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Abstract— This letter presents an output feedback ap-
proach to distributed optimal formation control of linear
time-invariant multiagent systems. The formation control
problem is formulated as a differential graphical game prob-
lem. It is assumed that each agent receives partial error-
states of its immediate neighbors. To account for the de-
pendence of the value function of each agent on the error-
states of its extended neighbors, a robust observer that
estimates the error-states of the extended neighbors using
partial error-states of the immediate neighbors is designed.
The observer is integrated with a controller to approximate
a global feedback Nash equilibrium (FNE) solution of the
differential graphical game. Stability of the closed-loop
system and convergence of the estimated value functions
to the approximate FNE solution are established using
a Lyapunov-based analysis. Simulations demonstrate the
efficacy of the developed approach.

Index Terms— Multiagent systems, differential graphical
games, formation control, optimal control.

I. INTRODUCTION

D ISTRIBUTED control [1]–[4] is effective in controlling
multiagent systems, particularly when agents in the net-

work have limited computational, sensing, and communication
capabilities. Distributed control involves designing a network
of local controllers with collaborative or competitive objec-
tives, effectively distributing the computational load across the
network and mitigating the risk of system-wide failures [2].
The focus of this letter is optimal formation tracking, where
individual agents track a mobile leader while maintaining a
desired formation.

The multiagent optimal formation tracking problem is a
multi-objective optimization problem. Several notions of op-
timality can be used to address multi-objective optimization
problems, including game-theoretic notions such as Pareto
efficiency and Nash equilibria. Game theory, often associ-
ated with competition, also provides a natural framework
for defining optimality of interactions between agents in a
cooperative setting [2], [3], [5]. The game-theoretic approach
utilized in this paper is motivated by various centralized [6],
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[7] and decentralized [3], [8]–[10] techniques in the literature
that study multiagent formation-tracking through the lens of
feedback Nash equilibrium (FNE) solutions.

The key challenge in distributed control is that each agent
in the network only has partial knowledge of the state of
the multiagent system. In addition, the state of the leader
is generally not directly available to follower agents in the
network. In this letter, we use an observer-based approach
to overcome this challenge where each agent reconstructs the
state of the system using local measurements and information
gathered from its direct neighbors.

In [8], decentralization is achieved under the strict as-
sumption that the value function only depends on the local
neighborhood tracking error. In [3], the authors develop a
distributed differential games framework by solving a series
of fictitious local differential games that capture each agent’s
limited knowledge of the network. The solutions of the local
games are then combined to ensure stability, but not near-
optimality of the entire network. In contrast, the technique
developed in this paper generates approximate FNE solutions
of the differential graphical game. In [10], the authors utilize
spatially-exponentially decaying (SED) (A,B,Q,R) matrices
to show that the optimal LQR gain K is “quasi”-SED, i.e.,
the influence of a neighbor on the value function of an agent
diminishes exponentially with distance. Unlike [10], this letter
does not impose the SED requirement on the system matrices
to obtain decentralized approximate FNE policies.

In [9], the authors develop conditions on the cost functions
of each agent that guarantee that the resulting FNE policies can
be executed in a decentralized manner. However, knowledge
of the dynamics and the cost functions of the extended neigh-
borhood is needed to select the cost functions. Furthermore,
the approach in [9] requires each agent to measure the full
state of its neighbors. The observer-based approach developed
in this letter utilizes only partial state feedback and does not
require modification of the local cost functions to achieve
decentralization.

In multi-agent differential graphical games, the FNE value
functions and policies are inherently centralized, i.e., they
typically depend not only on its own state but also on the states
of its extended neighborhood. The key contribution of this
letter is to show that distributed observers [11]–[17] designed
to estimate the state of the extended neighborhood can be
utilized to decentralize the execution of the FNE policies. The
fact that the extended neighborhood is different for each agent
necessitates a careful re-design of the information exchange
component of the distributed observer. These distributed ob-
servers are then integrated with a dynamic programming-based



control architecture to develop approximate FNE policies that
rely only on local neighbor information.

