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Integral Concurrent Learning: Adaptive Control
with Parameter Convergence using Finite Excitation

Anup Parikh1, Rushikesh Kamalapurkar2 and Warren E. Dixon3

Abstract

Concurrent learning is a recently developed adaptive update scheme that can be used to guarantee parameter convergence
without requiring persistent excitation. However, this technique requires knowledge of state derivatives, which are usually not
directly sensed and therefore must be estimated. A novel integral concurrent learning method is developed in this paper that removes
the need to estimate state derivatives while maintaining parameter convergence properties. Data recorded online is exploited in
the adaptive update law, and numerical integration is used to circumvent the need for state derivatives. The novel adaptive update
law results in negative definite parameter error terms in the Lyapunov analysis, provided an online-verifiable finite excitation
condition is satisfied. A Monte Carlo simulation illustrates improved robustness to noise compared to the traditional derivative
formulation. The result is also extended to Euler-Lagrange systems, and simulations on a two-link planar robot demonstrate the
improved performance compared to gradient based adaptation laws.
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I. INTRODUCTION

Adaptive control methods provide a technique to achieve a control objective despite uncertainties in the system model.
Adaptive estimates are developed through insights from a Lyapunov-based analysis as a means to yield a desired objective.
Although a regulation or tracking objective can be achieved with this scheme, it is well known that the parameter estimates
may not approach the true parameters using a least-squares or a gradient based online update law without persistent excitation
(PE) [1]–[3]. However, the PE condition cannot be guaranteed a priori for nonlinear systems, and is difficult to check online,
in general.

Motivated by the desire to learn the true parameters, or at least to gain the increased robustness and improved transient
performance that parameter convergence provides (see [4]–[6]), a new adaptive update scheme known as concurrent learning
(CL) was recently developed in the pioneering work of [6]–[8]. The principle idea of CL is to use recorded input and output
data of the system dynamics to apply batch-like updates to the parameter estimate dynamics. These updates yield a negative
definite, parameter estimation error term in the stability analysis, which allows parameter convergence to be established provided
a finite excitation condition is satisfied. The finite excitation condition is an alternative condition compared to PE, and only
requires excitation for a finite amount of time. Furthermore, the condition can be checked online by verifying the positivity
of the minimum singular value of a function of the regressor matrix, as opposed to PE, which cannot be verified online, in
general, for nonlinear systems. However, all current CL methods require that the output data include the state derivatives,
which may not be available for all systems. Since the naive approach of finite difference of the state measurements leads to
noise amplification, and since only past recorded data, opposed to real-time data, is needed for CL, techniques such as online
state derivative estimation or smoothing have been employed, e.g., [9], [10]. However, these methods typically require tuning
parameters such as an observer gain, switching threshold, etc. in the case of the online derivative estimator, and basis, basis
order, covariance, time window, etc. in the case of smoothing, to produce satisfactory results.

In this note, we reformulate the CL method in terms of an integral, removing the need to estimate state derivatives. Other
methods such as composite adaptive control also use integration based terms to improve parameter convergence (e.g., [11]–[13]),
however they still require PE to ensure exponential convergence. Recently, results such as [14]–[17] have shown convergence
using an interval or finite excitation condition, though they either require measurements of state derivatives (i.e., [15]), require
determining the analytical Jacobian of the regressor (i.e., [14]) or are developed in a model reference adaptive control context
(i.e., [16]–[20]), rather than the general nonlinear systems considered here. Results such as [21]–[26] have theoretical analogues
to those presented here, and some use filtering techniques to avoid data storage requirements, though we show how the
parameter estimation is performed alongside control development in a Lyapunov analysis. In our method, the only additional
tuning parameter beyond what is needed for gradient-based adaptive control designs is the time window of integration, which is
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analogous to the smoothing buffer window that is already required for smoothing based techniques. Despite the reformulation,
the stability results still hold (i.e., parameter convergence) and Monte Carlo simulation results suggest greater robustness to
noise compared to derivative based CL implementations. The technique is also applied to Euler-Lagrange (EL) systems to
demonstrate the use of ICL for systems with unmatched uncertainties. Compared to other similar approaches applied to EL
systems (e.g., [27]), our approach selectively collects data rather than incorporating the entire history so as to consider the
most informative data for parameter estimation.

