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Target Tracking in the Presence of Intermittent
Measurements via Motion Model Learning

Anup Parikh1, Rushikesh Kamalapurkar2 and Warren E. Dixon1

Abstract—When using a camera to estimate the pose of a
moving target, measurements may only be available intermit-
tently, due to feature tracking losses from occlusions or the
limited field of view of the camera. Results spanning back
to the Kalman filter have demonstrated the utility of using a
predictor to update state estimates when measurements are not
available, but target velocity measurements or a motion model
must be known to implement a predictor for image-based pose
estimation. In this paper, a novel estimator and predictor are
developed to simultaneously learn a motion model, and estimate
the pose, of a moving target from a moving camera. A stability
analysis is provided to prove convergence of the state estimates
and function approximation without requiring the restrictive
persistent excitation condition. Two experiments illustrate the
performance of the developed estimator and predictor. One
experiment involves a stationary camera observing a mobile robot
with sporadic feature tracking losses, and a second experiment
involves a quadcopter moving between two mobile robots on a
road network.

Index Terms—Target Tracking, Switched Systems, Estimation,
Adaptive Methods

I. INTRODUCTION

A number of advances in imaging and computer vision have
enabled geometric reconstruction of features through image
feedback. Due to the projection in the imaging process, and the
resulting scale ambiguity, typical approaches exploit multiple
views of the scene, as well as scale information, to recover the
Euclidean geometry, e.g., stereo vision with a known baseline
or structure from motion (SfM) with known camera motion.
For online reconstruction (i.e., recursive methods) using a
single camera, a number of observer/filtering techniques have
been developed to solve the SfM problem (i.e., determine the
relative Euclidean coordinates of an object with respect to a
camera) for a stationary object and moving camera (cf. [1]–
[7]), a moving object with a stationary camera (cf. [7]–[12]),
as well as for the case where both the object and camera are
in motion (cf. [13], [14]). In all cases, velocity information
of either the camera or target, or both, is used to inject scale
information into the system.
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Previously developed SfM observers rely on continuous
measurement availability to show convergence of the esti-
mates. However, in many applications, image feature measure-
ments may be intermittently unavailable due to feature tracking
losses, occlusions, limited camera field of view (FOV), or even
the finite frame rate of the camera, which result in intermittent
measurements. In this paper, a novel estimator and predictor
are developed and shown to converge to within an error bound
despite the intermittent measurements. Due to the different
modes of operation (i.e., when measurements are available
versus when measurements are unavailable), the estimation
error obeys different dynamics in each mode, and switched
systems theory is used to analyze the overall stability and
performance of the system. Switched systems methods are
necessary due to the well known result that switching between
stable systems can lead to instability [15]. The problem is
exacerbated in this paper, as shown in the analysis, because the
estimation error dynamics are unstable when measurements
are unavailable. Therefore, additional analysis is necessary
to demonstrate that, despite intermittent measurements, the
overall switched estimation error dynamics are stable.

Numerous results have been developed for feature tracking
in the presence of intermittent visibility of the target. For
example, [16] and [17] describe methods for learning a motion
model online for feature motion prediction. Similarly, in [18],
[19] Kalman or particle filters are used to estimate feature
motion and predict feature coordinates while occluded. In con-
trast, [20]–[22] use visual context to increase the robustness
of feature trackers to occlusions. For the SfM problem, a
technique that is robust to occlusions or feature tracking losses
is developed in [23]; however, only the shape of the object
is recovered, and not the 3D position due to the orthogonal
projection model used. In contrast to such results, the full 6
degree of freedom (DOF) pose of the target is estimated in
this paper, and the estimates are shown to be stable.

Many of the probabilistic approaches for SfM, or the
associated simultaneous localization and mapping (SLAM)
problem, utilize a predictor similar to that developed in this
paper or circumvent the intermittent sensing issue by only
updating state estimates when new measurements are available
(see [24] and [25] for an overview). However, these approaches
are based on either linearizations of the nonlinear dynamics
(cf. [26]–[31]), and therefore only show local convergence,
or are sample based (e.g., [32] and [33]), and therefore can
only show optimal estimation in the limit as the number of
samples approach infinity. Much of the recent literature on
target tracking has focused on using suboptimal algorithms
for tracking using simplified motion models (e.g., constant
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velocity, constant turn rate, etc.), with a focus on reduced
complexity and improving practical performance, and do not
analyze estimation error growth due to model uncertainty or
show estimation error convergence [34], [35]. Some meth-
ods explicitly handle occlusions, though they either assume
availability of range measurements and only estimate position,
therefore rendering the system linear (cf. [36]–[38]), or only
estimate relative depth ordering and do not consider the pose
estimation problem, e.g., [39]. Other methods learn a model of
the target motion online using function approximation methods
(cf. [40]–[47]), though do not provide a convergence analysis.
Conversely, the full nonlinear dynamics are analyzed in this
paper, resulting in an arbitrarily large region of attraction
around the zero estimation error trajectory (put more simply,
the estimator converges for any set of initial conditions, rather
than the linearization based approaches that rely on a good
initial guess for practical performance to match their theoret-
ical local convergence results), and the proposed estimator-
predictor structure has computing requirements that can be
met by typical or low-end modern computers (see Section
VII). Furthermore, convergence and consistency proofs of
probabilistic estimators typically require knowledge of the
probability distribution of the uncertainty in the system, and
result in convergence in mean or in mean square. In com-
parison, analysis of deterministic observers typically assume
boundedness and some level of smoothness of disturbances,
and yield asymptotic or exponential convergence. The primary
contribution of this paper is in the development and analysis
of a novel estimator and predictor that ensures convergence
to an ultimate bound as well as online learning of a motion
model of the target using a deterministic framework.

Our previous results have shown stability of the position
estimation error during intermittent measurements [48], [49],
provided dwell time conditions are satisfied. In switched sys-
tems, dwell time conditions specify the minimum amount of
time a single mode or system must be active before switching
to maintain system stability, and reverse dwell time conditions
specify the maximum amount of time a system can remain
active to maintain system stability. These conditions must be
met at every switch from one system to another. In the context
of target tracking with intermittent measurements, the dwell
time conditions specify the minimum contiguous duration the
target must remain in view, and reverse dwell time conditions
specify the maximum contiguous duration the target can re-
main out of view. In [49], a zero-order hold is performed on the
state estimates when measurements are unavailable, resulting
in growth of the estimation error based on the trigonometric
tangent function, and an ultimately bounded estimation error
result. Since the tangent function is unbounded for finite
arguments, (reverse) dwell time conditions are necessary at
every period in which measurements are (un)available to
ensure stability. In [48], a predictor was used to update
the state estimates when measurements are unavailable. This
results in exponential growth of the estimation errors when
measurements are unavailable, allowing the use of average
dwell times for stability. Average dwell time conditions are
easier to satisfy than regular dwell time conditions since they
only restrict the average mode durations rather than every

duration (e.g., if a target is in view for 3 seconds, then out
of view, and then in view again for 1 second, an average
dwell time condition of 2 seconds is satisfied, but a dwell time
condition of 2 seconds is not). One downside of the approach
in [48] is that the use of a predictor requires knowledge of a
motion model of the target to generate target velocity signals
utilized in the predictor.