II. PROBLEM FORMULATION

A. Graph Theory

Consider a multiagent system composed of N agents de-
scribed by a directed graph G(N , E), where the set of nodes
N = {1, . . . , N} and the set of edges E ⊂ N ×N represent
the agents and the communication flow between the agents,
respectively. The adjacency matrix A ∈ RN×N is defined as
A = [aij | i, j ∈ N ], where aij > 0 if (j, i) ∈ E and aij = 0 if
(j, i) /∈ E . The digraph is assumed to have no repeated edges,
i.e., (i, i) /∈ E ,∀i, which implies aii = 0,∀i. The set of (1-hop)
neighbors of agent i is defined as Ni := {j : (j, i) ∈ E}∪{i}.
The set N−i = Ni \ {i}, denotes the set of neighbors of
agent i, excluding agent i. The in-degree matrix D ∈ RN×N

is defined as D = diag(di), where di =
∑

j∈Ni
aij , and the

graph Laplacian matrix L ∈ RN×N is defined as L = D−A.
The extended neighborhood set of node i, denoted by S−i,
is defined as the set of all other nodes that have a directed
path to node i. Formally, S−i = {j ∈ N | j ̸= i ∧ ∃κ ≤
N, {j1, . . . , jκ} ⊂ N | {(j, j1), (j1, j2), . . . , (jκ, i)} ⊂ 2E}.
Let Si = S−i ∪ {i} and let the edge weights be normalized
such that

∑
j aij = 1 for all i ∈ N . Note that the extended

neighborhood subgraphs are nested in the sense that Sj ⊆ Si

for all j ∈ Si.

B. System Dynamics

Consider a multiagent system with N agents and one leader,
where the dynamics of each agent i ∈ N are described by the
continuous-time linear system

ẋi = Aixi +Biui, (1)

where xi ∈ Rn is the state, ui ∈ Rmi is the control input,
Ai ∈ Rn×n is the state transition matrix, and Bi ∈ Rn×mi

is the control effectiveness matrix. The leader is referred to
as agent 0 with autonomous linear dynamics of the form
ẋ0 = A0x0, where x0 ∈ Rn denotes the state of the leader
and A0 is the system matrix of the leader. The communication
flow between the leader and agent i is characterized by the
pinning gain ai0 ≥ 0, where ai0 > 0 signifies that agent i can
observe the leader. The diagonal pinning gain matrix A0 ∈
RN×N , defined as A0 = diag([a10, . . . , aN0]), represents the
information flow between the leader and the followers. The
following assumptions describe the class of dynamics and
graphs studied in this letter.

Assumption 1: For all i ∈ N , (Ai, Bi) is controllable.
Assumption 2: The graph has a spanning tree with the

leader at the root.
Assumption 2 implies that there exists a directed path from

the leader to any node i. If the graph is a directed out-tree
with the leader at the root, then the extended neighbors of each
agent include all agents between it and the root. On the other
hand, if the graph is symmetric, then the extended neighbors
of each agent include all other agents.

C. Tracking Error

The control objective is to design a feedback control policy
for each agent to track the trajectory of the leader and
achieve the desired formation with respect to other agents
in the network including the leader. To achieve the desired
formation with respect to the leader, let the local neighbor-
hood formation tracking error signals be defined as ei :=∑

j∈{0}∪N−i
aij ((xi − xj)− xdij), where xdij := xdi0−xdj0

and xdi0 and xdj0 are the constant desired positions of agent
i and j with respect to the leader, respectively. The agents
reach the desired formation when xi(t)− xj(t) = xdij for all
i, j ∈ N . The vectors {xdi0}i∈N are unknown to agents not
connected to the leader, and the control objective is satisfied
when xi = xdi0 + x0 for all i ∈ N . The dynamics of the
open-loop neighborhood tracking errors are given as

ėi =
∑

j∈{0}∪N−i

aij

(
(Aixi −Ajxj) + (Biui −Bjuj)

)
, (2)

for all i ∈ N . Stacking the error signals in a vector e =
[e⊤1 , . . . , e

⊤
N ]⊤ ∈ RnN , the error dynamics can be expressed

in matrix form as e = ((L+A0)⊗ In) (x− xd − x0), where
x = [x⊤

1 , . . . , x
⊤
N ]⊤ ∈ RnN , xd = [x⊤

d10, . . . , x
⊤
dN0]

⊤ ∈
RnN , x0 = [x⊤

0 , . . . , x
⊤
0 ]

⊤ ∈ RnN , and ⊗ denotes the
Kronecker product. Under Assumption 2, it can be concluded
that the matrix ((L+A0)⊗ In) ∈ RnN×nN is nonsingular
[18, Theorem 5]. As a result, ∥e∥ = 0 implies xi = xdi0 +x0

for all i ∈ N , i.e., satisfaction of the control objective.

