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Abstract— This paper presents an integral concurrent learn-
ing (ICL)-based observer for a monocular camera to accurately
estimate the Euclidean distance to features on a stationary ob-
ject, under the restriction that state information is unavailable.
Using distance estimates, an infinite horizon optimal regulation
problem is solved, which aims to regulate the camera to a
goal location while maximizing feature observability. Lyapunov-
based stability analysis is used to guarantee exponential con-
vergence of depth estimates and input-to-state stability of
the goal location relative to the camera. The effectiveness of
the proposed approach is verified in simulation, and a table
illustrating improved observability through better conditioning
of the regressor is provided.

I. INTRODUCTION

The use of drones and other micro air vehicle systems has
seen rapid growth in recent years due to their ability to per-
form dangerous or complex tasks such as surveillance, search
and rescue, and weather monitoring, that are challenging or
even impossible for human pilots [1], [2]. In the absence of
state-feedback information from a positioning system, these
robotic systems are forced to navigate, relying solely on
local sensing data (e.g., camera images, inertial measurement
units, and wheel encoders). The poses of objects in the
surrounding environment relative to a robot must thus be
determined from sensor data to inform estimation of its pose;
otherwise, the performance of the controller may be affected,
and the robotic system may fail to achieve its objective.

Accurately estimating the pose of a robot using cameras
to reconstruct the environment using scaled Euclidean coor-
dinates of an object is a key challenge, commonly referred
to as simultaneous localization and mapping (SLAM) [3]–
[6]. A significant challenge in SLAM is determining the
scale of objects in a 2D image, given the loss of depth
information. Several image-based methods estimate depth by
reconstructing the structure of an object by using multiple
images and scale information [7], [8], or by estimating
motion using the camera’s linear or angular velocities [9]–
[24] where scales can be recovered using multiple calibrated
cameras [7], [8]. However, the performance of motion-based
methods is limited when the objects lack parallax between
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successive camera images. Alternative approaches include
the use of extended Kalman filters (EKFs) [9], [11]–[13],
[25] for depth estimation. For discrete time systems [26]
developed EKFs with convergence guarantees. However, due
to the nature of EKFs their convergence result is local,
and the corresponding propagation equations are only valid
if the estimates are within a small neighborhood of the
actual state. With techniques, such as those proposed in
[14], [16], [17], [19], [21], [23], asymptotic convergence
of structure estimation errors is guaranteed, and some of
them guarantee exponential convergence of scale estimates
[10], [15], [18], [20], [22]. However, these methods rely on
stringent conditions such as persistence of excitation (PE) or
extended output Jacobian (EOJ), which may be difficult to
satisfy in practice.

This paper extends the results of [24], [27], which devel-
oped exponentially converging observers using concurrent
learning (CL) and integral concurrent learning (ICL) [24],
[28]–[30] to estimate the Euclidean distance to features on a
stationary object in the camera’s field of view (FOV) under
the assumption that the velocities of the camera are known.
The CL-based techniques in [24], [27] guarantee exponential
convergence of depth estimates while relaxing the PE as-
sumption in favor of a finite excitation (FE) condition, which
can be monitored and verified online. Without sufficient
excitation, depth estimation is affected as monocular cameras
cannot observe the scale of objects.

Excitation conditions require the motion of the camera
to be non-parallel to the line joining the camera and the
object [31]. To achieve such motion, this paper develops
an adaptive optimal control scheme that plans velocities
for depth observability maximization by penalizing non-
orthogonal motion of a monocular camera as it attempts to
reach a goal location. The paper demonstrates that feature
observability can be improved through velocity planning,
without the need for added excitation, by introducing a
novel cost function that yields controllers with theoretical
stability guarantees. To the best of our knowledge, this is
the first study in the current path planning literature where
adaptive optimal control is employed to plan velocities for
maximizing depth observability.

II. CAMERA MOTION MODEL

Consider a monocular camera that tracks features on a
stationary object while the features are within its FOV using
techniques similar to those in [32], [33]. Leveraging these
tracked features, the camera estimates the relative distances
between the features and itself, subsequently utilizing these
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Fig. 1. Camera tracking four planar features on an object while moving
from C to G .

estimates to reach a user-specified goal location. Let the
world frame be a fixed inertial reference frame, denoted by
W := {x⃗w, y⃗w, z⃗w}, with its origin located at Ow. Let the
camera frame, denoted by C := {x⃗c, y⃗c, z⃗c} be fixed to the
camera, with its origin Oc located at the principal point of
the camera. Let the goal frame G := {x⃗g, y⃗g, z⃗g}, be fixed
to the goal, with its origin located at Og . The three frames
are illustrated in Figure 1.

