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Abstract— This manuscript introduces the concept of Li-
ouville operators and occupation kernels over reproducing
kernel Hilbert spaces (RKHSs). The combination of these two
concepts allow for the embedding of a dynamical system into
a RKHS, where function theoretic tools may be leveraged
for the examination of such systems. These tools are then
turned toward the problem of system identification where an
inner product formula is developed to provide constraints on
the parameters in a system identification setting. This system
identification routine is validated through several numerical
experiments, where each experiment examines various contri-
butions to the parameter identification error via numerical
integration methods and parameters for the kernel functions
themselves.

I. INTRODUCTION

A dynamical system is given as ẋ = f(x), where x :
[0, T ] → Rn is the system state and f : Rn → Rn
are Lipschitz continuous dynamics. Dynamical systems are
prevalent in the sciences, such as engineering [1], [2], [3],
biology [4], [5], neuroscience [6], physics [7], and math-
ematics [8], [9]. However, in many cases even physically
motivated dynamical systems can have unknown parameters
(i.e. a gray box), such as mass and length of mechanical
components, or the dynamics may be completely unknown
(i.e. a black box) [10]. In such cases, system identification
methods are leveraged to gain estimates on the dynamics of
the system based on data generated by the system itself [10].

For linear dynamics, many classical tools are available
for systems identification through the Fourier and Laplace
transforms of the dynamical systems by the exploitation
of the impulse response, and linear system identification
still remains numerically challenging. On the other hand,
the identification of nonlinear systems proves even more
challenging as nonlinearities may manifest in a variety of
ways, and linear transform methods for general nonlinear
systems are unavailable [11], [10].

To address these challenges a variety of nonlinear system
identification methods have been developed, such as NAR-
MAX methods [11], Volterra series [12], Lyapunov methods
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[13], and Neural Networks [10]. However, given the rich
variety of nonlinear systems, there is no modal approach
to resolving the system identification problem for nonlinear
systems [10]. A recent development in nonlinear systems
identification was the introduction of dynamic mode decom-
positions (DMDs) and their connection with the Koopman
operator [14], [15], [16].

One technical challenge that arises in many of the system
identification methods described above comes from the esti-
mation of the state derivative [14], [13]. Frequently only the
state trajectory is available and numerical estimation methods
are employed to obtain samples of the dynamical system.
Unfortunately, state derivative estimates are prone to error,
and the use of numerical estimates of the state derivatives
introduce an artificial noise component that requires addi-
tional filtering before it may be used as an estimate of the
dynamical system [14].

In an online parameter estimation context, [13] leveraged
the technique of integral concurrent learning, where state
derivative estimates were replaced with integrals of the
state. Therein it was demonstrated that the parameters were
more precisely estimated via the integral concurrent learning
method than by methods using state derivative estimates.
Moreover, in the online setting the parameter estimation
error was more stable under the integral concurrent learning
method [13].

The present manuscript develops a method that is close in
spirit to the integral concurrent learning method for system
identification. Specifically, the method presented in Section
V leverages novel kernel techniques presented in Section III,
where the concept of occupation kernels is introduced along
side that of densely defined Liouville operators. Occupation
kernels are a generalization of occupation measures, which
have been used in dynamical systems theory and optimal
control based largely on the seminal work of [17]. The
present manuscript lifts the theory of occupation measures
to that of function theory by examining the integration
functionals over reproducing kernel Hilbert spaces (RKHSs)
rather than the Banach spaces of continuous functions. What
is gained by restricting the examination to that of Hilbert
function spaces is that the tools of approximation and func-
tion theory can be brought to bear on those of occupation
kernels, where these tools were much more limited in their
scope for occupation measures. That is, while an occupation
measure is a member of the dual of a Banach space, an
occupation kernel is a function that resides in the RKHS.
Moreover, the representation of a trajectory as an occupation
kernel over a RKHS changes with the selection of RKHS,
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which allows for different aspects of the trajectory to be
emphasized. In constrast, the study of occupation measures
has been limited to polynomials in both the dynamics of the
dynamical systems as well as the test functions leveraged to
provide constraints on the occupation measures themselves.
The principle reason for this limitation is that these methods
aim to exploit the moment problem for occupation measures.

The contributions of this manuscript are presented below.
• The concept of Liouville operators is integrated with

the theory of RKHSs to yield a representation of the
dynamics in a Hilbert space setting.