D. Graph Information Structure

This section encodes the information available to each agent
into their measurement matrices. Let |Si| denote the cardinality
of the set Si. Assume that Si is ordered such that the first
element is i and the first |Ni| elements correspond to direct
neighbors. Let So

i = {1, . . . , |Si|} be the index set of Si and
let πi : So

i → Si be a bijective map such that πi(j) (written
as πj

i for brevity) denotes the j-th element of Si.
We assume that each agent can partially measure its own

tracking error and the neighborhood tracking errors of its direct
neighbors, as indicated by the output equations ŷij = Ĉijej ∈
Rq , for j ∈ Ni, where Ĉij ∈ Rq×n is the corresponding
measurement matrix. With this notation, the total output mea-
sured by each agent, denoted by yi := [ŷ⊤

i,π1
i
, . . . , ŷ⊤

i,π
|Ni|
i

]⊤ ∈
Rq|Ni|, can be expressed as yi = Ci[e

⊤
π1
i
, . . . , e⊤

π
|Si|
i

]⊤, where

the output matrices Ci ∈ Rq|Ni|×n|Si| are constructed as

[Ci]j,k :=

{
Ĉij , if j = πi(k)

0q×n, otherwise,
(3)

for j = 1, . . . , |Ni|, and k = 1, . . . , |Si|.

III. FORMATION TRACKING CONTROL DESIGN

To ensure finiteness of the optimal cost, the optimal control
problem is formulated in terms of control errors µi ∈ Rmi ,
defined as µi :=

∑
j∈{0}∪N−i

aij(ui − udij), for i ∈ N (see
[2]). By substituting the desired relative position xj + xdij

into (1), the ideal relative control signals that keep agent i in



its desired relative position with respect to agent j ∈ N−i,
denoted by udij ∈ Rmi , are computed by solving

Aixj +Aixdij +Biudij = ẋj . (4)

The assumption below is needed to compute udij explicitly
(see [2, Assumption 2]).

Assumption 3: The control signals udij satisfying (4)
can be expressed along the desired trajectory as udij =

−B†
iAijxj − B†

iAixdij + Bijuj , where Aij := Ai − Aj ,
Bij := B†

iBj , and B†
i denotes the Moore-Penrose pseudo-

inverse of Bi.
Under Assumption 3, the dynamics (2) can be expressed as

ėi = Aiei +Biµi. (5)

In the following section, we treat the control error µi in (5) as
the design variable, design a control error policy that depends
on the tracking errors of the extended neighbors of agent i,
and use that to design the actual control signal in (1), see (15).

A. Differential Graphical Games

The objective of each agent is to simultaneously design and
utilize a control signal t 7→ µi(t) online that minimizes the
cost functional Ji :=

∫∞
0

ri (eNi
(τ), µi(τ)) dτ, subject to the

tracking error dynamics in (5), where t 7→ ei(t) is the solution
to the system in (5), starting from initial condition ei,0 and
under the control signal t 7→ µi(t), and eNi

:= {ej : j ∈ Ni}.
The local instantaneous cost ri : Rn|Ni| × Rmi → R≥0

is defined as ri(eNi
, µi) :=

∑
k∈Ni

∑
j∈Ni

(
e⊤k Qkjej

)
+

µ⊤
i Riµi, where the matrices Qkj ∈ Rn×n and Ri ∈ Rmi×mi

are selected such that eNi
7→

∑
k∈Ni

∑
j∈Ni

(
e⊤k Qkjej

)
is

positive definite and Ri = R⊤
i ≻ 0.

The value function of each agent generally depends on the
error states esi := [e⊤

π1
i
, . . . , e⊤

π
|Si|
i

]⊤ ∈ Rn|Si| of its extended
neighborhood, whose dynamics are given by

ėsi = Asiesi +Bsiµsi , (6)

where Asi := blkdiag(Aπ1
i
, . . . , A

π
|Si|
i

) ∈ Rn|Si|×n|Si|,

Bsi := blkdiag(Bπ1
i
, . . . , B

π
|Si|
i

) ∈ Rn|Si|×
∑

j∈Si
mj , and

µsi = [µ⊤
π1
i
, . . . , µ⊤

π
|Si|
i

]⊤ ∈ R
∑

j∈Si
mj is the stacked vector

of control policies corresponding to the extended neighbors of
agent i. The notation blkdiag(·) denotes the block diagonal
concatenation operation. The value function for agent i is
denoted by Vi : Rn|Si| × Rmi × R

∑
j∈S−i

mj → R≥0 and
is defined as

Vi

(
esi , µi, µs−i

)
:=

∫ ∞

t

ri (esi(τ), µsi(esi(τ))) dτ, (7)

which is the total cost-to-go for agent i given control policies{
µj : Rn|Sj | → Rmj

}
j∈Si

, where µs−i
is the set of control

policies of the extended neighbors of agent i, excluding agent
i itself, i.e., µs−i