In this paper, the target motion model is learned on-
line. A number of adaptive methods have been developed
to compensate for unknown functions or parameters in the
dynamics; however, parameter estimates may not approach the
true parameters without persistent excitation (PE) [50]–[52].
The PE condition cannot be guaranteed a priori for nonlinear
systems (as apposed to linear systems, e.g., [50, Theorem
5.2.1]), and is difficult to check online, in general. Recently, a
technique known as concurrent learning (CL) was developed
to use recorded data for online parameter estimation [53]–[55]
with an alternative excitation condition. In CL, input and state
derivatives are recorded and used similar to recursive least
squares to establish a negative definite parameter estimation
error term in the Lyapunov analysis, and hence a negative
definite Lyapunov derivative provided a finite excitation con-
dition is satisfied. However, state derivatives can be noisy, and
require extensive filter design and tuning to yield satisfactory
signals for use in CL. A further contribution of this paper is
that the CL technique is reformulated in terms of an integral
(ICL), removing the need for state derivatives, while preserv-
ing convergence guarantees. Compared to traditional adaptive
methods that utilize PE to ensure parameter convergence, and
hence exponential stability, ICL only requires excitation for
a finite period of time, and the excitation condition can be
checked online.

In this paper, data is recorded online when measurements
are available (i.e., the target is in view of the camera). Using
the ICL technique, a motion model of the target is learned,
and used in a predictor to estimate target pose when it is
not visible to the camera. A stability analysis is provided to
show that this estimation and prediction with learning scheme
yields an estimate of the target pose that converges to within
an arbitrarily small bound around the true target pose.

Two experiments are included to illustrate the performance
of this estimator. One experiment involves a stationary camera
observing a mobile robot moving according to static vector
field. The results of this experiment demonstrate that the
learning component of the estimator quickly converges and ac-
curately predicts the robot motion. The second experiment in-
volves a moving camera observing two mobile robots moving
along a road network. Due to the limited FOV and resolution
of the camera, measurements of both robots are not available
simultaneously. Despite the intermittent measurements, and
the stochastic motions of the robots at various points on the
road network, the results demonstrate the feasibility of the
developed approach for tracking the pose of multiple targets.

II. SYSTEM DYNAMICS

Figure 1 is used to develop the image kinematics. In
Figure 1, FG denotes a fixed inertial reference frame with an
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Figure 1. Reference frames and coordinate systems of a moving camera
observing a moving target.

arbitrarily selected origin and Euclidean coordinate system,
FQ denotes a reference frame fixed to the moving object,
with an arbitrarily selected origin and Euclidean coordinate
system, and FC denotes a reference frame fixed to the camera.
The right handed coordinate system attached to FC has its
origin at the principal point of the camera, e3 ∈ E3 axis
pointing out and collinear with the optical axis of the camera,
e1 ∈ E3 axis aligned with the horizontal axis of the camera,
and e2 , e3 × e1 ∈ E3. The vectors rq ∈ E3 and rc ∈ E3

represent the vectors from the origin of FG to the origins of
FQ and FC , respectively. The kinematics of the coordinates of
the relative position vector expressed in the camera coordinate
system are

ẋ = vq − vc − ω×c x (1)

where x ∈ R3 denotes the position of the origin of FQ with re-
spect to the origin of FC (i.e., the relative position of the object
with respect to the camera), vq ,

[
vq1 vq2 vq3

]T ∈ R3

is the velocity of the origin of FQ with respect to the origin
of FG (i.e., the inertial linear velocity of the object), vc ,[
vc1 vc2 vc3

]T ∈ R3 is the linear velocity of the origin
of FC with respect to the origin of FG (i.e., the inertial linear
velocity of the camera), and ωc ,

[
ωc1 ωc2 ωc3

]T ∈ R3

is the angular velocity of FC with respect to FG (i.e., the
inertial angular velocity of the camera), all expressed in the
camera coordinate system. Also, ()

×
: R3 → R3×3 represents

the skew operator, defined as

p× ,

 0 −p3 p2

p3 0 −p1

−p2 p1 0

 .
In the following analysis, the quaternion parameterization

will be used to represent orientation. Let q ∈ H be the
unit quaternion parameterization of the orientation of the
object with respect to the camera, which can be represented
in the four dimensional vector space R4 using the standard
basis 1, i, j, k as q ,

[
q0 qTv

]T ∈ S4, where Sr ,{
x ∈ Rp|xTx = 1

}
, and q0 and qv represent the scalar and

vector components of q. Based on this definition, a vector
expressed in the object coordinate system, ξq ∈ R3, can be
related to the same vector expressed in the camera coordinate
system, ξc ∈ R3, as ξc = q · ξq · q̄, where (̄) : S4 → S4

represents the unit quaternion inverse operator defined as q̄ ,[
q0 −qTv

]T
with identity q̄ ·q = q · q̄ =

[
1 0 0 0

]T
,

and (·) : R4×R4 → R4 represents the Hamilton product1, with
property qa · qb ∈ S4 for qa, qb ∈ S4. The Hamilton product
can be expressed in block matrix notation as

qa · qb =

[
qa0 −qTav
qav qa0I3 + q×av

]
qb

where Ig ∈ Rg×g is the identity matrix. The kinematics for
the relative orientation of the object with respect to the camera
are (see [56, Chapter 3.4] or [57, Chapter 3.6])

q̇ =
1

2
B (q) (ωq − q̄ · ωc · q) (2)

where B : S4 → R4×3 is defined as

B (ξ) ,

[
−ξTv

ξ0I3 + ξ×v

]
and has the pseudoinverse property B (ξ)

T
B (ξ) = I3 (see

[56, Chapter 3.4]).

III. ESTIMATION OBJECTIVE

The primary goal in this work is to develop a pose estima-
tor/predictor that is robust to intermittent measurements. The
design strategy is to filter the pose measurements when they
are available, and predict future poses when measurements
are unavailable (e.g., the object is not visible to the camera).
However, a predictor based on (1) and (2) would require
linear and angular velocities of the object to be known.
The novelty in this work is to learn a model of the object
velocities when measurements are available, and use the model
in the predictor when measurements are not available. To
this end, a stacked pose state, η (t) ∈ R7, is defined as
η (t) ,

[
xT (t) qT (t)

]T
and the following assumptions are

utilized.

Assumption 1. Measurements of the relative pose of the target
are available from camera images when the target is in view.

