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Abstract—The Robust Integral of the Sign of the Error
(RISE) control approach results in a powerful continuous
controller that yields exponential tracking error convergence
despite the presence of time-varying and state-dependent dis-
turbances. However, designing the RISE controller to yield
exponential tracking error convergence in the presence of
actuator saturation has been an open problem. Although
there are existing results that provide a saturation scheme
for RISE controllers, these results only guarantee asymptotic
tracking error convergence using a Lyapunov-based analysis.
In this paper, a new design strategy is developed using a
projection algorithm and auxiliary filters to yield exponential
tracking error convergence. This new strategy does not employ
trigonometric or hyperbolic saturation functions inherent to
previous saturated (or amplitude limited) controllers. As a
result, a Lyapunov-based analysis can be constructed that yields
exponential convergence of the tracking errors. Comparative
simulation results demonstrate the performance of the devel-
oped method in comparison with a baseline controller. The
developed method can operate at a lower saturation limit than
the baseline method while maintaining stability and achieving
exponential tracking error convergence.

I. INTRODUCTION

The family of Robust Integral of the Sign of the Error
(RISE) controllers provide a powerful continuous control
method that yields asymptotic tracking error convergence
despite the presence of time-varying and state-dependent
disturbances [1]–[11]. In [12], the tracking error conver-
gence is also shown to be uniform and exponential, and
the exponential tracking result is shown to also hold for
systems involving state delays in [13]. The results in [12]
and [13] enable the stability analysis using a specialized
function called the P-function, which is used in the candidate
Lyapunov function to prove exponential tracking.

Although the results in [12] and [13] provide exponential
tracking error convergence, the development and analysis
does not account for actuator saturation, which is a com-
mon issue in control systems. Traditional control methods
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[14]–[16] use passivity-based design techniques leveraging
the small-gain theorem to compensate for the nonlinearities
introduced by the saturation constraints. However, due to
the lack of a high-frequency component like sliding-mode
or RISE, these passivity-based design techniques typically
do not achieve exponential stability guarantees in the pres-
ence of external disturbances. Therefore, motivation exists
to develop continuous control methods that can achieve
exponential stability despite the saturation constraints and
external disturbances. To implement RISE controllers in the
presence of actuator saturation, a dynamic saturation scheme
is provided in [17], and a Lyapunov-based stability analysis is
provided to yield asymptotic tracking guarantees despite the
saturation. However, the stability analysis in [17] only guar-
antees asymptotic convergence of the tracking error without
guaranteeing exponential convergence. The novel P-function
introduced in [12] cannot be easily applied for the result
in [17] because the candidate Lyapunov function (VL) in
[17] involves a combination of linear, quadratic, logarithmic,
and hyperbolic functions of the state, e.g., ln (cosh (e1))
term, where e1 denotes the tracking error. Consequently,
there are mathematical challenges in extending the analytical
development in [12] for the controller in [17] to yield an
inequality of the form V̇L ≤ −λVL which is essential in [12]
to yield exponential convergence with some constant rate of
convergence λ ∈ R>0. Moreover, the saturation mechanism
in [17] involves an integrator of the form

u = γ tanh (v)

v̇ =
1

γ
cosh2 (v) (µ) , (1)

where γ is the saturation bound and µ is a nominal input to
the integrator. This mechanism then yields u̇ = µ, provided v
does not escape in finite time so that cosh2 (v) and sech2 (v)
can cancel. The issue with saturation mechanisms of the form
in (1) is, if v is bounded, they generate solutions identical to
the unsaturated integrator

u̇ = µ. (2)

This is only possible if the solutions to (2) never reach
the saturation limit, in which case it might be preferable
to use (2) instead of (1). Otherwise, a contradiction results,
leading to the conclusion that v must be unbounded when



the saturation limit is reached. Although the result in [17]
establishes the boundedness of u, there are difficulties in
finding conditions under which v does not escape in finite
time. This is a common problem with approaches that pass
the output of an integrator through saturating functions like
tanh. Instead, it is preferable to modify the input to the
integrator such that the solutions to the integrator would
satisfy the saturation bound.

In this paper, we present a new design and stability analysis
using a projection operator-based approach to design a sat-
urated RISE controller with exponential stability guarantees.
By projecting the input to an integrator on the tangent cone
to the saturation region, the projection operator constrains
the resulting integral to the saturation region. As a result,
the control input always satisfies the saturation constraints.
Although the projection operator achieves input saturation, it
is unclear if the projection-based approach would preserve
the exponential stability guarantees established in [12] and
[13]. To answer this question, we first prove an extension
of an important property of projection operators in [18,
Lemma E.1.IV] for closed convex sets involving nonsmooth
boundaries such as component-wise saturation. Based on this
property, we derive conditions under which exponential track-
ing error convergence can be achieved using the modified
RISE controller, despite the projection.