= {µj : j ∈ Si} \ {µi}.
Since each agent tries to minimize their own cost function,

the optimization problem is a multi-objective optimization
problem. To define network-level optimality, we utilize the
concept of an FNE. The tuple of policies {µ∗

j : Rn|Sj | →

Rmj}j∈Si constitutes an FNE solution within the subgraph Si

if the value functions in (7) satisfy [2]

V ∗
j (esj ) := Vj

(
esj , µ

∗
j , µ

∗
s−j

)
≤ Vj

(
esj , µj , µ

∗
s−j

)
, (8)

for all j ∈ Si, for all esj ∈ Rn|Sj |, and for all admissible
policies {µj}j∈Si

. To characterize the FNE solution, let Wi :=∑
j∈S−i

EijBjR
−1
j B⊤

j E⊤
jjPsjΛji, where Eij := ∇ejesi ∈

Rn|Si|×n and Λji ∈ Rn|Sj |×n|Si| is a matrix satisfying esj =
Λjiesi , whose (k, l)-th block is defined as

[Λji]k,l =

{
In, if k ∈ Sj ∧ l = πi(k)

0n×n, otherwise.
(9)

Such a matrix Λji exists since Sj ⊆ Si.
Theorem 1: If the algebraic Riccati equations (AREs)

Psi(Asi −Wi) + (Asi −Wi)
⊤Psi

− PsiEiiBiR
−1
i B⊤

i E⊤
iiPsi +Qsi = 0, (10)

admit symmetric positive definite solutions Psi for all i ∈ N ,
then the control policies

µ∗
i (esi) = −Ksiesi , (11)

constitute an FNE solution to the differential graphical game,
where Ksi := R−1

i B⊤
i E⊤

iiPsi ∈ Rmi×n|Si|.
Proof: Using arguments similar to [2, Theorem 1], it

can be shown that if the value functions for all agents i ∈ N
are continuously differentiable and if an FNE solution exists,
then the FNE value functions are solutions of the coupled
Hamilton-Jacobi (HJ) equations

∇eiV
∗
i (esi) (Aiei +Biµ

∗
i (esi))

+
∑

j∈S−i
∇ejV

∗
i (esi)

(
Ajej +Bjµ

∗
j (esi)

)
+∑

k∈Ni

∑
j∈Ni

(
e⊤k Qkjej

)
+ µ∗⊤

i (esi)Riµ
∗
i (esi) = 0, (12)

for all esi ∈ Rn|Si|. The FNE policy µ∗
i : Rn|Si| → Rmi for

agent i is then given by µ∗
i (esi) = − 1

2R
−1
i B⊤

i ∇eiV
∗
i (esi)

⊤.
Since the dynamics in (6) are linear, the FNE value

functions are of the form V ∗
i (esi) = e⊤siPsiesi , where the

matrix Psi ∈ Rn|Si|×n|Si| satisfies Psi = P⊤
si ≻ 0 and

∇eiV
∗
i (esi) = 2e⊤siPsiEii (see [19, Chapter 6]). Let Qsi :=∑

k∈Ni

∑
j∈Ni

EikQkjE
⊤
ij . Substituting the gradient of V ∗

i

into the HJ equations in (12) yields

e⊤si

[
PsiAsi+A⊤

siPsi−PsiEiiBiR
−1
i B⊤

i E⊤
iiPsi

−2
∑

j∈S−i
PsiEijBjR

−1
j B⊤

j E⊤
jjPsjΛji+Qsi

]
esi = 0. (13)

The HJ equation in (13) holds if and only if Psi satisfies the
ARE in (10). Thus, if the ARE in (10) is satisfied for all
i ∈ N , then the FNE strategies are given by (11).

Remark 1: In the simulation example in Section VI, the
coupled AREs in (10) are solved using the method developed
in [20]. For a discussion on the existence of solutions to
coupled Riccati equations, see [21, Chapter 6].

Implementation of the control policy in (11), requires each
agent in the network to know the system matrices Aj , Bj , Qj ,
and Rj of their extended neighbors to compute the positive



definite matrix Psi and the control gain Ksi . The following
assumption formalizes this requirement.

Assumption 4: The matrices Aj , Bj , Qj , and Rj are known
to each agent i for all j ∈ Si.