Remark 1. The projection of a 3D scene onto a 2D sensor
during the imaging process results in scale ambiguity [58,
Chapter 5.4.4]. In typical SfM observers, target velocity is used
to inject scale into the system and recover the full Euclidean
coordinates of the target. However, in the scenario considered
in this paper, the target velocities are unknown. To resolve the
ambiguity, a known length scale on the target can used, and by
exploiting Perspective-n-Point (e.g., [59]–[65]) or homography
(e.g., [66] and [67]) solvers, the pose of the target can be
recovered.

Assumption 2. The object velocities are locally Lipschitz
functions of the object pose and not explicitly time dependent,
i.e., vq (t) = φ1 (ρ (η (t) , t)) and ωq (t) = φ2 (ρ (η (t) , t)),

1For brevity, a slight abuse of notation will be utilized throughout the paper.
For v1, v2 ∈ R3 and q ∈ S4, the equation v2 = q · v1 · q̄ can be written
precisely as qv2 = q · qv1 · q̄, where qv1 ,

[
0 vT1

]T and qv2 ,[
0 vT2

]T . In other words, an R4 quaternion, qv1, is derived from an R3

vector, v1, by setting the scalar part of qv1 to zero and setting the vector part
of qv1 as equal to v1. Similarly, the resulting vector, v2, is derived from the
vector component of qv2.



4

where φ1, φ2 : R7 → R3 are bounded and ρ : R7 × [0,∞)→
R7 is a known, bounded, and locally Lipschitz function.

Remark 2. This assumption ensures there exists some function
that can be learned, i.e., the object velocities do not meander
arbitrarily. Moreover, via the Stone–Weierstrass theorem [68],
it ensures that universal function approximators (e.g., neural
networks) can be used to estimate the object velocities to an ar-
bitrary level of accuracy. The Stone–Weierstrass theorem only
guarantees the estimate is accurate over a compact set, hence
dependence on the state is allowed since it is bounded via
Assumption 3 below, but exclusion of an explicit dependence
on time is required since the interval t ∈ [0,∞) is considered
in the analysis. The velocities can change with time, since the
state of the object can change with time, however, the mapping
between the object state and the object velocity is assumed to
be static. This assumption holds in cases of e.g., projectile
or orbital motion, pursuit-evasion games, as well as simplistic
models of vehicles moving along a road network, e.g., the
proof of concept experiments provided in Section VII.

Assumptions analogous to Assumption 2 are implicit in
machine learning and function approximation contexts. Intu-
itively, if an explicit and unknown time dependence is allowed
in the function to be estimated, there is no guarantee that the
data used to approximate the function, and hence the function
estimate, will be valid in the future. For example, in [47], the
authors describe a scenario of tracking a target with a finite
set of behaviors, and use a nonparametric approach to learn
an anomalous behavior. This type of target motion could be
learned using our approach if the velocity maps, φ1 and φ2,
were piecewise-in-time static. For such a case, the analysis
in the Section VI can be expanded to include switching due
to changing target behavior. However, if the target exhibited
new behavior (i.e., a new state in the Markov model) at every
timestep, there would be no hope in learning the overall target
behavior, since the past data would provide no insight into
future behavior.

In some scenarios, information beyond the object pose (e.g.,
traffic levels, time of day, weather, etc.) may be relevant in
predicting the target behavior. These auxiliary states can be
considered in the function approximation to capture a wider
class of possible target behavior without violating technical
requirements underpinning learning. The auxiliary states can
be included either directly if they are measurable, or by using
an observer, hidden Markov model, etc. to generate state
estimates if the the auxiliary states are not measurable.

Remark 3. In some applications, the velocity field of the target
is expected to be dependent on the target’s pose with respect
to the world, rather than it’s relative pose with respect to the
camera. The function ρ is used to transform the relative pose
to its world pose by using the camera pose with respect to the
world. In other applications, the velocity field is expected to
rely solely on the relative pose (e.g., a pursuit-evasion scenario
in an obstacle free environment, where the evader’s motion
would only be dependent on it’s pose with respect to the
pursuer/camera) or the camera pose is unknown, in which case
ρ can be taken as the identity function on η (t). As shown in
the following, these coordinate transformations are embedded

in the bases of the function approximation.

Assumption 3. The state η (t) is bounded, i.e. η (t) ∈ X ,
where X ⊂ R7 is a convex, compact set.

Remark 4. In estimation, for the state estimates to converge
to the states while remaining bounded, the states themselves
must remain bounded. This is analogous to the requirement of
bounded desired trajectories in control problems.

In this development, the unknown motion model functions,
φ1 and φ2, are approximated with a neural network, i.e.,[

vq (t)
1
2B (q (t))ωq (t)

]
=

[
φ1 (ρ (η (t) , t))

1
2B (q (t))φ2 (ρ (η (t) , t))

]
=WTσ (ρ (η, t)) + ε (ρ (η, t)) (3)

where σ : R7 → Rp is a known, bounded, locally Lipschitz,
vector of basis functions, W ∈ Rp×7 is a matrix of the un-
known ideal weights, and ε : R7 → R7 is the function approxi-
mation residual, which is locally Lipschitz based on the locally
Lipschitz properties of vq (t), ωq (t), B (q (t)), ρ (η (t) , t) and
σ(·), and is a priori bounded with a bound that can be
made arbitrarily small based on the Stone-Weierstrass theorem,
i.e., ε̄ , supη∈X , t∈[0,∞) ‖ε (ρ (η, t))‖, where ‖·‖ denotes the
Euclidean norm. Note that if W is known, φ2 (ρ (η (t) , t))
can be approximated by premultiplying by 2BT (q (t)) and
utilizing the pseudoinverse property of B (q (t)).

To quantify the estimation objective, let

η̃ (t) , η (t)− η̂ (t) (4)

denote the estimation error, where η̂ (t) ∈ R7 contains the
position and orientation estimates. Also, let

W̃ (t) ,W − Ŵ (t) , (5)

denote the parameter estimation error, where Ŵ (t) ∈ Rp×7

is the estimate of the ideal function approximation weights.
Based on these definitions, the kinematics in (1) and (2) can
be rewritten as

η̇ (t) = WTσ (ρ (η (t) , t))+ε (ρ (η (t) , t))+f (η (t) , t) , (6)

where f : R7 × [0,∞)→ R7 is a known function defined as

f (η (t) , t) , −
[

vc (t) + ωc (t)
×
x (t)

1
2B (q (t)) (q̄ (t) · ωc (t) · q (t))

]
.

IV. ESTIMATOR DESIGN

The following sections detail the estimator. The estimator
is summarized in Algorithm 1, where δt refers to the loop
timestep.