• Occupation measures are generalized to occupation ker-
nels, where a trajectory is represented inside a Hilbert
space as a function.

• Occupation kernels and Liouville operators are lever-
aged to provide constraints for a system identification
method, which is presented in Section V. These con-
straints use more general test functions than polyno-
mials, which is an advantage that arises in the use of
occupation kernels over occupation measures.

The manuscript is organized as follows. Preliminaries nec-
essary for the development of occupation kernels and densely
defined Liouville operators are presented in Section II, and
the densely defined Liouville operators and occupation ker-
nels themselves are introduced in Section III. These tools
are then turned toward the problem of system identification,
where the dynamics of a system are parameterized into a
collection of basis functions. The tools of Section III are
leveraged to provide a collection of linear constraints on
the parameters of the dynamics, where state derivatives are
replaced via a collection of integral constraints. The system
identification approach is then examined through a collection
of numerical experiments in Section VI and the experiments
are discussed in Section VII.

II. PRELIMINARIES

A. Reproducing Kernel Hilbert Spaces
A RKHS, H , over a set X is a Hilbert space of real

valued functions over the set X such that for all x ∈ X
the evaluation functional Exg := g(x) is bounded [18].
As such, the Riesz representation theorem guarantees, for
all x ∈ X , the existence of a function kx ∈ H such that
〈g, kx〉H = g(x), where 〈·, ·〉H is the inner product for H .
The function kx is called the reproducing kernel function at
x, and the function K(x, y) = 〈ky, kx〉H is called the kernel
function corresponding to H .

This manuscript utilizes two RKHSs, which are defined
through their kernel functions [18]. For µ > 0, the kernel
function KE(x, y) = eµx

T y is called the exponential dot
product kernel function, and for µ > 0, the kernel func-
tion given as KG(x, y) = exp

(
− 1
µ‖x− y‖

2
2

)
is called a

Gaussian radial basis function. Both KE and KG are kernel
functions for RKHSs over Rn [19].

B. Densely Defined Operators
Given a Hilbert space, H , and a subspace D(T ) ⊂ H a

linear operator T : D(T ) → H is called densely defined if

D(T ) is a dense subspace of H [20, Chapter 5]. The operator
T is closed if, for every sequence {gm}∞m=0 ⊂ D(T ), such
that gm → g ∈ H and Tgm → h ∈ H , then g ∈ D(T ) and
Tg = h.

The adjoint of a possibly unbounded operator is given
first by its domain: D(T ∗) = {g ∈ H : h 7→
〈Th, g〉H is bounded over D(T )} [20]. For each g ∈ D(T ∗)
there exists a member T ∗g ∈ H such that 〈Th, g〉H =
〈h, T ∗g〉H . Thus, the operator T ∗ may be defined as taking
g ∈ D(T ∗) to T ∗g, which was obtained through the Riesz
representation theorem. The closedness of the operator guar-
antees the nonemptiness of the domain of its adjoint. In fact,
the following stronger statement holds.

Lemma 1: (c.f. [20, Chapter 5]) The adjoint of a closed
operator is densely defined.

III. LIOUVILLE OPERATORS AND OCCUPATION KERNELS

To establish a connection between RKHSs and nonlinear
dynamical systems, the following operator is introduced,
which is inspired by the study of occupation measures [17].

Definition 2: Let ẋ = f(x) be a dynamical system with
the dynamics, f : Rn → Rn, Lipschitz continuous, and
suppose that H is a RKHS over a set X , where X ⊂ Rn
is compact. The Liouville operator with symbol f , Af :
D(Af )→ H , is given as

Afg := ∇xg · f,

where
D(Af ) := {g ∈ H : ∇xg · f ∈ H} .

Liouville operators embed the nonlinear dynamics inside
of an unbounded operator. The first question to address is
that of existence. In particular, are there reasonable classes of
dynamics for which the Liouville operator is densely defined
over a RKHS?

Example 1: The most commonly investigated dynamical
systems are those with polynomial dynamics. In the case
that f is a polynomial over Rn, a Liouville operator with
those dynamics maps polynomials to polynomials, when
polynomials are contained in the RKHS in question. One
example, where polynomials are not only contained in the
RKHS but are also dense is the exponential dot product
kernel’s native RKHS [19]. Moreover, for this space, the
collection of monomials forms an orthogonal basis.