Remark 2: The development in [8] requires only local
information, i.e., knowledge of Aj , Bj , Qj , and Rj of only
the direct neighbors, but utilizes a much stronger assumption
that the optimal value function depends only on the error-
states of the direct neighbors. The method in [9] develops
conditions on the cost function that decentralize the resulting
controllers, however, an assumption similar to Assumption
4 is needed for computation of the controllers. Similarly,
the method in [3] uses only local information but prioritizes
stabilizing solutions over approximate FNE ones. The SED-
based approach in [10] relies on decaying influence, but any
finite truncation results in loss of optimality. In summary, all
existing approaches to solve this problem either use stronger
assumptions than Assumption 4 regarding what the agents
know about each other or compromise near-optimality in
favor of stabilization. Assumption 4, while restrictive, provides
an alternative formulation of distributed optimal control that
explicitly considers the influence of neighbors of agent i
beyond its direct neighbors.

By stacking the local control policies µ∗
j (esi) from (11)

for each j ∈ Si, the extended neighborhood control vector
in (6) is given by µ∗

si(esi) = −Ksiesi , where Ksi :=

[Λ⊤
π1
i i
K⊤

s
π1
i

, . . . ,Λ⊤
π
|Si|
i i

K⊤
s
π
|Si|
i

]⊤ ∈ R
∑

j∈Si
mj×n|Si|. Since

the extended neighborhood tracking error esi is unknown to
agent i, it needs to be estimated using the output, yi. While
decentralized observer techniques like [17], [22] may not allow
full-state reconstruction, especially when the graph G is neither
strongly connected nor composed of independent strongly
connected components, it is still possible to reconstruct esi
using yi. In Section IV, we develop local observers to generate
estimates êsi := [ê⊤

π1
i
, . . . , ê⊤

π
|Si|
i

]⊤ ∈ Rn|Si| where êπj
i

is the
estimated local tracking error of the j-th extended neighbor
of the i-th agent, constructed by the i-th agent. The estimates
êsi are then used to compute an approximate FNE policy
µ̂i : Rn|Si| → Rmi given by

µ̂i(êsi) = −Ksi êsi , (14)

To infer the approximate control policy ui for agent i from
µ̂i, let the matrix σi ∈ Rmi×mi be defined as σi :=∑

j∈{0}∪N−i
aijImi

and let ẑi =
∑

j∈{0}∪N−i
aijB

†
iAij x̂j +

B†
iAixdij ∈ Rmi . Using this notation, the control policy for

agent i in (1) can be expressed in the explicit form

ui(t) = −σ−1
i Ksi êsi − σ−1

i ẑi. (15)

The following section introduces distributed state observers to
estimate the extended neighborhood tracking errors required
by the approximate FNE control policy in (15).

IV. DISTRIBUTED OBSERVER DESIGN

Motivated by the distributed observers in [14], [17], the
observer utilizes a consensus term of the form βjiêsj −βij êsi ,
where βij ∈ Rn|Si|×n|Si| and βji ∈ Rn|Si|×n|Sj | are matrices

that select error estimates corresponding to common extended
neighbors of agent i and j. The difference βjiêsj − βij êsi
drives the error estimates of all direct neighbors in the network
to consensus by allowing each agent use the error estimates
êsj of its direct neighbors to improve the estimate êsi of its
extended neighborhood tracking error.

To define βij and βji for general networks, let So
ij be the

index set of the shared extended neighbors between agents i
and j, i.e., So

ij = So
i ∩ So

j , for i, j ∈ Ni and j ̸= i. Let
πij : So

ij → Si and πji : So
ij → Sj be bijections that map

elements of So
ij to their positions in Si and Sj , respectively,

such that πij(1) = i and πji(1) = j. The matrix βij can now
be defined blockwise as

[βij ]k,l =

{
In, if k = l = πij(s) for s ∈ So

ij ,

0n, otherwise,
(16)

and the matrix βji can be expressed blockwise as

[βji]k,l =

{
In, if k = πij(s) ∧ l = πji(s) for s ∈ So

ij ,

0n, otherwise,
(17)

for all k ∈ Si and l ∈ Sj , where [βij ]k,l denotes the n × n
block in the k, l position of βij .

Since the pair (Asi , Ci) may not be observable, this paper
employs an observer design approach using Kalman observ-
ability decomposition similar to [14], [17], [22], and [23]. For
all i ∈ Si, let νi ∈ Z+ be the dimension of the observable
subspace of the pair (Asi , Ci) denoted by Im(O), such that
rank(Oi) = νi, where Oi := [Ci, CiAsi , . . . , CiA

(n|Si|−1)
si ]⊤

is the observability matrix associated with the pair (Asi , Ci).
Then, the unobservable subspace Ker(Oi) is of dimension
ρi := n|Si| − νi, and satisfies Ker(Oi)

⊥ = Im(O⊤
i )