A. Update

Based on the subsequent stability analysis, during the pe-
riods in which measurements are available, the position and
orientation estimate update laws are designed as

˙̂η (t) =Ŵ (t)
T
σ (ρ (η (t) , t)) + f (η (t) , t) + k1η̃ (t)

+ k2sgn (η̃ (t)) , (7)

where sgn(·) is the signum function. To facilitate the design of
an ICL update law, let Y (t) ,

∫ t
t−∆t

σT (ρ (η (τ) , τ)) dτ and
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Algorithm 1 Algorithm for estimator

Input: η̂ (0), Ŵ (0)
Output: η̂ (t), Ŵ (t)

Initialization:
Initialize {t1, ..., tN}, {Y1, ...,YN}, {F1, ...,FN}, {∆η1, ...,∆ηN} to 0
Estimator loop:
while target tracking do

if target is in view then
η̂ (t)←

∫ t
t−δt

[
Ŵ (τ)

T
σ (ρ (η (τ) , τ)) + f (η (τ) , τ) + k1η̃ (τ) + k2sgn (η̃ (τ))

]
dτ

Ŵ (t)←
∫ t
t−δt

[
proj

(
Γσ (ρ (η (τ) , τ)) η̃ (τ)

T
+ kCLΓ

N∑
i=1

YTi
(

∆ηi −Fi − YiŴ (τ)
))]

dτ

Y (t)←
∫ t
t−∆t

σT (ρ (η (τ) , τ)) dτ

F (t)←
∫ t
t−∆t

fT (η (τ) , τ) dτ
Data Selection:
for i = l to N do

λi ← λmin

{
Y (t)

T Y (t) +
N∑

j=1, j 6=i
YTj Yj

}
end for
k ← arg max

i
{λi}

if λk > λmin

{
N∑
i=1

YTi Yi
}

then
tk ← t
Yk ← Y (t)
Fk ← F (t)
∆ηk ← ηT (t)− ηT (t−∆t)

end if
else
η̂ (t)←

∫ t
t−δt

[
proj

(
Ŵ (τ)

T
σ (ρ (η̂ (τ) , τ)) + f (η̂ (τ) , τ)

)]
dτ

Ŵ (t)←
∫ t
t−δt

[
proj

(
kCLΓ

N∑
i=1

YTi
(

∆ηi −Fi − YiŴ (τ)
))]

dτ

end if
end while
return η̂ (t), Ŵ (t)

F (t) ,
∫ t
t−∆t

fT (η (τ) , τ) dτ , where ∆t ∈ R is a positive
constant denoting the size of the window of integration.
The ICL update law for the motion model approximation
parameters is designed as

˙̂
W =proj

(
Γσ (ρ (η (t) , t)) η̃ (t)

T

+kCLΓ

N∑
i=1

YTi
(

∆ηi −Fi − YiŴ (t)
))

, (8)

where proj (·) is a smooth projection operator (see [69, Ap-
pendix E], [70, Remark 3.7]) with bounds based on the state
bounds and velocity bounds of Assumptions 2 and 3, N ∈ N0,
kCL ∈ R and Γ ∈ Rp×p are constant, positive definite
and symmetric control gains, ∆ηi , ηT (ti) − ηT (ti −∆t),
Fi , F (ti), Yi , Y (ti), and ti represents past time points,
i.e., ti ∈ [∆t, t], at which measurements are available. The
principal goal behind this design is to incorporate recorded
input and trajectory data to identify the ideal weights. The
time points ti, and the corresponding ∆ηi, Fi, and Yi that
are recorded and used in (8) are referred to as the history
stack. As shown in the subsequent stability analysis, the

parameter estimate learning rate is related to the minimum

eigenvalue of
N∑
i=1

YTi Yi, motivating the use of the singular

value maximization algorithm in [54, Chapter 6] for adding
or replacing data in the history stack.

To gain additional insight into the adaptive update law
design in (8), the integral of the transpose of (6) is

∫ t

t−∆t

η̇T (τ) dτ =

∫ t

t−∆t

σT (ρ (η (τ) , τ))Wdτ

+

∫ t

t−∆t

εT (ρ (η (τ) , τ)) dτ

+

∫ t

t−∆t

fT (η (τ) , τ) dτ.

Using the Fundamental Theorem of Calculus and simplifying
yields

ηT (t)−ηT (t−∆t) = Y (t)W +E (t)+F (t) , ∀t ∈ [∆t,∞)
(9)
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where, ∀t ∈ [∆t,∞), E (t) ,
∫ t
t−∆t

εT (ρ (η (τ) , τ)) dτ .
Using the relation in (9), the update law in (8) can be
simplified as

˙̂
W =proj

(
Γσ (ρ (η (t) , t)) η̃ (t)

T
+ kCLΓ

N∑
i=1

YTi YiW̃ (t)

+kCLΓ

N∑
i=1

YTi Ei

)
, (10)

for all t > ∆t, where Ei , E (ti). Taking the time derivative
of (4), substituting (6) and (7), and simplifying, yields the
following closed-loop error dynamics when measurements are
available

˙̃η (t) =W̃ (t)
T
σ (ρ (η (t) , t))− k1η̃ (t) + ε (ρ (η (t) , t))

− k2sgn (η̃ (t)) . (11)

B. Predictor

During periods when measurements are not available, the
state estimates are simulated forward in time using

˙̂η (t) = proj
(
Ŵ (t)

T
σ (ρ (η̂ (t) , t)) + f (η̂ (t) , t)

)
. (12)

Similarly, the recorded data continues to provide updates to
the ideal weight estimates via

˙̂
W (t) = proj

(
kCLΓ

N∑
i=1

YTi
(

∆ηi −Fi − YiŴ (t)
))

,

(13)
which can be simplified as

˙̂
W (t) = proj

(
kCLΓ

N∑
i=1

YTi YiW̃ (t) + kCLΓ

N∑
i=1

YTi Ei

)
.

(14)
Taking the time derivative of (4), substituting (6) and (12),

and simplifying yields the following closed-loop dynamics
when measurements are not available

˙̃η (t) =W̃ (t)
T
σ (ρ (η (t) , t)) + f (η (t) , t)− f (η̂ (t) , t)

+ Ŵ (t)
T

(σ (ρ (η (t) , t))− σ (ρ (η̂ (t) , t)))

+ ε (ρ (η (t) , t)) . (15)

V. IMPLEMENTATION AND DATA SELECTION

The integration time window, ∆t, can be selected small
relative to the time scale of the dynamics (see Section VII
for examples) to reduce the adverse effects of noise and
function approximation error. After time ∆t (i.e., t > ∆t),
the signals Y (t), F (t) and ηT (t) − ηT (t−∆t) are avail-
able. For initialization of the history stack, the values of
Y (t), F (t) and ηT (t) − ηT (t−∆t) can be saved at every
time step until N values have been recorded, and hence
N∑
i=1

YTi
(

∆ηi −Fi − YiŴ (t)
)

can be calculated. However,

typically the data collected during initialization is not suffi-
ciently rich (i.e., do not satisfy Assumption 4). Therefore, a
procedure similar to that described in [54, Chapter 6] can be
used for replacing data in the history stack. Specifically, if

λmin

{
Y (t)

T Y (t) +
N∑

i=1, i 6=j
YTi Yi

}
> λmin

{
N∑
i=1

YTi Yi
}

for some j ∈ {1, 2, ..., N}, where λmin {·} refers to the
minimum eigenvalue of {·}, then replace tj , Yj , Fj , and ∆ηj
with t, Y (t), F (t) and ηT (t)− ηT (t−∆t), respectively. In

this way, λmin

{
N∑
i=1

YTi Yi
}

is always increasing. If the system

trajectories are sufficiently exciting (i.e., satisfy Assumption

4), λmin

{
N∑
i=1

YTi Yi
}

will be strictly greater than zero in finite

time, at which point new data is not needed, and hence the
system trajectories no longer need to be exciting.

