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Abstract Dynamic Mode Decomposition (DMD) has become synonymous with
the Koopman operator, where continuous time dynamics are discretized and ex-
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are modally unbounded, this manuscript introduces the concept of a scaled Liou-
ville operator, which, for many dynamical systems, is a compact operator over the
native space of the exponential dot product kernel. Compactness of scaled Liou-
ville operators allows for norm convergence of Liouville-based DMD, which is a
decided advantage over Koopman-based DMD.
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1 Introduction

DMD has emerged as an effective method of extracting fundamental governing
principles from high-dimensional time series data. The method has been employed
successfully in the field of fluid dynamics, where DMD methods have demonstrated
an ability to determine dynamic modes, also known as “Koopman modes,” which
agree with Proper Orthogonal Decomposition (POD) analyses (cf. [5,10,27,29,
30,47,48]). However, DMD methods employing Koopman operators do not ad-
dress continuous time dynamical systems directly. Instead, current DMD methods
analyze discrete time proxies of continuous time systems [27]. The discretization
process constrains Koopman-based DMD methods to systems that are forward
complete [4]. The objective of the present manuscript is to develop DMD methods
that avoid discretization of continuous time dynamical systems, while providing
convergence results that are stronger than Koopman-based DMD and applicable
to a broader class of dynamical systems.

The connection between Koopman operators and DMD relies on the idea that
a finite dimensional nonlinear dynamical system can be expressed as a linear op-
erator over an infinite dimensional space. The linear representation enables treat-
ment of the nonlinear system via tools from the theory of linear systems and
linear operators. The idea of lifting finite dimensional nonlinear systems into in-
finite dimensional linear ones has been successfully utilized in the literature to
achieve various identification and control objectives; however, a few fundamental
limitations severely restrict the class of systems for which the connection between
Koopman operators and DMD can be established via lifting to infinite dimensions.
In particular, this article focuses on the following limitations.

Existence of Koopman operators in continuous time systems: Consider the
continuous time dynamical system given as ẋ = 1+x2. Discretization of this system
with time step 1 yields the discrete dynamics xi+1 = F (xi) := tan(1 + arctan(xi)).
It should be immediately apparent that F is not well defined over R. In fact,
through the consideration of xi = tan(π/2− 1) it can be seen that F (xi) is unde-
fined. Since the symbol for a Koopman operator must be defined over the entire
domain, there is no well defined Koopman operator arising from this discretiza-
tion. Note that the example above is not anecdotal. In addition to commonly used
examples in classical works, such as [24], mass-action kinetics in thermodynamics
[20, Section 6.3], chemical reactions [44, Section 8.4], and species populations [21,
Section 4.2] often give rise to such models. In general, unless the solutions of the
continuous time dynamics are constrained to be forward complete, (for example, by
assuming that the dynamical systems are globally Lipschitz continuous [8, Chap-
ter 1]) the resultant Koopman operator cannot be expected to be well-defined.
This observation is validated by [4], but otherwise conditions on the dynamics are
largely absent from the literature.

Boundedness of Koopman operators: Even in the case of globally Lipschitz
models, results regarding convergence of the DMD operator to the Koopman op-
erator rely on the assumption that the Koopman operator is bounded over a
specified RKHS (cf. [26]). Boundedness of composition operators, like the Koop-
man operator, has been an active area of study in the operator theory community.
Indeed, it turns out there are very few bounded composition operators over many
function spaces. A canonical example is in the study of the Bargmann-Fock space,
where only affine symbols yield bounded composition operators and of those the
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compact operators arise from F (z) = az + b where |a| < 1 [6]. A similar result
holds for the native RKHS of the exponential dot product kernel and the native
RKHS of the Gaussian radial basis function kernel [18, Theorem 1]. The implica-
tion of these results is that Koopman operators arising from the discretization of
continuous time nonlinear systems cannot generally be expected to be bounded.
Practical utility of convergence results: In the DMD literature, convergence
of the DMD operator to the Koopman operator is typically established in the
strong operator topology (SOT). However, as noted in [26], since SOT conver-
gence is the topology of pointwise convergence [32], it is not sufficient to justify
use of the DMD operator to interpolate or extrapolate the system behavior from
a collection of samples. Furthermore, by selecting a complete set of observables
and adding them one at a time to a finite rank representation of the Koopman
operator, pointwise convergence is to be expected. This is a restatement of the
more general result that all bounded operators may be approximated by finite
rank operators in SOT, which itself is a specialization of a much broader result for
topological vector spaces (cf. [32, pg. 172]). While [26] also provides theoretically
interesting insights into convergence of the eigenvalues and the eigenvectors of the
DMD operator to eigenvalues and eigenfunctions of the Koopman operator along a
subsequence, without the means to identify the convergent subsequences, practical
utility of subsequential convergence is limited. In contrast, norm convergence is
uniform convergence for operators, and yields a bound on the error over the ker-
nels corresponding to the entire data set. Thus, a meaningful convergence result
would arise from the norm convergence of finite rank representations to Koopman
operators. However, this result is only possible for compact Koopman operators,
which are virtually nonexistent in applications of interest.

A subset of Liouville operators, called Koopman generators, have been stud-
ied as limits of Koopman operators in works such as [11,12,14,15,16,17]. Since
Koopman generators are limits of Koopman operators, they also require the as-
sumption of forward completeness on the dynamical system. This discussion brings
into question the impact of various approaches to the study of continuous time
dynamical systems through discretization and Koopman operators, which all rely
on the compactness, boundedness, or existence of Koopman operators.

