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Abstract— Real-world control applications in complex and
uncertain environments require adaptability to handle model
uncertainties and robustness against disturbances. This paper
presents an online, output-feedback, critic-only, model-based
reinforcement learning architecture that simultaneously learns
and implements an optimal controller while maintaining sta-
bility during the learning phase. Using multiplier matrices, a
convenient way to search for observer gains is designed along
with a controller that learns from simulated experience to
ensure stability and convergence of trajectories of the closed-
loop system to a neighborhood of the origin. Local uniform
ultimate boundedness of the trajectories is established using a
Lyapunov-based analysis and demonstrated through simulation
results, under mild excitation conditions.

I. INTRODUCTION

Reinforcement learning (RL) has proven to be robust to
modeling errors in dynamic systems, ensuring a fast con-
vergence to the optimal solution while maintaining stability
regardless of disturbances to the system [1]–[4]. In the
absence of full state measurement information, model-based
reinforcement learning (MBRL) controllers in [5]–[8], tend
to perform poorly since the excitation conditions require the
accuracy of the estimated model to guarantee the closed-loop
stability of the system.

Motivated by the performance of the observer developed
in [9] which augments the extended Luenberger observer
in [10] by introducing a third observer gain to cancel
non-convex terms in the semi-definite condition, this paper
offers a modification to that observer structure with fewer
restrictions on the class of nonlinear systems. An observer for
real-time state estimation using semi-definite programming
(SDP) to search for the extended Luenberger observer gains
is developed for continuous-time nonlinear systems. Using
multiplier matrix approach which involves placing bounds
on the derivatives of the drift and control effectiveness
functions of the system, sufficient conditions developed using
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Lyapunov analysis are used to guarantee the stability of the
state estimation error dynamics [11], [12]. The state estimates
are then used in a MBRL framework to design a adaptive
dynamic programming (ADP) based controller that optimizes
a given performance objective while ensuring the stability of
the closed-loop system during learning.

MBRL learns an optimal controller that approximates the
value function, and subsequently, the optimal policy for the
nonlinear system. While adaptive optimal control methods
have been extensively studied in the literature to solve the
online optimal control problem, [4]–[8], [13]–[16], most
existing results require full state feedback. In this paper, an
output feedback problem is solved for systems with a linear
measurement model. Unlike actor-critic MBRL methods
popular in the literature [17], [18], this paper presents a
critic-only structure to provide an approximate solution of the
Hamilton–Jacobi–Bellman (HJB) equation that requires the
identification of fewer free parameters. Lyapunov methods
are used to show that the states of the system, the state
estimation error, and the critic weights are locally uniformly
ultimately bounded (UUB) for all time starting from any
initial condition.

This novel architecture is different from existing NN
network observers in literature like [15], [19]–[23] whose
convergence analysis relies solely on negative terms that
result from a σ−modification-like term added to the weight
update laws. As a result, similar to adaptive control, the
convergence of the observer weights to their true values
cannot be expected, and convergence of state estimates to the
true states is not robust to disturbances and approximation
errors. In addition, the observer technique in this paper does
not require restrictions on the form and rank of the C matrix
unlike NN based observers in [15], [21], [22]. A drawback of
existing state feedback control methods, such as [21], is that
the substitution x = C+y implicitly restricts the technique
to systems where the number of outputs is larger than the
number of states, which is typically not the case in output
feedback control.

The rest of the paper is organized as follows: Section II
contains the problem formulation, Section III introduces the
state estimator/observer, Section IV presents the Multiplier
matrices and sector Conditions, Section V contains control
design using MBRL methods, Section VI contains stability
analysis of the developed architecture, and Section VII
concludes the paper.



II. PROBLEM FORMULATION

This paper considers nonlinear dynamical systems of the
form

ẋ = f(x) + g(x)u, y = Cx, (1)

where x ∈ Rn is the system state, u ∈ Rm is the control
input, C ∈ Rq×n is the output matrix, and y ∈ Rq is the
measured output. The functions f : Rn → Rn and g : Rn →
Rn×m, denote the drift and the control effectiveness matrix,
respectively.

