using KPCA

/ PCA relies on computation of a metric (T 2, SPE, etc.) that measures how well new data

can be reconstructed using the principal components [3, 7, 15, 18, 19, 21, 38, 39].

The feature maps used for KPCA are typically the canonical feature maps associated

with generic kernel functions such as the Gaussian radial basis function [7]. As such, the

feature maps are largely independent of the system or the measured data. In the third chap-

ter, a new PCA framework is developed where the feature maps are also derived from the

training data. The idea, motivated by results such as [31], is to use trajectories generated

by a dynamical system as a fundamental unit of data by embedding them in a reproducing

kernel Hilbert space (RKHS) using the so-called occupation kernels. The resulting PCA

method, called occupation kernel PCA (OKPCA), is expected to perform better owing to

the use of feature maps that are adapted to the data. In addition the computations required

to implement OKPCA rely exclusively on integrals of kernel functions evaluated along sys-

tem trajectories. As a result, OKPCA is endowed with intrinsic robustness to zero-mean

noise and can be implemented on data sets containing variable length trajectories that are

irregularly sampled [31]. Fault detection then proceeds by reconstructing a given trajectory

as a linear combination of eigenfunctions of a suitably defined kernelized covariance operator

and computing a suitable analog of the reconstruction error used for KPCA by Hoffman [7].

1.2 Literature Review

Current state-of-the-art dynamic mode decomposition techniques for discrete-time dynami-

cal systems with control can be summarized in the following papers. The method presented
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in [27] yields a DMD routine to represent a general nonlinear system with control as a

control-affine linear system. This idea is generalized in [12] with extended DMD (eDMD),

providing greater predictive power. Furthermore, for a general discrete-time, nonlinear dy-

namical system with control, the authors in [12] utilize the shift operator to describe the time

evolution of the control signal. Also, in discrete-time, separation of the control input from

the state can be achieved via first order approximations [35]. For continuous-time dynamical

systems, the Koopman canonical transform (see [36]) is used in [6] to leverage a formulation

of the dynamical system in the lifted space as a control-affine, bilinear system, called the

Koopman bilinear form (KBF). The KBF is then amenable to the design of feedback laws

using techniques from optimal control.

The aforementioned methods demonstrate the ability to predict the response of both

discrete-time [12] and continuous-time [6] dynamical systems to open-loop inputs. The

algorithm developed in this thesis offers an advantage over the methods from [6, 8, 12, 27,

28, 35, 40], since in addition to a predictive model, it also estimates eigenfunctions, and

consequently, a Koopman invariant subspace of the closed-loop system. A key contribution

here is the extension of the method presented in [30] to the discrete-time case. The operator

representation presented in [30] relies on linearity of differential and multiplication operators

to separate the influence of the controlled and the uncontrolled part of the system dynamics.

In discrete time, the differential operators need to be replaced by composition operators, and

composition operators are typically not linear in their symbol. Herein lies the difficulty of

extending continuous-time DMD results to discrete-time DMD results, as separation of the

effect of the control input from the effect of the drift dynamics is nontrivial.

Fault detection methods for dynamical systems rely on the identification of anomalous be-

havior using measured data. Applications of fault detection range from healthcare [39]; man-

ufacturing [29,38]; monitoring sensor behavior [18,21]; monitoring chemical processes [3,15];

identifying the onset of nonlinear behavior in dynamical systems [19]; and identifying traffic

anomalies [26]. A multitude of approaches to fault detection have been studied over the past
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few decades, such as data-driven, set-based, observer-based, and time-series analysis meth-

ods [17, 20, 22, 29]. Set-based methods accomplish fault detection by computing a forward

reachable set and checking if the system state at the next time step is inside that set [17].

State estimation techniques such as the extended Kalman filter (EKF) and the Leunberger

observer have been successfully implemented for fault detection in industrial processes [4,22].

Set-based and observer-based methods are model based, whereas this thesis focuses on data-

driven fault detection [29].

Data-driven fault detection methods, such as principal component analysis (PCA), ker-

nelized principal component analysis (KPCA), and the Kahrunen-Loeve transform (KLT) [9],

typically employ multivariate statistical procedures combined with an index, such as a recon-

struction error, Hotteling’s T
2, a squared prediction error (SPE), or a combination thereof,

to detect anomalies [7, 17, 29]. The KLT utilizes the expansion of a random variable as a

linear combination of eigenfunctions of the covariance operator for fault detection [20]. In

finite dimensions and in the context of data driven methods or discrete sampling, the KLT

is simply PCA.

1.3 Contributions

The contributions of this thesis are as follows:

1. The development of a pseudo-spectral method (dubbed DCLDMD) for the analysis

of discrete-time dynamical systems which are affine in control. Given trajectory data

that encodes the dynamical system’s response to a series of (potentially arbitrary)

open-loop control inputs, the DCLDMD algorithm allows one to accurately estimate

the response of a dynamical system to a known feedback controller.

2. It is demonstrated that, heuristically, DCLDMD can estimate invariant subspaces of

a discrete-time, control-affine dynamical system under the effect of a known feedback

law - to the best of the author’s knowledge, no current state-of-the-art techniques
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in the literature can do this without prior knowledge of invariant subspaces of the

uncontrolled dynamical system.

3. Furthermore, the predictive capabilities of DCLDMD outperform current techniques

in the literature for discrete-time, control-affine dynamical systems as demonstrated in

the experiment section of Chapter 2. This is due to the fact that DCLDMD develops a

data-driven model in terms of eigenfunctions of the DCLDMD operator - current DMD

methods for discrete-time dynamical systems do not perform a spectral decomposition

of the composition operator associated to the dynamical system, and, as such, cannot

develop a nonlinear data-driven model.

4. A fault detection technique is developed that provides a novel extension of the kernel-

ized PCA method to allow for the use of trajectories as a fundamental unit of data.

The resulting method - known as occupation kernel PCA - has greater flexibility with

training data sets, while still maintaining the fault detection properties of KPCA.
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CHAPTER II

KERNEL METHODS FOR SYSTEM IDENTIFICATION IN NONLINEAR

SYSTEMS

In this chapter, we take an operator-theoretic approach to DMD with a novel operator def-

inition that accounts for the effect of control and the discrete-time nature of the problem.

The algorithm is referred to as discrete control Liouville DMD or DCLDMD for brevity. To

accomplish DCLDMD, the discrete, nonlinear dynamical system is represented as a compo-

sition of two operators acting on a Hilbert space of functions. The first operator mimics

the effects of a composition operator, which maps from a reproducing kernel Hilbert space

(RKHS) to a vector-valued RKHS (vvRKHS). In order to account for the effect of control,

we make use of a multiplication operator which maps functions in the vvRKHS back into

the RKHS. In doing so, we obtain an approximate representation of the dynamical system

as a composition of the aforementioned operators.

2.1 Background

In this section, we provide a brief overview of RKHSs and vvRKHSs and their role in

DCLDMD.

Definition 2.1.1 An RKHS H̃ over a set X ⇢ Rn is a Hilbert space of functions f : X ! C

such that for all x 2 X the evaluation functional Exf := f(x) is bounded. By the Riesz

representation theorem, there exists a function K̃x 2 H̃ such that f(x) = hf, K̃xiH̃ for all

f 2 H̃.

The snapshots of a dynamical system are embedded into an RKHS via a kernel map

x 7! K̃(·, x) := K̃x. Moreover, the span of the set {K̃x : x 2 X} is dense in H̃.
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Proposition 2.1.1 If A := {K̃x : x 2 X}, then span A = H̃.

Proof. To show that the span of the set {K̃x : x 2 X} is dense in H̃ amounts to showing that

(A?)? = H̃. Let h 2 A
?, then hh, K̃xi = h(x) = 0. Hence h ⌘ 0 on X. Thus A

? = {0}.

In order to account for the effect of control, we make use of a vvRKHS.

Definition 2.1.2 Let Y be a Hilbert space, and let H be a Hilbert space of functions from a

set X to Y. The Hilbert space H is a vvRKHS if for every ū 2 Y and x 2 X, the functional

f 7! hf(x), ūiY is bounded.