The above example guarantees the existence of densely
defined Liouville operators for a large class of dynamics.
Adjusting the RKHS will also adjust the Liouville operators
that are admissible. In the case when a Liouville operator is
not known to be densely defined, some of the methods of
this manuscript may still be applied as a heuristic algorithm.

As a differential operator, Af is not expected to be a
bounded over any RKHS. However, as differentiation is
a closed operator over RKHSs consisting of continuously
differentiable functions [19], it can be similarly established
that Af is closed under the same circumstances.

Theorem 3: Let H be a RKHS of continuously differen-
tiable functions over a set X and f : Rn → Rn be a function



such that Af has nontrivial domain, then Af is a closed
operator.

Proof: By [19, Corollary 4.36], it can be observed that
if {gm}∞m=1 ⊂ H such that ‖gm − g‖H → 0 in H then{

∂
∂xi

gm

}∞
m=0

converges to ∂
∂xi

g uniformly in X . Hence, if
{gm}∞m=0 ⊂ D(Af ) ⊂ H converges to g and {Afgm}∞m=0

converges to h ∈ H then ∇xgm(x)f(x) converges to
∇xg(x)f(x) pointwise. As Afgm(x) = ∇xgm(x)f(x), it
follows that h(x) = limm→∞Afgm(x) = ∇xg(x)f(x). By
the definition of D(Af ), g ∈ D(Af ) and Afg = h.

Thus, Af is a closed operator for RKHSs consisting
of continuously differentiable functions. Consequently, the
adjoints of densely defined Liouville operators are them-
selves densely defined Lemma 1. Associated with Liouville
operators in particular are a special class of functions within
the domain of the Liouville operators’ adjoints, and these
functions are also the main object of study of this manuscript.

Definition 4: Let X ⊂ Rn be compact, H be a RKHS
of continuous functions over X , and γ : [0, T ] → X be
a continuous trajectory. The functional g 7→

∫ T
0
g(γ(τ))dτ

is bounded, and may be respresented as
∫ T
0
g(γ(τ))dτ =

〈g,Γγ〉H , for some Γγ ∈ H by the Riesz representation
theorem. The function Γγ is called the occupation kernel
corresponding to γ in H .

Proposition 5: Let H be a RKHS of continuously differ-
entiable functions over a compact set X , and suppose that
f : Rn → Rn is Lipschitz continuous. If γ : [0, T ] → X is
a trajectory as in Definition 4 that satisfies γ̇ = f(γ), then
Γγ ∈ D(A∗f ).

Proof: The establishment of Γγ ∈ D(A∗f ), requires
the demonstration that the functional g 7→ 〈Afg,Γγ〉H is
bounded over D(Af ). Note that∫ T

0

∇xg(γ(t))f(γ(t))dt = g(γ(T ))− g(γ(0)) (1)

as the integrand of (1) is the total derivative of g(γ(t)). The
left hand side of (1) may be expressed as 〈Afg,Γγ〉H , while
the right hand side satisfies the bound

|g(γ(T ))− g(γ(0))| = |〈g,K(·, γ(T ))−K(·, γ(0))〉H |
≤ ‖g‖H‖K(·, γ(T ))−K(·, γ(0))‖H ,

which establishes the boundedness of g 7→ 〈Afg,Γγ〉H .
Proposition 5 completes the integration of nonlinear dy-

namical systems with RKHSs. In particular, valid trajectories
for the dynamical system appear as occupation kernels
within the domain of the adjoint of the Liouville operator
corresponding to the dynamics. This intertwining allows for
the expression of finite dimensional nonlinear dynamics as
linear systems in infinite dimensions.

Moreover, the relation

〈Afg,Γγ〉H = g(γ(T ))− g(γ(0)) for all g ∈ D(Af )

uniquely determines Γγ . Consequently, this relation will
be used subsequently to establish constraints for parameter
identification in a system identification setting.

IV. ESTIMATION OF OCCUPATION KERNELS

Approximating the value of an inner product against an
occupation kernel in a RKHS can be performed leveraging
quadrature techniques for integration. The occupation kernels
themselves can be expressed as an integral against the kernel
function in a RKHS as demonstrated in Proposition 6.