Modifying a RISE controller using projection is diffi-
cult because the standard RISE controller contains a state-
derivative term in the integrator, which is difficult to separate
from the integrator when a projection operator is applied.
To overcome this challenge, we employ an auxiliary filter
to avoid the use of a state-derivative term in the projected
integrator. Subsequently, we construct a filtered tracking error
based on the auxiliary filter that can be represented as the
difference between the uncertainty and the control input.
This representation enables us to use the properties of the
projection operator in the Lyapunov-based stability analysis
to guarantee exponential tracking error convergence, provided
the system uncertainty lies within a compact convex set. Un-
like the method presented in [17], our solution guarantees the
boundedness of all closed-loop signals and exponential track-
ing error convergence, provided the system is stabilizable
with a saturated control input. Comparative simulation results
are provided to demonstrate the performance of the developed
method, and the results are compared with the method in
[17]. The developed method can operate at a lower saturation
limit than the baseline method while maintaining stability
and achieving exponential tracking error convergence. Upon
selecting a higher saturation limit for the baseline method
to avoid instability, and selecting the parameters for both
methods to yield approximately the same root mean squared
(RMS) control effort, the developed method is able to provide
20% reduction in the RMS control effort.

II. NOTATION AND PRELIMINARIES

The Lebesgue measure on Rn is denoted by m. The
notation Cm denotes the space of continuous functions with

continuous first m derivatives. The p-norm is denoted by
∥·∥p, and ∥·∥ denotes the 2-norm. Given some sets A and B,
a set-valued map F from A to subsets of B is denoted by
F : A⇒ B. The notation coA denotes the closed convex hull
of the set A. The notation B(x, δ), for x ∈ Rn and δ > 0, is
used to denote the set {y ∈ Rn : ∥x− y∥ < δ}. Consider a
Lebesgue measurable and locally essentially bounded func-
tion h : Rn × R≥0 → Rn. The Filippov regularization of h
at (y, t) ∈ Rn×R≥0 is defined as the intersection of convex
closures of values attained by h in every neighborhood of y
omitting sets of measure zero, i.e.,

K [h] (y, t) ≜
⋂
δ>0

⋂
mSm=0

coh (B (y, δ) \S, t) ,

where
⋂

mS=0

denotes the intersection over all sets S ⊂ Rn

of Lebesgue measure zero [19, Equation 2b]. Additionally,
given any sets A,B ⊂ R, the notation A ≤ B is used to

state a ≤ b for all a ∈ A and b ∈ B. The notation
a.a.t.

(·)
implies that the relation (·) holds for almost all t ∈ I,
given some interval I. A function y : Iy → Rn is called
a Filippov solution of ẏ = h(y, t) on the interval Iy ⊆ R≥0,
if y is absolutely continuous on Iy , and is a solution to

the differential inclusion ẏ
a.a.t.
∈ K [h] (y, t). The gradient

operator is denoted by ∇, and Clarke’s generalized gradient
for a locally Lipschitz function V : Rn × R≥0 → R at
(x, t) ∈ Rn × R≥0 is defined as the convex closure of its
gradients in an arbitrarily small neighborhood of (x, t) while
omitting sets of measure zero where it is not defined, i.e.,

∂V (x, t) ≜ co{lim∇V (x, t)|(xi, ti) → (x, t), (xi, ti) /∈ ΩV },

where ΩV denotes the set of measure zero wherever ∇V is
not defined [20, Def. 2.2].

A. Projection Operator

Given a closed set Θ ⊂ Rn and θ ∈ Θ, a vector v is a
tangent vector to Θ at θ if there exist sequences θk → θ
with θk ∈ Θ for all k ∈ Z>0 and δk → 0+ such that
θk−θ
δk

→ v. The set of all tangent vectors to Θ at θ is
called the tangent cone at θ and denoted by TθΘ [21]. If
the set-valued map θ 7→ TθΘ is inner semicontinuous (i.e.,
lim inf
θ̂→θ

Tθ̂Θ ⊃ TθΘ [22, Def. 5.4]), then the set Θ is termed

Clarke regular (or tangentially regular) [21]. For the set Θ,
the projection operator at θ ∈ Θ for any given argument
µ ∈ Rn is defined as [21]

projθΘ (µ) ≜ argmin
v∈TθΘ

∥v − µ∥2 .

In the following lemma, we establish an important property
of projection operators which is used for ensuring exponential
stability guarantees in this paper. This is essentially a gen-
eralization of [18, Lemma E.1.IV] to nonsmooth projected
dynamic systems involving nonsmooth closed convex sets.

Lemma 1. Given a closed convex Clarke regular set
Θ ⊂ Rn and any point θ∗ ∈ Θ, the inequality



− (θ∗ − θ)
T
K

[
projθΘ

]
(µ) ≤ − (θ∗ − θ)

T
µ holds for all

θ ∈ Θ and µ ∈ Rn.

Proof: Because Θ is convex, the tangent cone TθΘ
is also convex. To establish this fact, recall that by the
definition of TθΘ, for all v1, v2 ∈ TθΘ, there exist sequences
θ1,k, θ2,k → θ with θ1,k, θ2,k ∈ Θ for all k ∈ Z>0 and
δk → 0+ such that θ1,k−θδk

→ v1 and θ2,k−θ
δk

→ v2. Due to the
convexity of Θ, αθ1,k + (1− α) θ2,k ∈ Θ for all α ∈ [0, 1].
Thus, constructing the series θ3,k ≜ αθ1,k+(1− α) θ2,k ∈ Θ

yields θ3,k−θ
δk

= α
(
θ1,k−θ
δk

)
+ (1− α)

(
θ2,k−θ
δk

)
→ αv1 +

(1 − α)v2 for all α ∈ [0, 1]; thus αv1 + (1 − α)v2 ∈ TθΘ,
implying that TθΘ is convex.