To facilitate the development of the camera model, the
following assumptions are necessary.

Assumption 1: The stationary object has features that can
be detected and tracked, provided it is within the camera’s
FOV. Specifically, ∀t ∈ R≥0, a set of at least four trackable
planar features are in the camera’s FOV [34].

Assumption 2: While the goal location may lie outside the
camera’s FOV, the position of the ith feature on the object
relative to the goal position, denoted by psi

g
∈ R3, is known.

Assumption 3: The camera’s intrinsic matrix A ∈ R3×3

is known and invertible [8].
Given a stationary object s with its ith feature denoted by

si for all i = 1, . . . , n, Assumptions 1 and 2, the position of
the ith feature on the object relative to the goal, psi

g
∈ R3,

is known. Consequently, the position of the goal relative to
the camera can be determined as

pg
c
(t) = psi

c
(t)−Rg

c(t)p
si
g
, (1)

where pg
c
(t) ∈ R3 denotes the unknown position of the goal

relative to the camera, psi
c
(t) ∈ R3 denotes the unknown

position of the ith feature on the object, with respect to
C , and Rg

c(t) ∈ R3×3 is the rotation matrix describing the
orientation of G with respect to C . The kinematics of the
moving monocular camera relative to the goal location are
given by

ṗg
c
(t) = vgc(t) and q̇gc (t) =

1

2
B(qgc (t))ω

g
c(t), (2)

where vgc(t) ∈ R3 and ωg
c(t) ∈ R3 represent the linear

(unknown) and angular (known) velocities of G with respect

to C , respectively, B(q(t)) :=

 −qv
⊤

q0 I3×3 +q×v

 ∈ R4×3 is

an orthogonal matrix which has the pseudoinverse property
B⊤(q(t))B(q(t)) = I3×3, where I3×3 is a 3 by 3 identity
matrix, and qgc (t) ∈ R4 represents the quaternion param-
eterization of the rotational matrix Rg

c(t), describing the

orientation of G with respect to C , with q :=
[
q0 q⊤v

]⊤
∈

S4 which has the standard basis {1, i, j, k}, where S4 :=
{x ∈ R4|x⊤x = 1}, and q0 ∈ R and qv ∈ R3 represent the
scalar and vector components of q, respectively. The angular
velocity of G with respect to C given as ωg

c(t) is assumed
to be known for the rest of the development of the paper.

Equation (1) can be equivalently expressed in the form[
usi
c (t) −ug

c(t)
]dsic (t)

dgc(t)

 = Rg
c(t)u

si
g dsig , by rearranging

the terms, where dsic (t) ∈ R>0 and usi
c (t) ∈ R3 are the

magnitude and direction of the position vector psi
c
(t) of

feature si expressed in C , respectively; dgc(t) ∈ R>0 and
ug
c(t) ∈ R3 are the magnitude and direction of the position

vector pg
c
(t) of the goal G expressed in C , respectively; and

dsig ∈ R>0 and usi
g ∈ R3 are the magnitude and direction

of the position vector psi
g

of feature si expressed in C ,
respectively. Under Assumptions 1 - 3, the rotation matrix
Rg

c(t) and unit vector ug
c(t) can be determined from a general

set of features on the object using techniques such as planar
homography decomposition or essential decomposition. In
addition, the unit vectors usi

g and usi
c (t) can be obtained from

usi
g :=

P
si
g

∥P si
g ∥ and usi

c (t) := A−1P
si
c (t)

∥A−1psi
c

(t)∥ where P si
g , P si

c (t)

are the homogeneous coordinates of feature si in G and C ,
respectively. The only remaining unknowns are the distances
dsic (t), dgc(t) and dsig . These unknowns are estimated in
the following using an ICL-based observer. To simplify the
notation, let Hsi(t) :=

[
usi
c (t) −ug

c(t)
]
∈ R3×2. While

dgc(t) > 0, the term H⊤
si(t)Hsi(t) is invertible such that (cf.