The present work sidesteps the limiting process, and as a result, the assump-
tions regarding existence of Koopman operators, through the use of “occupation
kernels”. Specifically, occupation kernels remove the burden of approximation from
that of operators and places it on the estimation of occupation kernels from time-
series data, which requires much less theoretical overhead. Consequently, Liouville
operators may be directly examined via occupation kernels, while avoiding limit-
ing relations involving Koopman operators that might not be well defined for a
particular discretization of a continuous time nonlinear dynamical system. As a
result, the use of Liouville operators in a DMD routine allows for the study of
dynamics that are locally rather than globally Lipschitz.

The action of the adjoint of a Liouville operator on an occupation kernel pro-
vides the input-output relationships that enable DMD of time series data. For the
adjoint of a Liouville operator to be well defined, the operator must be densely de-
fined over the underlying RKHS [41,40]. As a result, the exact class of dynamical
systems that may be studied using Liouville operators depends on the selection of
the RKHS. However, the requirement that the Liouville operator must be densely
defined is not overly restrictive. For example, on the real valued Bargmann-Fock
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space, Liouville operators are densely defined for a wide range of dynamics that
are expressible as real entire functions (which includes polynomial, exponential,
sine, and cosine, etc.).

Perhaps the strongest case for Liouville operators is the fact that they can be
“scaled” to generate compact operators. Section 3 of this paper introduces the idea
of scaled Liouville operators as variants of Liouville operators that are compact for
a large class of dynamical systems over the Bargmann-Fock space. Scaled Liouville
operators make slight adjustments to the data by scaling the trajectories by a
single parameter |a| < 1. Through the selection of a close to 1, scaled Liouville
operators yield compact operators that are numerically indistinguishable from the
corresponding unbounded Liouville operators over a given compact workspace.
More importantly, the DMD procedure performed on scaled Liouville operators
yields a sequence of finite rank operators that converge in norm to the scaled
Liouville operators (see Theorem 2).
Practical benefits of the developed method: In addition to the theoretical
benefits of Liouville operators detailed above, there are several practical benefits
that arise from the use of occupation kernels and Liouville operators. Quadrature
techniques, such as Simpson’s rule, allow for the efficient estimation of occupation
kernels while mitigating signal noise [41,40], and also provide a robust estimation of
the action of Liouville operators on occupation kernels. Furthermore, as snapshots
are being integrated into trajectories for the generation of occupation kernels, the
method presented in this manuscript can naturally incorporate irregularly sampled
data.

In DMD, a large finite dimensional representation of the linear operator is
constructed from data (i.e., snapshots) using a collection of observables. A subsys-
tem of relatively small rank is then determined via a singular value decomposition
(SVD) and approximation of the linear operator by the small rank subsystem is
supported by a direct mapping between the eigenfunctions of the former and the
eigenvectors of the latter [48]. The fact that the rank of the smaller subsystem
is typically in agreement with the number of snapshots, which can be consider-
ably smaller than the number of observables, makes DMD particularly useful when
there is a small number of snapshots of a high dimensional system. However, direct
application of DMD to high dimensional systems sampled at high frequencies still
poses a significant computational challenge, where many snapshots may have to
be discarded to produce a computationally tractable problem, as was done in [27,
Example 2.3]. Such systems include mechanical systems with high sampling fre-
quencies [7,45], and neurobiological systems recorded via electroencephalography
(EEG) where the typical sampling frequencies are of the order of 500 Hz [19]. The
methods in the present manuscript replace snapshots with integrals of trajectories
of the system. The use of trajectories instead of individual snapshots reduces the
dimensionality of the problem without discarding any data.

The developed algorithm also obviates the need for the truncated SVD that
is utilized throughout DMD literature. For example, in [48] the truncated SVD
is leveraged to convert from a feature space representation of the action of the
Koopman operators to an approximation of the Gram matrix and an “interaction
matrix.” This stands in opposition of the spirit of the “kernel trick,” where kernel
functions are a means to avoid any direct interface with feature space. Following
[38], the presented algorithm is given purely with respect to the occupation kernels,
and the resultant methods are considerably simpler than what is seen in [48].
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A comparison with similar literature: Liouville operators are studied in the
context of DMD procedures using limiting definitions in works such as [25]. The
manuscript [25], which was posted to arXiv around the same time as the first
draft of this manuscript, approaches the Koopman generator through Galerkin
methods. While the signs that the field is expanding beyond Koopman operators is
encouraging, the authors of [25] still adopt the limiting definitions of the Koopman
generator in their work, which is an artifact from ergodic theory. Quantities similar
to occupation kernels have been studied in the literature previously, in the form
of occupation measures and time averaging functionals. Occupation kernels and
occupation measures both represent the same functional over different spaces.
Occupation measures are in the dual space of the Banach space of continuous
functions, while occupation kernels are functions in a RKHS. As such, functions
in the RKHS may be estimated through projections onto the span of occupation
kernels, and this fact is leveraged in Section 4 where finite rank representations
of the Liouville operators arise from the matrix representation of a projection
operator. Occupation kernels are also distinct from time average functionals, where
the latter is the average of a sum of iterated applications of the Koopman operator
to an observable. As a result, in contrast with occupation kernels, whose definition
is independent of Koopman and Liouville operators, time average functionals are
only useful for the study of globally Lipschitz dynamics.

The relevant preliminary concepts for the theoretical underpinnings of the
approach taken in the present manuscript are reviewed in Section 2.1. This includes
definitions and properties of RKHSs as well as densely defined operators and their
adjoints.

2 Technical Preliminaries

2.1 Reproducing Kernel Hilbert Spaces

Definition 1 A reproducing kernel Hilbert space (RKHS) over a set X is a Hilbert
space of functions from X to R such that for each x ∈ X, the evaluation functional
Exg := g(x) is bounded.