For a given µ, let gµ : Rn → R≥0 be defined
gµ (v) ≜ ∥v − µ∥2 for all v ∈ Rn, and v∗ ≜ projθΘ (µ) =
argmin
v∈TθΘ

gµ(v). Due to the convexity of TθΘ, the inequality

−∇gµ(v∗)T (v− v∗) = (µ− v∗)
T
(v− v∗) ≤ 0 holds for all

v ∈ TθΘ by the first-order optimality condition [22, Theorem
6.12]. Moreover, due to the convex cone property of TθΘ,
for any v1, v2 ∈ TθΘ, the relation ω1v1 + ω2v2 ∈ TθΘ
holds for all ω1, ω2 ∈ R>0. Thus, since v∗ ∈ TθΘ, selecting
v = w + v∗ yields (µ− v∗)

T
(v − v∗) = (µ− v∗)

T
w ≤ 0

for all w ∈ TθΘ. From the definition of tangent cone
and convexity of Θ, θ∗ − θ ∈ TθΘ for all θ∗ ∈ Θ.
This fact is shown by selecting θk = δkθ

∗ + (1 −
δk)θ ∈ Θ, which yields lim

δk→0+

θk−θ
δk

→ θ∗ − θ. Therefore,

(µ− v∗)
T
(θ∗ − θ) ≤ 0 for all θ∗ ∈ Θ, which can be rewrit-

ten as − (θ∗ − θ)
T
projθΘ (µ) ≤ − (θ∗ − θ)

T
µ by recalling

v∗ = projθΘ (µ). Due to the facts that the aforementioned
inequality is linear in projθΘ (µ) and K [·] is convex, the
inequality − (θ∗ − θ)

T
v ≤ − (θ∗ − θ)

T
µ holds for all v ∈

K
[
projθΘ

]
(µ). Therefore, − (θ∗ − θ)

T
K

[
projθΘ

]
(µ) ≤

− (θ∗ − θ)
T
µ holds for all θ ∈ Θ and µ ∈ Rn.

The following lemma states the forward invariance prop-
erties of projected dynamic systems, which will be used for
imposing saturation constraints on the control input.

Lemma 2. (Forward Invariance) Consider a closed convex
Clarke regular set Θ ⊂ Rn and a continuous vector field
F : Θ × R≥0 → Rn. Then Filippov solutions to θ̇ =
projθΘ (F (θ, t)) initialized with θ(0) ∈ Θ exist, and every
such Filippov solution satisfies θ(t) ∈ Θ for all t ∈ R≥0, if
i) F is bounded or globally Lipschitz, or ii) Θ is bounded.

Proof: Under the stated conditions on F and Θ, the
result in [21, Corollary 4.3] guarantees existence and com-
pleteness of all Krasovskii solutions to θ̇ = projθΘ (F (θ, t))
subjected to θ ∈ Θ. Notably, a Filippov solution is always
a Krasovskii solution (see [23, Eq. (4) and (5)] for the
differences in their definitions); thus, the completeness can
also be concluded for Filippov solutions.

Although the projection operator is defined as a solution to
a quadratic program, closed-form expressions can be obtained
for various cases of practical importance. The following
example derives a closed form of the projection operator for

sets describing channel-wise saturation.

Example 1. Consider the set Θ = {θ = [θ1, θ2, . . . , θn]
T ∈

Rn : θi ≤ θi ≤ θi},where θi, θi ∈ R denote the upper and
lower bounds on θi for all i ∈ {1, . . . , n}. Then the tangent
cone TθΘ is given by TθΘ = {v = [v1, v2, . . . , vn]

T ∈ Rn :
vi ≥ 0 if θi = θi, vi ≤ 0 if θi = θi, vi ∈ R if θi<θi<θi}.
Since the tangent cone is independently defined for each
θi, the projection operator can be applied component wise.
Thus, using the expression for TθΘ and the definition of
the projection operator, the projection projθΘ(µ) is given by
projθΘ(µ)i = max(0, µi) if θi = θi, min(0, µi) if θi = θi,
and µi if θi < θi < θi, where µi and projθΘ(µ)i denote the
ith elements of µ and projθΘ(µ), respectively.

The following example derives the traditional closed-form
projection operator used in adaptive control [18, Appendix
E] for sets with boundaries described by C1 functions, using
the tangent cone-based definition of projection operation.