VI. ANALYSIS

The system considered in this work operates in two modes.
The evolution of a Lyapunov-like function is developed in
Lemma 1 for the mode when measurements are available and
the update is used. Similarly, the evolution of a Lyapunov-
like function is developed in Lemma 2 for the mode when
measurements are unavailable and the predictor is active.

In addition to the switching that occurs as measurements
become intermittently unavailable, in the following stability
analysis, time is partitioned into two phases. During the initial
phase, insufficient data has been collected to satisfy a richness
condition on the history stack. In Theorem 1 it is shown
that the designed estimator and adaptive update law are still
sufficient for the system to remain bounded for all time despite
the lack of data. After a finite period of time, the system
transitions to the second phase, where the history stack is
sufficiently rich and the estimator and adaptive update law
are shown, in Theorem 2, to asymptotically converge to an
arbitrarily small bound. To guarantee that the transition to
the second phase happens in finite time, and therefore the
overall system trajectories are ultimately bounded, we require
the history stack be sufficiently rich after a finite period of
time, as specified in the following assumption.

Assumption 4.

∃λ, T > 0 : ∀t ≥ T, λmin

{
N∑
i=1

YTi Yi

}
≥ λ, (16)

where λmin {·} refers to the minimum eigenvalue of {·}.

The condition in (16) requires that the system be sufficiently
excited, though is weaker than the typical PE condition since
excitation is only needed for a finite period of time. Specifi-
cally, PE requires∫ t+∆t

t

σ (ρ (η (τ) , τ))σT (ρ (η (τ) , τ)) dt ≥ αI > 0, ∀t > 0

(17)
whereas Assumption 4 only requires the system trajectories

to be exciting up to time T (at which point
N∑
i=1

YTi Yi is full

rank), after which the exciting data recorded during t ∈ [0, T ]
is exploited for all t > T . Another benefit of the development
in this paper is that the excitation condition is measurable

(i.e., λmin

{
N∑
i=1

YTi Yi
}

can be calculated), whereas in PE,
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∆t is unknown, and hence an uncountable number of integrals
would need to be calculated at each of the uncountable number
of time points, t, in order to verify PE.

To facilitate the following analysis, let ton
n and toff

n denote
the nth instance at which measurements become available and
unavailable, respectively. Then during t ∈ [ton

n , t
off
n ) measure-

ments are available and the estimator is active, whereas during
t ∈ [toff

n , t
on
n+1) measurements are unavailable and the predictor

is active. The duration of contiguous time each of these modes
are active is denoted ∆ton

n , toff
n − ton

n and ∆toff
n , ton

n+1− toff
n ,

respectively, and the total amount of time each of these modes
is active between switching instances a and b are denoted

T on (a, b) ,
b∑
i=a

∆ton
i and T off (a, b) ,

b∑
i=a

∆toff
i , respectively.

Also, ξ (t) ,

[
η̃ (t)

T vec
(
W̃ (t)

)T ]T
∈ R7+7p denotes a

stacked state and parameter error vector, where vec (·) denotes
a stack of the columns of (·).

To facilitate the Lyapunov-based analysis in Lemmas 1
and 2, as well as Theorems 1 and 2, consider the Lyapunov
function candidate V : R7+7p → R defined as

V (ξ (t)) ,
1

2
η̃ (t)

T
η̃ (t) +

1

2
tr
(
W̃ (t)

T
Γ−1W̃ (t)

)
. (18)

The function in (18) can be bounded as β1 ‖ξ (t)‖2 ≤
V (ξ (t)) ≤ β2 ‖ξ (t)‖2, where tr (·) denotes the matrix
trace operator, β1 , 1

2 min
{

1, λmin

(
Γ−1

)}
, and β2 ,

1
2 max

{
1, λmax

(
Γ−1

)}
. Also, due to the projection operator

in (8) and (13), and since W is a constant, W̃ (t) is bounded,
and V (ξ (t)) ≤ c2 + c3 ‖η̃ (t)‖2, where c2, c3 ∈ R>0 are
positive constants.

Lemma 1. The estimator in (7) and (8) remains bounded
during t ∈ [ton

n , t
off
n ).

Proof: Taking the time derivative of (18) during t ∈
[ton
n , t

off
n ), substituting (10) and (11), and simplifying yields

V̇ (ξ (t)) ≤ −k1 ‖η̃ (t)‖2 + c1,

where c1 ∈ R>0 is a positive constant. Using the bounds on
V , V̇ can be bounded as

V̇ (ξ (t)) ≤ −k1

c3
V (ξ (t)) +

(
k1c2 + c1

c3

)
.

Using the Comparison Lemma [71, Lemma 3.4],

V (ξ (t)) ≤ V (ξ (ton
n )) exp [−λ (t− ton

n )] +

(
c2 +

c1
k1

)
(19)

∀t ∈ [ton
n , t

off
n ), where λ , k1

c3
.

After sufficient data has been gathered (i.e., t ∈ [ton
n , t

off
n ) ∩

[T,∞), where T was defined in Assumption 4)

V (ξ (t)) ≤ V (ξ (ton
n )) exp [−λT (t− ton

n )] + cUB (20)

where λT , min{k1,λCL}
β2

, cUB , c1β2

min{k1,λCL} , λCL ,

kCLλmin

{
N∑
i=1

YTi Yi
}

, and λCL > 0 based on Assumption

4.
Remark 5. Note that c1 is based on a bound on the data in
the history stack, Yi, the concurrent learning gain, kCL, and

the bound on function approximation error, ε̄, and therefore
cannot be arbitrarily decreased through gain tuning. However,
the ultimate error bound after sufficient data has been gathered,
cUB , can be made arbitrarily small by increasing the gains k1

and kCL, and by decreasing ε̄, e.g., increasing the number of
neurons in the NN.

Lemma 2. The predictor in (12) and (13) remains bounded
during t ∈ [toff

n , t
on
n+1).

Proof: Taking the time derivative of (18) during t ∈
[toff
n , t

on
n+1), substituting (14) and (15), and simplifying yields

V̇ (ξ (t)) ≤ c4 ‖ξ (t)‖2 + c5

where c4, c5 ∈ R>0 are positive constants. Using bounds on
V , V̇ can be bounded as

V̇ (ξ (t)) ≤ c4
β1
V (ξ (t)) + c5.