[27]) dsic (t)

dgc(t)

 = Ysi(t)d
si
g , (3)

where Ysi(t) :=
(
H⊤

si(t)Hsi(t)
)−1

H⊤
si(t)R

g
c(t)u

si
g is invert-

ible and measurable under Assumptions 1-3. Furthermore,
since the goal and the stationary object are stationary, the
time derivatives of the unknown distances are known and
given by

ḋsic (t) = −usi
c

⊤(t)vc(t), (4)

ḋgc(t) = −ug
c
⊤(t)vc(t), and (5)

ḋsig = 0, (6)

where vc(t) ∈ R3 represents the velocity of the camera,
expressed in C . Since the goal location is fixed in W , the
relationship between vc(t) and vgc(t) is given by vc(t) =
−vgc(t).

The control objective is to design the camera velocity vc(t)
to improve feature observability by maximizing orthogonal



motion of the camera with respect to the plane containing
the features. The objective is achieved by using the ICL-
based observer to generate estimates of the distances denoted
by d̂sic (t) ∈ R, d̂gc(t) ∈ R and d̂sig (t) ∈ R. Using these
estimates and given the known position of the ith feature of
the stationary object relative to the goal location, the position
of the goal relative to the camera expressed in C , p̂g

c
, can be

estimated using

p̂g
c
(t) = p̂si

c
(t)−Rg

c(t)p
si
g
, (7)

where p̂si
c
(t) ∈ R3 denotes the estimate of the position of

the ith feature on the object with respect to C . Let Is denote
the origin of the feature frame and select any three features
out of the number of features on the plane that surrounds Is
as depicted in Figure 1. Let ns ∈ R3 represents the normal
vector to the plane containing s1, s2, s3, and Is which can
be expressed as ns =

(
ps1
w

− ps2
w

)
×

(
ps3
w

− ps2
w

)
, where

ps1
w

, ps2
w

, and ps3
w

∈ R3 represents the position of s1, s2
and s3 expressed in W , respectively, and the notation ×
represents the cross product. An optimal control problem
is then formulated to generate the desired linear velocity
commands vgc for the camera, online, to minimize the cost
functional

J(pg
c
(·), vgc(·)) =

∫ ∞

0

rLQR(p
g
c
(τ), vgc(τ))+rORTHO (v

g
c(τ)) dτ,

(8)
over the set U of piece-wise continuous functions and under
the dynamic constraint in (2). The linear quadratic regulator
(LQR) cost denoted by rLQR : R3 × R3 → R is designed to
drive the camera to the goal while the orthogonality cost de-
noted by rORTHO : R3 → R is designed to improve estimates
of pg

c
by encouraging orthogonal motion of the camera to the

plane that contains the features. The LQR cost rLQR is defined
as rLQR(p

g
c
(t), vgc(t)) := pg⊤

c
(t)Qcp

g
c
(t) + vg⊤c (t)Rcv

g
c(t),

where Qc ∈ R3×3 and Rc ∈ R3×3 are constant positive
definite symmetric matrices. The orthogonality cost rORTHO

is designed as rORTHO(v
g
c(t)) := γc (⟨vgc(t), ns⟩)

2, where
γc ∈ R>0 is a user-defined constant designed to maximize
orthogonality of the motion of the camera relative to the fea-
ture plane. The goal to move the camera orthogonally relative
to the feature plane is captured in (8) via minimization of
the dot product ⟨vgc(t), ns⟩.

III. ICL-BASED OBSERVER DESIGN

An ICL update law is implemented to estimate the un-
known distances dsic (t), dgc(t), and dsig by integrating (4), (5)
and (6), respectively, over a time delay T ∈ R>0 to obtaindsic (t)

dgc(t)

−

dsic (t− T )

dgc(t− T )

 = −
∫ t

t−T

usi
c

⊤(τ)

ug
c
⊤(τ)

 vc(τ)dτ, (9)

for t > T . Substituting the relationship in equation (3) at
current time t and previous time t− T yields

Ysi(t)d
si
g = Usi(t) (10)

where Ysi :=

{
02×1, t ≤ T,

Ysi(t)− Ysi(t− T ), t > T,
and

Usi(t) :=


02×1, t ≤ T,

−
∫ t

t−T

[
usi
c

⊤(τ)

ug
c
⊤(τ)

]
vc(τ)dτ, t > T.