Example 2. Consider the set Θ = {θ ∈ Rn : h(θ) ≤ 0},
where h : Rn → R is C1. For points that lie in the interior of
Θ, i.e., where h(θ) < 0, the tangent cone is the entire space,
TθΘ = Rn; thus projθΘ (µ) = µ if h(θ) < 0. For points
on the boundary of Θ, i.e., where h(θ) = 0, the tangent
vector v must point into Θ, i.e., ∇h(θ)T v ≤ 0; therefore,
TθΘ = {v ∈ Rn : ∇h(θ)T v ≤ 0} if h(θ) = 0. For points
on the boundary, projθΘ (µ) is a solution to the optimization
problem argmin

v
∥v − µ∥2 s.t. ∇h(θ)T v ≤ 0. This is a con-

vex quadratic optimization problem with a linear constraint,
which can be solved by introducing the Lagrange multiplier
Λ ∈ R≥0, where the Lagrangian is L(v, λ) = ∥v − µ∥2 +
Λ∇h(θ)T v. To find the minimizer v∗, Karush-Kuhn-Tucker
(KKT) conditions are imposed. By the stationarity condition,
∇vL(v

∗, λ) = 2 (v∗ − µ) + Λ∇h(θ) = 0, which yields
v∗ = µ − Λ

2∇h(θ). Then using the primal feasibility con-
dition ∇h(θ)T v∗ ≤ 0 yields ∇h(θ)T

(
µ− Λ

2∇h(θ)
)
≤ 0,

therefore Λ ≥ 2∇h(θ)Tµ
∥∇h(θ)∥2 . Furthermore, imposing the dual

feasibility condition Λ ≥ 0 yields Λ ≥ max
(
0, 2∇h(θ)

Tµ

∥∇h(θ)∥2

)
.

Finally, imposing the complementary slackness condition
Λ∇h(θ)T v∗ ≤ 0 yields Λ

(
∇h(θ)Tµ− Λ

2 ∥∇h(θ)∥2
)

=

0, which implies two cases. In the first case, Λ = 0,
which implies Λ = µ. In the second case, ∇h(θ)Tµ −
Λ
2 ∥∇h(θ)∥2 = 0, implying Λ = 2∇h(θ)Tµ

∥∇h(θ)∥2 . These cases

together with the condition Λ ≥ max
(
0, 2∇h(θ)

Tµ

∥∇h(θ)∥2

)
imply

Λ = max
(
0, 2∇h(θ)

Tµ

∥∇h(θ)∥2

)
. Substituting Λ back into v∗ yields

v∗ = µ − max
(
0, ∇h(θ)Tµ

∥∇h(θ)∥2

)
∇h(θ). Therefore, the projec-

tion operator is given by

projθΘ (µ) =

{
µ, h(θ) < 0

µ−max
(
0, ∇h(θ)Tµ

∥∇h(θ)∥2

)
∇h(θ), h(θ) = 0,

which is the same as the projection operator in [18, Appendix
E].



III. CONTROL DESIGN

A. Problem Statement

Consider the nonlinear system

ẍ = f (x, ẋ, t) + d(t) + u, (3)

where x ∈ Rn is the state, u ∈ Rn is the control input,
f : Rn × Rn × R≥0 → Rn is a C2 uncertainty such
that the mappings t 7→ f (x, ẋ, t), t 7→ ∇f (x, ẋ, t), and
t 7→ ∇2f (x, ẋ, t) are uniformly bounded, and d : R≥0 → Rn
is a C2 disturbance such that d, ḋ, and d̈ are uniformly
bounded. The control objective is to ensure that the tracking
error e1 ≜ xd − x exponentially converges to zero while
ensuring that u stays saturated within a given closed convex
Clarke regular set Ω ⊂ Rn containing the origin in its interior,
where xd : R≥0 → Rn is a C4 reference trajectory such that
xd, ẋd, ẍd,

...
x d, and ....

x d are uniformly bounded.

B. Control Development

Let I = [t0, t1) denote an interval of time during which
solutions to the closed-loop error system in the subsequent
development exist with some t0, t1 ∈ R≥0. To facilitate the
control development without requiring ẍ measurements, an
auxiliary term ef ∈ Rn is designed as a solution to the filter

ėf = −γ1e2 − γ2ef , (4)

where γ1, γ2 ∈ R>0 are user-defined constants. Additionally,
let the auxiliary errors e2, r ∈ Rn be defined as

e2 = ė1 + α1e1 + ef , (5)
r = ė2 + α2e2, (6)

where α1, α2 ∈ R>0. To ensure the control input stays
saturated within Ω, we design the control input as u = Ŝ
using a projection-based adaptive update law, where the
projection operator is used to ensure Ŝ ∈ Ω. The control
input u is designed as u = Ŝ, where Ŝ ∈ Rn is designed as
a Filippov solution to

˙̂
S = projŜΩ

(
α3
1e1 + k1e2 + k2ef + βsgn (e2)

)
, (7)

where k1, k2 ∈ R>0 are constant control gains that are
designed subsequently. Taking the time-derivative of e2 and
substituting (3)-(5) into the resultant expression yields

ė2 = ẍd − f (x, ẋ, t)− d(t)− u− α2
1e1

+(α1 − γ1) e2 − (α1 + γ2) ef . (8)

Substituting (8) into (6) yields

r = ẍd − f (x, ẋ, t)− d(t)− Ŝ

−α2
1e1 −m1e2 −m2ef , (9)

where m1,m2 ∈ R>0 are constants defined as m1 ≜
γ1 − α1 − α2 and m2 ≜ α1 + γ2. Additionally, to facil-
itate the subsequent analysis, let z ∈ R4n be defined as

z ≜
[
eT1 eT2 eTf rT

]T
and S (z, t) ∈ Rn be defined

as

S (z, t) ≜ ẍd−f (x, ẋ, t)−d(t)−α2
1e1−m1e2−m2ef . (10)

Based on (9) and (10), r can be rewritten as

r = S (z, t)− Ŝ. (11)

This representation of r is useful since it allows for the use
of Lemma 1 in the subsequent stability analysis to achieve
the exponential stability result. The following assumption is
made to ensure the existence of a region of attraction in the
subsequent analysis.