II. CONTROL OBJECTIVE

To illustrate the integral CL method, consider an example dynamic system modeled as

ẋ (t) = f (x (t) , t) + u (t) (1)

where t ∈ [0,∞), x : [0,∞)→ Rn are the measurable states, u : [0,∞)→ Rn is the control input and f : Rn× [0,∞)→ Rn
represents the locally Lipschitz drift dynamics, with some unknown parameters. In the following development, as is typical in
adaptive control, f is assumed to be linearly parametrized in the unknown parameters, i.e.,

f (x, t) = Y (x, t) θ (2)

where Y : Rn × [0,∞) → Rn×m is a regressor matrix and θ ∈ Rm represents the constant, unknown system parameters. To
quantify the state tracking and parameter estimation objective of the adaptive control problem, the tracking error and parameter
estimate error are defined as

e (t) , x (t)− xd (t) (3)

θ̃ (t) , θ − θ̂ (t) (4)

where xd : [0,∞) → Rn is a known, continuously differentiable desired trajectory and θ̂ : [0,∞) → Rm is the parameter
estimate. In the following, functional arguments will be omitted for notational brevity, e.g., x (t) will be denoted as x, unless
necessary for clarity.

To achieve the control objective, the following controller is commonly used:

u (t) , ẋd − Y (x, t) θ̂ −Ke (5)

where K ∈ Rn×n is a positive definite constant control gain. Taking the time derivative of (3) and substituting for (1), (2),
and (5), yields the closed loop error dynamics

ė = Y (x, t) θ + ẋd − Y (x, t) θ̂ −Ke− ẋd
= Y (x, t) θ̃ −Ke (6)

The parameter estimation error dynamics are determined by taking the time derivative of (4), yielding

˙̃
θ (t) = − ˙̂

θ. (7)

An integral CL-based update law for the parameter estimate is designed as

˙̂
θ (t) , ΓY (x, t)

T
e+ kCLΓ

N∑
i=1

YTi
(
x (ti)− x (ti −∆t)− Ui − Yiθ̂

)
(8)

where kCL ∈ R and Γ ∈ Rm×m are constant, positive definite control gains, N ∈ Z+is a positive constant that satisfies
N ≥

⌈
m
n

⌉
, ti ∈ [0, t] are time points between the initial time and the current time, Yi , Y (ti), Ui , U (ti),

Y (t) ,
∫ t

max{t−∆t, 0}
Y (x (τ) , τ) dτ, (9)

U (t) ,
∫ t

max{t−∆t, 0}
u (τ) dτ, (10)

0n×m denotes an n×m matrix of zeros, and ∆t ∈ R is a positive constant denoting the size of the window of integration. The
concurrent learning term (i.e., the second term) in (8) represents saved data. The principal idea behind this design is to utilize
recorded input-output data generated by the dynamics to further improve the parameter estimate. See [7] for a discussion on
how to choose data points to record. In short, the data points should be selected to maximize the minimum eigenvalue of
N∑
i=1

YTi Yi since the minimum eigenvalue bounds the rate of convergence of the parameter estimation errors, as shown in the

subsequent stability analysis. To calculate Y (t) and U (t), one would store the values of Y and u over the interval [t−∆t, t],
which would require dmnhb∆teand dnhb∆te bytes, respectively, where h is the control loop rate in cycles per second and b
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is the number of bytes per value (e.g., 8 bytes per double precision floating point number). Often, these storage requirements
are easily satisfied by even modern embedded systems with somewhat limited memory.