Proposition 6: Let H be a RKHS over a compact set X
consisting of continuous functions and let γ : [0, T ] → X
be a continuous trajectory as in Definition 4. The occupation
kernel corresponding to γ in H , Γγ , may be expressed as

Γγ(x) =

∫ T

0

K(x, γ(t))dt. (2)

Proof: Note that Γγ(x) = 〈Γγ ,K(·, x)〉H , by the
reproducing property of K. Consequently,

Γγ(x) = 〈Γγ ,K(·, x)〉H = 〈K(·, x),Γγ〉H

=

∫ T

0

K(γ(t), x)dt =

∫ T

0

K(x, γ(t))dt,

which establishes the result.
Leveraging Proposition 6, quadrature techniques can be

demonstrated to give not only pointwise convergence but also
norm convergence in the RKHS, which is a strictly stronger
result.

Proposition 7: Under the hypothesis of Proposition 6, let
t0 = 0 < t1 < t2 < . . . < tF = T , suppose that γ is a
continuously differentiable trajectory and H is composed of
continuously differentiable functions. Consider

Γ̂γ(x) :=
F∑
i=1

(ti − ti−1)K(x, γ(ti)). (3)

The norm distance is bounded as ‖Γγ − Γ̂γ‖2H = O(h),
where h = maxi=1,...,F |ti − ti−1|

Proof: Consider,

‖Γγ − Γ̂γ‖2H = ‖Γγ‖2 + ‖Γ̂γ‖2 − 2〈Γγ , Γ̂γ〉H .

The norm of the approximation can be expanded as

‖Γ̂γ‖2H = 〈Γ̂γ , Γ̂γ〉H =
F∑
i=1

F∑
j=1

(ti − ti−1)(tj − tj−1)K(γ(tj), γ(ti)) (4)

via the reproducing property of K. Now compare each term
in (4) to the corresponding integral,∫ ti

ti−1

∫ tj

tj−1

K(γ(t), γ(τ))dtdτ

−(ti − ti−1)(tj − tj−1)K(γ(tj), γ(ti)). (5)

By the mean value theorem, there is a point (τ∗, t∗) ∈
[ti−1, ti]× [tj−1, tj ] such that∫ ti

ti−1

∫ tj

tj−1

K(γ(t), γ(τ))dtdτ

= (ti − ti−1)(tj − tj−1)K(γ(t∗), γ(τ∗)).



Hence, (5) may be written as

(ti − ti−1)(tj − tj−1)(K(γ(t∗), γ(τ∗))−K(γ(tj), γ(ti))).

Leveraging the mean value inequality [21],

|K(γ(t∗), γ(τ∗))−K(γ(tj), γ(ti))| ≤
sup
x,y∈X

‖∇K(x, y)‖2 max
0<t<T

|γ̇(t)|‖(τ∗, t∗)− (ti, tj)‖2.

Taking h = maxi=1,...,F |ti− ti−1| and combining the above
equations, it can be observed that

‖Γ̂γ‖2H = ‖Γγ‖2H +O(h).

Similarly, it may be demonstrated that 〈Γ̂γ ,Γγ〉H =
‖Γγ‖2H +O(h), and the conclusion follows.

It should be clear from the proof of Proposition 7 that
higher order quadrature rules for estimating the integral
in (2) will also lead to higher order convergence rates of
the difference in Hilbert space norms of the occupation
kernel and the quadrature estimate with the added caveat of
higher order continuous differentiability of the kernels and
trajectories.

V. SYSTEM IDENTIFICATION VIA REPRODUCING KERNEL
HILBERT SPACES

In a gray box system identification setting, the system
dynamics, f : Rn → Rn, is parameterized in terms of
a collection of basis functions, Yi : Rn → Rn for i =
1, . . . ,M , as

f(x) =
M∑
i=1

θiYi(x). (6)

The goal of the system identification problem given a col-
lection of trajectories, {γj}Nj=1, satisfying the dynamics as
in Definition 4, is to determine the values of the parameters,
θi for i = 1, . . . ,M , such that (6) may be used to reproduce
the trajectories.

For the sake of the succeeding algorithm, the following
assumptions are made on the basis functions Yi.

Assumption 1: Given a RKHS, H , over a set X , each
of the operators, AYi : D(AYi) → H are densely defined.
Moreover, ∩Mi=1D(AYi) is dense in H . That is, the operators
AY1

, . . . , AYM
have a common dense domain.