Assumption 1. There exists a closed set D ⊂ R4n such that
z ∈ D implies S (z, t) ∈ Ω for all t ∈ R≥0.

Remark 1. Assumption 1 provides a sufficient feasibility
condition on the region of attraction on how much distur-
bance or drift can be tolerated and how much acceleration
the desired trajectory can involve for a given saturation
bound on the control input. To illustrate this fact, let ū ≜
supRu s.t. {ς ∈ Rn : ∥ς∥ ≤ Ru} ⊆ Ω denote the saturation
limit, D̄ = sup

t≥0
∥ẍd − f (xd, ẋd, t)− d(t)∥ denote the distur-

bance bound, and ρf : R≥0 → R≥0 be a strictly increas-
ing function satisfying sup

t≥0
∥f (xd, ẋd, t)− f (x, ẋ, t)∥ ≤

ρf (∥z∥) ∥z∥, the existence of which follows from the mean
value theorem-based inequality in [24, Lemma 5] and the
fact that t 7→ ∇f (x, ẋ, t) is uniformly bounded by definition.
Provided ū > D̄, the set D can be sufficiently computed as
D = {z ∈ R4n : ρf (∥z∥) ∥z∥+

(
α2
1 − α2 + γ1 + γ2

)
∥z∥ ≤

ū− D̄}. This explicit restriction makes it clear that arbitrary
disturbances and arbitrary desired trajectories cannot be glob-
ally tracked using a saturated controller, unlike the result in
[17].

Taking the time-derivative of both sides in (9), and substitut-
ing (4), (7), and (8) into the resultant expression yields that
r is a Filippov solution to

ṙ = NB + Ñ − e2 −m1r +
(
m2γ1 −m1α2 − α2

1

)
e2

−projŜΩ
(
α3
1e1 + k1e2 + k2ef + βsgn (e2)

)
+
(
m2γ2 + α2

1

)
ef + α3

1e1, (12)

where NB ≜
...
x d− d

dtf (xd, ẋd, t) − ḋ (t) and Ñ ≜
d
dtf (xd, ẋd, t) − d

dtf (x, ẋ, t) + e2. Due to the facts that
f is C2 and d, ḋ, d̈, xd, ẋd, ẍd,

...
x d, ....

x d, t 7→ f (x, ẋ, t),
t 7→ ∇f (x, ẋ, t), and t 7→ ∇2f (x, ẋ, t) are uniformly
bounded, it follows that there exist constants χ1, χ2 ∈ R>0

such that

∥NB∥ ≤ χ1 (13)

and ∥∥∥ṄB∥∥∥ ≤ χ2. (14)



Since t 7→ ∇2f (x, ẋ, t) is uniformly bounded, the term Ñ
in (12) can be bounded using the mean-value theorem-based
inequality in [24, Lemma 5] as∥∥∥Ñ∥∥∥ ≤ ρ (∥z∥) ∥z∥ , (15)

where ρ : R≥0 → R≥0 is a positive strictly increasing
function.

Remark 2. The purpose of designing the auxiliary filter in
(4) is to enable the appearance of the term −m1r in (12)
without having to use r (which is unknown because ẍ is
unknown) in (7). The presence of −m1r in (12) enables the
exponential convergence result in the subsequent Lyapunov-
based stability analysis by contributing a −m1 ∥r∥2 term.

The following section provides a Lyapunov-based stability
analysis to show exponential tracking error convergence
guarantees with the developed controller.

IV. STABILITY ANALYSIS

The stability analysis for RISE controllers typically in-
volves the use of an auxiliary P-function [2]. In [12], a
unique P-function was introduced to show exponential track-
ing error convergence. Similarly, we introduce the P-function
P : I → R≥0 defined as

P ≜ β ∥e2∥1 − eT2NB + e−λP t ∗
(
eT2 ṄB

)
+e−λP t ∗

(
(α2 − λP )

(
β ∥e2∥1 − eT2NB

))
,(16)

where λP ∈ R>0 is a user-selected constant, and the
notation ‘∗’ denotes the convolutional integral e−λP t ∗ q =∫ t
t0
e−λP (t−σ)q(σ)dσ, for any given q : [t0,∞) → R. Based

on the Leibniz rule, the following property of convolutional
integrals is obtained: d

dt

(∫ t
t0
e−λP (t−σ)q(σ)dσ

)
= q(t) −

λP
∫ t
t0
e−λP (t−σ)q(σ)dσ. Therefore, d

dt

(
e−λP t ∗ q

)
= q(t)−

λP e
−λP t ∗ q. Since t 7→ e2(t) is absolutely continuous and

∥·∥1 is globally Lipschitz, the mapping t 7→ ∥e2(t)∥1 is dif-
ferentiable for almost all time. Therefore, using the chain rule
in [20, Theorem 2.2] yields d

dt (∥e2∥1)
a.a.t.
∈ ėT2K[sgn](e2).