By the Riesz representation theorem, corresponding to each x ∈ X, there is
a function kx ∈ H, such that for all g ∈ H, 〈g, kx〉H = g(x). The kernel function
corresponding to H is given as K(x, y) = 〈ky, kx〉H . The kernel function is a positive
definite function in the sense that for any finite number of points {c1, c2, . . . , cM} ⊂
X, the corresponding Gram matrix [K(ci, cj)]

M
i,j=1 is positive semi-definite. The

Gram matrix arises in many contexts in machine learning, such as in support
vector machines (cf. [22]). Particular to the subject matter of this manuscript, the
Gram matrix plays a pivotal role in the construction of the kernel-based extended
DMD method of [48] and the occupation kernel approach presented herein.

The Aronszajn-Moore theorem states that there is a unique correspondence
between RKHSs and positive definite kernel functions [1]. That is the RKHS may
be constructed directly from the kernel function itself or the kernel function may
be determined by a RKHS through the Riesz representation theorem. When the
RKHS is obtained from the kernel function, it is frequently referred to as the native
space of that kernel function [46].
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RKHSs interact with function theoretic operators, such as Koopman (composi-
tion) operators [23,28,48], multiplication operators [35,36], and Toeplitz operators
[37], in many nontrivial ways. For example, the kernel functions themselves play
the role of eigenfunctions for the adjoints of multiplication operators [43], and
when the function corresponding to a Koopman operator has a fixed point at
c ∈ X, the kernel function centered at that point (i.e. K(·, c) ∈ H) is an eigenfunc-
tion for the adjoint of the Koopman operator [9]. The kernel functions can also
be demonstrated to be in the domain of the adjoint of densely defined Koopman
operators as will be demonstrated in Section 2.2.

For machine learning applications kernel functions are frequently used for di-
mensionality reduction by expressing the inner product of data cast into a high
dimensional feature space as evaluation of the kernel function itself [42,22]. Specifi-
cally, a feature map corresponding to a RKHS is given as the mapping x 7→ Ψ(x) :=
(Ψ1(x), Ψ2(x), . . .)T ∈ `2(N) for x ∈ X such that K(x, y) = 〈Ψ(y), Ψ(x)〉`2(N). That
is, kernel function may be expressed as

K(x, y) =
∞∑
m=1

Ψm(x)Ψm(y).

The feature space expression for a function g ∈ H is given as g = (g1, g2, . . .)
T ∈

`2(N) so that g(x) = 〈g, Ψ(x)〉`2(N) = 〈g,K(·, x)〉H . This representation of inner
products of vectors in a feature space as evaluation of a kernel function is central
to the usage of kernel methods in data science, where the feature space is generally
unknown but may be accessed through the kernel function. The approach taken
in [48] uses the feature space as the fundamental basis for their representation
and obtains kernel functions through a truncated SVD, whereas the present work
avoids the invocation of the feature space and the truncated SVD.

The most frequently employed RKHS in machine learning applications is the
native space of the Gaussian radial basis function kernel. The Gaussian radial

basis function kernel is given as K(x, y) = exp
(
− 1
µ‖x− y‖

2
2

)
, and it is a positive

definite function over Rn for all n.

Another important kernel is the exponential dot product kernel, K(x, y) =

exp
(

1
µx

T y
)

, which is also a positive definite function over Rn. What is signifi-

cant concerning the exponential dot product kernel is that its native space is the
Bargmann-Fock space, where bounded Koopman operators have been completely
classified. Another significant feature, which will be leveraged in this manuscript,
is that polynomials are dense inside the Bargmann-Fock space with respect to the
Hilbert space norm.

2.2 Adjoints of Densely Defined Liouville Operators

In the study of operators, the theory concerning bounded operators is the most
complete (cf. [32,13]). A bounded operator over a Hilbert space is a linear operator
W : H → H such that ‖Wg‖H ≤ C‖g‖H for some C > 0. The minimum C that
holds for all g ∈ H is the norm of W and written as ‖W‖. A classical theorem
in operator theory states that the collection of bounded operators is precisely the
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collection of continuous operators over a Hilbert space (or more generally a Banach
space) [13, Chapter 5].

Unbounded operators over a Hilbert space are linear operators given as W :
D(W )→ H, where D(W ) is the domain contained within H on which the operator
W is defined [32, Chapter 5]. When the domain of W is dense in H, W is said to be
a densely defined operator over H. While unbounded operators are by definition
discontinuous, closed operators over a Hilbert space satisfy weaker limiting rela-
tions. That is, an operator is closed if, whenever {gm}∞m=1 ∈ D(W ), both {gm}∞m=1

and {Wgm}∞m=1 are convergent sequences, gm → g ∈ H, and Wgm → h ∈ H, we
have that g ∈ D(W ) and Wg = h [32, Chapter 5]. The Closed Graph Theorem
states that if W is a closed operator such that D(W ) = H, then W is bounded.

Lemma 1 Given a RKHS, H, consisting of continuously differentiable functions, a

Liouville Operator with symbol f , Af : D(Af )→ H, is defined as Afg := ∇g · f where

g resides in the canonical domain

D(Af ) := {g ∈ H : ∇g · f ∈ H}.

With this domain, Af is closed over RKHSs that are composed of continuously differ-

entiable functions.

Proof Liouville operators were demonstrated to be closed in [40]. ut

The closedness of Koopman operators is well known in the study of RKHS,
where they are more commonly known as composition operators (cf. [23,28]).
Beyond the limit relations provided by closed operators, the closedness of an un-
bounded operator plays a significant role in the study of the adjoints of unbounded
operators [32, Chapter 5].

Definition 2 For a densely defined operator W , let

D(W ∗) := {h ∈ H : g 7→ 〈Wg, h〉H is bounded on D(W )}.