Using the Comparison Lemma [71, Lemma 3.4],

V (ξ (t)) ≤ V
(
ξ
(
toff
n

))
exp

[
c4
β1

(
t− toff

n

)]
, ∀t ∈ [toff

n , t
on
n+1)

(21)
which remains bounded for all bounded t.

Theorem 1. The estimator and predictor in (7), (8), (12), and
(13) remain bounded provided there exists a k < ∞, and
sequences {∆ton

n }
∞
n=0 and

{
∆toff

n

}∞
n=0

such that
c4
β1
T off (nk, (n+ 1) k) < λTT

on (nk, (n+ 1) k) , ∀n ∈ N.
(22)

Proof: Consider a single cycle of losing and regaining
measurements, i.e., t ∈ [ton

n , t
on
n+1). Based on (19) and (21)

V
(
ξ
(
ton
n+1

))
≤V (ξ (ton

n )) exp

[
c4
β1

∆toff
n − λ∆ton

n

]
+

(
c2 +

c1
k1

)
exp

[
c4
β1

∆toff
n

]
. (23)

Using (23), the evolution of V over k cycles is

V
(
ξ
(
ton
(n+1)k

))
≤ c6V (ξ (ton

nk)) + c7

where c6, c7 ∈ R>0 are positive, bounded constants, and c6 <
1 based on (22). Let {sn}∞n=0 be a sequence defined by the
recurrence relation

sn+1 = M (sn) ,

with initial condition s0 = V (ξ (ton
0 )), where M : R → R is

defined as M (s) , c6s+c7. Since c6 < 1, M is a contraction
[72, Definition 9.22], and therefore all initial conditions, s0,
approach the fixed point s = c7

1−c6 [72, Theorem 9.23].
Since the sequence {sn} upper bounds V in the sense that
V (ξ (ton

nk)) ≤ sn, V is also ultimately bounded. However, V
may grow within

[
ton
nk, t

on
(n+1)k

]
since the dwell time condition

in (22) is specified over k cycles rather than a single cycle,
and therefore the ultimate bound of ξ, which is based on the
ultimate bound of V , is

lim sup
t
‖ξ (t)‖ ≤ β1

c7
1− c6

exp

(
c4
β1
T off

max

)
,
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where T off
max , sup

n
T off (nk, (n+ 1) k).

Theorem 2. After sufficient data is collected, i.e., t ∈ [T,∞),
the estimator and predictor in (7), (8), (12), and (13) converge
to a bound that can be made arbitrarily small provided there
exists a k < ∞, and sequences {∆ton

n }
∞
n=0 and {∆ton

n }
∞
n=0

such that (22) is satisfied.

Proof: The proof follows similarly to the proof of The-
orem 1. Consider a single cycle of losing and regaining
measurements after sufficient data has been collected, i.e.,
t ∈ [ton

n , t
on
n+1) ∩ [T,∞). Based on (20) and (21)

V
(
ξ
(
ton
n+1

))
≤V (ξ (ton

n )) exp

[
c4
β1

∆toff
n − λT∆ton

n

]
+ cUB exp

[
c4
β1

∆toff
n

]
. (24)

Using (24), the evolution of V over k cycles is

V
(
ξ
(
ton
(n+1)k

))
≤ c8V (ξ (ton

nk)) + c9

where c8, c9 ∈ R>0 are positive, bounded constants, and c8 <
1 based on (22). By using the same contraction arguments as
in Theorem (1), the ultimate bound of ξ, is

lim sup
t
‖ξ (t)‖ ≤ β1

c9
1− c8

exp

(
c4
β1
T off

max

)
,

where T off
max , sup

n
T off (nk, (n+ 1) k).

Remark 6. The fundamental difference between Theorem 1
and Theorem 2, and hence the need for sufficiently rich data,
is the control over the ultimate error bound. In Theorem 1, c7
is based on c2, which is based on the projection bound on the
ideal function approximation weight errors, which is a priori
determined, and therefore the ultimate error bound cannot be
decreased. In Theorem 2, c9 is based on cUB which can be
made arbitrarily small by, for example, increasing the number
of neurons in the NN.

Remark 7. The dwell time condition in (22) is similar to an
average dwell time condition, but only over k cycles. The
condition requires that, over k cycles, the total amount of time
that the stable subsystem is active (i.e., the target in view),
scaled by the decay rate of the stable subsystem, is greater
than the total amount of time that the unstable subsystem
is active (i.e., the target not in view), scaled by the error
growth rate. This is a relaxed condition compared to typical
(i.e., single cycle) forward and reverse dwell time conditions
as it allows flexibility in allocating time in the subsystems
over k cycles. For example, if a large amount of time is spent
observing the target in the first of k cycles, relatively little time
is needed with the target in view in the remaining k−1 cycles
to still satisfy (22) and ensure error convergence. With single
cycle dwell time conditions, any surplus time spent observing
the target beyond what is necessary to satisfy the dwell time
condition has no benefit in the sense of relaxing the dwell time
requirements of subsequent cycles.

VII. EXPERIMENTS

Experiments were performed to verify the theoretical results
and demonstrate the performance of the developed estimation
and prediction scheme with online model learning. In the first
experiment (Section VII-A), a stationary camera observed a
target moving along a smooth vector field. In the second exper-
iment (Section VII-B), a moving camera observed two targets
moving along a road network. In both experiments, a Clearpath
Robotics TurtleBot 2 with a Kobuki base was utilized as a
mobile vehicle simulant (i.e., the target). A fiducial marker was
mounted on the mobile robot, and a corresponding tracking
software library (see [73] and [74]) was used to repeatably
track the image feature pixel coordinates, as well as provide
target pose measurements, when the target was in the camera
FOV. A NaturalPoint, Inc. OptiTrack motion capture system
was used to record the ground truth pose of the camera and
target at a rate of 360 Hz. The pose provided by the motion
capture system was also used to estimate the linear and angular
velocities of the camera necessary for the estimator, where
the current camera velocity estimates were taken to be the
slope of the linear regression of the 20 most recent pose
data points. The same procedure was used to calculate the
linear and angular velocities of the target for ground truth and
comparison with the learned model.

For both experiments, radial basis functions (RBF) were
used in the NN, with parameters selected based on the de-
scription provided in the subsequent sections. Estimator gains
were selected as k1 = 3, k2 = 0.1, kCL = 1 and Γ = I , and
the integration window was selected as ∆t = 0.1 s. Further
discussion on how the parameters and gains were selected is
provided in Section VII-C.