To each x 2 X and ū 2 Y , we can associate a linear operator over a vvRKHS given by

(x, ū) 7! Kx,ū, following [30]. The function Kx,ū is known as the kernel operator and the

span of these functions constitutes a dense set in the respective vvRKHS [30, Proposition 1].

Given a function f 2 H, the reproducing property of Kx,ū implies hf,Kx,ūiH = hf(x), ūiY .

For more discussion on vvRKHSs see [2].

2.2 Problem Statement

Consider a control-affine, discrete-time dynamical system of the form

xk+1 = F (xk) +G(xk)uk, (2.2.1)

where x 2 Rn is the state, u 2 Rm is the control input, F : Rn
! Rn and G : Rn

! Rn⇥m

are functions corresponding to the drift dynamics and the control effectiveness, respectively.

We refer to the individual functions which comprise the columns of G by Gj : Rn
! Rn, for

1  j  m. Given a feedback law µ : Rn
! Rm and a set of data points {(xk, xk+1, uk)}nk=1,

where uk are arbitrary (potentially open-loop) control inputs, the goal is to predict the

response of the system in (2.2.1) to the feedback law µ.

For our purposes, the set X is selected to be a compact subset of Rn, the set Y is selected

to be C1⇥(m+1), H̃ denotes an RKHS of continuous functions from X to C, and H denotes

a vvRKHS of continuous functions from X to C1⇥(m+1).
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2.3 Operator representation of controlled discrete-time systems

A linear operator can be associated with the dynamical system in (2.2.1), as a composition of

two operators: a composition-like discrete Liouville operator and a multiplication operator.

This operator representation is derived in this section.

H

H̃

XC Y

AF,G

AF,G(
Pn

i=1 ãiK̃xi)

Mµ

Mµ[AF,G(
Pn

i=1 ãiK̃xi)]

Figure 1: A schematic diagram of the construction presented in Section 2.3. The RKHSs

are represented by filled circles. The squares at the endpoints of the dashed arrows passing

through the circles indicate the domains and co-domains of the functions contained in the

RKHSs. The thick arrows between the RKHSs indicate operators. Lastly,
P

n

i=1 ãiK̃xi rep-

resents the projection of an observable onto the span↵ ⇢ H̃ (see Algorithm 1 and Section

2.4 for more information).

2.3.1 A Composition-like Kernel Propagation Operator

The technical lemma below and the proposition that follows are needed for the kernel prop-

agation operator to be well-defined.

Lemma 2.3.1 The set ⌦ ⇢ H, defined as ⌦ := {Kx,ū : x 2 X, u 2 Rm
, and ū :=✓

1 u
>

◆
2 Y}, satisfies ⌦? = {0}.

Proof. Let h 2 ⌦?. The reproducing property of Kx,ū implies that for all u 2 Rm and

x 2 X,
⌧
h(x),

✓
1 u

>

◆�

Y
= hh,Kx,ūiH . Since h 2 ⌦? and Kx,ū 2 ⌦, we conclude
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that hh,Kx,ūiH = 0. As a result, for each fixed x 2 X and for all u 2 Rm, we have⌧
h(x),

✓
1 u

>

◆�

Y
= 0. That is,

⌧
< (h(x)) ,

✓
1 u

>

◆�

Y
+ i

⌧
= (h(x)) ,

✓
1 u

>

◆�

Y
= 0,

where < (h(x)) denotes the real part of h(x) and = (h(x)) denotes the imaginary part of h(x),

respectively. Since the only such h(x) 2 Y is the zero vector, we conclude that h = 0.

Proposition 2.3.1 Let Lz 2 H be a function such that for all tuples (x, u, y) satisfying

y = F (x) +G(x)u, we have
⌧
[Lz](x),

✓
1 u

>

◆�

Y
= K̃z(y). (2.3.1)

For all z 2 X, the map K̃z 7! Lz is a well-defined operator.

Proof. For a given z 2 X, suppose there are two functions, L1
z

and L
2
z
, each of which satisfy

(2.3.1) given above. Then, for any tuple (x, y, u) which satisfies y = F (x) +G(x)u,
⌧
[L1

z
](x),

✓
1 u

>

◆�

Y
=

⌧
[L2

z
](x),

✓
1 u

>

◆�

Y
,

and therefore,
⌧
[L1

z
](x)� [L2

z
](x),

✓
1 u

>

◆�

Y
= 0.

Using the reproducing property,

⌦
[L1

z
]� [L2

z
], Kx,ū

↵
H
= 0 (2.3.2)

for all vectors in the set ⌦ := {Kx,ū : x 2 X and ū 2 Y | ū =

✓
1 u

>

◆
, u 2 Rm

}.

As a result, [L1
z
]� [L2

z
] 2 ⌦?, where ? denotes the orthogonal complement of ⌦ ⇢ Y .

Since ⌦? = {0} according to lemma 2.3.1, we conclude that for all z 2 X, [L1
z
] = [L2

z
].

That is, the operator K̃z 7! Lz is well defined on the set {K̃z}z2X .

The operator can be canonically extended to span{K̃z}z2X by insisting that for finite linear

combinations of kernels we have
NX

i=1

ai

⌧
[Lzi ](x),

✓
1 u

>

◆�

Y
=

NX

i=1

aiK̃zi(y). (2.3.3)

Linearity of the operator then implies that it is also well-defined on D := {h + ig 2 H̃ |

h, g 2 span{K̃z}z2X}.
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Definition 2.3.1 Let AF,G : D (AF,G)! H be the linear operator with domain D (AF,G) :=

D that maps, for each z 2 X, the function K̃z to a function [AF,GK̃z] 2 H such that for all

tuples (x, u, y) satisfying y = F (x) +G(x)u, we have
⌧h

AF,GK̃z

i
(x),

✓
1 u

>

◆�

Y
= K̃z(y). (2.3.4)

A few remarks regarding definition 2.3.1 are in order. The kernel propagation operator

AF,G is composition-like in the sense that if a linear kernel K̃z(x) = z
>
x is used, one could

define AF,G explicitly as AF,GK̃z = [K̃z(F (·)), K̃z(G1(·)), · · · , K̃z(Gm(·))]. In that case, due

to linearity of the kernel,
⌧h

AF,GK̃z

i
(x),

✓
1 u

>

◆�

Y
= K̃z(F (x)) +

P
m

j=1 K̃z(Gj(x))uj =

K̃z(y). That is, similar to the Koopman operator for autonomous systems, the operator

AF,G, when composed with the inner product operation in a RKHS with a linear kernel,

propagates the observable K̃z one step forward in time.

In the case of nonlinear kernels, an explicit expression for the operator AF,G cannot be

derived. However, the implicit definition above, which achieves one-step propagation of the

kernels by definition, is still useful for DMD.

Since the set D is dense in H, the kernel propagation operator AF,G is densely defined.

As such, the adjoint A
⇤
F,G

exists and can be defined through its domain.

Definition 2.3.2 The domain of the adjoint A
⇤
F,G

of AF,G is defined as D(A⇤
F,G

) := {f 2

H : h 7! hAF,Gh, fiH is bounded on D(AF,G)}.

Note that for all x 2 X and ū 2 Y , the kernel functions Kx,ū of H are in the domain

of the adjoint A
⇤
F,G

. Indeed, if AF,Gh 2 H, hAF,Gh,Kx,ūi is bounded by definition 2.1.2 and

hence Kx,ū 2 D(A⇤
F,G

).

2.3.2 Multiplication Operators

Let ⌫ : X ! R1⇥(m+1)
Y be a continuous function. The multiplication operator with symbol

⌫ is denoted as M⌫ : D(M⌫) ! H̃. For a function h 2 D(M⌫), we define the action of the

11



multiplication operator on h as

[M⌫h](·) = hh(·), ⌫(·)iY ,

where the domain of the multiplication operator is given as

D(M⌫) := {h 2 H | x 7! hh(x), ⌫(x)iY 2 H̃}.

For completeness, we recall the interaction between multiplication operators and kernel

operators from [30]. The interaction is used to calculate the finite-rank representation of

the composition of the multiplication operator with the kernel propagation operator from

Definition 2.3.1.