Since D(W ) is dense in H, the functional g 7→ 〈Wg, h〉H uniquely extends to H,
and as such, for each h ∈ D(W ∗) the Riesz representation theorem guarantees a
function W ∗h ∈ H such that 〈Wg, h〉H = 〈g,W ∗h〉H , for all g ∈ D(W ). The adjoint
of the operator W is thus given as W ∗ : D(W ∗)→ H via the assignment h 7→W ∗h.

Since the adjoint of a closed operator over a Hilbert space is densely defined
[32, Proposition 5.1.7], the adjoints of Liouville operators with domains given as in
Lemma 1 are densely defined. Specific members of the domain of the respective ad-
joints may be identified, and these functions will be utilized in the characterization
of the DMD methods in the subsequent sections. To characterize the interaction
between the trajectories of a dynamical system and the Liouville operator, the
notion of occupation kernels must be introduced (cf. [40]).

Definition 3 Let X be a metric space, γ : [0, T ] → X be an essentially bounded
measurable trajectory, and let H be a RKHS over X consisting of continuous

functions. Then the functional g 7→
∫ T
0
g(γ(t))dt is bounded, and the Riesz repre-

sentation theorem guarantees a function Γγ ∈ H such that

〈g, Γγ〉H =

∫ T

0

g(γ(t))dt

for all g ∈ H. The function Γγ is the occupation kernel corresponding to γ in H.
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Lemma 2 If f : Rn → Rn is the dynamics for a dynamical system, and if γ : [0, T ]→
Rn is a trajectory satisfying γ̇ = f(γ(t)) in the Carethèodory sense, then Γγ ∈ D(A∗f )
and A∗fΓγ = K(·, γ(T ))−K(·, γ(0)).

Proof This lemma was established in [40]. ut

For Liouville operators, several examples can be demonstrated where partic-
ular symbols produce densely defined operators over the Bargmann-Fock space.
In particular, since polynomials are dense in the Bargmann-Fock space, for poly-
nomial dynamics, f , the function Afg = ∇g · f is a polynomial whenever g is a
polynomial. Hence, polynomial dynamical systems correspond to densely defined
Liouville operators over the Bargmann-Fock space, and it should be noted that this
is not a complete characterization of the densely defined Liouville operators over
this space. For other RKHSs, different classes of dynamics correspond to densely
defined operators, requiring independent evaluation for each RKHS.

3 A Compact Variation of the Liouville Operator

One of the drawbacks of employing either the Koopman operator or the Liouville
operator for DMD is that the finite rank matrices produced by the method are
strictly heuristic representations of the modally unbounded operators. An impor-
tant question to address is whether a DMD procedure may be produced using a
compact operator other than those densely defined operators discussed so far. This
section presents a class of compact operators for use in DMD applied to continu-
ous time systems. The compactness and boundedness of the operators will depend
on the selection of the RKHS and the dynamics of the system. The Bargmann-
Fock space will be utilized in this section, and the compactness assumption will
be demonstrated to hold for a large class of dynamics.

Definition 4 Let H be a RKHS over Rn, a ∈ R with |a| < 1, and let the scaled
Liouville operator with symbol f : Rn → Rn,

Af,a : D(Af,a)→ H,

be given as Af,ag(x) = a∇g(ax)f(x) for all x ∈ Rn and

g ∈ D(Af,a) = {h ∈ H : a∇h(ax)f(x) ∈ H}.

From the definition of scaled Liouville operators, if γ : [0, T ]→ Rn is a trajec-
tory satisfying γ̇ = f(γ), then∫ T

0

Af,ag(γ(t))dt =

∫ T

0

a∇g(aγ(t))f(γ(t))dt = 〈Af,ag, Γγ〉H .

The following proposition then follows from arguments similar to the proof of
Lemma 2.

Proposition 1 For γ : [0, T ]→ Rn, such that γ̇ = f(γ), Γγ ∈ D(A∗f,a) and

A∗f,aΓγ = K(·, aγ(T ))−K(·, aγ(0)).



DMD in Continuous Time via Liouville Operators 9

Theorem 1 and Corollary 1 demonstrate that for the Bargmann-Fock space, a
large class of dynamics correspond to compact scaled Liouville operators.

Theorem 1 Let F 2(Rn) be the Bargmann-Fock space of real valued functions, which

is the native space for the exponential dot product kernel, K(x, y) = exp(xT y), a ∈ R
with |a| < 1, and let Af,a be the scaled Liouville operator with symbol f : Rn → Rn.

There exists a collection of coefficients, {Cα}α, indexed by the multi-index α, such that

if f is representable by a multi-variate power series, f(x) =
∑
α fαx

α, satisfying∑
α

|fα|Cα <∞,

then Af,a is bounded and compact over F 2(Rn).

Proof The proof has been relegated to the appendix to ease exposition. ut

Corollary 1 If f is a multi-variate polynomial, then Af,a is bounded and compact

over F 2(Rn) for all |a| < 1.

The compactness of scaled Liouville operators (over the Bargmann-Fock space)
is critical for norm convergence of DMD methods. For bounded Koopman opera-
tors, results such as [26] obtain convergence in the strong operator topology (SOT)
of the DMD operator to the Koopman operator. SOT convergence is only pointwise
convergence over a Hilbert space, and does not provide any generalization guar-
antees in the learning sense. Norm convergence on the other hand gives a uniform
bound on the error estimates for all functions in the Hilbert space. Specifically,
in this paper, the data-driven finite rank representation of the scaled Liouville
operator, given in Section 4, is shown to converge, in norm, to the scaled Liouville
operator.