The objective is to design an observer to estimate the
states online, using input-output measurements, and to simul-
taneously synthesize and utilize a controller that minimizes
the cost functional defined in (24), under the saturation
constraint |(u)i| ≤ λ > 0 for i = 1, . . . ,m, while ensuring
local uniform ultimate boundedness of the trajectories of the
system in (1).

In order to facilitate the development and analysis of the
method presented in this paper, the following assumption is
necessary.

Assumption 1. The functions f and g are known, their
derivatives exist on a compact set C ⊂ Rn, and satisfy the
element-wise bounds

(Mf1)i,j ≤
d(f(x))i
d(x)j

≤ (Mf2)i,j , (2)

(Mg1)i,j ≤
(
d(g(x))i,k
d(x)j

)
(u)k ≤ (Mg2)i,j , (3)

for all x ∈ C, |(u)k| ≤ λ, i, j = 1, . . . , n and k = 1, . . . ,m,
where (·)i and (·)i,j denote the element of the array (·) at
the indices indicated by the subscript.

Remark 1. Conditions similar to those in Assumption 1 are
commonly required in several observer design schemes (see,
e.g., [9], [24]–[26].

In the following section, sufficient conditions involving
multiplier matrices that characterize the affine system will
be presented, along with the design of the state estimator.

III. STATE ESTIMATOR

In this section, a state estimator inspired by the extended
Luenberger observer is developed to generate estimates of x.
Let the nonlinear dynamics in (1) be expressed in the form

ẋ = Mf1x+Mg1x+ f(x) + gu(x, u), (4)

where f(x) = −Mf1x + f(x), and gu(x, u) = −Mg1x +∑m
i=1 gi(x)(u)i. Under Assumption 1, the derivatives of f

and g satisfy the element-wise inequalities

0 ≤ d(f(x))i
d(x)j

≤ (Mf2)i,j − (Mf1)i,j , and (5)

0 ≤ d(gu(x, u))i
d(x)j

≤ (Mg2)i,j − (Mg1)i,j , (6)

where i, j = 1, . . . , n. Let Mf1 := 0n×n, Mf2 := Mf2 −
Mf1 , Mg1 := 0n×n and Mg2 := Mg2 − Mg1 . Using the

derivative bounds, a state estimator with three correction
terms is designed as

˙̂x = Mf1 x̂+Mg1 x̂+ f [x̂+H (y − Cx̂)]

+ gu[x̂+K (y − Cx̂) , u] + L (y − Cx̂) , (7)

where x̂ ∈ Rn is the estimate of x, H ∈ Rn×q , K ∈
Rn×q and L ∈ Rn×q are observer gains, H (y − Cx̂) and
K (y − Cx̂) are nonlinear injection terms, and L (y − Cx̂)
is a linear correction term.

The estimation error is defined as e := x − x̂, and the
estimation error dynamics are given by

ė = (Mf1 +Mg1 − LC) e+ f(x) + gu(x, u)

− [x̂+H (y − Cx̂)]− gu[x̂+K (y − Cx̂) , u]. (8)

IV. MULTIPLIER FORMULATION AND SECTOR
CONDITIONS

In this section, conditions sufficient for Lyapunov stability
are derived by designing multiplier matrices that characterize
the nonlinear functions f and g (cf. [11]).

For convenience of notation, let ϕf (t, e) := f(x) −
f [x̂ + H (y − Cx̂)] and ϕg(t, e, u) := gu(x, u) − gu[x̂ +
K (y − Cx̂) , u]. The differential mean value theorem
(DMVT) [27, Theorem 2.1] guarantees that the difference
function ϕf can be expressed as ϕf (t, e) = Mf (I−HC)(x−
x̂) where Mf is a time-varying matrix that is constrained in
a compact set defined by Mf1 and Mf2 in (5). Similarly,
ϕg(t, e, u) = Mg(I − KC)(x − x̂), where Mg is a time-
varying matrix that is constrained in a compact set defined
by Mg1 and Mg2 in (6).