Assumption 2: Given a RKHS, H , over a set X , and a
collection of Liouville operators, {AYi

}Mi=1 satisfying As-
sumption 1, the collection of kernel functions {K(·, c) : c ∈
X} is contained within ∩Mi=1D(AYi).

Assumption 1 ensures the validity of decomposing Af into
a linear combination of densely defined Liouville operators,
{AYi

}Mi=1. Assumption 1 is pivotal for the system identifi-
cation approach contained in this manuscript. Assumption
1 provides additional restrictions on the dynamics of the
system beyond Lipschitz continuity. Liouville operators are
closely connected to densely defined multiplication opera-
tors (c.f. [22], [23], [24], [25]), and the unavailability of
complete classifications of densely defined multiplication
operators over many RKHSs indicates that characterizing
the necessary and sufficient conditions that a dynamical

system must meet to allow a Liouville operator to be densely
defined may be an intractable problem in many cases.
However, sufficient conditions can certainly be established.
In particular, Assumption 1 is borne out through examination
of the exponential dot product kernel, where a polynomial
function f may be decomposed into linear combinations of
polynomials, each of which has a corresponding Liouville
operator containing polynomials inside of its domain. More
sophisticated examples of decompositions can be expressed
and treated individually.

Assumption 2 asks for the domain of the Liouville operator
to contain the kernel functions of the RKHS. These may be
replaced by other collections of basis functions that have
dense span in the RKHS, such as polynomials. However, it
is convenient in that each RKHS has a dense collection of
kernel functions, which may be used in this context. Thus,
Assumption 2 allows a unifying result that applies to all
RKHSs, and it also helps the exposition of this manuscript.

A. Parameter Identification via Occupation Kernels

For a compact set X ⊂ Rn, let {γj : [0, T ]→ X}Nj=1 be a
collection of trajectories satisfying the dynamics ẋ = f(x) =∑M
i=1 θiYi(x), and let Γγj be the corresponding occupation

kernels inside a RKHS, H of continuously differentiable
functions over X . Suppose that {cs}∞s=1 ⊂ X is dense.
Constraints on θi are then established as

〈AfK(·, cs),Γγj 〉H = (7)
M∑
i=1

θi〈AYi
K(·, cs),Γγj 〉H = K(γj(T ), cs)−K(γj(0), cs),

for each s = 1, . . . ,∞ and j = 1, . . . , N .
After the selection of a finite and representative collection

of centers, {cs}Ss=1, (7) may be expressed as a matrix
equation. Let {ni}S·Ni=1 be an enumeration of {(s, j)}S,Ns=1,j=1,
then the matrix equation in (8) holds.

Aθ = K(T )−K(0), where (8)

A =
(
〈AYi

K(·, cnj,1
),Γγnj,2

〉H
)j=SN,i=M
j=1,i=1

∈ RSN×M ,

θ =
(
θ1 · · · θM

)T ∈ RM , and

K(t) =

 K(γn1,2
(t), cn1,1

)
...

K(γnSN,2
(t), cnSN,1

)

 ∈ RSN .

Under the additional assumption of continuous differen-
tiability of both the kernel functions and the trajectories
{γj}Mj=1, it can be observed through the Cauchy-Schwarz
inequality that

|〈AYiK(·, cs), Γ̂γj 〉H − 〈AYiK(·, cs),Γγj 〉H |
≤ ‖AYi

K(·, cs)‖H‖Γ̂γj − Γγj‖H .

Hence, by Proposition 7

〈AYi
K(·, cs), Γ̂γj 〉H = 〈AYi

K(·, cs),Γγj 〉H +O
(√

h
)
,

(9)



so that quadrature techniques for the estimation of the inner
products contained in (8) can be successfully employed.
Note that other quadrature techniques can also lead to
better convergence estimates. Since the matrix A must be
numerically estimated, the parameter values obtained using
this method are approximate, and will be represented as θ̂.

VI. NUMERICAL EXPERIMENTS

Two systems were examined to evaluate the system
identification method of Section V. For each system, the
trajectories were generated using the Runge-Kutta 4 with
step size h = 0.001. On each system several different
experiments were performed to evaluate the effects of var-
ious parameters, such as the kernel width, the selection of
kernel, the numerical integration method, and the number
of trajectories utilized. For each system, the centers of the
kernel were kept constant throughout the experiments. The
dynamics in each example are treated as unknown and are
parameterized with respect to the collection monomials of
degree up to two. Unless otherwise noted, the matrix A in
(8) for each experiment was computed using Simpson’s Rule
for numerical integration.