While scaled Liouville operators are not identical to the Liouville operator,
the selection of the parameter a close to 1 can be used to limit the difference
between their finite rank representations to be within machine precision. Hence, the
decomposition of scaled Liouville operators is computationally indistinguishable
from that of the Liouville operator for a sufficiently close to 1.

4 Occupation Kernel Dynamic Mode Decomposition

4.1 Finite rank representation of the Liouville operator

With the relevant theoretical background presented, this section develops the Oc-
cupation Kernel-based DMD method for continuous time systems. Let K be the
kernel function for a RKHS, H, over Rn consisting of continuously differentiable
functions. Let ẋ = f(x) be a dynamical system corresponding to a densely de-
fined Liouville operator, Af , over H. Suppose that {γi : [0, Ti] → X}Mi=1 is a
collection of trajectories satisfying γ̇i = f(γi). There is a corresponding collec-

tion of occupation kernels, α := {Γγi}Mi=1 ⊂ H, given as Γγi(x) :=
∫ Ti

0
K(x, γi(t))dt.

For each γi the action of A∗f on the corresponding occupation kernel is given by
A∗fΓγi = K(·, γi(Ti))−K(·, γi(0)).

Thus, when α is selected as an ordered basis for a vector space, the action
of A∗f is known on span(α). The objective of the DMD procedure is to express a
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matrix representation of the operator A∗f on the finite dimensional vector space
spanned by α followed by projection onto span(α).

Let w1, · · · , wM be the coefficients for the projection of a function g ∈ H onto
span(α) ⊂ H, written as Pαg =

∑M
i=1 wiΓγi . Using the fact that

〈g, Γγj 〉H = 〈Pαg, Γγj 〉H =
(
〈Γγ1 , Γγj 〉H · · · 〈ΓγM , Γγj 〉H

) w1

...
wM

 ,

for all j = 1, · · · ,M , the coefficients w1, · · · , wM may be obtained through the
solution of the following linear system: 〈Γγ1 , Γγ1〉H · · · 〈ΓγM , Γγ1〉H...

. . .
...

〈Γγ1 , ΓγM 〉H · · · 〈ΓγM , ΓγM 〉H


 w1

...
wM

 =

 〈g, Γγ1〉H...
〈g, ΓγM 〉H

 , (1)

where each of the inner products may be expressed as either single or double
integrals as

〈Γγj , Γγi〉H =

∫ Ti

0

∫ Tj

0

K(γi(τ), γj(t))dtdτ , and 〈g, Γγi〉H =

∫ Ti

0

g(γi(t))dt. (2)

Furthermore, if h =
∑M
i=1 viΓγi ∈ span(α) for some coefficients {vi}Mi=1 ⊂ R, then

A∗fh ∈ H, and it follows that

〈A∗fh,Γγj 〉=

〈
M∑
i=1

viA
∗
fΓγi ,Γγj

〉
H

=
(〈
A∗fΓγ1 ,Γγj

〉
H
,···,
〈
A∗fΓγM ,Γγj

〉
H

) v1
...
vM

, (3)

for all j = 1, · · · ,M . Using (1) and (3), the coefficients {wi}Mi=1 in the projection
of A∗fh onto span(α) can be expressed as w1

...
wM

 =

 〈Γγ1 , Γγ1〉H · · · 〈ΓγM , Γγ1〉H...
. . .

...
〈Γγ1 , ΓγM 〉H · · · 〈ΓγM , ΓγM 〉H


−1

×

 〈A
∗
fΓγ1 , Γγ1〉H · · · 〈A

∗
fΓγM , Γγ1〉H

...
. . .

...
〈A∗fΓγ1 , ΓγM 〉H · · · 〈A

∗
fΓγM , ΓγM 〉H


 v1

...
vM

 .

Lemma 2 then yields the finite rank representation for PαA
∗
f , restricted to the

occupation kernel basis, span(α), as

[PαA
∗
f ]αα = G−1I, (4)

where

G :=

 〈Γγ1 , Γγ1〉H · · · 〈Γγ1 , ΓγM 〉H...
. . .

...
〈ΓγM , Γγ1〉H · · · 〈ΓγM , ΓγM 〉H

 (5)
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is the Gram matrix of occupation kernels and

I :=

 〈K(·, γ1(T1))−K(·, γ1(0)), Γγ1 〉H · · · 〈K(·, γM (TM ))−K(·, γM (0)), Γγ1 〉H
...

. . .
...

〈K(·, γ1(T1))−K(·, γ1(0)), ΓγM 〉H · · · 〈K(·, γM (TM ))−K(·, γM (0)), ΓγM 〉H

 .

(6)
is the interaction matrix.

DMD requires a finite-rank representation of PαAf , instead of PαA
∗
f . Simi-

lar to the development above, Lemma 2 can be used to generate a finite rank
representation of PαAf under the following additional assumption.

Assumption 1 The occupation kernels are in the domain of the Liouville operator,

i.e., α ⊂ D(Af ).

Given h =
∑M
i=1 viΓγi ∈ span(α) for some coefficients {vi}Mi=1 ⊂ R, Assumption 1

implies that Afh ∈ H and

〈
Afh, Γγj

〉
H

=
M∑
i=1

vi
〈
AfΓγi , Γγj

〉
H

=
M∑
i=1

vi
〈
Γγi , A

∗
fΓγj

〉
H

=
(〈
Γγ1 , A

∗
fΓγj

〉
H
, . . . ,

〈
ΓγM , A

∗
fΓγj

〉
H

) v1
...
vM

 . (7)

Lemma 2 then yields a finite rank representation of PαAf , restricted to span(α)
as

[PαAf ]αα = G−1IT . (8)

4.2 Dynamic mode decomposition

Suppose that λi is the eigenvalue for the eigenvector vi := (vi1, vi2, . . . , viM )T ,
i = 1, . . . ,M , of [PαAf ]αα. The eigenvector vi can be used to construct a normalized

eigenfunction of PαAf restricted to span(α), given as ϕi = 1
Ni

∑M
j=1 vijΓγj , where

Ni :=
√
v†iGvi, and (·)† denotes the conjugate transpose. Let V be the matrix

of coefficients of the normalized eigenfunctions, arranged so that each column
corresponds to an eigenfunction.