The DMVT implies that the difference functions ϕf (t, e)
and ϕg(t, e, u) are bounded as

Mf1(I −HC)e ≤ ϕf (t, e) ≤ Mf2(I −HC)e, and (9)

Mg1(I −KC)e ≤ ϕg(t, e, u) ≤ Mg2(I −KC)e. (10)

The stability of the state estimation error dynamics can now
be shown using only the sector information about ϕf (t, e)
and ϕg(t, e, u) constrained on a compact set C, where the
Jacobian bounds in (5) and (6) hold. The bounds in (9) and
(10) can be used to obtain the inequalities

[ϕf (t, e)]
T
[ϕf (t, e)−Mf2(I −HC)e] ≤ 0 and (11)

[ϕg(t, e, u)]
T
[ϕg(t, e, u)−Mg2(I −KC)e] ≤ 0. (12)

Rewriting the inequalities in (11) and (12) into their quadratic
form yields[

e
ϕf

]T [
I −HC 0

0 I

]T
Jf

[
I −HC 0

0 I

] [
e
ϕf

]
≤ 0, and

(13)[
e
ϕg

]T [
I −KC 0

0 I

]T
Jg

[
I −KC 0

0 I

] [
e
ϕg

]
≤ 0, (14)

with

Jf =

[
0 −MT

f2
−MT

f1

2

−Mf2
−Mf1

2 I

]
and (15)



Jg =

[
0 −MT

g2
−MT

g1

2

−Mg2
−Mg1

2 I

]
, (16)

where 0 denotes an n×n matrix of zeros and I is an n×n
identity matrix. The observer error dynamics in (8) can now
be expressed as

ė = (A− LC) e+ ϕf (t, e) + ϕg(t, e, u). (17)

where A := Mf1 +Mg1 . The following theorem establishes
convergence of the estimator, provided the control input
remains bounded and the system trajectories remain within
the compact set C.

Remark 2. Note that the assumption that the trajectory and
control signals are bounded applies only to the following
theorem, and not to the controller designed in Section V. The
controller designed in Section V ensures that provided the
initial condition is close enough to the origin, the trajectories
stay within the compact set C. As such, provided the initial
condition is close enough to the origin the bounds on the
derivatives of f and g are guaranteed to hold along the
trajectories of the closed-loop system.

Theorem 1. Given a system satisfying Assumption 1, pro-
vided the control input remains bounded and the system
trajectories remain within the compact set C, if there exists
a symmetric positive definite matrix P , and observer gains
L, H , K that satisfy the matrix inequality
(
(A− LC)

T
P

+P (A− LC)

)
+ 2αP P − Jfh

T
21 P − Jgk

T
21

P − Jfh21 −(Jf )22 0
P − Jgk21 0 −(Jg)22

 ≤ 0,

(18)
where Jfh21 := (Jf )21 (I −HC) and Jgk21 :=
(Jg)21 (I −KC), then the observer error system in (17) is
locally uniformly asymptotically stable.

Proof. Let D be an open subset of the set {e ∈ Rn : x, x̂ ∈
C} and consider the continuously differentiable candidate
Lyapunov function, Ve : D → R defined as Ve (e) := eTPe,
which satisfies the inequality λmin(P )∥e∥2 ≤ Ve (e) ≤
λmax(P )∥e∥2 where λmin(·) and λmax(·) denote the min-
imum and maximum eigenvalues of a matrix, respectively.
Since P is a positive definite matrix, both eigenvalues are
positive. On the set D, the orbital derivative of the Lyapunov
function along the trajectories of (8) can be expressed as

V̇e(e) =

[
e
ϕf

]T


(
Mf1−

LC

2

)T

P

+P

(
Mf1−

LC

2

)
 P

P 0


[
e
ϕf

]

+

[
e
ϕg

]T


(
Mg1−

LC

2

)T

P

+P

(
Mg1−

LC

2

)
 P

P 0


[
e
ϕg

]
. (19)

Substituting (13) and (14) in (19) yields

V̇e(e)=

 e
ϕf

ϕg

T(A−LC)
T
P+P (A−LC) P P
P 0 0
P 0 0


−

 0 (I−HC)
T
(Jf )12 0

(Jf )21(I−HC) (Jf )22 0
0 0 0


−

 0 0 (I−KC)
T
(Jg)12

0 0 0
(Jg)21(I−KC) (Jg)22 0

 e
ϕf

ϕg

≤0

(20)

Provided the LMI in (18) is satisfied for some constant α >
0, the multiplier matrices and sector conditions formulated
in (13) and (14), and the S-Procedure Lemma [28] can be
used to guarantee that the orbital derivative is bounded as
(cf. [11])