A. Target Motion Along a Smooth Vector Field

In the first experiment, a stationary camera observed a target
moving in a vector field of the form shown in Figure 2.
An IDS UI-3060CP camera was used to capture 1936x1216
pixel resolution images at a rate of 60 frames per second.
The function ρ (η, t) introduced in Assumption 2 was used
to determine the estimated 2D position of the target in the
world coordinate system using the camera pose (see Remark
3). For this experiment, 81 kernels were used in the NN, with
means arranged in a uniform 9x9 grid across the vector field
(see Figure 2) and covariance selected as Σk = 0.3I2. A total
of N = 600 data points were saved in the CL history stack.
During the first 60 seconds of the experiment, target visibility
was maintained to quickly fill the CL history stack. Data was
added at a rate of approximately 1 sample per second (the
rate at which the data selection algorithm described in Section
V could be executed), resulting in 10% of the history stack
filled at the end of the initial learning phase. After the initial
phase, periodic measurement loss was induced artificially by
intermittently disregarding pose measurements and switching
to the predictor. The dwell times for each period were selected
randomly as ∆ton

n ∼ U (15, 30) and ∆toff
n ∼ U (10, 20). The

results of this experiment are shown in Figures 3 through 7.
As shown in Figures 3 and 4, the predictor initially performs
poorly; however, prediction significantly improves as more
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data is acquired. Boundedness of the unknown parameter
estimates is validated in Figure 5. Figures 6 and 7 demon-
strate that once sufficient data is acquired, the NN output
tracks the motion of the target well, therefore reducing the
need for large feedback and sliding mode gains, as well as
accurately predicting target motion when measurements are
unavailable. Accurate motion prediction is achieved despite
the target deviating from the prescribed vector field due to
the nonholonomic constraints on the mobile robot, as well
as random disturbances such as wheel slip. The norm of the
position RMSE vector was 0.25m and the orientation RMSE
was 24.4◦ for this experiment, considering data after 200s (i.e.,
after initial data collection).

For comparison, a modified version of the estimator was
implemented on the same data collected during the first
experiment. The modification represents the case of using an
ideal predictor, analogous to one of the scenarios considered
in [48]. Specifically, the feedforward NN terms were replaced
with the actual target velocities in this modification, leading
to the position estimates shown in Figure 8. Despite the
improved performance, the target velocities are typically not
available, and therefore this design may not be implementable
in many applications. However, through the learning scheme
developed in this paper, the estimator performance quickly
approaches that of the ideal scenario, without requiring target
motion information. For comparison, the norm of the position
RMSE vector was 0.03m and the orientation RMSE was 1.2◦

for this experiment using the ideal predictor, confirming the
obvious notion that perfect velocity prediction results in better
performance.

An extended Kalman filter (EKF) with a constant velocity
model was also tested for comparison. The measurement data
and visibility times were the same as in the first experiment,
resulting in the position estimates shown in Figure 9. As
expected, the EKF performs well when the actual target
velocities are constant, in comparison to our estimator during
the beginning of the experiment, since our estimator is still
learning the motion model. However, as the target velocity
changes, as would be common in many practical scenarios,
our model-learning approach clearly outperforms the EKF,
even in stretches where the target velocity is constant. One
way to improve the initial performance of our estimator (e.g.,
while the model parameters are still being learned) would
be to estimate the position and velocity of the target, as is
done in the EKF. However, the augmented state space would
require a larger NN, and therefore more data, and it is not
clear that an acceleration motion model would be superior to a
velocity motion model. With the EKF, the norm of the position
RMSE vector was 1.67m and the orientation RMSE was 57.5◦

for this experiment, both of which are much larger than the
corresponding errors using our model learning approach.

B. Multiple Targets on a Road Network

A second experiment was performed to demonstrate the
utilization of results developed in this paper to an applica-
tion. Specifically, the goal of this experiment was to use a
single moving camera to estimate the pose of two targets
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Figure 2. During the first experiment, the target was commanded to follow
a vector field of this form.
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Figure 3. Relative position estimates for the first experiment with a stationary
camera.

independently moving along an unknown road network (shown
in Figures 10 and 11). At intersections in the road network,
the targets randomly selected a direction to travel, hence
violating Assumption 2. In this experiment, a camera on-board
a Parrot Bebop 2 quadcopter platform was used to capture
640x368 pixel resolution images (see Figure 12), which were
wirelessly streamed to an off-board computer at 30 frames per
second. The function ρ (η, t) was augmented to also output the
estimated target heading in the world coordinate system, and
the NN was composed of 172 kernels, with mean positions
evenly spaced along the roads at 0.3 m intervals, mean
headings parallel to the road, and covariance Σk = 0.1I3. Two
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Figure 4. Relative orientation estimates for the first experiment with a
stationary camera.

Time [s]
0 100 200 300 400 500 600

Ŵ
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Figure 5. Evolution of the NN ideal weight estimates during the first
experiment with a stationary camera.
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Figure 6. Output of the NN compared with ground truth linear velocities for
the first experiment with a stationary camera. The jump in the ground truth
signal at approximately 450s was caused by inaccurate numerical velocity
approximation when the motion capture system temporary lost track of the
target.
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Figure 7. Output of the NN compared with ground truth orientation rates
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B (q (t))ωq (t)) for the first experiment with a stationary camera.



11

0 100 200 300 400 500 600

X
[m

]

-3

-2

-1

0

1

2

True Estimator Predictor

0 100 200 300 400 500 600

Y
[m

]

-3

-2

-1

0

1

2

Time [s]
0 100 200 300 400 500 600

Z
[m

]

2

3

4

5

Figure 8. Relative position estimates for the experiment with a stationary cam-
era using a modified observer with an ideal predictor. Although performance
is satisfactory, this design requires unmeasurable target velocity information,
and therefore is not implementable in many applications.
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Figure 9. Relative position estimates for the experiment with a stationary
camera using a Extended Kalman Filter with a constant velocity model.
Without a good motion model, the EKF quickly diverges when the target
is not in view.

Figure 10. Overall setup of the second experiment, with quadcopter observer
the targets as they move along a road network.

independent instances of the estimator developed in this paper
were used to estimate the target poses, one for each target;
however, for simplicity, since the targets share a common
road network, the CL history stack was shared between the
two estimators, with a total of N = 2000 data points saved
in the stack. Independent history stacks could also have been
used. During the initial phase, the quadcopter was commanded
to follow a single target for approximately 300 seconds,
therefore acquiring enough data to reasonably approximate a
motion model of the targets along the road network. After
the initial phase, the quadcopter was commanded to follow
whichever target was closest to an intersection, since this
is where the assumptions are violated, i.e., a deterministic
function approximator would not be expected to accurately
approximate a stochastic function. After the target selected a
direction, and left the intersection, the predictor for this target
is activated, and the quadcopter follows the other target. This
strategy matches a reasonable strategy one might employ in a
real world scenario: observe a target at intersections or other
areas where the target can act randomly, but once the target has
selected a direction, a sufficiently learned predictor is expected
to perform well, and the observer can move on to other targets.