Proposition 2.3.2 Suppose that ⌫ : X ! R(1 ⇥ (m + 1) corresponds to a densely defined

multiplication operator M⌫ : D(M⌫) ! H̃ and K̃ : X ⇥ X ! R is the kernel function of

the RKHS H̃. Then, for all x 2 X, K̃x 2 D(M⇤
⌫
), where M

⇤
⌫

is the adjoint of M⌫, and

M
⇤
⌫
K̃x = Kx,⌫(x).

The composition of the kernel propagation operator from Definition 2.3.1 and the multipli-

cation operator can be used to define the discrete control Liouville operator.

2.3.3 The Discrete Control Liouville Operator

Taking the composition of AF,G and M⌫ , for a known feedback law µ : Rn
! Rm, the

evolution of an observable along trajectories of the dynamical system can be described in

terms of an infinite-dimensional linear operator.

Definition 2.3.3 Let ⌫ :=

✓
1 µ

>

◆
2 H. The discrete control Liouville operator corre-

sponding to the closed-loop system

xk+1 = F (xk) +G(xk)µ(xk)

is defined as the composition M⌫AF,G : D(M⌫AF,G)! H̃, where D(M⌫AF,G) = D(AF,G).

12



The discrete control Liouville operator governs the flow of observables in D(M⌫AF,G) ✓ H̃

along trajectories of the discrete-time dynamical system as

[M⌫AF,Gh](xk) =

⌧
[AF,Gh](xk),

✓
1 µ(xk)>

◆�

Y
= h(xk+1).

Furthermore, the composition M⌫AF,G is a linear operator by linearity of the inner product

and by definition 2.3.1.

2.4 Discrete-time control Liouville DMD

In order to represent the infinite-dimensional discrete control Liouville operator as a finite-

dimensional operator, we select bases ↵ =
n
K̃xi

on

i=1
⇢ H̃ and � = {Kxi,ūi}

n

i=1 ⇢ H, where

ūi :=

✓
1 u

>
i

◆
2 Y . DMD is then performed via an eigendecomposition of the finite-

dimensional representation.

Given an observable h 2 H̃, let h̃ := P↵h =
P

n

i=1 ãiK̃xi be the projection of h onto span↵.

One can recover a finite rank proxy of the discrete control Liovuille operator by observing

its action restricted to span↵ ⇢ H̃ and projecting the output M⌫AF,Gh̃ back onto span↵.

That is, recovering the finite-rank proxy amounts to writing P↵M⌫AF,Gh̃ as
P

n

i=1 b̃iK̃xi and

finding a matrix that relates the coefficients {ãi}ni=1 and {b̃i}
n

i=1. For brevity of notation, let

ã :=

✓
ã1 . . . ãn

◆>

and b̃ :=

✓
b̃1 . . . b̃n

◆>

. The coefficients can be computed by solving

the linear system of equations (see [30] and [5])

G̃

0

BBBB@

b̃1

...

b̃n

1

CCCCA
=

0

BBBB@

hM⌫P�AF,Gh̃, K̃x1iH̃

...

hM⌫P�AF,Gh̃, K̃xniH̃

1

CCCCA
, (2.4.1)

where G̃ = {K̃(xi, xj)}ni,j=1 is the kernel gram matrix for ↵. Since the kernel functions in

↵ ⇢ H̃ are in the domain of the adjoint of the multiplication operator (see proposition 2.3.2),

13



for all j, hM⌫P�AF,Gh̃, K̃xjiH̃ = hAF,Gh̃, P�M
⇤
⌫
K̃xjiH . Furthermore, by linearity of AF,G,

hAF,Gh̃, P�M
⇤
⌫
K̃xjiH =

nX

i=1

ãihAF,GK̃xi , P�M
⇤
⌫
K̃xjiH

=
nX

i=1

ãihAF,GK̃xi ,

nX

k=1

wk,jKxk,ūk
iH ,

where {wk,j}
n

k=1 are weights in the projection of M⇤
⌫
K̃xj onto span � and

wj :=

✓
w1,j . . . wn,j

◆>

.

Thus,

hAF,Gh̃, P�M
⇤
⌫
K̃xjiH =

nX

i,k=1

ãiw
⇤
k,j
hAF,GK̃xi , Kxk,ūk

iH

=
nX

i=1

nX

k=1

ãiw
⇤
k,j
h[AF,GK̃xi ](xk),

✓
1 uk

>

◆
iY = ã

>
Ĩw

⇤
j
,

where Ĩ =

✓⌧
[AF,GK̃xi ](xk),

✓
1 uk

>

◆�

Y

◆n

i,k=1

is computed using the fact that

⌧
[AF,GK̃xi ](xk),

✓
1 uk

>

◆�

Y
= K̃xi(xk+1).

Note that w
⇤ denotes the complex conjugate of w.

Since M
⇤
⌫

maps K̃xj to Kxj ,⌫(xj), the coefficients wj in the projection of Kxj ,⌫(xj) onto

span � ⇢ H are solutions of

G

0

BBBB@

w1,j

...

wn,j

1

CCCCA
=

0

BBBB@

hKxj ,⌫(xj), Kx1,ū1iH

...

hKxj ,⌫(xj), Kxn,ūniH

1

CCCCA
, (2.4.2)

where G =
�⌦
Kxi,ūi , Kxj ,ūj

↵
H

�n
i,j=1

and ⌫(xj) =

✓
1 µ(xj)>

◆
. If a diagonal kernel operator

Kxi
:= diag

✓
K̃x1 . . . K̃xm+1

◆
is used, with K̃xj = K̃xi for 1  j  m + 1, then the inner

products in G can be computed as

hKxi,ūi , Kxj ,ūjiH = hKxi,ūi(xj),

✓
1 u

>
j

◆
iY =

✓
1 u

>
i

◆
K̃(xj, xi)

✓
1 u

>
j

◆>

. (2.4.3)
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Letting I
>
j

denote the column vector on the right-hand side of (2.4.2), he jth row of I is

given by

Ij =
�
hKxj ,⌫(xj), Kx1,ū1iH

, . . . , hKxj ,⌫(xj), Kxn,ūniH

�
.

The complete finite-rank representation of the DCLDMD operator is then recovered as

[M⌫P�AF,G]↵↵ = G̃
†
IG

†
Ĩ
>, where the subscript ↵ denotes the restriction of the operator to

the span↵; the superscript ↵ denotes projection of the output onto span↵; and (·)† denotes

the Moore-Penrose pseudoinverse.

2.4.1 Discrete Control Liouville Dynamic Mode Decomposition

DMD can be accomplished via an eigendecomposition of the finite-rank proxy of discrete

control Liovuille operator. Let {vi,�i}
n

i=1 be the eigenvalue-eigenvector pairs of the matrix

[M⌫P�AF,G]↵↵. Following [5], if vj is an eigenvector of the matrix [M⌫P�AF,G]↵↵, then the

function 'j =
P

n

i=1(vj)iK̃xi is an eigenfunction of the operator P↵M⌫P�AF,G|↵. Here the

subscript i in (vj)i denotes the i-th component of the eigenvector vj.

If 'j is an eigenfunction of P↵M⌫P�AF,G|↵ with eigenvalue �j, then

'j(xk+1) = M⌫AF,G'j(xk) = �j'j(xk).

Hence, the eigenfunctions evolve linearly along the flow. The normalized eigenfunctions are

defined as '̂j :=
1q

v
⇤
j
>
G̃vj

P
n

i=1(vj)iK̃xi .

Assuming that the j-th component identity function, gid, defined as gid,j(x) := xj is in

D(M⌫AF,G) ⇢ H̃, for each j = 1, 2, . . . , n, we can describe the evolution of the full-state

observable gid(x) = x as a linear combination of eigenfunctions of M⌫AF,G. This approach

yields a data-driven model of the closed-loop dynamical system as a linear combination

of eigenfunctions of the operator P↵M⌫P�AF,G|↵. That is, for a given x0 2 X we have a

pointwise approximation of the flow of the closed-loop system

xk+1 = F (xk) +G(xk)µ(xk) ⇡
nX

i=1

�
k

i
⇠i'̂i(x0). (2.4.4)
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We refer to the vectors ⇠i as the Liouville Modes, these are the coefficients required to repre-

sent the full-state observable as a linear combination of the eigenfunctions. We can calculate

the modes by solving gid(x) = x =
P

n

i=1 ⇠i'i for ⇠i, which yields ⇠ :=

✓
⇠1 · · · ⇠n

◆
=

X(V >
G̃)†, where V is the matrix of normalized eigenvectors of the finite-rank representation

[M⌫P�AF,G]↵↵ and X :=

✓
x1 . . . xn

◆
is the data matrix. We refer to this method as the

direct reconstruction of the flow.