V̇e (e) ≤ −2αVe (e) ,∀e ∈ D. (21)

Using the bound in (21), it can be concluded that the origin of
the error system, e = 0, is locally uniformly asymptotically
stable. In particular, let r ∈ R>0 be a constant such that,
Br := {e ∈ Rn | ∥e∥ ≤ r} ⊂ D and, W2(∥e∥) :=

λmin(P )∥e∥2. Select c > 0 such that c < r2λmin(P )
2 ,

Theorem 4.9 in [29] can then be invoked to conclude that
every trajectory starting in {e ∈ Br | W2(∥e∥) ≤ c} stays
within D for all t ≥ 0 and satisfies

∥e(t)∥ ≤ β(∥e(t0)∥, t− t0),∀t ≥ t0 ≥ 0 (22)

where β is a class KL function.

Remark 3. The matrix inequality can be reformulated as
a linear matrix inequality (LMI) using the typical variable
substitution method. Indeed, substituting L = P−1R in (18),
the matrix P and the observer gains L, H , and K can be
obtained by solving the LMI
(

ATP+PA

−CTRT−RC

)
+2αP P−Jfh

T
21 P−Jgk

T
21

P−Jfh21 −(Jf )22 0
P−Jgk21 0 −(Jg)22

≤0,

(23)
for P , R, H , and K.

Remark 4. The observer design is only valid if the control
input remains bounded and the system trajectories remain
within the compact set C where the bounds on the derivatives
of f and g, in (5) and (6), respectively, are valid. In the
theorem above, the derivative bounds are local, and as a result
the observer error is locally uniformly asymptotically stable.
If the derivative bounds hold globally, then a similar analysis
can be used to show that the observer error is globally
uniformly asymptotically stable. The controller designed in
Section V ensures that provided the initial condition is close
enough to the origin, the trajectories stay within the desired
compact set C.



V. CONTROL DESIGN

To achieve the control objective stated above while satis-
fying all constraints of the system, the cost functional to be
minimized is given as

J(x, u(·)) :=
∫ ∞

0

Q(ϕ(τ, x, u[t,τ)(·))) + U(u(τ))dτ, (24)

over the set U piecewise continuous functions t → u(t),
where ϕ(t, x, u(·)) is a solution of (1) under control signal
u(·) starting from x(0), Q : Rn → R is a continuous, positive
definite function and U : Rm → R, introduced to address
the saturation constraint on the control, is defined as

U(u) := 2

∫ u

0

(λ tanh−1(υ/λ))TRdυ, (25)

where R := diag(r1, . . . , rm) and uI and UI are obtained
by restricting the domains of u and functions in UI to the
interval I ⊆ R, respectively. Assuming the optimal controller
exists, then let the optimal value function, V ∗ : Rn → R, be
expressed as

V ∗(x) := min
u(·)∈U[t,∞)

∫ ∞

t

Q(ϕ(τ, x, u[t,τ)(·))) + U(u(τ))dτ.

(26)
Assuming that the optimal value function is continuously dif-
ferentiable, it can be shown to be the unique PD solution of
the Hamilton-Jacobi-Bellman (HJB) equation, [30, Theorem
1.5],

min
u∈Rm

(
∇xV (f(x) + g(x)u) +Q(x) + U(u)

)
= 0, (27)

where ∇(·) :=
∂

∂(·) . Therefore, the optimal controller is given
by the feedback policy u(t) = u∗(ϕ(t, x, u[0,t))) where u∗ :
Rn → Rm defined as

u∗(x) := −λ tanh(D∗), (28)

where D∗ = (1/2λ)R−1g(x)T∇xV
∗(x) ∈ Rm. Substituting

equation (28) in (25), the function U is given as

U(u∗) = λ∇xV
∗(x)Tg(x) tanh(D∗)

+ λ2R ln(1− tanh2(D∗)), (29)

where R := [r1, . . . , rm] ∈ R1×m and 1 ∈ Rm denotes
a column vector having all of its elements equal to one.
Substituting optimal control input, (28) in the HJB equation
in (27) yields, ∇xV

∗ (f(x) + g(x)u∗(x))+Q(x)+U(u∗) =
0.