The DMD procedure begins by expressing the identity function, also known
as the full state observable, gid(x) := x ∈ Rn as a linear combination of the

eigenfunctions of Af , i.e., gid(x) = limM→∞
∑M
i=1 ξi,Mϕi(x). For a fixed M , the

identity function can be approximated using the Liouville modes ξi ∈ Rn as gid(x) ≈∑M
i=1 ξiϕi(x). The j-th row of the matrix ξ = (ξ1 · · · ξM ) is obtained as

(
(ξ1)j · · · (ξM )j

)
=


 〈ϕ1, ϕ1〉H · · · 〈ϕ1, ϕM 〉H

...
. . .

...
〈ϕM , ϕ1〉H · · · 〈ϕM , ϕM 〉H


−1 〈(x)j , ϕ1〉H

...
〈(x)j , ϕM 〉H



T

,
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where (x)j is viewed as the functional mapping x ∈ Rn to its j-th coordinate. By
examining the inner products 〈gid, Γγi〉H , for i = 1, . . . ,M , the matrix ξ may be
expressed as

ξ =
(∫ T1

0
γ1(t)dt · · ·

∫ TM

0
γM (t)dt

)(
V TG

)−1

(9)

Given a trajectory x(·) satisfying ẋ = f(x), each eigenfunction of Af satisfies

ϕ̇i(x(t)) = λiϕi(x(t)) and hence, ϕi(x(t)) = ϕi(x(0))eλit, and the following data
driven model is obtained:

x(t) ≈
M∑
i=1

ξiϕi(x(0))eλit, (10)

where

ϕi(x(0)) =
1

Ni

M∑
j=1

vijΓγj (x(0)) =
1

Ni

M∑
j=1

vij

∫ Tj

0

K (x(0), γj(t)) . (11)

The resultant DMD procedure is summarized in Algorithm 1.

Algorithm 1 Pseudocode for the dynamic mode decomposition routine of Section
4. Once the Liouville modes, the normalized eigenvectors, and the eigenvalues are
returned, (10) and (11) can be used along with a numerical integration routine
to reconstruct trajectories of the system starting from any given initial condition
x(0). The choice of numerical integration routine can have a significant impact on
the overall results, and it is advised that a high accuracy method is leveraged in
practice.

Require: Sampled trajectories {γj : [0, T ]→ Rn}Mj=1

Require: Kernel function K : Rn × Rn → R of an RKHS
Require: A numerical integration routine
1: Compute the Gram matrix G in (5) using (2) and a numerical integration routine
2: Compute the interaction matrix I in (6) using (2) and a numerical integration routine
3: Compute eigenvalues, λi, and eigenvectors, vi, of G−1IT
4: Use (9) and a numerical integration routine to compute the matrix ξ of Liouville modes
5: return Liouville modes, ξi, normalized eigenvectors, vi

Ni
, and eigenvalues λi for i =

1, · · · ,M

4.3 Modifications for the Scaled Liouville Operator DMD Method

Since Liouville operators are not generally compact, convergence, as M → ∞,
of the finite rank representation PαAf to the Liouville operator Af cannot be
guaranteed. Convergence of the finite rank representation can be established in
the case of the scaled Liouville operators and the approximations obtained via
DMD, under Assumption 1, are provably cogent. We call the approach taken here
Scaled Liouville DMD (SL-DMD).

By Theorem 2, for an infinite collection of trajectories {γi}∞i=1 with a dense
collection of corresponding occupation kernels, {Γγi}∞i=1 ⊂ H, the resultant se-
quence of finite rank operators PαMAf,aPαM converges to Af,a, where αM :=
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{Γγ1 , . . . , ΓγM }. Consequently, the spectrum of [PαMAf,a]αM
αM , the finite rank rep-

resentation of PαMAf,a, restricted to span(α), converges to that of Af,a.1

Furthermore, when a is sufficiently close to 1 and the observed trajectories
contained in a compact set are perturbed to within machine precision, the finite
rank representations of Af,a and Af are computationally indistinguishable.

DMD using scaled Liouville operators is similar to the unscaled case. In partic-
ular, recall that for |a| < 1 and f as above, A∗f,aΓγi = K(·, aγi(Ti))−K(·, aγi(0)).
Hence, a finite rank representation of Af,a, obtained from restricting and project-
ing to span(α), is given as

[PαAf,a]αα = G−1ITa ,

where

Ia:=

 〈K(·, aγ1(T1))−K(·, aγ1(0)), Γγ1 〉H · · · 〈K(·, aγM (TM ))−K(·, aγM (0)), Γγ1 〉H
...

. . .
...

〈K(·, aγ1(T1))−K(·, aγ1(0)), ΓγM 〉H · · · 〈K(·, aγM (TM ))−K(·, aγM (0)), ΓγM 〉H

 .

The approximate normalized eigenfunctions, {ϕi,a}Mi=1, for Af,a may then be ob-
tained in an identical fashion as for the Liouville operator.

Thus, the expression of the full state observable, gid, in terms of the eigenfunc-
tions yields gid(x) ≈

∑M
i=1 ξi,aϕi,a(x) with (scaled) Liouville modes ξi,a.