We can also formulate an indirect reconstruction of the flow by considering the function

Fµ := x 7!

nX

i=1

�i⇠i'̂i(x) (2.4.5)

that approximates the closed loop dynamics under the feedback law µ as xk+1 ⇡ Fµ(xk).

The indirect method generally performs better for approximating the nonlinear dynamics;

we hypothesize that the better performance is due to the fact we are estimating nonlinear

dynamics using nonlinear functions, as the indirect reconstruction yields a nonlinear model

of the flow, as opposed to the direct reconstruction, where the estimated model is linear.

Due to its superior performance, we will use the indirect reconstruction in the numerical

experiments in section 2.6. The DCLDMD algorithm is summarized in Algorithm 1.

2.5 Convergence Properties of DCLDMD

Discrete control Liouville DMD enjoys convergence guarantees on par with current state-of-

the-art Koopman methods. That is, the sequence of finite-rank operators P
n

↵
M⌫P

n

�
AF,GP

n

↵
,

where P
n denotes the projection onto the n-dimensional span of ↵ and �, respectively,

converges to the operator M⌫AF,G in the strong operator topology (SOT). Underlying this

fact is the assumption that as n ! 1, the Gram matrices G̃ and G do not become rank

deficient.

Theorem 2.5.1 If AF,G : H̃ ! H and M⌫ : D(M⌫)! H̃ are bounded, and ↵ := {K̃xn}
1
n=1 ⇢

H̃ and � := {Kxn,ūn}
1
n=1 ⇢ H are two orthonormal sequences in H̃ and H, respectively, then

for all f 2 H̃, limn!1
��P n

↵
M⌫P

n

�
AF,GP

n

↵
f �M⌫AF,Gf

��
H̃
= 0.
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Proof. Suppose f 2 H̃, then

��P n

↵
M⌫P

n

�
AF,GP

n

↵
f �M⌫AF,Gf

��
H̃
=

��(P n

↵
� I)M⌫P

n

�
AF,GP

n

↵
f +M⌫(P

n

�
AF,GP

n
f � AF,Gf)

��
H̃


��(P n

↵
� I)(M⌫P

n

�
AF,GP

n

↵
f �M⌫AF,Gf)

��
H̃
+

k(P n

↵
� I)M⌫AF,GfkH̃ +

��M⌫(P
n

�
AF,GP

n

↵
f � AF,Gf)

��
H̃

 k(P n

↵
� I)k

op

��(M⌫P
n

�
AF,GP

n

↵
f �M⌫AF,Gf)

��
H̃
+

k(P n

↵
� I)M⌫AF,GfkH̃ +

��M⌫(P
n

�
AF,GP

n

↵
f � AF,Gf)

��
H̃
,

where k·k
op

denotes the operator norm. Since M⌫ is continuous and k(P n

↵
� I)k

op
is bounded

(by Parseval’s identity, see [24, Section 3.1.11]), and since P
n

�
AF,GP

n

↵
converges to AF,G in

the SOT [24, Page 172]), the first and the third terms in the inequality above converge to 0

as n!1. The fact that P n

↵
converges to I in the SOT implies the convergence of the second

term to zero. Therefore, the sequence of operators P n

↵
M⌫P

n

�
AF,GP

n

↵
converges to M⌫AF,G in

the SOT.

Convergence in the SOT does not guarantee convergence of the spectrum, but by theorem

4 in [11], it does guarantee that there is a subsequence of eigenvalue-eigenfunction pairs of

the finite-rank representation which converges to an eigenvalue-eigenfunction pair of the true

discrete control Liouville operator.

2.6 Numerical Experiments

As a demonstration of the efficacy of the developed DCLDMD algorithm, we apply the

method to the controlled Duffing oscillator and compare it with the linear predictor developed

in [12].

Experiment 1: The controlled Duffing oscillator is a nonlinear dynamical system with
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state-space form
0

B@
ẋ1

ẋ2

1

CA =

0

B@
x2

��x2 � �x1 � ↵x
3
1

1

CA+

0

B@
0

2 + sin(x1)

1

CAu (2.6.1)

where ↵, �, � are coefficients in R, [x1, x2]> 2 R2 is the state, and u 2 R is the control input.

For the experiments the parameters are selected to be: � = 0, ↵ = 1, and � = �1.

We descretize (2.6.1) using a time step of 0.01 seconds to yield a discrete-time, control-

affine dynamical system of the form xk+1 = F (xk)+G(xk)uk. Using the data set consisting of

tuples {(xk, xk+1, uk)}nk=1 generated by the dynamical system, we aim to predict the response

of the system starting from the initial condition x0 = [2,�2]> to two different feedback laws,

µ(xk) = �2xk,1 � xk,2 and µ̄(xk) = �2x3
k,1 � xk,2 for a total of 5 seconds.

In the implementation of DCLDMD for the linear feedback law, µ, we generate 225

data points {(xk, xk+1, uk)}225k=1 with initial conditions sampled from a 15 ⇥ 15 grid within

the set [�3, 3] ⇥ [�3, 3] ⇢ R2. The control inputs are sampled uniformly from the interval

[�2, 2] ⇢ R. For the case of the nonlinear feedback law, µ̄, we generate 1225 data points

from initial conditions sampled from a 35⇥ 35 grid within the set [�5, 5]⇥ [�5, 5] ⇢ R2 and

the control input are sampled uniformly from the interval [�8, 8] ⇢ R.

In both implementations of DCLDMD, the Gaussian kernel K̃(x, y) = e
�kx�yk22

� is used for

calculation of the Gram matrices associated with ↵ ⇢ H̃. The kernel width is set to � = 10

and � = 20 for the response of the system to µ and µ̄, respectively. For � ⇢ H, we associate to

each pair {(xk, uk)}nk=1 a kernel Kxk,ūk
:=

✓
1 u

>
k

◆
Kxk
2 H. Here we use the kernel operator

Kxi
:= diag

✓
K̃x1 · · · K̃xm+1

◆
where K̃xj(y) = e

�
���xj�y

���
2

2
� for j = 1, . . . ,m + 1. Lastly, we

select " = 10�6 for regularization of the Gram matrices in order to ensure invertibility of

both G̃ and G in the finite-rank representation (see Algorithm 1).

A comparison between the true trajectories and the indirectly reconstructed trajectories

corresponding to the feedback laws µ and µ̄ can be seen in figures 2 and 3, respectively.

Experiment 2: In this experiment, we compare the predictive capabilities of the indi-

rect reconstruction via DCLDMD with the linear predictor derived in [12] and the bilinear
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Figure 2: A comparison of indirectly reconstructed trajectories x̂1(t) and x̂2(t) with the true

trajectories x1(t) and x2(t) of the Duffing oscillator resulting from the linear feedback law µ

in experiment 1.
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Figure 3: A comparison of indirectly reconstructed trajectories x̂1(t) and x̂2(t) with the true

trajectories x1(t) and x2(t) of the Duffing oscillator resulting from the nonlinear feedback

law µ̄ in experiment 1.
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Algorithm 1 The DCLDMD algorithm
Input: Data points {(xk, yk, uk)}nk=1 that satisfy yk = F (xk)+G(xk)uk, reproducing kernels

K̃xj and Kxj ,ūj for H̃ and H, respectively. A feedback law µ, kernel parameter �, and a

regularization parameter ✏.