A. Value Function Approximation

Solving the above HJB equation is generally infeasible due
to its inherent non-linearity, hence to find an approximate
solution, estimates of the value function and the control
policy are introduced. The value function and its gradient
can be expressed as

V ∗ (x) = WTσ (x) + ϵ (x) , (30)

∇xV
∗ (x) = ∇xσ

T (x)W +∇xϵ (x) , (31)

respectively. W ∈ RL is an unknown vector of bounded
weights, σ : Rn → RL is a vector of continuously dif-
ferentiable nonlinear activation functions such that σ (0) =
0 and ∇xσ (0) = 0, L ∈ N is the number of basis
functions, and ϵ : Rn → R is the reconstruction error.
Using the Stone-Weierstrass Theorem [31, Theorem 1.5],
given a compact set C, the activation functions σ can be
selected so that the weights and the approximation er-
rors satisfy supx∈C ∥W∥ ≤ W , supx∈C ∥σ(·)∥ ≤ ∥σ∥,
supx∈C ∥∇(·)σ(·)∥ ≤ ∥∇σ∥, supx∈C ∥ϵ(·)∥ ≤ ∥ϵ∥ and
supx∈C ∥∇(·)ϵ(·)∥ ≤ ∥∇ϵ∥, where ∥(·)∥ denotes a positive
constant.

Since the ideal weights, W , are unknown, estimates V̂ :
Rn × RL → R and û : Rn × RL → Rm are defined as

V̂
(
x̂, Ŵc

)
:= ŴT

c σ (x̂) , (32)

û
(
x̂, Ŵc

)
:= −λ tanh(D̂), (33)

where D̂ = 1
2λR

−1g(x̂)T∇x̂σ(x̂)
TŴc. The critic weights,

Ŵc ∈ RL are an estimate of the ideal weights W . Sub-
stituting (32) and (33) into (27), the residual term, δ̂ :
Rn ×RL ×RL → R, referred to as the Bellman error (BE),
is obtained as

δ̂
(
x̂, Ŵc

)
= ∇xV̂ (x̂, Ŵc)

(
f(x̂) + g(x̂)û(x̂, Ŵc)

)
+ U(û) +Q(x̂). (34)

By simplifying (34), the BE can be expressed as

δ̂
(
x̂, Ŵc

)
= −ω

(
x̂, Ŵc

)T
W̃c +∆

(
x̂, Ŵc

)
, (35)

where ω := ∇σ
(
f̂ + ĝû

)
and ∆ := −∇ϵ

(
f̂ + ĝu∗

)
+

λWT∇σĝ
(
tanh(D∗)− tanh(D̂)

)
+ 2λ2R(CD∗ − CD̂) +

λ2R(εD̂ − εD∗).

To accurately approximate the value function, online
RL methods require persistence of excitation (PE) condi-
tion [17], [32], which is difficult to guarantee in prac-
tice. However, through BE extrapolation for excitation via
simulation, stability and convergence of online RL can be
established using Assumption 2 [17]. To simulate experi-
ence using BE extrapolation, select a set of trajectories
{xi : R≥t0 → Rn | i = 1, · · · , N} and extrapolate the BE
along these trajectories to yield the BEs, δ̂i : Rn × RL ×
RL → R, given by

δ̂i

(
xi, Ŵc

)
:= ∇xV̂ (xi, Ŵc)

(
f (xi) + g (xi) û(xi, Ŵc)

)
+ U(û) +Q(xi). (36)

Given the critic weight estimation error W̃c := W − Ŵc and
substituting (32) and (33) into (27), and subtracting from
(34), the BE can be expressed as

δ̂i

(
xi, Ŵc

)
:= −ωi

(
xi, Ŵc

)T
W̃c +∆i

(
xi, Ŵc

)
, (37)

where f̂i := f (xi), ĝi := g (xi), σi := σ(xi), ωi :=



∇σi

(
f̂i + ĝiû(xi, Ŵc)

)
, ∆i := −∇ϵi

(
f̂i + ĝiu

∗(xi)
)
+

λWT∇σiĝi

(
tanh(Di

∗)− tanh(D̂i)
)

+ 2λ2R(CDi
∗ −

CD̂i
) + λ2R(εD̂i

− εDi
∗), ∇ϵi = ∇ϵ(xi). To simplify

notation, the function arguments are being suppressed.