Multiplying both sides of (10) by the term Y⊤
si(t) yields

Y⊤
si(t)Ysi(t)d

si
g = Y⊤

si(t)Usi(t) (11)

In general, Ysi(t) will not have full column rank (e.g. when
the camera is stationary) implying Y⊤

si(t)Ysi(t) is positive
semidefinite but not positive definite. However, the equality
in (11) may be evaluated at several (possibly time-varying)
time instances t1, . . . , tN and summed together to yield

ΣYsi
(t)dsig = ΣUsi

(t) (12)

where ΣYsi
(t) :=

∑N
j=1 Y⊤

si(tj(t))Ysi(tj(t)), ΣUsi
(t) :=∑N

j=1 Y⊤
si(tj(t))Usi(tj(t)), and N ∈ Z≥1. The following

assumption is an observability-like condition that must be
satisfied to guarantee convergence of distance estimates in
finite time.

Assumption 4: The camera has sufficiently rich motion so
that there exist constants τ ∈ R>T and λτ ∈ R>0 such that
for all t ≥ τ , λmin{ΣYsi

(t)} > λτ , where λmin{·} denotes
the minimum eigenvalue of {·}.

Remark 1: Assumption 4 can be verified online and is
easy to satisfy provided the trajectories contain sufficient
information to make Ysi sufficiently exciting on a finite
interval [27], [34], [35].

The time τ is unknown; however, it can be determined
online by checking the minimum eigenvalue of ΣYsi

(t).
After t = τ , λmin{ΣYsi

(t)} > λτ implies that the
constant unknown distance dsig can be determined from

(12) and obtained as dsig =

{
0, t < τ,

Σ−1
Ysi

(t)ΣUsi
(t), t ≥ τ.

Substituting this expression into (3) yields

dsic (t)

dgc(t)

 ={
0, t < τ,

Ysi(t)Σ
−1
Ysi

(t)ΣUsi
(t), t ≥ τ.

Based on subsequent sta-

bility analysis, ICL update laws to generate the estimates
d̂sic (t), d̂gc(t), and d̂sig are designed as

˙̂
dsic (t):=

{
ηsi,1(t), t < τ,

ηsi,1(t) + κ1

(
νsi,1(t)− d̂sic (t)

)
, t ≥ τ,

(13)

˙̂
dgc(t):=

{
ηsi,2(t), t < τ,

ηsi,2(t) + κ2

(
νsi,2(t)− d̂gc(t)

)
, t ≥ τ,

(14)

and

˙̂
dsig (t) :=

{
0, t < τ,

κ3

(
Σ−1

Ysi
(t)ΣUsi

(t)− d̂sig (t)
)
, t ≥ τ,

(15)



respectively, where ηsi(t) := −

usi
c

⊤(t)

ug
c
⊤(t)

 vc(t), νsi(t) :=

Ysi(t)Σ
−1
Ysi

(t)ΣUsi
(t), and κ1 ∈ R>0, κ2 ∈ R>0, and κ3 ∈

R>0 are user-selected gains. Let d̃sic (t) ∈ R, d̃gc(t) ∈ R and
d̃sig (t) ∈ R represent the distance estimation errors defined
as d̃sic (t) := dsic (t) − d̂sic (t), d̃gc(t) := dgc(t) − d̂gc(t) and
d̃sig (t) := dsig − d̂sig (t), respectively. Taking their derivatives
and substituting the dynamics in (4), (5), and (6) and update
laws in (13), (14), and (15) yields

˙̃
dsic (t):=

{
0, t < τ,

−κ1d̃
si
c (t), t ≥ τ,

(16)

˙̃
dgc(t):=

{
0, t < τ,

−κ2d̃
g
c(t), t ≥ τ,

(17)

and
˙̃
dsig (t) :=

{
0, t < τ,

−κ3d̃
si
g (t), t ≥ τ,

(18)

The subsequent analysis in Section V shows that the error
d̃sic remains bounded for t < τ and decays exponentially for
t ≥ τ , once sufficient data has been gathered.

IV. DESIGN OF FEATURE OBSERVABILITY MAXIMIZING
VELOCITY

This section presents an analytical solution to the optimal
control problem in (8) using estimates of the position of the
goal relative to the camera p̂g

c
(t) obtained from the results

of the observer in Section III. The Hamilton-Jacobi-Bellman
(HJB) equation for the optimal control problem in (8) can
be expressed in the form,

0 = min
v
g
c

{
J∗′(pg

c
)vgc(p

g

c
) + pg⊤

c
Qcp

g

c
+ vg∗⊤c (pg

c
)Rcv

g∗
c (pg

c
)