Output: {'̂j,�j, ⇠j}
n

j=1

1: G̃ {K̃(xi, xj)}ni,j=1

2: Ĩ  {K̃(xk+1, xi)}nk,i=1

3: G {hKxi,ūi , Kxj ,ūjiH}
n

i,j=1 (see (2.4.3))

4: I  {hKxj ,⌫(xj), Kxi,ūiiH}
n

i,j=1 (see (2.4.3))

5: Compute [M⌫P�AF,G]↵↵ = G̃
†
IG

†
Ĩ
>

6: Eigendecomposition: {'j,�j}
n

j=1  [M⌫P�AF,G]↵↵

7: Normalize the eigenfunctions: {'̂j}
n

j=1  '̂j =
1q

v
⇤
j
>
G̃vj

P
n

i=1(vj)iK̃xi

8: Liouville modes: ⇠  X(V >
G̃)†

9: return {'̂j,�j, ⇠j}
n

j=1

predictor developed in [25]. The linear predictor in [12] is of the form zk+1 = Azk + Buk

with xk = Czk and z being the lifted state (see [12] for more details). The structure of the

bilinear predictor presented in [25] is of the form zk+1 = A+
P

m

i=1 uiBizk, similarly, xk = Czk

is the lifted state (see [25] for more details). For a given feedback law µ, we can estimate

the response of the Duffing oscillator described by equation (2.6.1) to the feedback law µ by

using the aforementioned linear and bilinear predictors.

For the comparison with the linear predictor, we generate 1000 data points and DCLDMD

is implemented using the same kernels as in experiment 1, except the kernel widths are both

set to � = 100. In the case of the bilinear predictor, we simulate 200 trajectories for a

total of 5 seconds. Here, DCLDMD is performed with the Gaussian RBF kernel with kernel

parameter � = 10. The regularization parameter is set to " = 10�6 for both simulations.

For both the linear and bilinear predictor, extended DMD (eDMD) is performed with the

Gaussian radial basis functions as in [12]. For the initial condition x0 = [2,�2]> and the
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Figure 4: A comparison between the linear predictor developed in [12] and the indirect

reconstruction via DCLDMD in experiment 2. Here, x̂i(t), xp,i(t), and xi(t) represent the

indirect reconstruction, the linear predictor, and the actual trajectories, respectively, where

i is a subscript denoting an element of the state.

feedback law µ(xk) = �2xk,1 � 2xk,2, we compare the predictions of the indirect DCLDMD

method and the linear predictor with the true trajectories (see Figure 4). Furthermore,

in Figure 5 we compare the predictions of the indirect DCLDMD method and the bilinear

predictor with the true trajectories.

2.6.1 Discussion

The experiments demonstrate the efficacy of DCLDMD in an academic setting with the

Duffing oscillator. The experiments are done with no prior model knowledge, besides the

system being affine in control. The novelty of the representation can be seen in the separation

of the control input and the state on the operator-theoretic level, while still preserving

the nonlinearity of the dynamical system. This is opposed to the standard approach for

discrete-time dynamical systems where the lifted state zk 2 RN can be approximated as

zk+1 ⇡ Azk + Buk, with A 2 RN⇥N and B 2 R1⇥N found using extended DMD. Unless

the original nonlinear system admits an exact lifting, which is not generally the case, the
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Figure 5: A comparison between the bilinear predictor developed in [25] and the indirect

reconstruction via DCLDMD in experiment 2. Here, x̂i(t), xp,i(t), and xi(t) represent the

indirect reconstruction, the bilinear predictor, and the actual trajectories, respectively, where

i is a subscript denoting an element of the state.

trajectories of the linear lifted systems are expected to diverge from the trajectories of the

nonlinear system with increasing prediction horizons.

Furthermore, [12] mentions a formulation of bilinear predictors of the form zk = Azk +

(Bzk)uk by exploiting observables which are affine in control; however, [12] does not develop

a bilinear predictor in the lifted space, only a formulation for the linear predictor. Therefore,

we have to refer to the bilinear predictor developed in [25]. In [25] formulation of the discrete

bilinear predictor is cogent as long as the discrete-time dynamical system is a discretization of

a continous time dynamical system. For continuous dynamical systems, an exact formulation

of a bilinear predictor requires strong assumptions, such as access to Koopman invariant

subspaces a priori [6].

In experiment 2, specifically, in figure 4, we observe that as expected, the behavior of the

linear predictor from [12] and the bilinear predictor from [25] diverge from the behavior of the

nonlinear Duffing oscillator under the given feedback law, while the indirect reconstruction

approach developed in this chapter accurately tracks the actual trajectory of the Duffing

22



oscillator. We postulate that the improved predictive capability can be attributed to the

fact that the indirect predictive model is a nonlinear predictor, as opposed to the models

from [12] and [25], which are linear and bilinear, respectively, albeit in a higher dimensional

lifted state space.

A comparison between the average decomposition time and the average evaluation time

for DCLDMD and the linear predictors in [12] computed over 100 trials is presented in Table

1. The average decomposition time is defined as the amount of time required to calculate

the matrices A and B in [12] and the amount of time required to construct the indirect

reconstruction function (see equation (2.4.5)) in DCLDMD; whereas the average evaluation

time is the time required by each data driven model to reconstruct a trajectory for 1 second

starting from the same initial condition.

Method Avg. Decomp. time (s) Avg. Eval. time (s)

DCLDMD 0.8736 0.0552

Linear Predictor 0.0652 0.00014

Table 1: A comparison between the average decomposition time and average evaluation time

for the linear predictors developed in [12] and the DCLDMD algorithm.

In this sense, we observe that the linear predictors from [12] require less time to compute

than DCLDMD, but the difference in average evaluation time for each method is on the

scale of a 100th of a second and thus is marginal. The discrepancy in decomposition time

is expected - due to the fact that the formulation of the linear predictors in [12] requires

the Moore-Penrose pseudoinverse of only one n ⇥ m matrix (in the case of Experiment 2,

n = 103 and m = 1000) and multiplication by a matrix of size (n � 1) ⇥ m, whereas

DCLDMD requires the inverstion of two m ⇥m matrices (G̃ and G) and a product of four

m⇥m matrices (see Algorithm 1). In general, inverting an n⇥n matrix and multiplying n⇥n

matrices has complexity O(n3). It is worth noting that the indirect predictor formulated in

Experiment 1 requires far less data in general (i.e. 225 data points) than what is required
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to construct the linear predictors in [12]. Here, 1000 data points are needed to construct the

linear predictors from [12].Note that we do not conduct a comparison of the decomposition

time and evaluation time with the bilinear predictor from [25]. This is because the predictor

in [25] relies on the discrete-time dynamical system being a discretization of a continous-time

dynamical system; whereas, DCLDMD and the predictors in [12] are formulated explicity

for discrete-time dynamical systems.

In both experiments, indirect reconstruction is used to estimate the flow. The indirect

reconstruction explicitly depends upon the eigenfunctions of P↵M⌫P�AF,G|↵. Whether or not

we can always represent the full-state observable (i.e. the flow) in terms of the eigenfunc-

tions is not entirely clear, but this is a standard assumption in the DMD literature. With

this assumption in mind, DCLDMD is termed a heuristic approach for estimation of the

dynamics. Regardless, the numerical experiments in section 2.6 demonstrate the capability

of DCLDMD for prediction of the response of the control-affine system to given feedback

laws.
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CHAPTER III

KERNEL METHODS FOR FAULT DETECTION IN NONLINEAR

SYSTEMS

In this chapter, a novel kernelized PCA method is developed. The idea, motivated by

results such as [31], is to use trajectories generated by a dynamical system as a fundamental

unit of data by embedding them in a reproducing kernel Hilbert space (RKHS) using the

so-called occupation kernels. The resulting PCA method, called occupation kernel PCA

(OKPCA), is expected to perform better owing to the use of feature maps that are adapted

to the data. In addition the computations required to implement OKPCA rely exclusively

on integrals of kernel functions evaluated along system trajectories. As a result, OKPCA is

endowed with intrinsic robustness to zero-mean noise (since we can think of integration as a

first-order filter) and can be implemented on data sets containing variable length trajectories

that are irregularly sampled [31]. Fault detection then proceeds by reconstructing a given

trajectory as a linear combination of eigenfunctions of a suitably defined kernelized covariance

operator and computing a suitable analog of the reconstruction error used for KPCA by

Hoffman [7].

3.1 Background

In this section, a brief overview of current PCA methods is provided for completeness.

3.1.1 Principal Component Analysis

Given a set of M centered observations {xj 2 Rn
}
M

j=1 ⇢ X ✓ Rn, where “centered” in-

dicates that
P

M

j=1 xj = 0, the principal component analysis (PCA) procedure diagonalizes
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the covariance matrix C defined by C = 1
M

P
M

j=1 xjx
>
j

where C is at most rank M (if all

observation vectors are linearly independent).