The integral CL-based adaptive update law in (8) differs from traditional state derivative based CL update laws given in,
e.g., [6]–[8]. Specifically, the state derivative, control, and regressor terms, i.e., ẋ, u, and Y , respectively, used in [6]–[8] are
replaced with the integral of those terms over the time window [t−∆t, t].

Substituting (2) into (1), and integrating yields∫ t

t−∆t

ẋ (τ) dτ =

∫ t

t−∆t

Y (x, τ) θdτ +

∫ t

t−∆t

u (τ) dτ,

∀t > ∆t. Using the Fundamental Theorem of Calculus and the definitions in (9) and (10),

x (t)− x (t−∆t) = Y (t) θ + U (t) (11)

∀t > ∆t, where the fact that θ is a constant was used to pull it outside the integral. Rearranging (11) and substituting into (8)
yields

˙̂
θ (t) = ΓY (x, t)

T
e+ kCLΓ

N∑
i=1

YTi Yiθ̃, ∀t > ∆t. (12)

Note that (9) and (10) are piecewise continuous in time, the concurrent learning term in (8) is piecewise constant in time,
and the simplified adaptive update law (12) is piecewise continuous in time. Hence, the right hand side of (7) is piecewise
continuous in time.

III. STABILITY ANALYSIS

To facilitate the following analysis, let η : [0,∞)→ Rn+m represent a composite vector of the system states and parameter
estimation errors, defined as η (t) ,

[
eT θ̃T

]T
. Also, let λmin {·} and λmax {·} represents the minimum and maximum

eigenvalues of {·}, respectively.
In the following stability analysis, time is partitioned into two phases. During the initial phase, insufficient data has been

collected to satisfy a richness condition on the history stack. In Theorem 1, it is shown that the controller and adaptive update
law are still sufficient for the system to remain bounded for all time despite the lack of data. After a finite period of time,
the system transitions to the second phase, where the history stack is sufficiently rich and the controller and adaptive update
law are shown, in Theorem 2, to exponentially converge. To guarantee that the transition to the second phase happens in finite
time, and therefore the overall system trajectories are ultimately bounded, we require the history stack be sufficiently rich after
a finite period of time, as specified in the following assumption.

Assumption 1. The system is sufficiently excited over a finite duration of time. Specifically, ∃λ > 0, ∃T > ∆t : ∀t ≥

T, λmin

{
N∑
i=1

YTi Yi
}
≥ λ.

The condition in (1) requires that the system be sufficiently excited, though is weaker than the typical PE condition since
excitation is only needed for a finite period of time. Specifically, PE requires∫ t+∆t

t

Y T (x (τ) , τ)Y (x (τ) , τ) dτ ≥ αI > 0, ∀t > 0 (13)

whereas Assumption 1 only requires the system trajectories to be exciting up to time T (at which point
N∑
i=1

YTi Yi is full rank),

after which the exciting data recorded during t ∈ [0, T ] is exploited for all t > T . Another benefit of the development in this

paper is that the excitation condition is measurable (i.e., λmin

{
N∑
i=1

YTi Yi
}

can be calculated), whereas in PE, ∆t is unknown,

and hence an uncountable number of integrals would need to be calculated at each of the uncountable number of time points, t,
in order to verify PE. Assumption 1 is verified online by continually acquiring data (using e.g., the singular value maximization

algorithm in [7] to ensure the minimum eigenvalue of
N∑
i=1

YTi Yi is always increasing) until λmin

{
N∑
i=1

YTi Yi
}

has reached a

user selectable threshold. The threshold value is directly related to the exponential convergence rate of the system, as shown
in the subsequent analysis. Since numerical integration may result in truncation errors (e.g., fourth order Runge-Kutta methods
have O

(
h5
)

local truncation errors), the threshold should also be selected sufficiently large to ensure the excitation condition
is satisfied beyond the bounds of integration uncertainty to mitigate misidentification due to noise and truncation errors.