1.
For all i ∈ Si, let Σui ∈ Rn|Si|×ρi be a matrix whose
columns form an orthonormal basis of Ker(Oi) such that
Im(Σui

) = ker(Oi), and let Σoi ∈ Rn|Si|×νi be a matrix
whose columns form an orthonormal basis for Im(O⊤

i ) such
that Im(Σoi) = Im(O⊤

i ). For each i ∈ N , define an orthog-
onal transformation matrix Σi := [Σoi ,Σui ] ∈ Rn|Si|×n|Si|

such that Σ⊤
i Σi = In|Si| for all i ∈ Si. Using Kalman

observability decomposition, the matrices Asi and Ci can
be expressed as Σ⊤

i AsiΣi = [Āi, 0νi×ρi
; 0ρi×νi

, Âi] and
CiΣi = [C̄i, 0q|Ni|×ρi

], respectively, where Āi ∈ Rνi×νi ,
Âi ∈ Rρi×ρi , C̄i ∈ Rq|Ni|×νi are defined such that (Āi, C̄i) is
an observable pair, Āi and Âi are skew-symmetric matrices,
Σ⊤

oiAsiΣoi = Āi, and Σ⊤
ui
AΣui = Âi [23, Lemma 2]. The

observer is designed as

˙̂esi = Asi êsi +Bsi µ̂si(êsi) +Gi (yi − Ciêsi)

+ γMi

∑
i∈Ni

aij
(
βjiêsj − βij êsi

)
, (18)

where µ̂si(êsi) = −Ksi êsi ∈ R
∑

j∈Si
mj , Gi ∈

Rn|Si|×q|Ni| and Mi ∈ Rn|Si|×n|Si| are observer gains ma-
trices designed as Gi := [Ḡ⊤

i , 0q|Ni|×ρi
]⊤ and Mi =

Σi[0νi×νi
, 0νi×ρi

; 0ρi×νi
, Iρi

]Σ⊤
i , respectively, where Ḡi ∈

Rνi×q|Ni| satisfies

(Āi − ḠiC̄i)
⊤Θi +Θi(Āi − ḠiC̄i) = −αIνi

, (19)

1For any matrix A ∈ Rm×n, Im(A) = {y ∈ Rm | ∃x ∈ Rn, Ax = y},
ker(A) = {x ∈ Rn | Ax = 0}.



for some symmetric positive definite matrix Θi ∈ Rνi×νi

and constant α ∈ R>0, and γ ∈ R>0 is a observer gain. In
real-world robotic systems, each agent in the network needs
proprioceptive sensors (e.g., IMUs or encoders) and exterocep-
tive sensors (e.g., GPS, cameras, or LiDAR) to achieve state
observability and communication equipment to query partial
tracking errors from its direct neighbors.

Let the estimation errors be defined as ẽsi := esi−êsi . Since
the selection matrices in (16) and (17) both satisfy βjiesj =
βijesi , the estimation error dynamics can be expressed as
˙̃esi = (Asi −GiCi) ẽsi + γMi

∑
i∈Ni

aij
(
βjiẽsj − βij ẽsi

)
.

Let ζsi = Σ⊤
oi ẽsi , ξsi = Σ⊤

ui
ẽsi . Then the estimation error

dynamics can be split into

ζ̇si =
(
Āi − ḠiC̄i

)
ζsi , (20)

ξ̇si = Âiξsi−γΣ⊤
ui

∑
i∈Ni

lijβji

(
Σuj

ξsj+Σojζsj
)
, (21)

where lij is the (i, j)-th entry of the Laplacian matrix L.

V. STABILITY ANALYSIS

To facilitate the analysis, let ζs := [ζ⊤s1 , . . . , ζ
⊤
s|Sp|

]⊤,
ξs := [ξ⊤s1 , . . . , ξ

⊤
s|Sp|

]⊤, Σo := [Σ⊤
o1 , . . . ,Σ

⊤
o|Sp|

]⊤, Σu :=

[Σ⊤
u1
, . . . ,Σ⊤

u|Sp|
]⊤, Ā = blkdiag(Ā1, . . . , Ā|Sp|), Ḡ =

blkdiag(Ḡ1, . . . , Ḡ|Sp|), C̄ = blkdiag(C̄1, . . . , C̄|Sp|), Â =

blkdiag(Â1, . . . , Â|Sp|), βs = blkdiag(β1, . . . , β|Sp|), where
βi = blkdiag(βiπ1

i
, . . . , β

iπ
|Si|
i

). The dynamics in (20) and
(21) can then be expressed as

ζ̇s =
(
Ā− ḠC̄

)
ζs, (22)