As the eigenfunctions satisfy

ϕ̇i,a(ax(t)) = a∇ϕi(ax(t))f(x(t)) = Af,aϕi,a(x(t)) = λi,aϕi,a(x(t)),

it can be seen that ϕi,a(x(t)) 6= etλi,aϕi,a(x(0)). When a is close to 1, it can be

demonstrated that ϕi,a(x(t)) is very nearly equal to etλi,aϕi,a(x(0)), and the error
can be controlled when x(t) remains in a compact domain or workspace.

Proposition 2 Let H be a RKHS of twice continuously differentiable functions over

Rn, f be Lipschitz continuous, and suppose that ϕi,a is an eigenfunction of Af,a with

eigenvalue λi,a. Let D be a compact subset of Rn that contains x(t) for all 0 < t < T .

In this setting, if λi,a → λi,1 and ϕi,a(x(0))→ ϕi,1(x(0)) as a→ 1−, then

sup
0≤t≤T

‖ϕi,a(x(t))− eλi,atϕi,a(x(0))‖2 → 0.

Proof The proof has been relegated to the appendix to ease exposition. ut

Thus, under the hypothesis of Proposition 2, for a sufficiently close to 1, a
data-driven model for a trajectory x satisfying ẋ = f(x) is established as

x(t) ≈
M∑
i=1

ξi,aϕi,a(x(0))eλi,at. (12)

The principle advantage of using scaled Liouville operators is that these opera-
tors are compact over the Bargmann-Fock space for a large collection of nonlinear
dynamics. Moreover, the sequence finite rank operators obtained through the DMD
procedure achieves norm convergence when the sequence of recorded trajectories
corresponds to a collection of occupation kernels that are dense in the Hilbert
space.

1 It should be noted that the operator PαMAf,aPαM is simply PαMAf,a when restricted
to span(αM ) as PαM g = g for all g ∈ span(αM ).
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Theorem 2 Let |a| < 1. Suppose that {γi : [0, Ti] → Rn}∞i=1 is a sequence of tra-

jectories satisfying γ̇ = f(γ) for a dynamical system f corresponding to a compact

scaled Liouville operator, Af,a. If the collection of functions, {Γγi}∞i=1 is dense in the

Bargmann-Fock space, then the sequence of operators {PαMAf,aPαM }∞M=1 converges

to Af,a in the norm topology, where αM = {Γγ1 , . . . , ΓγM }.

Proof The proof has been relegated to the appendix to ease exposition. ut

5 Numerical Experiments

This section includes two collections of numerical experiments solved using the
methods of the paper. The first surround the problem of flow across a cylinder,
which has become a classic example for DMD. This provides a benchmark for
comparison of the present method with kernel-based extended DMD. There it will
be demonstrated that scaled Liouville modes and Liouville modes are very similar.

The second experiment performs a decomposition using electroencephalogra-
phy (EEG) data, which has been sampled at 250 Hz over a period of 8 seconds. The
high sampling frequency gives a large number of snapshots, which then leads to a
high dimensional learning problem when using the snapshots alone. The purpose
of this experiment is to demonstrate how the Liouville operator based DMD can
incorporate the large number of snapshots to generate Liouville modes without
discarding data.

5.1 Flow Across a Cylinder

This experiment utilizes the data set from [27], which includes snapshots of flow
velocity and flow vorticity generated from a computational fluid dynamics sim-
ulation. The data correspond to the wake behind a circular cylinder, and the
Reynolds number for this flow is 100. The simulation was generated with time
steps of ∆t = 0.02 second and ultimately sampled every 10∆t seconds yielding
151 snapshots. Each snapshot of the system is a vector of dimension 89, 351. More
details may be found in [27, Chapter 2].

Figure 1 presents the Liouville modes obtained from the cylinder vorticity data
set where the collection 151 snapshots was subdivided into 147 trajectories, each
of length 5. This figure should be compared with Figure 2, which presents the
scaled Liouville modes, with parameter a = 0.99, corresponding to the same data
set. The modes were generated using the Gaussian kernel with µ = 500. Figure 3
compares snapshots of the true vorticity against vorticity reconstructed using the
unscaled and scaled Liouville DMD models in (10) and (12), respectively.

5.2 SsVEP Dataset

This experiment uses data from [19]. The data for this experiment was taken from
an electroencephalography (EEG) recording of the visual cortex of one human
participant during the active viewing of flickering images [19]. By modulating
luminance or contrast of an image at a constant rate (e.g. 12Hz), image flickering
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Fig. 1 This figure presents the real and imaginary parts of a selection of ten Liouville modes
determined by the continuous time DMD method given in the present manuscript correspond-
ing to the vorticity of a flow across a cylinder (data available in [27]).
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Real part Imaginary part

Mode 142

Mode 120

Mode 103

Mode 94

Mode 80

Fig. 2 This figure presents the real and imaginary parts of a selection of five scaled Liouville
DMD modes for the cylinder wake vorticity data in [27]. The difference between these modes
and the modes in Figure 1 was anticipated for several reasons; the selection of a = 0.99 is
expected to result in slightly different modes, and there is no consistent method of ordering
the Liouville modes as the significance of each mode depends not only on its magnitude, but
also the associated eigenvector and initial value.
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Snapshot of the true flow at Reconstruction (a = 1) at
t = 0.18s

t = 1.08s

t = 1.58s

t = 2.24s

t = 2.98s

Reconstruction (a = 0.99) at

Fig. 3 Snapshots of the true flow compared with reconstruction via the Liouville DMD model
in (10) and the scaled Liouville DMD model in (12) with a = 0.99.
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Fig. 4 Eigenvalues corresponding to the SsVEP dataset from [19]. This plot is on the complex
plane, where the vertical axis indicates the imaginary part of the eigenvalue, and the horizontal
axis indicates the real part.