B. Update laws for Critic weights

To guarantee that the estimated value function weights,
Ŵc, converge to their ideal weights in (30), the estimated
value function weights are updated based on the result of
the stability analysis in Section VI as

˙̂
Wc = −kc

N
Γ

N∑
i=1

ωi

ρi
δ̂i, Γ̇ = βΓ− kc

N
Γ

N∑
i=1

ωiω
T
i

ρ2i
Γ, (38)

with Γ (t0) = Γ0, where Γ : R≥t0 → RL×L is a time-varying
least-squares gain matrix, ρi (t) := 1 + γωT

i (t)ωi (t), γ ∈
R>0 is a constant normalization gain, β ∈ R>0 is a constant
forgetting factor, and kc ∈ R>0 is a constant adaptation gain.

VI. STABILITY ANALYSIS

In this section, stability analysis of the observer-controller
RL architecture will be carried out using Lyapunov meth-
ods. To facilitate the stability analysis, the following rank
condition is utilized in the stability analysis

Assumption 2. There exists a constant c1 such that the finite
set of trajectories {xi : R≥t0 | i = 1, . . . , N} satisfies

0 < c1 ≤ inf
t∈R≥T

λmin

(
1

N

N∑
i=1

ωi (t)ω
T
i (t)

ρ2i (t)

)
. (39)

As described in [4], since ωi is a function of xi and
Ŵc, Assumption 2 cannot be guaranteed a priori. However,
unlike the PE condition utilized in [33], Assumption 2 can be
verified online. Furthermore, since λmin

(∑N
i=1

ωi(t)ω
T
i (t)

ρ2
i (t)

)
is non-decreasing in the number of samples, N , Assumption
2 can be met, heuristically, by increasing the number of
extrapolation trajectories. The calculation of a precise bound
on the number of extrapolation trajectories is out of the scope
of this paper.

Let Z := [xT, eT, W̃T
c ]T represent the concatenated state

of the closed-loop system and let a continuously differen-
tiable candidate Lyapunov function, VL : R2n+L×R≥0 → R,
be defined as,

VL (Z, t) := V ∗ (x) +
1

2
W̃T

c Γ−1(t)W̃c + Ve (e) , (40)

where V ∗ represent the optimal value function and the
lyapunov function Ve is introduced in Section III. To
facilitate the stability analysis, let χ ⊂ C × D × RL be an
open set, let c ∈ R>0 be a constant defined as c := β

2Γkc
+

c1
2 ,

and let ι ∈ R be a positive constant defined as

ι :=
L2
gσW

2

2λ2λmin(P )
+

3∥Grσ∥
2

4λ2kcc
+ (1/2λ)∥Gr∥∥∥∇ϵ∥

+ λLg∥∇ϵ∥+ 3kc
4c

∥ωi

ρi
∥2∥∆i∥2, (41)

where Grσ (x) := R−1g(x)T∇xσ
T (x), Grσ (x̂) :=

R−1g(x̂)T∇x̂σ(x̂)
T, Gr (x) := R−1g(x)T, and Lgσ denotes

the Lipschitz constant of Grσ over the set χ. As shown in
[17, Lemma 1], provided (2) holds and λmin{Γ−1

0 } > 0, the
update law in (38) ensures that the least squares update law
satisfies

ΓIL ≤ Γ (t) ≤ ΓIL, (42)

∀t ∈ R≥0 and some Γ,Γ > 0. Since the candidate Lyapunov
function is positive definite, [29, Lemma 4.3] and the bound
in (42) can be used to conclude that it is bounded as

v (∥Z∥) ≤ VL (Z, t) ≤ v (∥Z∥) , (43)

for all t ∈ R≥0 and for all Z ∈ R2n+L, where v, v : R≥0 →
R≥0 are class K functions. Let υl : R≥0 → R≥0 be a class
K function such that υl (∥Z∥) ≤ λmin(Q)

2 ∥x∥2+ kcc
6 ∥W̃c∥2+

λmin(P )
4 ∥e∥2.

Theorem 2. Provided Assumptions 1 and 2 hold, there
exists a symmetric positive definite matrix P , and observer
gains L, H , K that satisfy the matrix inequality in (18), the
control gains are selected large enough based on the sufficient
condition 1

υl
−1 (ι) ≤ υ−1 (υ (ζ)) , (44)

and the weights Ŵc and Γ are updated according to (38),
then the concatenated state, Z, is locally uniformly ultimately
bounded under the controller designed in (33).