ξ̇s =
(
Â− γΣ⊤

u∆sΣu

)
ξs−γΣ⊤

u∆sΣoζs, (23)

where ∆s = (L ⊗ In)βs and λmin(∆s) > 0. Consider a set
of extended neighbors Sp corresponding to the p-th agent and
define the concatenated state vector Zp := [e⊤sp , ζ

⊤
sp , ξ

⊤
sp ]

⊤ ∈
R2n|Sp|. Let Vp : R2n|Sp| → R be a candidate Lyapunov
function for (6), (20), and (21), defined as

Vp(Zp) =
∑

i∈Sp

(
V ∗
i (esi) + ζ⊤siΘiζsi + ξ⊤siΓiξsi

)
, (24)

which satisfies the inequality vp(∥Zp∥) ≤ Vp(Zp) ≤
vp(∥Zp∥), where vp, vp : R≥0 → R≥0 are class K∞ functions
and Γi ∈ Rn|Si|×n|Si| is a positive definite gain matrix.
The convergence properties of the closed-loop system are
summarized in the following theorem.

Theorem 2: If the coupled AREs in (10) admit positive
definite solutions {Psi ≻ 0}i∈Sp

, assumptions 1–4 hold, the
observer gains {Gi}i∈Sp

are selected such that they satisfy
(19), γ is selected such that ξ̇s =

(
Â− γΣ⊤

u∆sΣu

)
ξs is

asymptotically stable, and the sufficient conditions in (28) are
satisfied, then the closed loop system in (6), (20), and (21) is
globally exponentially stable.

Proof: The Lie derivative of the candidate Lyapunov
function in (24) along the flow of (6), (20), and (21), and
under the approximate FNE policy in (14) is given by

V̇p(Zp) =
∑

i∈Sp
∇esi

V ∗
i (esi)

(
Asiesi+Bsi µ̂si(êsi)

)
+
∑

i∈Sp
2ξ⊤siΓi

(
Âiξsi−γΣ⊤

ui

∑
j∈Ni

lijβji

(
Σuj

ξsj+Σojζsj
))

+
∑

i∈Sp
ζ⊤si

(
(Āi−ḠiC̄i)

⊤Θi+Θi(Āi−ḠiC̄i)
)
ζsi . (25)

Substituting (12), (10), (14), (19), and (23), and using the
graph Laplacian properties to handle the cross terms in the
consensus term, the Lie derivative in (25) can be bounded as

V̇p(Zp) ≤ −esQses−αζ⊤s ζs−2γξ⊤s Σ⊤
u∆sΣoζs

+2e⊤s PsBsKs(Σuξs+Σoζs)

+ξ⊤s

(
(Â−γΣ⊤

u∆sΣu)
⊤Γ+Γ(Â−γΣ⊤

u∆sΣu)
)
ξs, (26)

where es = [e⊤s1 , . . . , e
⊤
s|Sp|

]⊤, Ps = blkdiag(Ps1 , . . . , Ps|Sp|),
Qs = blkdiag(Qs1 , . . . , Qs|Sp|), Ks =
blkdiag(Ks1 , . . . ,Ks|Sp|), and Γ = blkdiag(Γ1, . . . ,Γ|Sp|).
As shown in [22, Lemma 4], γ can be selected
sufficiently large such that ξ̇s =

(
Â− γΣ⊤

u∆sΣu

)
ξs

is asymptotically stable. For such a γ, there exists
a matrix Γ ≻ 0 and a scalar δ > 0 satisfying
(Â − γΣ⊤

u∆sΣu)
⊤Γ + Γ(Â − γΣ⊤

u∆sΣu) < −δInχ,
where χ =

∑
j∈Si

|Sj |. Applying completion of squares, the
triangle inequality, and the Cauchy-Schwarz inequality, the
derivative is bounded as

V̇p(Zp) ≤ −λmin(Qs)
3

∑
i∈Sp

∥esi∥2 − α
3

∑
i∈Sp

∥ζsi∥2

− δ
2

∑
i∈Sp

∥ξsi∥2 −
(

α
3 − 3κ2Σ

2
o

λmin(Qs)

)∑
i∈Sp

∥ζsi∥2

−
(

δ
2 − 3κ2Σ

2
u

λmin(Qs)
− 3γ2Σ

2
o∆s

2
Σ

2
u

α

)∑
i∈Sp

∥ξsi∥2, (27)

where κ = ∥PsBsKs∥, Σo = ∥Σo∥, Σu = ∥Σu∥, and ∆s =
∥∆s∥. Hence, provided the gain conditions

α

3
>

3κ2Σ
2

o

λmin(Qs)
and

δ

2
>

3κ2Σ
2

u

λmin(Qs)
+
3γ2Σ

2

oc∆s
2Σ

2

u

α
, (28)

are satisfied, it can be concluded that V̇p(Zp) ≤ −c∥Zp∥2, for
all Zp ∈ Rn|Sp|, where c = 1

2 min{λmin(Qs)
3 , α

3 ,
δ
2}. Invoking

[24, Theorem 4.10], it can be concluded that the closed-loop
system is globally exponentially stable.