To encourage excitation of the system, a perturbation signal can be added to the desired trajectory. Notably, this perturbation
signal (which distracts from the original state trajectory objective encoded in the original desired trajectory) would only need
to be added to the system for a finite time before ensuring that sufficient data has been collected to learn the parameters.
In other words, during implementation, the system only needs excitation initially, and then the original desired trajectory can
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be tracked. In contrast, adaptive methods relying on PE might require perturbations for all time to ensure parameter estimate
convergence, and hence the original state trajectory objective may never be achieved.

Theorem 1. For the system defined in (1) and (7), the controller and adaptive update law defined in (5) and (8) ensures
bounded tracking and parameter estimation errors.

Proof: Let V : Rn+m → R be a candidate Lyapunov function defined as

V (η) =
1

2
eT e+

1

2
θ̃TΓ−1θ̃. (14)

Taking the derivative of V along the trajectories of (1), substituting the closed loop error dynamics in (6) and the equivalent

adaptive update law in (12), noting that
N∑
i=1

YTi Yi is positive semidefinite, and simplifying yields

V̇ ≤ −eTKe

which implies the system states remain bounded via [28, Theorem 8.4]. Further, since V̇ ≤ 0, V (η (t)) ≤ V (η (0)) and
therefore ‖η (t)‖ ≤

√
β2

β1
‖η (0)‖, where β1 , 1

2 min
{

1, λmin

{
Γ−1

}}
and β2 , 1

2 max
{

1, λmax

{
Γ−1

}}
.

Theorem 2. Under Assumption 1, the controller and adaptive update law defined in (5) and (8) ensures globally exponential
tracking of the system defined in (1) and (7) in the sense that

‖η (t)‖ ≤
(
β2

β1

)
exp (λ1T ) ‖η (0)‖ exp (−λ1t) , ∀t ∈ [0,∞). (15)

Proof: Let V : Rn+m → R be a candidate Lyapunov function defined as

V (η) =
1

2
eT e+

1

2
θ̃TΓ−1θ̃.

Taking the derivative of V along the trajectories of (1) during t ∈ [T,∞), substituting the closed loop error dynamics in (6)
and the equivalent adaptive update law in (12), and simplifying yields

V̇ = −eTKe− kCLθ̃T
N∑
i=1

YTi Yiθ̃, ∀t ∈ [T,∞).

From Assumption 1, λmin

{
N∑
i=1

YTi Yi
}
> 0, ∀t ∈ [T,∞), which implies that

N∑
i=1

YTi Yi is positive definite and therefore V̇ is

upper bounded by a negative definite function of η. Invoking [28, Theorem 4.10], e and θ̃ are globally exponentially stable,
i.e., ∀t ∈ [T,∞),

‖η (t)‖ ≤

√
β2

β1
‖η (T )‖ exp (−λ1 (t− T ))

where λ1 , 1
2β2

min {λmin {K} , kCLλ}. The composite state vector can be further upper bounded using the results of Theorem
1, yielding (15).
Remark 1. Using an appropriate data selection algorithm (e.g. the singular value maximization algorithm in [7]) ensures the

minimum eigenvalue of
N∑
i=1

YTi Yi is always increasing, and therefore the Lyapunov function (14) is a common Lyapunov

function [29] as data is continuously added to the history stack.

IV. EXTENSION TO EULER-LAGRANGE SYSTEMS

The ICL technique can also be applied to systems with unmatched uncertainties. In this section, the ICL method is applied
to Euler-Lagrange systems.

A. Control Development

Consider Euler-Lagrange dynamics of the form [30, Chapter 2.3], [31, Chapter 9.3]

M (q (t)) q̈ (t) + Vm (q (t) , q̇ (t)) q̇ (t) + Fdq̇ (t) +G (q (t)) = τ (t) (16)

where q (t) , q̇ (t) , q̈ (t) ∈ Rn represent position, velocity and acceleration vectors, respectively, M : Rn → Rn×n represents
the inertial matrix, Vm : Rn × Rn → Rn×n represents centripetal-Coriolis effects, Fd ∈ Rn×n represents frictional effects,
G : Rn → Rn represents gravitational effects and τ (t) ∈ Rn denotes the control input. The system in (16) is assumed to have
the following properties (see [30, Chapter 2.3]), which hold for a large class of physical systems.
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Property 1. The system in (16) can be linearly parameterized, i.e., the left hand side of (16) can be rewritten as

Y1 (q, q̇, q̈) θ = M (q) q̈ + Vm (q, q̇) q̇ + Fdq̇ +G (q) (17)

where Y1 : Rn × Rn × Rn → Rn×m denotes the regression matrix, and θ ∈ Rm is a vector of uncertain parameters.