The results of this experiment are shown in Fig-
ures 13 through 16, and a video demonstrating the ex-
periment is available at https://www.youtube.com/watch?v=
QCIQtsQdhsM. Figures 13-16 show the true and estimated
pose of the targets in world coordinates, thus demonstrating
that after sufficient data is collected, the target pose can be
accurately estimated even if the target remains outside the
camera FOV for significant durations, despite significant delay
due to the wireless transmission of the images, as well as
the decreased measurement accuracy compared to the first
experiment due to the low resolution camera.

C. Parameter Selection

As with many function approximation techniques, the pa-
rameters used for the NN are dependent on the specific
application. For the experiments discussed in the preceding
sections, commonly used RBFs were selected as the kernel
since they exhibit local similarity (i.e., for the experiments,
nearby points in the state space are expected to have similar

https://www.youtube.com/watch?v=QCIQtsQdhsM
https://www.youtube.com/watch?v=QCIQtsQdhsM
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Figure 11. During the second experiment, both targets traveled along this
network, randomly selecting turns at intersections.

Figure 12. View from the flying quadcopter. Only one target is visible in the
field of view at a time.

velocity values, and RBFs have increasingly similar activa-
tion for increasingly similar inputs). As demonstrated by the
results, RBFs performed satisfactorily, and therefore, more
exotic kernels were not considered, but could be explored for
other applications as necessary.

The primary concern for selecting the number and distri-
butions of the kernels is to ensure the relevant parts of the
state space (i.e., the areas where the targets are expected to
move through) have non-zero kernel activation. The secondary
concern is to match the density and parameters of the kernels
(e.g., mean and variance for RBFs) to the complexity of the
underlying vector field to be approximated. In other words, re-
gions of the vector field that are expected to have large spatial
derivatives should be approximated with a dense distribution
of kernels, each with relatively little extent (low variance for
RBFs). If little is known about where the target may travel or
how aggressively it may maneuver, a conservative approach
can be taken, where a very large number of kernels can be
distributed over a large section of the state space, and then

0 100 200 300 400 500 600 700

X
[m

]

0

2

4

6

True Estimator Predictor

0 100 200 300 400 500 600 700

Y
[m

]

-2

0

2

Time [s]
0 100 200 300 400 500 600 700

Z
[m

]

-1

-0.5

0

0.5

1

Figure 13. Position estimates of target 1 expressed in world coordinates for
the second experiment with a quadcopter observing two moving targets.
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Figure 14. Orientation estimates of target 1 relative to the world coordinate
system for the second experiment with a quadcopter observing two moving
targets.
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Figure 15. Position estimates of target 2 expressed in world coordinates for
the second experiment with a quadcopter observing two moving targets.
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Figure 16. Orientation estimates of target 2 relative to the world coordinate
system for the second experiment with a quadcopter observing two moving
targets.

packing the kernels densely and with tight spatial extent. It is
not surprising that with no knowledge of the operational space,
that the resulting conservative approach would have increased
memory and computational requirements.

In each experiment, the centers of the RBFs were distributed
across the vector field and road network, respectively. For
the second experiment, where the output of ρ also included
the target heading, the kernel centers were doubled, one for
each of the two directions parallel to the road. Kernel centers
were separated by a distance approximately 0.3 m and had
variance of 0.3I2 and 0.1I3 for the first and second experiment,
respectively, where the smaller covariance was selected for
the second experiment due to the tight turns in the road map.
In both experiments, these initial parameter values performed
satisfactorily, suggesting this approach is insensitive to NN
tuning.

The two experiments use two different imaging sensors
with varying capabilities. In the first experiment, a stationary
high resolution camera is used to capture images at a high
frame rate, and images are transferred over a wired connection
with low latency and without compression. In the second
experiment, a moving low resolution camera is used to capture
images at a relatively lower frame rate, and the images are
transferred over a wireless connection with high latency and
lossy compression. The experiments demonstrate the viability
of our approach in both cases using almost identical esti-
mator parameters (with minor differences in the NN kernel
parameters, as described previously), suggesting insensitivity
to estimator gains despite e.g., frame drops, delay, lower
measurement accuracy due to the lower image resolution, etc.

Minor tuning of the gains (k1, k2, kCL and Γ) was required
beyond the initial values of 1 or I .. Since signum functions are
known to produce high frequency chatter, k2 was reduced to
0.1, and k1 was increased to 3.0 to compensate for the reduced
robustness and increase the estimate convergence rate when
measurements were available. The integration time window,
∆t, was selected to be approximately equal to the timescale
of changes in the target velocity so as not to “average out”
complex target behavior. Our initial selection of ∆t = 0.1
resulted in satisfactory estimator performance, and therefore
no additional tuning was performed.

D. Discussion

Beyond the restriction on the target behavior to ensure
learning is possible based on Assumption 2, the preceding
experiments demonstrate that the remaining assumptions are
either easily satisfied or do not significantly hinder estima-
tor performance when not met. As discussed in Remark 1,
Assumption 1 (i.e., availability of pose measurements) can
be satisfied by currently available computer vision techniques
and minimal domain knowledge. Assumption 3 (boundedness
of the target pose) is easily satisfied in any practical scenario.
Assumption 4 (sufficient richness in the data) is required to en-
sure NN parameter estimate convergence; however, predictor
performance may be sufficient without it. For example, in the
preceding experiments, the calculated minimum eigenvalue of
the history stack remained within the floating point precision
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floor of the computer system, suggesting the history stack
is not full rank. Despite that, Figures 6 and 7 demonstrate
satisfactory predictor performance.

VIII. CONCLUSION

An adaptive observer and predictor were developed to
estimate the relative pose of a target from a camera in the
presence of intermittent measurements. While measurements
are available, data is recorded and used to update an estimate
of the target motion model. When measurements are not
available, the motion model is used in a predictor to update
state estimates. The overall framework is shown to yield
ultimately bounded estimation errors, where the bound can
be made arbitrarily small through gain tuning, increasing data
richness, and function approximation tuning. Experimental
results demonstrate the performance of the developed esti-
mator, even in cases of stochastic target motion where the
assumptions are violated.

Although the experiments demonstrate a robustness to mod-
erate violations of Assumption 2 (i.e., the targets in the
experiment with the road network do not always follow a
static vector field), estimation and prediction where a model
does not exist (e.g., the target follows a non-periodic, time-
varying trajectory) is still an open problem. However, it may
be possible to use the methods developed in this paper to track
objects undergoing a wider class of motions through relaxation
of Assumption 2. First, states beyond just the object pose (e.g.,
traffic levels) can be used in the neural network to predict
the object velocities. This can be used to account for varying
object behavior without relying on explicit time dependence.
Further, object velocity models can be expanded to allow for
piecewise constant mappings between the object state and
object velocity. This way, data collected to estimate the model
is ensured to be valid for at least a finite period of time, while
divergence of the measurements from prediction can be used
as an indication that new data needs to be collected, or that
other components of the system (e.g., feature tracking) are
producing erroneous output. This approach could allow the
tracked objects to switch their mode of operation.
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