+ γc
(
⟨vg∗c (pg

c
), ns⟩

)2
}
, (19)

where J∗ : R3 → R is the optimal cost-to-go. Since the
position dynamics in (2) are linear and the cost in (8) is
quadratic, the optimal cost-to-go is given by J∗(pg

c
) :=

pg⊤
c

Scp
g
c
, where Sc ∈ R3×3 is a constant positive definite

symmetric matrix, and the notation (·)′ is used to denote
∂

∂(·) . The optimal control policy, denoted by vg∗c : R3 → R3,
is given as

vg∗c (pg
c
(t)) = −R

−1

c Scp
g
c
(t), (20)

where Rc ∈ R3×3 is a positive definite matrix defined as
Rc := Rc+ γcNs and Ns ∈ R3×3 is a positive semi-definite
symmetric defined as Ns := nsn

⊤
s . Since the matrix Rc

is the sum of a symmetric positive definite matrix and a
symmetric positive semi-definite matrix, it is also symmetric
and positive definite. Substituting the (20) back into the HJB
(19) equation and simplifying yields the following necessary
and sufficient condition for optimality

−ScR
−1

c Sc +Qc = 0, (21)

where the objective is to find the matrix Sc. Given symmetric
positive semi-definite matrices Rc, Qc and Sc, the solution
to the quadratic equation in (21) is unique and is given as

Sc = R
1/2

c (R
−1/2

c QcR
−1/2

c )
1
2R

1/2

c . (22)

Since pg
c
(t) is unknown, the linear velocity of the camera is

subsequently designed using the estimate p̂g
c
(t) as

vc(t) := −v̂gc(t) = Ksp̂
g

c
(t), (23)

where Ks ∈ R3×3 is the feedback gain defined as Ks :=

R
−1

c Sc. The velocity vc(t), when represented in W , is
denoted by vcw(t) ∈ R3 and given by vcw(t) = KsR

c
w(t)p̂

g

c
(t)

where Rc
w(t) is the orientation of C with respect to W .

V. STABILITY ANALYSIS

This section presents the main theoretical results of this
paper. First, the convergence properties of the proposed
observers in Section III are presented, and finally, the con-
vergence of the position error trajectory pg

c
(t) to a given

neighborhood of the origin is presented.

A. Analysis of Camera ICL Observer Error system

Let ϑ̃(t) ∈ R9 denote a concatenated state vector con-
taining the distance estimation errors, defined as ϑ̃(t) :=[
d̃sic (t) d̃gc(t) d̃sig (t)

]⊤
and let L : R9 → R be a candidate

Lyapunov function defined as

L(ϑ̃(t)) =
1

2
ϑ̃⊤(t)ϑ̃(t). (24)

The following theorem establishes the exponential stability
of the observer error system obtained in (16), (17), and (18).

Theorem 1: Provided Assumptions 1-4 hold, the update
laws defined in (13), (14), and (15) ensure that the origin
of the observer error system is globally exponentially stable
and the trajectories of the estimation errors ϑ̃(·) converge
exponentially to the origin.

Proof: Taking the orbital derivative of the candidate
Lyapunov function in (24), along the solutions of (16),
(17), and (18), simplifying, and upper bounding, yields the
inequality

L̇(ϑ̃(t)) ≤

{
0, t < τ,

−2κL(ϑ̃(t)), t ≥ τ,
(25)

where κ = min{κ1, κ2, κ3}. At t < τ , it can be observed
from (24) and (25) that the distance estimation errors in
ϑ̃(t) are non-increasing, specifically ϑ̃(t) ≤ ϑ(0),∀t < τ .
Invoking [36, Theorem 4.10], it can be concluded that the
observer error system is exponentially stable and by the
Comparison Lemma [36, Lemma 3.4], the bound ∥ϑ̃(t)∥ ≤
∥ϑ(τ)∥e−κ(t−τ) holds for all t ≥ τ .

B. Analysis of position error system

To facilitate the following analysis, let Γs := ScR
−1
c Sc

and note that λmin(Γs)∥pgc(t)∥
2 ≤ pg⊤

c
(t)Γsp

g
c
(t) ≤

λmax(Γs)∥pgc(t)∥
2. Using the optimal cost-to-go function J∗

as the candidate Lyapunov function, the following theorem
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establishes the input-to-state stability of the position error
system.