Property 2. The inertia matrix is symmetric and positive definite, and satisfies the following inequalities

m1 ‖ξ‖2 ≤ ξTM (q) ξ ≤ m2 ‖ξ‖2 , ∀ξ ∈ Rn

where m1 and m2 are known positive scalar constants, and ‖·‖ represents the Euclidean norm.

Property 3. The inertia and centripetal-Coriolis matrices satisfy the following skew symmetric relation

ξT
(

1

2
Ṁ (q)− Vm (q, q̇)

)
ξ = 0, ∀ξ ∈ Rn

where Ṁ (q (t)) is the time derivative of the inertial matrix. Equivalently, Ṁ(q) = 2Vm(q; q̇).

To quantify the tracking objective, the position tracking error, e (t) ∈ Rn, and the filtered tracking error, r (t) ∈ Rn, are
defined as

e = qd − q (18)

r = ė+ αe (19)

where qd (t) ∈ Rn represents the desired trajectory, whose first and second time derivatives exist and are continuous (i.e.,
qd (t) ∈ C2). To quantify the parameter identification objective, the parameter estimation error, θ̃ (t) ∈ Rm, is again defined
as

θ̃ (t) = θ − θ̂ (t) (20)

where θ̂ (t) ∈ Rm represents the parameter estimate.
Taking the time derivative of (19), premultiplying by M (q), substituting in from (16), and adding and subtracting Vm (q, q̇) r

results in the following open-loop error dynamics

M (q) ṙ = Y2 (q, q̇, qd, q̇d, q̈d) θ − Vm (q, q̇) r − τ (21)

where Y2 : Rn × Rn × Rn × Rn × Rn → Rn×m is defined based on the relation

Y2 (q, q̇, qd, q̇d, q̈d) θ ,M (q) q̈d + Vm (q, q̇) (q̇d + αe) + Fdq̇ +G (q) + αM (q) ė. (22)

To achieve the tracking objective, the controller is designed as

τ = Y2θ̂ + e+ k1r (23)

where k1 ∈ R is a positive constant. To circumvent the need for q̈ (t), the update law can be formulated in terms of an integral,
as

˙̂
θ = ΓY T2 r + k2Γ

N∑
i=1

YTi
(
Ui − Yiθ̂ (t)

)
(24)

where Yi , Y (ti), Ui , U (ti), Y : [0,∞)→ Rn×m and U : [0,∞)→ Rn are defined as

U (ti) ,
∫ t

max{t−∆t, 0}
τ (σ) dσ,

Y (ti) , Y3 (q (t) , q̇ (t) , q (t−∆t) , q̇ (t−∆t)) +

∫ t

max{t−∆t, 0}
Y4 (q (σ) , q̇ (σ)) dσ,

and the functions Y3 : Rn × Rn × Rn × Rn → Rn×m, Y4 : Rn × Rn → Rn×m are defined based on the relations

Y3 (q (t) , q̇ (t) , q (t−∆t) , q̇ (t−∆t)) θ = M (q (t)) q̇ (t)−M (q (t−∆t)) q̇ (t−∆t)

Y4 (q, q̇) θ = −Ṁ (q) q̇ + Vm (q, q̇) q̇ + Fdq̇ +G (q) .