System 1: The first dynamical system is sourced from a
collection of benchmark examples for the formal verification
community presented in [26]. The two dimensional dynamics
are given as

ẋ = f(x) =

(
2x1 − x1x2
2x21 − x2

)
. (10)

Twenty five trajectories were generated for this system over
the time interval [0, 1] and the initial points were selected
from the rectangle [−0.5, 0.5]×[−2.5,−1.5] through a lattice
with width 0.25. The collection of trajectories are presented
in Figure 1.

The centers for the kernel functions for System 1 were
selected from a lattice of width 1 over [−3, 3]× [−3, 5].

Experiment 1: The first experiment examines the error
committed in the parameter estimation by varying the num-
ber of trajectories used in the system identification method
of Section V. In this experiment two kernel functions were
used; the Gaussian RBFs and the Exponential Dot Product
Kernels. The Gaussian RBFs were used with kernel width
µ = 10, and the Exponential Dot Product Kernels used
parameter µ = 1/25. The results of Experiment 1 may be
observed in Figure 3.

Experiment 2: The second experiment explores the effect
of the kernel width, µ, on the parameter estimation when
using the Gaussian RBF in the system identification routine
on System 1. The results of Experiment 2 can be observed
in Figure 4.

System 2: The second system is the three dimensional
Lorenz system [9], [14],

ẋ = f(x) =

 σ(x2 − x1)
x1(ρ− x3)− x2
x1x2 − βx3

 . (11)

Following [14] a single trajectory was generated over the
time interval [0, 100] where σ = 10, β = 8/3, ρ = 28, and

Numerical Method Convergence Order Error ‖θ − θ̂‖2
Right Hand Rule O(h) 2.1696E + 0
Trapezoid Rule O(h2) 3.8136E − 2
Simpson’s Rule O(h4) 7.6920E − 5

TABLE I
THIS TABLE PRESENTS A COMPARISON BETWEEN THE ERRORS IN

PARAMETER ESTIMATION BASED ON THE SELECTION OF TYPICAL

NUMERICAL INTEGRATION SCHEMES FOR THE SYSTEM IDENTIFICATION

ROUTINE FOR SYSTEM 2. EACH NUMERICAL INTEGRATION SCHEME IS

LISTED ALONG WITH THE CONVERGENCE RATE OF THE ALGORITHM. OF

THE THREE ROUTINES, THE SIMPSON’S RULE DEMONSTRATES THE

STRONGEST PERFORMANCE. THE STEP-SIZE WAS KEPT CONSISTENT

BETWEEN EACH EXPERIMENT AT h = 0.001.

Number of Segments Error ‖θ − θ̂‖2
1 7.6920E − 5

10 5.2175E − 6
100 5.8506E − 6

TABLE II
THIS TABLE CONTRASTS THE PARAMETER ESTIMATION ERRORS

COMMITTED BY THE SYSTEM IDENTIFICATION ROUTINE APPLIED TO

SYSTEM 2 WHEN THE SINGLE TRAJECTORY IS SEGMENTED INTO

SMALLER TRAJECTORIES. IT CAN BE OBSERVED THAT AN ORDER OF

MANGNITUDE IMPROVEMENT WAS REALIZED WHEN THE SINGLE

TRAJECTORY WAS SEGMENTED INTO 10 AND 100 TRAJECTORIES.
HOWEVER, THERE WAS NO IMPROVEMENT IN THE ERROR WHEN USING

100 SEGMENTS OVER 10 SEGMENTS.

the initial condition was given as x0 = (−8, 7, 27)T . The
plot of this trajectory is given in Figure 2.

The centers for System 2 were obstained from a lattice
with width 10 within [−20, 20]× [−50, 50]× [−20, 50].

Experiment 3: This experiment investigates the error con-
tribution committed by the use of different numerical inte-
gration schemes. In this setting System 2 was identified using
the Gaussian RBFs with kernel width µ = 10. The results
are displayed in Table I.