Here, it is worth noting that the matrix C is referred to as the covariance matrix due to

the fact that the ith entry in the jth column of C is Cov(xi, xj), where

Cov(xi, xj) =

P
M

k=1(x
k

i
� x̄)(xk

j
� x̄)

M
,

where x
k

i
denotes the kth element of the vector xi and x̄ denotes the mean of the dataset

{xj}
M

j=1. In our case, we center the data beforehand yielding Cov(xi, xj) =
1
M

P
M

k=1 x
k

i
x
k

j
=

1
M
x
>
i
xj, and we see that the entries along the diagonal are Cov(xi, xi) = Var(xi, xi) for each

i = 1, 2, . . . ,M .

Since C is a positive semi-definite matrix, it is diagonalizable and has nonnegative eigen-

values. The eigenvectors of C are referred to as the principal components, typically ordered

in a decreasing sequence of the corresponding eigenvalues. Given a vector v 2 Rn we note

that Cv = 1
M

P
M

j=1hxj, vixj, where h·, ·i indicates the standard dot product. In particular,

if v is an eigenvector of C with eigenvalue �, we have Cv = �v = 1
M

P
M

j=1hxj, vixj, which

implies that all eigenvectors of C lie in the span of {xj}
M

j=1.

3.1.2 Kernelized Principal Component Analysis

Kernelized principal component analysis (KPCA) [7] extends the PCA procedure to produce

nonlinear principal components. This is done by embedding the data into a reproducing

kernel Hilbert space (RKHS) via a feature mapping � : X ✓ Rn
! H.

Definition 3.1.1 Let X be a nonempty set. A function k : X ⇥X ! R is called a kernel

function on X if there exists a R-Hilbert space H and a map � : X ! H such that for all

x, x
0
2 X we have k(x, x0) = h�(x0),�(x)iH . We call � a feature map and H a feature space

of k.

In other words, the data point x is replaced by a element �(x) in the Hilbert space H and the

dot product is replaced by an inner-product over the Hilbert space. It should be noted that
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the choice of feature map is not unique, however, the Moore-Aronszajn theorem guarantees

the existence of a unique RKHS corresponding to k and a canonical feature map that maps

into that RKHS in the case where k is a positive semi-definite kernel. For completeness, we

recall the definition of an RKHS.

Definition 3.1.2 A RKHS, H, over a set X is a Hilbert space of real-valued functions

over the set X such that for all x 2 X the evaluation functional, Ex : H ! R, given as

Exg := g(x) is bounded.

The Riesz representation theorem guarantees, for all x 2 X, the existence of a unique

function kx 2 H such that hg, kxiH = g(x), where h·, ·iH is the inner product for H [23,

Chapter 1]. The function kx is called the reproducing kernel centered at x, the function

k(x, y) = hky, kxiH is called the reproducing kernel of H and the mapping � : X ! H given

by x 7! k(·, x) = �(x), is called the canonical feature map.

In this setting we can now define nonlinear principal components via analogous con-

structions. Given a feature map � : X ✓ Rn
! H and a set of data {xj}

M

j=1 centered

in H, i.e.
P

M

j=1 �(xj) = 0, the kernelized covariance operator C : H ! H is defined as

C = 1
M

P
M

j=1[�(xj)⌦�(xj)], where, the notation [u⌦ v], for u, v 2 H, denotes the rank one

operator defined by [u⌦ v]h = hh, viu for h 2 H.

It is worth noting that C is a finite rank and positive semi-definite operator and thus

diagonalizable. If v is an eigenfunction of C then automatically v 2 span{�(xj) : j =

1, . . . ,M} and v =
P

M

j=1 ↵j�(xj) for ↵j 2 R. The coefficients ↵i can be computed by

solving a matrix equation, indeed for an eigenfunction v 2 H, h�(xk), CviH = h�(xk),�viH ,

which, along with

h�(xk),�viH = �

MX

i=1

h�(xk),↵i�(xi)i,

implies by definition of ⌦ that

h�(xk), CviH =
MX

i,j=1

↵ih�(xj),�(xi)iHh�(xk),�(xj)iH
M

. (3.1.1)
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If we define ↵ = (↵1, . . . ,↵M)>, k(xi, xj) = h�(xi),�(xj)iH and K = (k(xi, xj))
M

i,j=1, equa-

tion (3.1.1) can be expressed in the matrix form

M�K↵ = K
2
↵. (3.1.2)

Since K is a positive semi-definite matrix, it is sufficient to solve the equation K↵ = �M↵ to

recover all the solutions to (3.1.2). In other words, the vector of coefficients ↵ is a normalized

eigenvector of the matrix K.

Let ↵(1)
, . . . ,↵

(N), for 0 < N M , be a set of eigenvectors of K, corresponding to nonzero

eigenvalues 0 < �1  . . . , �N , normalized such that for k = 1, . . . , N , �kh↵(k)
,↵

(k)
iRn = 1.

The k�th eigenfunction v
(k) of C can then be expressed as v

(k) =
P

M

i=1 ↵
(k)
i
�(xi) 2 H.

Definition 3.1.3 Given a test point x 2 X, we call hv(k),�(x)iH , where v
(k) is an eigen-

function of C, a nonlinear principal component of {xj}
M

j=1 at x corresponding to �.

Remark 3.1.1 If the data used for PCA are uncentered in H, they can be centered by

replacing K with

K̃ = K � JMK �KJM + JMKJM ,

where (JM)i,j =
1
M

.

3.2 Occupation Kernel PCA

In this section, we will appropriately modify KPCA to incorporate trajectories as a funda-

mental unit of data. To do so will require an embedding of trajectories into a RKHS. The

embedding will be achieved by using the novel occupation kernels developed in [31], and the

resulting technique will be called OKPCA.

Definition 3.2.1 Let X ⇢ Rn be compact, H be a RKHS of real-valued continuous func-

tions over X, and � 2 C([0, T ], X) be a trajectory, where C([0, T ], X) denotes the set of

continuous functions from [0, T ] to X. The functional g 7!
R

T

0 g(�(⌧))d⌧ is bounded, and
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may be represented as
R

T

0 g(�(⌧))d⌧ = hg,��iH , for some �� 2 H by the Riesz representation

theorem. The function �� is called the occupation kernel corresponding to � in H [31].

The occupation kernel corresponding to a trajectory can be shown to be the integral of a

kernel function along the trajectory.

Proposition 3.2.1 [31] Let H be a RKHS of real-valued continuous functions over a set

X and let � : [0, T ] ! X be a continuous trajectory as in Definition 3.2.1. The occupation

kernel corresponding to � in H, ��, may be expressed as

��(x) =

Z
T

0

K(x, �(t))dt. (3.2.1)

Proof. Note that ��(x) = h��, K(·, x)iH , by the reproducing property of K. Consequently,

��(x) = h��, K(·, x)iH = hK(·, x),��iH

=

Z
T

0

K(�(t), x) dt =

Z
T

0

K(x, �(t)) dt,

which establishes the result.

A kernelized covariance operator can now be defined for a set of trajectories.

Definition 3.2.2 Let H be a Hilbert space, � = {�i : [0, T ] ! X}
M

i=1 be a finite set of

trajectories and � : C([0, T ], X) ! H be a feature map taking trajectories into H. With

{�(�j) : j = 1, . . .M} centered in H, i.e.
P

M

j=1 �(�j) = 0, define the kernelized covariance

operator as

C� =
1

M

MX

j=1

[�(�j)⌦ �(�j)].

Similar to the kernelized covariance operator C above, C� is a positive semi-definite finite

rank operator and as a result, admits eigenfunctions of the form v
(k) =

P
M

i=1 ↵
(k)
i
�(�i). The

notion of nonlinear principal components then extends naturally to Hilbert spaces.

Definition 3.2.3 Given a test trajectory � : [0, T ] ! X and a corresponding feature map

� : C([0, T ], X)! H, we call hv(k),�(�)iH , where v
(k) is an eigenfunction of C�, a nonlinear

principal component of � at � corresponding to �.
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While the principal components can be defined with respect to any feature map, the occupa-

tion kernels themselves provide a feature map that is convenient for analysis and implemen-

tation. The convenience stems from the fact that if the occupation kernels are selected to be

the feature maps, the coefficients ↵(k)
i

of the eigenfunction v
(k) of C� are given by normalized

eigenvectors of the Gram matrix of occupation kernels.