Integrating both sides of (16) and using integration by parts on the inertial term yields∫ t

t−∆t

τ (σ) dσ = Y3θ +

∫ t

t−∆t

Y4 (q (σ) , q̇ (σ)) dσθ

U = Yθ (25)
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Using the relation in (25), (24) can be rewritten as

˙̂
θ = ΓY T2 r + k2Γ

N∑
i=1

YTi
(
Yiθ − Yiθ̂ (t)

)
. (26)

Substituting the controller from (23) into the error dynamics in (21) results in the following closed-loop tracking error
dynamics

M (q) ṙ = Y2θ̃ − e− Vm (q, q̇) r − k1r. (27)

Similarly, taking the time derivative of (20) and substituting the parameter estimate update law from (26) results in the following
closed-loop parameter estimation error dynamics

˙̃
θ = −ΓY T2 r − k2Γ

[
N∑
i=1

YTi Yi

]
θ̃. (28)

B. Stability Analysis

Similar to the analysis in Section III, two periods of time are considered. In Theorem 3 it is shown that the designed
controller and adaptive update law are sufficient for the system to remain bounded for all time despite the lack of data and in
Theorem 4 exponential convergence is established given a sufficiently rich history stack. Similar to Section III, an excitation
condition is required to guarantee that the transition to the second phase happens in finite time, i.e.,

∃λ, T > 0 : ∀t ≥ T, λmin

{
N∑
i=1

YTi Yi

}
≥ λ. (29)

Theorem 3. For the system defined in (16), the controller and adaptive update law defined in (23) and (24) ensure bounded
tracking and parameter estimation errors.

Proof: Let V : R2n+m → R be a candidate Lyapunov function defined as

V (η) =
1

2
eT e+

1

2
rTM (q) r +

1

2
θ̃TΓ−1θ̃ (30)

where η (t) ,
[
e (t)

T
r (t)

T
θ̃ (t)

T
]T
∈ R2n+m is a composite state vector. Taking the time derivative of (30) and

substituting (19), (27), and (28) yields

V̇ (η) = eT (r − αe) +
1

2
rT Ṁ (q) r − k2θ̃

T

[
N∑
i=1

YTi Yi

]
θ̃ − θ̃TY T2 r + rT

(
Y2θ̃ (t)− e− Vm (q, q̇) r − k1r

)
Simplifying and noting that

N∑
i=1

YTi Yi is always positive semi-definite, V̇ can be upper bounded as

V̇ (η) ≤ −αeT e− k1r
T r.

Therefore, η (t) is bounded based on [28, Theorem 8.4]. Furthermore, since V̇ (η (t)) ≤ 0, V (η (T )) ≤ V (η (0)) and therefore
‖η (T )‖ ≤

√
β2

β1
‖η (0)‖, where β1 , 1

2 min
{

1, m1, λmin

{
Γ−1

}}
and β2 , 1

2 max
{

1, m2, λmax

{
Γ−1

}}
.

Theorem 4. For the system defined in (16), the controller and adaptive update law defined in (23) and (24) ensure globally
exponential tracking in the sense that

‖η (t)‖ ≤
(
β2

β1

)
exp (λ1T ) ‖η (0)‖ exp (−λ1t) , ∀t ∈ [0,∞) (31)

where λ1 , 1
2β2

min {α, k1, k2λ}.

Proof: Let V : R2n+m → R be a candidate Lyapunov function defined as in (30). Taking the time derivative of (30),
substituting (19), (27), (28) and simplifying yields

V̇ (η) = −αeT e− k1r
T r − k2θ̃

T

[
N∑
i=1

YTi Yi

]
θ̃. (32)

From the finite excitation condition, λmin

{
N∑
i=1

YTi Yi
}
> 0, ∀t ∈ [T,∞), which implies that

N∑
i=1

YTi Yi is positive definite,

and therefore V̇ can be upper bounded as

V̇ (η) ≤ −αeT e− k1r
T r − k2λ

∥∥∥θ̃∥∥∥2

, ∀t ∈ [T,∞).
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Invoking [28, Theorem 4.10], η (t) is globally exponentially stable, i.e., ∀t ∈ [T,∞),

‖η (t)‖ ≤

√
β2

β1
‖η (T )‖ exp (−λ1 (t− T )) .