Taking the time-derivative of (16), using Leibniz’s rule, and
substituting (6) and (16) into the resulting time-derivative
yields

Ṗ
a.a.t.
∈ −λPP + rTβK[sgn](e2)− rTNB . (17)

Moreover, provided the gain conditions

α2 > λP (18)

and
β > χ1 +

χ2

α2 − λP
(19)

are satisfied, it follows from the bounds in (13) and (14) that
β ∥e2∥1 − eT2NB ≥ 0 and (α2 − λP )

(
β ∥e2∥1 − eT2NB

)
+

eT2 ṄB ≥ 0. Additionally, note that the convolution inte-
grals of positive functions are positive, because for any
given positive function q : R≥0 → R≥0, it follows that

e−λP t ∗q =
∫ t
t0
e−λP (t−σ)q(σ)dσ ≥ 0. Therefore, examining

the expression in (16) yields that P ≥ 0, ∀t ∈ I.
To state the main result of this paper, the following

definitions are introduced. Let W : R4n → R≥0 be defined
as

W (σ) ≜
√
∥σ∥2 + 2 (β + χ1) ∥σ∥1, ∀σ ∈ R4n. (20)

Additionally, let kmin ∈ R>0 be a constant gain defined as
kmin ≜ min{α1− 1, α2− 1, γ2− γ2

1+1
2 ,m1,

λP

2 }, λV ∈ R>0

be the desired rate of convergence, and the set B ⊂ R4n be
defined as B ≜ {σ ∈ R4n : ρ (W (σ)) ≤ kmin − λV }.

Theorem 1. All solutions to (4), (5), (8), and (12) with
z(t0) ∈ B satisfy ∥z(t)∥ ≤ W (z(t0))e

−λV (t−t0), ∀t ∈
[t0,∞), provided that the gains α1, α2, γ1, γ2, β and λP are
selected according to the gain conditions in (18) and (19)
and to ensure that B ⊂ D, the gains k1 and k2 are selected
as

k1 = m2γ1 −m1α2 − α2
1, (21)

and

k2 = m2γ2 + α2
1. (22)

Proof: Let ψ : I → R4n+1 be defined as ψ(t) ≜[
zT (t) P (t)

]T
, and G : R4n+1 × R≥0 ⇒ R4n+1 denote

the set-valued map

G(ψ, t) ≜



e2 − α1e1 − ef
r − α2e2

−γ1e2 − γ2ef
NB + Ñ − e2 −m1r + α3

1e1

−βK
[
projŜΩ

]
sgn(e2)

−K
[
projŜΩ

] (
α3
1e1 + k1e2 + k2ef

)
+

(
m2γ1 −m1α2 − α2

1

)
e2 +

(
m2γ2 + α2

1

)
ef


−λPP − rTNB + rT βK[sgn](e2)


.

Then using (4), (5), (8), (12), and (17) yields ψ̇
a.a.t.
∈ G(ψ, t).

Consider the function VL : R4n+1 → R≥0 defined as

VL (ψ) ≜
1

2
eT1 e1 +

1

2
eT2 e2 +

1

2
eTf ef +

1

2
rT r + P. (23)

Based on the chain rule for differential inclusions in [20,
Theorem 2.2], the time-derivative of VL along the trajec-
tories t 7→ ψ(t) exists for almost all time, and satisfies

V̇L(ψ, t)
a.a.t.
∈ ˙̃

V L(ψ, t), where the set ˙̃
V L(ψ, t) is defined

as ˙̃
V L(ψ, t) ≜

⋂
ξ∈∂VL(ψ)

ξTG(ψ, t), where ∂VL(ψ) denotes

Clarke’s generalized gradient. Since the gradient of VL(ψ),
i.e., ∇VL(ψ), exists and is continuous for all ψ ∈ R4n+1,



∂VL = {∇VL}. Therefore, ˙̃
V L(ψ, t) = ∇V TL G(ψ, t) =[

zT 1
]
G(ψ, t). Evaluating ˙̃

V L(ψ, t) yields

˙̃
V L(ψ, t) = eT1 (e2 − α1e1 − ef ) + eT2 (r − α2e2)

+eTf (−γ1e2 − γ2ef ) + rT
(
NB + Ñ − e2

)
−rTK

[
projŜΩ

] (
α3
1e1 + k1e2 + k2ef

)
+rT

(
−m1r +

(
m2γ1 −m1α2 − α2

1

)
e2
)

+
(
m2γ2 + α2

1

)
rT ef + α3

1r
T e1

−rTβK
[
projŜΩ

]
sgn(e2)

−λPP − rTNB + rTβK[sgn](e2). (24)

Using Young’s inequality yields γ1e
T
f e2 ≤ 1

2 ∥e2∥
2
+

γ2
1

2 ∥ef∥2, eT1 e2 <
1
2 ∥e1∥

2
+ 1

2 ∥e2∥
2, and eT1 ef <

1
2 ∥e1∥

2
+

1
2 ∥ef∥

2. Therefore,

˙̃
V L(ψ, t)

a.a.t.
≤ − (α1 − 1) ∥e1∥2 − (α2 − 1) ∥e2∥2

−
(
γ2 −

γ21 + 1

2

)
∥ef∥2 −m1 ∥r∥2

+rT
(
NB + Ñ + α3

1e1

)
−rTK

[
projŜΩ

] (
α3
1e1 + k1e2 + k2ef

)
−rTβK

[
projŜΩ

]
sgn(e2)