Theorem 2: Provided Assumption 1-4 hold and the esti-
mated distances d̂sic (·), d̂gc(·), and d̂sig (·) are updated using
the update laws defined in (13), (14), and (15) respectively
such that the conditions of Theorem 1 are satisfied, then the
system in (2) is input-to-state stable with state pg

c
(·) and input√

∥d̃gc(·)∥.
Proof: The orbital derivative of the optimal cost-to-go

function is bounded as J̇(pg
c
(t)) ≤ −2λmin(Γs)∥pgc(t)∥

2 +
2λmax(Γs)∥pgc(t)∥∥p̃

g
c
(t)∥. Applying completion of squares

and using the fact that supt∈R≥0
∥ug

c(t)∥ ≤ 1 since ug
c(t) is a

unit vector, the orbital derivative is bounded for all t ≥ 0 as
J̇(pg

c
(t)) ≤ −λmin(Γs)∥pgc(t)∥

2,∀∥pg
c
(t)∥ ≥ ϱ

(√
∥d̃gc(·)∥

)
,

where ϱ

(√
∥d̃gc(·)∥

)
:=

√
2λmax(Γs)
λmin(Γs)

∥d̃gc(·)∥. Therefore, the

conditions of [36, Theorem 4.19] are satisfied and can be
concluded that the system in (2) is input-to-state stable with

state pg
c
(·) and input

√
∥d̃gc(·)∥. Since the distance error

d̃gc(·) converges exponentially to the origin according to
Theorem 1, the results of [36, Exercise 4.58] can be used
to show that as t → ∞ and the input

√
∥d̃gc(·)∥ converges

to zero, so does the state pg
c
(·).

VI. SIMULATION STUDY

To demonstrate the performance of the developed ob-
servers and to test the effects of the orthogonality cost rORTHO

on feature observability, consider a monocular camera with
dynamics as defined in (2), which is tracking four co-planar
features on a stationary object as described in Figure 1.
The control objective is to move the camera from the initial
position to the goal location using the control policy in (23),
which uses estimates of the position of the camera obtained
from the ICL-based observers developed Section III. The
simulation parameters are omitted for brevity of the paper
and are available in the arXiv version of this paper.
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Fig. 4. Trajectory of the distance error of the goal relative to the camera.
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A. Results

From Figures 2, 3, and 4, it can be observed that the
trajectories of the distance errors converge exponentially to
the origin which is consistent with the results of Theorem 1.
Similarly, it can be observed in Figure 6 and in Figure 5
that the trajectories of the actual and estimated position of
the goal relative to the camera pg

c
(·) and p̂g

c
(·), respectively,

decreases and eventually converges to the origin which is
consistent with the results of Theorem 2.

TABLE I
EFFECT OF VARIED ORTHOGONALITY PENALTY GAINS (γc) ON

REGRESSOR CONDITIONING.

γc 0 5 10 15 25 50

Avg. Cond. no 16.289 9.906 6.199 5.239 3.279 2.718

Table I illustrates how the conditioning of the regressor
ΣYsi, as defined in (12), varies with increasing γc values.
A lower condition number implies better numerical sta-
bility while estimating the Euclidean distance to the fea-
tures, maximizing feature observability. Conversely, a higher
condition indicates heightened sensitivity to measurement
errors, indicating that the regressor is poorly conditioned,
resulting in less accurate and reliable estimates. The result
of Table I demonstrates the impact of the added cost rORTHO

on obtaining better scale estimates; however, increasing the
camera gain γc beyond a certain threshold can negatively
affect the performance of the controller in achieving its
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Fig. 6. The trajectories of the estimated goal position relative to the camera
expressed in W .



objective of reaching the goal position. A careful choice
of the parameter γc allows for the right tradeoff between
maximizing feature observability and achieving the goal,
an important consideration in real-time systems, where the
camera’s objective to reach the goal must be balanced with
the need to observe the features of landmarks within the
operating environment.

VII. CONCLUSION

This paper develops a technique to plan trajectories for
a monocular camera to maximize the observability of the
features of a stationary object by formulating an optimal
control problem whose objective is to reach a goal location
while using estimates generated by ICL-based observers.
The developed method does not require the positive depth
constraint, which requires that the distance from the focal
point of the camera to the target along the axis perpendicular
to the image plane must remain positive, or the PE condition,
which is difficult to satisfy in practice. As evidenced by the
results described in Table I, noticeable improvements are
obtained due to the added orthogonality cost designed to
maximize observability. Future work will involve extending
these results to nonplanar features on an object, as well as
multiple objects that are non-stationary.
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