Proposition 3.2.2 The mapping �(�) = �� is a feature map from C([0, T ], X) to H. The

eigenfunctions of C� under this feature map can be computed by solving K̃�↵ = �M↵ where

K̃� is the centered occupation kernel Gram matrix, given by

K̃� = K � JMK �KJM + JMKJM

where (JM)i,j = 1
M

and K =
�
h��i ,��j

↵
H
)M
i,j=1 is the original occupation kernel Gram ma-

trix. In particular, if ↵(1)
, . . . ,↵

(N), for 0 < N  M , are eigenvectors of K̃�, correspond-

ing to nonzero eigenvalues 0 < �1  . . . , �N , normalized such that for k = 1, . . . , N ,

�kh↵
(k)
,↵

(k)
iRn = 1, then the k�th eigenfunction v

(k) of C� can be expressed as

v
(k) =

MX

i=1

↵
(k)
i
��i 2 H.

Proof. The proof of the above proposition proceeds analogously to what is done in KPCA.

We need only note that h�(�i),�(�j)iH = h��i ,��jiH and that K̃� = (JM � I)K(JM � I) is

positive semi-definite.

3.2.1 OKPCA for Fault Detection

Here we will outline an interesting application of OKPCA to detect faulty trajectories based

on Hoffman’s reconstruction error [7].

Definition 3.2.4 Let � be a test trajectory, � = {�j : j = 1, . . .M} be a collection of

trajectories, V = {v
(k) : k = 1, . . . N} be a collection of eigenfunctions for C�, and �0 =

1
M

P
M

j=1 �(�j) be the center of � in H. Letting �̃(�) = �(�) � �0 we can define the

30



reconstruction error for � in H with respect to V by

R(�) = k�̃(�)k2
H
�

NX

j=1

h�̃(�), v(j)i2
H
. (3.2.2)

Remark 3.2.1 If the feature maps are selected to be the occupation kernels, the reconstruc-

tion error can be computed using integrals of the kernel function along the trajectory. Indeed,

using the feature map �(�) = ��, we get

k�̃(�)k2
H
=

*
�(�)�

MX

j=1

�(�j)

M
,�(�)�

MX

j=1

�(�j)

M

+

H

= h��,��iH �

MX

j=1

2h��,��jiH

M
+

MX

i,j=1

h��i ,��jiH

M2

and for a given k we have

h�̃(�), v(k)iH

=
MX

j=1

↵
(k)
j

"
h��,��jiH �

1

M

MX

n=1

h��n ,��jiH

�
1

M

MX

`=1

h��,��`
iH +

1

M2

MX

n,`=1

h��n ,��`
iH

#
.

The reconstruction error can then be computed using the fact that given two trajectories �i

and �j, the inner product of the corresponding occupation kernels is given by

h��i ,��jiH =

Z
T

0

Z
T

0

k(�i(⌧), �j(t)) d⌧dt.

Remark 3.2.2 Similar to KPCA, the OKPCA reconstruction error also has an interesting

geometric interpretation. Note that the reconstruction error can be represented in the inner

product form

R(�) =

*
�̃(�), �̃(�)�

NX

j=1

h�̃(�), v(j)iHv
(j)

+

H

.

Hence, the reconstruction error is a measure of how well the projection of �̃(�) onto span{v(j) :

j = 1, . . . , N} recreates �̃(�).
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Given a large enough set of normal trajectories, the reconstruction error can thus be used

to detect faulty trajectories.

Definition 3.2.5 Let � = {�j : j = 1, . . .M} be a collection of trajectories, called training

data. Let V = {v
(k) : k = 1, . . . N} denote the principal component vectors, i.e., a collection

of eigenfunctions for C� corresponding to non-zero eigenvalues. Let RV (�) be the reconstruc-

tion error for a test trajectory � in H with respect to V . For a given threshold " > 0, we

will call a test trajectory "�faulty if RV (�) > ".

Remark 3.2.3 This definition of fault is dependent on N , the number of principal component

vectors being used to compute the reconstruction error, the selected kernel, and the threshold

". The threshold " can be decided based on reconstruction errors evaluated at trajectories

that are a part of the training data. For further remarks on the selection of the kernel and

the number of principal component vectors, see the discussion section.

3.3 Experiments

In the following, two numerical experiments are presented to illustrate the efficacy of the

developed fault detection method. The first experiment is an academic one where the devel-

oped method is used to identify trajectories generated by a nonlinear system that is different

from the one used to generate the training data.

In the second experiment, simulated trajectories of a quadrotor aircraft are used to train

the algorithm. The trained algorithm is then used to identify trajectories generated by a

faulty quadrotor, where the fault is introduced by changing control parameters.

3.3.1 Description and Results

Experiment 1: In this experiment, 100 fault detection trials are performed. In each trial,

the training data comprises of 100 trajectories of the system

ẋ1 = �x1 + x2 sin
⇣
⇡x1

2

⌘
, ẋ2 = �x2 + x1 cos

⇣
⇡x1

2

⌘
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initialized from randomly selected initial conditions on the unit circle. To test the developed

OKPCA fault detection method, the reconstruction error is evaluated at 20 trajectories of

the same system and 20 trajectories of the faulty system

ẋ1 = �x1 + 0.9x2 sin
⇣
⇡x1

5

⌘
, ẋ2 = �x2 + 0.8x1 cos

⇣
⇡x2

3

⌘

also starting from random initial conditions on the unit circle.

All trajectories are 2 seconds long and sampled every 0.01 seconds. The Gaussian radial

basis function k(x, y) = e
�kx�yk2

µ is used as the kernel function with width parameter µ = 0.6

and N = 20 eigenvectors are selected for the projection in (3.2.2). The detection threshold

is set to be equal to 2 times the highest reconstruction error seen in the training data, that

is, " = 2maxi{R(�i)}Mi=1. Normal test trajectories with reconstruction errors higher than

the threshold are classified as false positives and faulty test trajectories with reconstruction

errors smaller than the threshold are classified as false negative. To compare OKPCA and

KPCA in a way that is independent of threshold selection, a mixing percentage is computed.

The mixing percentage is defined as the percentage of the test trajectories that fall within the

band defined by the smallest reconstruction error among faulty trajectories and the largest

reconstruction error among normal trajectories. The performance of OKPCA and KPCA

for this test is summarized in the third column of Table 2

Since the OKPCA method relies on integrals of trajectories, the data do not need to be

equally spaced. To demonstrate the applicability of the OKPCA method to data sets with

variable sampling rates, a sampling noise, uniformly distributed in the interval [�0.004, 0.004]

is added to each sampling instant of the training data and the test data (i.e., the sampling

rate is uniformly distributed between 0.002s and 0.01s). The performance of OKPCA and

KPCA for this test is summarized in the fourth column of Table 2.

As opposed to PCA, which is generally not robust to noise [14], occupation kernel PCA,

owing to integration of the trajectories, is expected to have inherent robustness to zero-mean

measurement noise and sampling noise. To test this hypothesis, the 100 trials are repeated
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M Method No Noise (%) Samp. Noise (%) Meas. Noise (%)

FP FN MP FP FN MP FP FN MP

50 OKPCA 11.5 0.1 2.6 10.2 0.2 4 11.2 0.7 11.9

KPCA 10.6 0.1 1.9 15 0.3 8.1 11.9 1.8 23.1

100 OKPCA 1.3 0.2 0.7 1.3 0.6 3.9 0.6 1.8 8.8

KPCA 1.6 0.1 0.9 1.7 0.7 5.5 0.3 3.2 12.4

150 OKPCA 0.2 0.2 0 0.1 0.5 3.6 0.2 1.9 8.2

KPCA 0.4 0.1 0.5 0.1 0.8 5.2 0.1 3.7 12.6

Table 2: A comparison of OKPCA with KPCA for the system and fault models in Experiment

1. The initialisms FP, FN, and MP denote the false positive rate, the false negative rate,

and the mixing percentage, averaged over 100 trials, respectively.