Experiment 4: The last experiment is a product of the
method used to generation of the trajectory data. Runge-
Kutta 4 has a high rate of convergence. However, as with any
time-stepping method the global error bound is proportional
eLT where L is the Lipschitz constant of the dynamics
[27]. As such, the accumulated global error could be large
in the long term evaluation of the trajectory of System 2.
Experiment investigates the effect on the error when the
trajectory of System 2 is segmented into smaller trajectories.
Each smaller trajectory is then treated as a new initial value
problem with a smaller time horizon and thus a hypothet-
ically smaller global error. Here the Gaussian RBF was
leveraged in the system identification algorithm of Section
V with kernel width µ = 10.

VII. DISCUSSION

It may be observed through the numerical experiments per-
formed in Section VI that the system identification method
of Section V is effective at identifying the parameters for
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Fig. 1. Twenty five trajectories corresponding to System 1.
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Fig. 2. A single trajectory for the three dimensional Lorenz system given
in Example 2.
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Fig. 3. A log-plot of the parameter estimation error, ‖θ − θ̂‖2, for
System 1 committed by the system identification method in Section V as
determined by the number of trajectories utilized by the method. It may
be observed that an accurate estimate of θ is established using a single
trajectory. However, the inclusion of additional data dramatically improves
the parameter estimation error. The two graphs represent the results for two
different kernel functions, with a slight advantage exhibited by the Gaussian
RBF.
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Fig. 4. A log-plot of the parameter estimation error versus adjustments
in the kernel width µ for the Gaussian RBF applied to System 1. Note
that the error is small for any selection of µ, but reaches its minimum
near µ = 4. Additionally note that 4 is approximately the radius of the
workspace. One reason for the loss of accuracy at larger µ values could be
poorer conditioning of the matrix A for large µ.

nonlinear systems. In particular, for System 1 parameter
estimation errors were as low as 10−11 and for System 2
the parameter estimation errors were as low as 10−5. The
systems given in Section VI are of two and three dimensions,
and the dynamics are nonlinear. The basis functions utilized
to represent the unknown dynamics are monomials of degree
up to two with appropriate dimensionality. For example, for
a three dimensional system the cardinality of the basis of
monomials of degree up to two is 30 when accounting for
each dimension (i.e. there is a copy of the 10 monomial
basis vectors for each dimension). The actual dynamics in
each case use only a handful of the basis functions, which
results in a sparse representation of the dynamics in the given
basis.

The adjustment of several parameters affect the accuracy
of the determine parameters, θ. The most obvious impact on
the accuracy of the parameters arises through the selection
of the kernel function. While theoretically it is established
that Liouville operators with polynomial symbols are densely
defined over the exponential dot product kernel’s native
space, the exponential dot product kernel suffers from poor
conditioning. This poor conditioning can lead to inaccuracies
that appear from numerical uncertainties in the expression
of the (left) inverse matrix for A in (8). The Gaussian
RBF exhibits less conditioning issues than the exponential
dot product kernel, especially when a small kernel width is
selected. In the case of the Gaussian RBF, the size of the
kernel width has an impact on the accuracy of the system
identification method as shown in Figure 4. Specifically,
occupation kernels corresponding to Gaussian RBFs with
smaller kernel widths can distinguish nearby trajectories
more effectively than those with larger kernel widths, which
leads to better conditioning of A in (8). However, it is well
known in approximation contexts that larger values of µ lead
to faster convergence [28]. The minimum error at µ = 4 in



Figure 4 thus strikes a balance between the conditioning of
the matrix and the advantages gained from larger µ.

The most significant contribution to errors in the es-
timation of the parameters is the method of numerical
integration performed. The simple example presented in
Proposition 7 gives an estimation of the occupation kernel via
a right hand rule method of numerical integration, and while
Proposition 7 provides a proof of concept demonstrating
norm convergence to the occupation kernel in question, it is
observed in (9) that this method results in a relatively slow
convergence rate. When other methods, such as the trapezoid
or Simpson’s rule is leveraged for numerical integration, a
significant improvement in the performance of the system
identification method may be realized as demonstrated in
Table I. Consequently, the fourth order method of Simpson’s
rule was utilized for most of the results presented in Section
VI.