+rT
(
m2γ1 −m1α2 − α2

1

)
e2

+rT
(
m2γ2 + α2

1

)
ef

−λPP − rTNB + rTβK[sgn](e2). (25)

Since z(t0) ∈ D, let ID ⊂ I denote the time-interval over
which z(t) ∈ D for all t ∈ ID. Based on Assumption
1, z ∈ D implies S(z, t) ∈ Ω; thus S(z, t) ∈ Ω for
all t ∈ ID. Therefore, using Lemma 1 and the fact r =

S − Ŝ yields −rTK
[
projŜΩ

]
(k1e2 + k2ef + βsgn(e2)) ≤

−rT (k1e2 + k2ef + βK[sgn](e2)) for all t ∈ ID. As a
result,

˙̃
V L(ψ, t)

a.a.t.
≤ − (α1 − 1) ∥e1∥2 −m1 ∥r∥2

− (α2 − 1) ∥e2∥2

−
(
γ2 −

γ21 + 1

2

)
∥ef∥2

+rT
(
Ñ −

(
α3
1e1 + k1e2 + k2ef

))
−rTβK [sgn] (e2) + α3

1r
T e1

+rT
(
m2γ1 −m1α2 − α2

1

)
e2

+rT
(
m2γ2 + α2

1

)
ef

−λPP + rTβK[sgn](e2). (26)

Based on [12, Lemma 1], the set of time-instants where the
term rTK [sgn] (e2(·)) is set-valued has Lebesgue measure
zero. As a result, rTK [sgn] (e2(t)) = {rT sgn(e2(t))} for

almost all t ∈ ID. Therefore, substituting (21) and (22) into
(26), and using (15) yields

˙̃
V L(ψ, t)

a.a.t.
≤ − (α1 − 1) ∥e1∥2 −m1 ∥r∥2

− (α2 − 1) ∥e2∥2

−
(
γ2 −

γ21 + 1

2

)
∥ef∥2

+ρ (∥z∥) ∥z∥2 − λPP

≤ − (kmin − ρ (∥z∥)) ∥z∥2 − λPP

≤ −2 (kmin − ρ (∥z∥))
(
1

2
∥z∥2

)
− λPP,

where kmin is defined above the theorem statement. Since
ρ (∥z∥) ≤ ρ

(√
2VL

)
, selecting λP ≥ 2 (kmin − ρ (∥z∥)) and

recalling V̇L(ψ, t)
a.a.t.
∈ ˙̃

V L(ψ, t) yields

V̇L
a.a.t.
≤ −2 (kmin − ρ (∥z∥))

(
1

2
∥z∥2 + P

)
≤ −2

(
kmin − ρ

(√
2VL

))
VL.

Since z(t0) ∈ B, therefore kmin > λV + ρ (W (z (t0))) >

λV + ρ
(√

2VL (ψ(t0))
)

. As a result,

V̇L
a.a.t.
≤ −2λV VL, ∀t ∈ ID.

Based on the Comparison Principle [25, Lemma 4.4], it
follows that

VL(ψ(t)) ≤ VL(ψ(t0))e
−2λV (t−t0), ∀t ∈ ID. (27)

Therefore, kmin ≥ λV + ρ
(√

2VL (ψ(t0))
)

≥ λV +

ρ
(√

2VL (ψ(t))
)

for all t ∈ ID, and which implies z ∈ B
for all t ∈ ID. Thus, if the gains are selected to ensure
B ⊆ D, then z cannot escape D, and therefore the time-
interval ID can be extended into the entire interval of
existence I. Furthermore, using (27), ∥z(t)∥ can further be
upper-bounded as

∥z(t)∥ ≤
√

2VL(ψ(t0))e
−λV (t−t0), ∀t ∈ I. (28)

Substituting P (t0) = β ∥e2(t0)∥1 − eT2 (t0)NB(t0) yields
VL(ψ(t0)) = 1

2 ∥z(t0)∥
2
+ (β ∥e2(t0)∥1 − eT2 (t0)NB(t0)).

Since the term NB(t0) is bounded according to (13), using
the facts that ∥e2(t0)∥ ≤ ∥e2(t0)∥1 ≤ ∥z(t0)∥1, it follows
that√

2VL(ψ(t0)) ≤
√

∥z(t0)∥2 + 2 (β + χ1) ∥z(t0)∥1
= W (z(t0)), (29)

where W (·) is defined in (20). Additionally, since (ψ, t) 7→
G(ψ, t) is a locally bounded mapping, and ψ is precompact
(i.e., bounded over any interval I) according to (28), invoking
[26, Lemma 3.3 and Remark 3.4] rules out the possibility of
solutions escaping in finite time. Therefore, I = [t0,∞).
Thus, the exponential convergence in (28) holds for all t ∈
[t0,∞). Therefore, substituting (29) into (28) yields

∥z(t)∥ ≤ W (z(t0))e
−λV (t−t0), ∀t ∈ [t0,∞). (30)



Because β, χ1, and λV are independent of the initial time
t0 or initial condition z(t0), the exponential convergence is
uniform [27]. Additionally, the convergence and boundedness
of ∥z∥ implies the convergence and boundedness of ∥e1∥,
∥e2∥, ∥ef∥, and ∥r∥. Therefore, since xd, ẋd, ẍd ∈ L∞, it
can be concluded that x, ẋ, ẍ ∈ L∞ [28]. Thus, f(x, ẋ, t) is
bounded, and hence from (3), u ∈ L∞.