�1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1
�1

�0.5

0
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x
2

Training Data
Normal Test Data
Faulty Test Data

Figure 6: Noisy trajectories used as training data (green) and normal (blue) and faulty (red)

test data to test degradation of performance in Experiment 1.
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Figure 7: An example trial in Experiment 1 where the faulty trajectories and the normal

trajectories are well-separated by the reconstruction error and no false negative or false

positive results are generated.

with M = 50, 100, and 150 by adding Gaussian noise with standard deviation 0.01 to each

measurement in the training data and the test data (see Fig. 6). For comparison, the KPCA

fault detection method from [7] is applied to the same data set with 20 eigenvectors and

µ = 5. The performance of OKPCA and KPCA for this test is summarized in the last

column of Table 2.

Fig. 7 illustrates the results of one of the successful (no false positives or false negatives)

noisy trials where it can be seen that the faulty test trajectories have a higher reconstruction

error than the normal test trajectories. Fig. 8 illustrates the results of one of the unsuccessful

noisy trials where the decision boundary is not as clear as the successful trial.

Experiment 2: In the second experiment, the fault detection capabilities of OKPCA are

evaluated using trajectories generated by a quadrotor. A quadrotor model under a known

PID controller is simulated in MATLAB. A simplified model of the quadrotor in the vehicle

frame is used by neglecting the Coriolis force and assuming the pitch (✓) and roll (�) angles

are small (see Equations 35� 40 in [1] for details). The model consists of 12 state variables

that include position (x, y, z), velocity (u, v, w), Euler angles (�, ✓, ), and roll rates (p, q, r)

of the quadrotor.
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Figure 8: An example trial in Experiment 1 where a few of the faulty trajectories fall below

the threshold, generating false negative results.
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Figure 9: Example of a normal (solid) and a faulty (dotted) trajectory of the quadrotor in

Experiment 2 under simulated major actuator fault.
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Figure 10: Reconstruction error comparison for major actuator faults in Experiment 2.
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Figure 11: Example of a normal (solid) and a faulty (dotted) trajectory of the quadrotor in

Experiment 2 under simulated minor actuator fault.
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Figure 12: Reconstruction error comparison for minor actuator faults in Experiment 2.

The controller used in the simulation is from Sections 7, 7.2, and 7.3 in [1]. Given a desired

setpoint, the controller regulates the quadrotor to the setpoint by manipulating the velocity,

pitch, and roll using three separate proportional-integral-derivative (PID) controllers. The

control gains are identical for each of the three PID controllers. For the training data the

proportional gain KP , integral gain KI , and derivative gain KD were selected to be 5, 2, and

8, respectively. For examples of noise-free normal and faulty trajectories for the major and

the minor faults, see Figs. 9 and 11, respectively.

The algorithm is trained on a data set consisting of 500 trajectories of randomly generated

lengths, sampled at approximately 5 Hz. Irregular sampling rates and measurement noise

are implemented similar to Experiment 1. Each trajectory is started from a random initial

condition in the box with side length 2 centered at the origin in R12 and the quadrotor is

commanded to fly to the origin. Actuator faults are simulated by altering the PID gains. To

simulate major actuator faults, 20 trajectories are generated using KP = 15, KD = 2, and

KI = 12, and the minor actuator faults are simulated by generating another 20 trajectories

using KP = 4, KD = 7, and KI = 3.

The Gaussian radial basis function kernel with width parameter µ = 10 is used for

OKPCA and N = 100 eigenvectors are used for reconstruction. The reconstruction errors

for the faulty trajectories are then compared with those corresponding to 20 newly generated
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normal trajectories. Fig. 10 and Fig. 12 show the fault detection capabilities for trajectories

generated with major and minor actuator faults, respectively. The fault detection threshold is

set to be "major = 2maxi{R(�i)}Mi=1 for the major actuator tests and "minor = maxi{R(�i)}Mi=1

for the minor actuator tests.

3.3.2 Discussion

The experiments demonstrate the efficacy of OKPCA for data-driven fault detection applica-

tions. As noted in Experiment 1, in randomized trials, without any knowledge of the system

model or the fault, OKPCA results in reconstruction errors that differentiate faulty trajec-

tories from normal trajectories with less than 1% false positive and false negative rates, with

moderate degradation in performance when the data and the sampling rates are corrupted

with noise. In addition to the practical advantages of OKPCA over KPCA listed in the

introduction, Table 2 also indicates that in most experiments, OKPCA outperforms KPCA

in the mixing percentage metric. The false positive and false negative rates depend on the

selected threshold, and as such are not suitable for use as a metric for comparison.

The results of Experiment 2 indicate that OKPCA can detect faulty trajectories irrespec-

tive of measurement noise and sampling noise. While major actuator faults are detectable

with high confidence (Fig. 10), minor actuator faults are hard to detect (Fig. 12). Degra-

dation of performance with decreasing severity of faults is expected in data-driven fault

detection methods, especially in the presence of measurement noise.

Similar to Hoffman’s observations in [7], too small values of the kernel width, µ, result

in the kernel functions that are near zero everywhere, rendering PCA meaningless. Too

large values of µ result in a near-zero reconstruction error for all trajectories, faulty and

normal. In Experiment 1, a large range of values of µ, between 0.6 and 600, was found to

yield similar performance. While large, the acceptable range of values of µ depends, in ways

that are not well-understood, on density and number of trajectories in the training data.

Selection of µ can be done using trial and error given a set of trajectories that are known to
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be faulty. The number of eigenvectors, N , needs to be selected large enough to ensure that

the reconstruction errors are near zero when evaluated at trajectories in the training data.

The results in Table 2 strongly indicate that larger data sets can result in fewer false

positives when fault detection is performed using OKPCA. While the false negative rate is

small, it shows no such trend. It should be noted that the errors in Table 2 are computed

with the threshold in each trial selected as " = 2maxi{R(�i)}Mi=1. The fact that the false

positive rate drops to zero when a larger training data set is used implies that as the training

data set gets larger the threshold ✏ could potentially be selected to be smaller. The authors

hypothesize that with a more judicious selection of the threshold, the decreasing trend in

false positive rates, observed in Table 2, can also be realized in the false negative rates, up

to a limit, as the training data set gets larger. It should be noted, however, that OKPCA

fault detection scales cubically in M , and as such, the use of large training data sets requires

a significant amount of computational resources.
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CHAPTER IV

CONCLUSION

In the second chapter, a novel operator representation of a control-affine nonlinear system

is developed as a composition of a multiplication operator and a composition-like kernel

propagation operator over an RKHS. The multiplication operator takes advantage of the

affine nature of the system to capture the effect of control on the system behavior, while

the kernel-propagation operator captures the effect of the system dynamics on the kernels

of the underlying RKHS. The resulting DMD algorithm is entirely data driven and requires

no model knowledge besides the dynamical system being affine in control. Furthermore, the

DCLDMD formulation provides a novel way to separate the state from the control input

on the operator-theoretic level. This separation leads to better prediction capabilities over

existing methods, as evidenced by the results of Experiment 2. Moreover, since DCLDMD

can be used to predict closed-loop trajectories of a nonlinear system under feedback laws, it

could potentially be utilized for control synthesis, which is a topic for future research.

In the third chapter, the kernel PCA method is generalized to kernelized covariance oper-

ators on reproducing Kernel Hilbert spaces. The resulting OKPCA method generates prin-

cipal components of a set of trajectories as opposed to a set of points. It is shown that when

occupation kernels are used as feature maps, the computations involved reduce to computa-

tion of single and double integrals of kernel functions along the trajectories in the training

data and the test data. The developed OKPCA method is applied to the data-driven fault

detection problem to separate normal trajectories of a dynamical system from faulty ones,

without any knowledge of the system dynamics. Two numerical experiments demonstrate

the efficacy of the developed technique. The numerical experiments indicate that provided a

41



training data set of known normal trajectories and a test data set of known faulty trajectories

is available, the parameters of the developed OKPCA fault detection method can be selected

by trial and error from a wide range of acceptable values. Performance improvement with

increasing amount of training data is also observed, albeit accompanied by a significant rise

in computational costs. The numerical experiments also indicate an inherent robustness to

noise. A theoretical analysis of noise-robustness is out of the scope of this thesis, and a part

of future research.
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