The composite state vector can be further upper bounded using the results of Theorem 3, yielding (31).
Remark 2. Similar to Section III, using an appropriate data selection algorithm (e.g. the singular value maximization algorithm

in [7]) ensures the minimum eigenvalue of
N∑
i=1

YTi Yi is always increasing, and therefore the Lyapunov function (30) is a

common Lyapunov function [29].

V. SIMULATION

A Monte Carlo simulation was performed to demonstrate the application of the theoretical results presented in Section III and
to illustrate the increased performance and robustness to noise compared to the traditional state derivative based CL methods
(e.g., [6]–[8]) across a wide variety of gain selections and noise realizations. The following example system was used in the
simulations:

ẋ (t) =

[
x2

1 sin (x2) 0 0
0 x2 sin (t) x1 x1x2

]
θ + u (t)

where x : [0,∞)→ R2, u : [0,∞)→ R2, the unknown parameters were selected as

θ =
[

5 10 15 20
]T
,

and the desired trajectory was selected as

xd (t) = 10
(
1− e−0.1t

) [ sin (2t)
0.4 cos (3t)

]
.

For each of the 200 trials within the Monte Carlo simulation, the feedback and adaptation gains were selected as K = KsI2
and Γ = ΓsI4, where Ks ∈ R was sampled from a uniform distribution on (0.1, 15) and Γs ∈ R was sampled from a
uniform distribution on (0.3, 3). Also, the concurrent learning gain, kCL, and the integration window, ∆t, were sampled from
uniform distributions with support on (0.002, 0.2) and (0.01, 1), respectively. After gain sampling, a simulation using each,
the traditional state derivative based, and the integral based, CL update law was performed, with a simulation step size of
0.0004 seconds and additive white Gaussian noise on the measured state with standard deviation of 0.3. For each integral
CL simulation, a buffer, with size based on ∆t and the step size, was used to store the values of x, Y , and u during the
time interval [t−∆t, t] and to calculate x (t), x (t−∆t), Y (t) and U (t). Similarly, for the state derivative CL simulation, a
buffer of the same size was used as the input to a moving average filter before calculating the state derivative via central finite
difference. The size of the history stack and the simulation time span were kept constant across all trials at N = 20 and 100
seconds, respectively.

Since the moving average filter window used in the state derivative CL simulations provides an extra degree of freedom,
the optimal filter window size was determined a priori for a fair comparison. The optimal filtering window was calculated
by adding Gaussian noise, with the same standard deviation as in the simulation, to the desired trajectory, and selecting the
window size that minimizes the root mean square error between the estimated and true ẋd. This process yielded an optimal
filtering window of 0.5 seconds; however, the filtering window was truncated to ∆t on trials where the sampled ∆t was less
than 0.5 seconds, i.e., filter window = min {0.5, ∆t}.

The mean tracking error trajectory and parameter estimation error trajectory across all trials are depicted in Figures 1 and 2.
To compare the overall performance of both methods, the RMS tracking error and the RMS parameter estimation error during
the time interval t ∈ [60, 100] (i.e., after reaching steady state behavior) were calculated for each trial, and then the average
RMS errors across all trials was determined. The final results of the Monte Carlo simulation are shown in Table I, illustrating
the improved performance of integral CL versus state derivative CL.



8

[
p1 + 2p3c2 p2 + p3c2

p2 + p3c2 p2

]
︸ ︷︷ ︸

M(q)

[
q̈1

q̈2

]
+

[
−p3s2q̇2 −p3s2 (q̇1 + q̇2)
p3s2q̇1 0

]
︸ ︷︷ ︸

Vm(q,q̇)

[
q̇1

q̇2

]
+

[
fd1 0
0 fd2

]
︸ ︷︷ ︸

Fd

[
q̇1

q̇2

]
=

[
τ1
τ2

]
(33)

Time [s]
0 20 40 60 80 100
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103

Integral CL
State Derivative CL

Fig. 1. Mean state trajectory tracking errors across all trials.