Remark 3. To obviate the need to know the bounds χ1 and
χ2 for the gain condition in (19), the dynamic gain scaling
approach in [29] can be used to dynamically estimate the
ideal gain β∗ ≜ χ1 + χ2

α2−λP
using an adaptive estimate

β̂ ∈ R. Such an approach can be combined with the
developed saturated RISE method by including an additional
term 1

2 β̃
2 in VL, where β̃ ≜ β∗ − β̂ denotes the gain

estimation error. However, since β̃ is unknown, there are
challenges in developing an adaptive update law ˙̂

β that
would yield a negative definite V̇L, thus restricting the result
to asymptotic tracking error convergence, rather than the
exponential convergence, if a dynamic gain scaling approach
is used.

V. SIMULATION

An example system was simulated to provide an empirical
demonstration of the developed controller, and the results
are compared with the baseline saturated RISE controller
developed in [17]. Specifically, the system in (3) is considered
with

f(x, ẋ, t) =

[
cos (x2) + 0.1ẋ1 + 0.1x22
sin (x1) + 0.1ẋ2 + 0.1x21

]
and d(t) =

[
sin(2t) cos(3t)

]T
, where

x =
[
x1 x2

]T
. The reference trajectory is

xd(t) = 0.5
[
sin(t) cos(t)

]T
. The baseline controller in

[17] is given by

u = γ1 tanh (ν) ,

ν̇ = cosh2 (ν)

(
α2 tanh (e2) + (α3 + γ2) e2
+βsgn (e2)− α1sech

2 (e1) e2

)
ėf = cosh2 (ef ) (−γ1e2 − γ2 tanh (ef ) + tanh (e1))

e2 ≜ ė1 + α1 tanh (e1) + tanh (ef ) ,

r ≜ ė2 + α2 tanh (e2) + α3e2,

with ν(t0) = ef (t0) = 0. The states are initialized as
x(0) = [−1, 2]

T and ẋ(0) = [0, 0]T . The parameters used for
the developed and baseline controllers are selected to yield
approximately the same root mean squared (RMS) control
input norm, and are listed in Table I.

The simulation is performed for 10 seconds. For the
baseline method, selecting a saturation limit below 6 is found
to cause instability in the simulation results. In contrast
to the baseline method, the developed method results in
tracking error convergence even with a saturation limit as
low as 3. Figure 1 shows the comparative plots of the
tracking error norm ∥e∥ and the individual control inputs

Table I
CONTROLLER PARAMETERS

Parameter Developed Baseline
α1 2 1
α2 2 1
α3 _ 1
γ1 10 6
γ2 10 1
β 7 3
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Figure 1. Plots of the tracking error norm and control inputs with the
developed saturated RISE controller.

u1 and u2 with a channel-wise saturation limit of 3 with the
developed method and 6 with the baseline method, and the
corresponding RMS tracking error and control input norms
are shown in Table II. As evident from the control input plots,
the projection operator is able to saturate the control inputs
at the desired saturation limit of 3 between 0-2 seconds. The
tracking error converges in approximately 2.5 seconds with
the developed method whereas the baseline takes 4.5 seconds.
Despite operating at a lower saturation limit, the developed
method is able to yield almost 1.8 times faster tracking
error convergence than the baseline method. Additionally,
the developed method produces a smoother control signal
than the baseline in the transient state. This is likely because
the baseline method involves cosh2 (ν)βsgn (e2) term in ν̇,
which introduces a larger high frequency components to the
control input when ν becomes larger.



Table II
PERFORMANCE COMPARISON

Method ∥e∥RMS ∥u∥RMS

Developed 0.1407 1.5345
Baseline 0.1502 1.5333

VI. CONCLUSIONS

A saturated RISE controller is developed using a new
design strategy that includes auxiliary filters and projection
algorithm. This new strategy does not employ trigonomet-
ric or hyperbolic saturation functions inherent to previous
saturated (or amplitude limited) controllers. As a result,
we were able to construct a Lyapunov-based analysis that
yields exponential convergence of the tracking errors. By
leveraging properties of the projection operator, a Lyapunov-
based analysis was used to show exponential tracking error
convergence with the developed controller. Comparative sim-
ulation results are provided to demonstrate the performance
of the developed method, and the results are compared with
the method in [17]. The developed method can operate at
a lower saturation limit than the baseline method. Upon
selecting a higher saturation limit for the baseline method
to avoid instability, and selecting the parameters for both
methods to yield approximately the same root mean squared
(RMS) control effort, the developed method is able to achieve
approximately two fold faster tracking error convergence than
the baseline method.

The stability analysis for robust nonlinear control methods
such as RISE relies on conservative bounds on the uncertainty
and reference trajectory. This conservativeness may restrict
the sufficient gain conditions and region of attraction to more
conservative values than what may potentially be possible
with adaptive methods such as dynamic gain scaling. Future
work may explore a dynamic gain scaling approach with the
developed method that may potentially guarantee exponential
stability.
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