Proof. The orbital derivative of the candidate Lyapunov
function, VL, along the trajectories of (1), (8), (38) is given
by

V̇L (Z, t) = ∇xV
∗(x)ẋ− W̃T

c Γ−1(t)
˙̂
Wc

− 1

2
W̃T

c Γ−1Γ̇Γ−1(t)W̃c + V̇e(e). (45)

Substituting (1), (21), (27), (28), (33), and (38) in (45),
using the fact that ωiωi

T

ρ2
i

≤ ωiωi
T

ρi
, applying completing of

squares, triangle inequality and Cauchy Schwartz inequality,
the orbital derivative is bounded, on the set χ× R≥0, as

V̇L(Z, t) ≤ −λmin(Q)∥x∥2− kcc

3
∥W̃c∥2−

λmin(P )

2
∥e∥2+ι.

(46)
Let ζ be a constant such that Bζ ⊂ χ. Based on the
conditions stated in (44) and (21), the orbital derivative can
be bounded as

V̇L(Z, t) ≤ −υl (∥Z∥) ,∀υl−1(ι) < ∥Z∥ < ζ,∀t ≥ 0. (47)

Using the sufficient condition stated in (44), [29, Theo-
rem 4.18] can be invoked to conclude that Z is locally
uniformly ultimately bounded. In particular, all trajecto-
ries starting from initial conditions bounded by ∥Z(0)∥ ≤

1Despite the fact that ι generally increases with increasing ζ, the condition
in (44) can be satisfied provided the points for BE extrapolation are selected
such that c, introduced in (VI) and control gain, kc is large enough, and the
basis for the value function approximation are selected such that ∥ϵ∥ and
∥∇ϵ∥ are sufficiently small.



υ−1
(
υl (ζ)

)
remain with χ for all t ≥ 0 and satisfy

lim supt→∞ ∥Z(t)∥ ≤ υ−1
(
υl (ι)

)
. Therefore, provided

∥Z(0)∥ ≤ υ−1
(
υl (ζ)

)
, the state and the state estimates,

under the controller in (33) and the observer in (7), remain
within the compact set C where the Jacobian bounds and the
Lipschitz constants are valid.

VII. CONCLUSION

An observer-controller framework for output feedback RL
in input-constrained nonlinear systems is developed. LMIs
are formulated to obtain observer gain matrices and an
MBRL-based controller is developed that maintains stability
while finding an approximate solution to the optimal control
problem. Simulation results demonstrate the effectiveness of
the developed method and local uniform ultimately bound-
edness of the system states is guaranteed using a Lyapunov-
based stability analysis.

If the LMI is poorly conditioned, this can lead to rank
deficiency in certain regions of the state space. To address
these numerical issues, the current LMI architecture can be
augmented with techniques such as [34] which uses a delta
operator formulation of the LMI. Future research will also
involve introducing a system identifier into the observer RL
architecture that learns the system’s dynamics for systems
where the parameters of the system model are uncertain.

REFERENCES

[1] R. Kamalapurkar, “Model-based reinforcement learning for online
approximate optimal control,” Ph.D. dissertation, University of
Florida, 2014.

[2] ——, “Simultaneous state and parameter estimation for second-order
nonlinear systems,” in Proc. IEEE Conf. Decis. Control, Melbourne,
VIC, Australia, Dec. 2017, pp. 2164–2169.

[3] R. V. Self, M. Harlan, and R. Kamalapurkar, “Model-based
reinforcement learning for output-feedback optimal control of a class
of nonlinear systems,” in Proc. Am. Control Conf., Philadelphia, PA,
USA, Jul. 2019, pp. 2378–2383.

[4] S. M. N. Mahmud, S. A. Nivison, Z. I. Bell, and R. Kamalapurkar,
“Safe model-based reinforcement learning for systems with parametric
uncertainties,” Front. Robot. AI, vol. 8, no. 733104, pp. 1–13, Dec.
2021.

[5] P. Cichosz, “An analysis of experience replay in temporal difference
learning,” Cybern. Syst., vol. 30, no. 5, pp. 341–363, 1999.
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