Time [s]
0 20 40 60 80 100

. . .~ 3. . .
10-1

100

101

102

103

104

Integral CL
State Derivative CL

Fig. 2. Mean parameter estimation errors across all trials.

TABLE I
AVERAGE STEADY STATE RMS TRACKING AND RMS PARAMETER ESTIMATION ERRORS ACROSS ALL SIMULATIONS, FOR INTEGRAL CONCURRENT

LEARNING (ICL) AND TRADITIONAL DERIVATIVE-BASED CONCURRENT LEARNING (DCL).

e1 e2 θ̃1 θ̃2 θ̃3 θ̃4
ICL 0.1078 0.2117 0.0507 0.3100 0.1867 0.1121
DCL 0.2497 0.6717 0.1802 1.3376 0.3753 0.2382

A second set of simulations were performed to demonstrate the application of ICL to Euler-Lagrange systems and verify the
development in Section IV. A two-link planar robot was simulated, with dynamics shown in (33), where c2 denotes cos (q2)
and s2 denotes sin (q2). The nominal parameters values of the model are

p1 = 3.473 fd1 = 5.3

p2 = 0.196 fd2 = 1.1

p3 = 0.242

and the controller gains were selected as

α = 1.0 Γ = 0.3I5

k1 = 1.0 k2 = 3.0.

The desired trajectory was selected as

qd1 = (1 + 10 exp (−2t)) sin (t) ,

qd2 = (1 + 10 exp (−t)) cos (3t) ,

and a history stack of up to 20 data points was used for ICL. The results of the simulation are shown in Figures 3 and 4,
where it is clear that the tracking and parameter estimation error exponentially converge. In comparison, the error trajectories in
Figures 5 and 6 demonstrate the performance of a purely gradient based adaptive update law (i.e., k2 = 0), in which trajectory
tracking performance is degraded and the system parameters are not identified.
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Fig. 3. Evolution of the joint angles for the planar robot simulation
using an ICL adaptation law.
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Fig. 4. Evolution of the parameter estimation errors for the planar robot
simulation using an ICL adaptation law.
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Fig. 5. Evolution of the joint angles for the planar robot simulation
using an gradient-based adaptation law.
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Fig. 6. Evolution of the parameter estimation errors for the planar robot
simulation using a gradient-based adaptation law.

VI. CONCLUSION

A modified concurrent learning adaptive update law was developed, resulting in guarantees on the convergence of the
parameter estimation errors without requiring persistent excitation or the estimation of state derivatives. The development
in this paper represents a significant improvement in online system identification. Whereas PE is required in the majority
of adaptive methods for parameter estimation convergence (usually ensured through the use of a probing signal that is not
considered in the Lyapunov analysis), the technique described in this paper does not require PE. Furthermore, the formulation
of concurrent learning in this paper circumvents the need to estimate the unmeasurable state derivatives, therefore avoiding the
design and tuning of a state derivative estimator. This formulation is more robust to noise, i.e., has better tracking and estimation
performance, compared to other concurrent learning designs, as demonstrated by the included Monte Carlo simulation.

A tuning parameter that results from this design is the integration time window, ∆t. As the integration window increases,
the difference between the prediction of the state evolution based on current parameter estimates (i.e., Ui+Yiθ̂) and the actual
state evolution (i.e., x (ti) − x (ti −∆t)) should increase, therefore providing a larger error signal from which to learn. On
the other hand, a larger integration window increases the effect of disturbances and noise since these signals would also be
integrated, resulting in a larger ultimate error bound (see e.g., [8] for a discussion on the effects of disturbances on the ultimate
error). Therefore, future efforts will investigate optimal selection of the integration window based on disturbance and noise
characteristics, as well as identifying any unknown parameters in the control effectiveness.
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