Two other factors that contribute to the success of the
system identification algorithm of Section V are the selection
of the centers of the kernel functions as well as the number
of trajectories. The contribution of the Gaussian RBFs are
largest when the centers are distributed over the working
space containing the trajectories. That is, if the centers are
too far away from the trajectories, the decay of the Gaussian
RBFs will lead to near zero row vectors of A in (8). For the
algorithm in Section V, each kernel function is evaluated
for every trajectory, but this isn’t technically necessary
and kernel functions that will contribute less or redundant
information may be ignored for a specific trajectory.

If only a single trajectory is available from a system, as
with the Lorenz example in Section VI, then this trajectory
may be segmented to provide more constraints in A of (8). It
was observed that segmenting the long trajectory of System
2 improved the parameter estimation error as presented in
Table II. This improvement in likely due to the accumulated
global error due to numerical time stepping methods in the
generation of the trajectory itself. Through segmentation,
each segment is treated as a new initial value problem with a
smaller time horizon and thus a smaller accumulated global
error. Therefore the elements of A in (8) are closer to the
true values of the dynamical system.

VIII. CONCLUSION

In this manuscript a new approach to system identification
was developed through the use of Liouville operators and
occupation kernels over a RKHS. Liouville operators are
densely defined operators whose adjoint contains occupation
kernels corresponding to solutions to differential equations
within its domain. Hence, a dynamical system may be em-
bedded into a RKHS where methods of numerical analysis,
machine learning, and approximation theory affiliated with
RKHSs may be brought to bear on problems in dynamical
systems theory.

The domain of Liouville operators depends nontrivially on
the selection of RKHS. It was demonstrated that Liouville
operators with polynomial symbols are densely defined over
the RKHS corresponding to the exponential dot product

kernel function. Moreover, it was demonstrated in the system
identification routine that the selection of kernel function
may have an effect on the results of parameter estimation.

The system identification method developed in the
manuscript was validated on a two dimensional and a three
dimensional system through several different experiments
designed to evaluate the effects of various integration and
RKHS parameters, such as kernel width for the Gaussian
RBF, the selection of numerical integration scheme, the
selection of kernel, and so on. Through each experiment,
accurate estimations of the parameters were achieved. How-
ever, it was demonstrated that the largest error source arises
through the choice of numerical integration method, where
Simpson’s rule provided the most accurate results.
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control via occupation measures and lmi-relaxations,” SIAM journal
on control and optimization, vol. 47, no. 4, pp. 1643–1666, 2008.

[18] V. I. Paulsen and M. Raghupathi, An introduction to the theory of
reproducing kernel Hilbert spaces. Cambridge University Press, 2016,
vol. 152.

[19] I. Steinwart and A. Christmann, Support vector machines. Springer
Science & Business Media, 2008.

[20] G. K. Pedersen, Analysis now. Springer Science & Business Media,
2012, vol. 118.

CONFIDENTIAL. Limited circulation. For review only.



[21] W. Rudin et al., Principles of mathematical analysis. McGraw-hill
New York, 1964, vol. 3.

[22] J. A. Rosenfeld, “Densely defined multiplication on several sobolev
spaces of a single variable,” Complex Analysis and Operator Theory,
vol. 9, no. 6, pp. 1303–1309, 2015.

[23] ——, “Introducing the polylogarithmic hardy space,” Integral Equa-
tions and Operator Theory, vol. 83, no. 4, pp. 589–600, 2015.

[24] ——, “The sarason sub-symbol and the recovery of the symbol of
densely defined toeplitz operators over the hardy space,” Journal of
Mathematical Analysis and Applications, vol. 440, no. 2, pp. 911–921,
2016.

[25] D. Sarason, “Unbounded toeplitz operators,” Integral Equations and
Operator Theory, vol. 61, no. 2, pp. 281–298, 2008.

[26] A. Sogokon, K. Ghorbal, and T. T. Johnson, “Non-linear
Continuous Systems for Safety Verification (Benchmark Proposal),”
in ARCH@CPSWeek 2016 - 3rd International Workshop on Applied
Verification for Continuous and Hybrid Systems, ser. EPiC Series
in Computing, G. Frehse and M. Althoff, Eds., vol. 43. Vienna,
Austria: EasyChair, Apr. 2016, pp. 42–51. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01660900

[27] K. E. Atkinson, An introduction to numerical analysis. John wiley
& sons, 2008.

[28] G. E. Fasshauer, Meshfree approximation methods with MATLAB.
World Scientific, 2007, vol. 6.