VI. SIMULATION RESULTS

As a numerical example, consider a multiagent system with
five agents and one leader connected by a directed graph
shown in Figure 1. The dynamics of each agent are described
by the continuous-time linear system in (1), where Ai =
[0.5, 1.5; 2,−2] and Bi = [2, 0; 0, 2] for all i = 1, . . . , 5, with
the output matrix for each agent of the form in (3) where
Ĉij = [1, 0]⊤ for all i and j.

1 2345 0

Fig. 1. Communication Topology

The agents start at the origin, and their final desired relative
positions are given by xd12 = [−0.5, 1]⊤, xd21 = [0.5,−1]⊤,
xd43

= [0.5, 1]⊤, and xd53
= [−1, 1]⊤. The relative positions

are designed such that the final desired formation is a pentagon
with the leader node at the center. The leader traverses a sinu-
soidal trajectory x0(t) = [2 sin(t), 2 sin(t) + 2 cos(t)]⊤. The
desired positions of agents 1 and 3 with respect to the leader
are xd10 = [−1, 0]⊤ and xd30 = [0.5,−1]⊤, respectively.
Each agent’s initial estimates of their extended neighborhood



tracking errors are selected as ês1 = [−0.5, 1.5, 0.5,−1.0]⊤

for agent 1, ês2 = [−1.0,−1.5, 0.5, 2.0]⊤ for agent 2, ês3 =
[1.5,−2.0]⊤ for agent 3, ês4 = [−2.0, 1.5,−1.0, 2.5]⊤ for
agent 4, and ês5 = [2.5,−3.0,−2.0, 2.5,−1.5, 3.5]⊤ for agent
5. The state penalty matrix for each agent Qsi is constructed
from a base matrix Qi = I2×2, where diagonal blocks of
Qsi are Qi, and the off-diagonal blocks are 0.5Qi so that
(Qsi)ij = (Qsi)ji for i, j ∈ Ni. The control penalty matrix
is selected as Ri = I2×2. The observer gain Gi is selected to
satisfy (19) with α = 3 and γ = 5 for each agent.

0 1 2 3 4
−4

−2

0

2

t(s)

ẽ s
5
(t
)

[ẽ5]1
[ẽ5]2
[ẽ4]1
[ẽ4]2
[ẽ3]1
[ẽ3]2

Fig. 2. Trajectories of the estimation error for agent 5 and its extended
neighbors.

0 1 2 3 4

−2

0

t(s)

e(
t)

[e1]1
[e1]2
[e2]1
[e2]2
[e3]1
[e3]2
[e4]1
[e4]2
[e5]1
[e5]2

Fig. 3. Trajectories of formation tracking errors for each agent.

A. Discussion
As an example, Fig. 2 shows that the trajectories of the

actual extended neighborhood tracking errors and their esti-
mates converge for Agent 5, indicating the effectiveness of the
designed observer in (18). Observe that even though Agent 3
is not a direct neighbor of Agent 5, the developed observer
in (18) enables Agent 5 to estimate the state of Agent 3. As
shown in Fig. 3, the tracking error converges to zero, demon-
strating convergence to the desired formation and trajectory.
Note that Agents 2, 4, and 5, even without a communication
link to the leader and knowledge of their relative positions
with respect to the leader, achieve the desired formation using
the control policy in (15). The simulation results show that
agents can achieve formation without direct communication
with the leader and with only partial knowledge of the states
of their directed neighbors, despite the graph lacking strong
connectivity or independent strongly connected subgraphs.

VII. CONCLUSION

This letter presents an output feedback game-theoretic
framework to achieve simultaneous distributed formation
tracking in linear multiagent systems with local communi-
cation. Distributed observers are employed by each agent to
obtain estimates of the error states of their respective extended
neighbors using error state information of their direct neigh-
bors. The estimates are used to compute the FNE policies.

The developed approach requires the somewhat strict as-
sumption that all extended neighbors know the dynamics and

the cost functions of each other. This assumption is utilized
in the observer design to compute the control inputs of the
extended neighbors. While such computation requires solution
of Riccati equations in the linear case studied here, extension
to nonlinear systems is challenging due to the need to solve HJ
equations. The development of observers that do not require
such knowledge is a topic for future research.
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