reliably evokes the steady state visually evoked potential (SsVEP) in early visual
cortex [34,33], reflecting entrainment of neuronal oscillations at the same driving
frequency. SsVEP in the current data was evoked by pattern-reversal Gabor patch
flickering at 12Hz (i.e. contrast-modulated) for a trial length of 7 seconds, with
greatest signal strength originating from the occipital pole (Oz) of a 129-electrode
cap. Data was sampled at 500Hz, band-pass filtered online from 0.5 – 48Hz, offline
from 3 – 40Hz, with 53 trials retained for this individual after artifact rejection. Of
these trials, the first 40 trials were used in the continuous time DMD method and
each trial was subdivided into 50 trajectories. SsVEP data have the advantage of
having an exceedingly high signal-to-noise ratio and high phase coherence due to
the oscillatory nature of the signal, ideally suited for signal detection algorithms
(such as brain-computer interfaces [2,3,31]).

In this setting each independent trial can be used as a trajectory for a single
occupation kernel. This differs from the implementation of Koopman-based DMD,
where most often each snapshot corresponds to a single trajectory. The continuous
time DMD method was performed using the Gaussian kernel function with µ = 50.

Figure 4 presents the obtained eigenvalues, and Figure 5 gives log scaled spec-
trum obtained from the eigenvectors. It can be seen that the spectrum has strong
peaks near the 12 Hz range, which suggests that the continuous time DMD pro-
cedure using occupation kernels can extract frequency information without using
shifted copies of the trajectories as in [27].

For this example, the resultant dimensionality of Koopman-based DMD makes
the analysis of this data set intractable without discarding a significant number of
samples.

6 Discussion

6.1 Unboundedness of Liouville and Koopman Operators

Traditional DMD approaches aim to estimate a continuous nonlinear dynamical
system by first selecting a fixed time-step and then investigate the induced dis-
cretized dynamics through the Koopman operator. The algorithm developed in
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Fig. 5 Rescaled spectrum obtained from the SsVEP dataset. This doesn’t quite correspond
to the spectrum that would be computed through the Fourier transform. However, note the
significant peak around 12 Hz, which corresponds to the SsVEP.

this manuscript estimates the continuous nonlinear dynamics directly by employ-
ing occupation kernels, which represent trajectories via an integration functional
that interfaces with the Liouville operator. That is, the principle advantage re-
alized through DMD using Liouville operators and occupation kernels over that
of kernel-based DMD and the Koopman operator is that the resulting finite-rank
representation corresponds to a continuous time system rather than a discrete time
proxy. This is significant, since not all continuous time systems can be discretized
for use with the Koopman operator framework. Moreover, through employment of
scaled Liouville operators, many dynamical systems yield a compact operator over
the Bargmann-Fock space, which allows for norm convergence of DMD procedures.

Liouville operators are unbounded in most cases due to the inclusion of the
gradient in their definition. Koopman operators are also unbounded in all but a few
cases. In the specific instance where the selected kernel function is the exponential
dot product kernel, Koopman operators are only bounded if the dynamics are
affine (cf. [6]). In contrast, large classes of both Liouville and Koopman operators
are densely defined and closed operators over RKHSs. Thus, connections between
DMD and Koopman/Liouville operators need to generally rely on the theory of
unbounded operators.

6.2 Finite Rank Representations

Since Liouville operators are generally unbounded, convergence of the finite rank
representation (in the norm topology) of the method in Section 4 cannot be es-
tablished for most selections of f . Moreover, the selection of observables on which
the operator is applied must come from the functions that reside in the domain of
the Liouville operator, D(Af ). As bounded Koopman operators are rare as well,
the need for care in the selection of observables is shared by both operators. In the
design of the algorithm of this manuscript, an additional assumption was made
where the domain of the Liouville operator was required to contain the occupation



20 Joel A. Rosenfeld et al.

kernels corresponding to the observed trajectories. It should be noted that even if
the occupation kernels are not in the domain of the Liouville operator, they are al-
ways in the domain of the adjoint of the Liouville operator, as long as the Liouville
operator is closed and densely defined. As a result, an alternative DMD algorithm
may be designed using the action of the adjoint on the occupation kernels. Inter-
estingly, as evidenced by (4) and (8), the only adjustment to the algorithm in this
setting is transposition of the matrix I.

6.3 Approximating the Full State Observable

The decomposition of the full state observable relies strongly on selection of the
RKHS. In the case of the Bargmann-Fock space, x 7→ (x)i is a function in the
space for each i = 1, . . . , n. However, this is not the case for the native space of the
Gaussian radial basis function kernel, which does not contain any polynomials. In
both cases, the spaces are universal, which means that any continuous function
may be arbitrarily well estimated by a function in the space with respect to the
supremum norm over a compact subset. Thus, it is not expected that a good
approximation of the full state observable will hold over all of Rn, but a sufficiently
small estimation error is possible over a compact workspace.

6.4 Scaled Liouville Operators

One advantage of the Liouville approach to DMD is that the Liouville operators
may be readily modified to generate a compact operator through the so-called
scaled Liouville operator. A large class of dynamics correspond to compact scaled
Liouville operators, while Koopman operators cannot be modified in a similar
fashion. Allowing this compact modification indicates that on an operator theoretic
level, the study of nonlinear dynamical systems through Liouville operators allows
for more flexibility.

The experiments presented in Section 5 demonstrate that the Liouville modes
obtained with the continuous time DMD procedure using Liouville operators and
occupation kernels are similar in form to the Koopman modes obtained using
kernel-based extended DMD [48]. Moreover, occupation kernels allow for trajecto-
ries to be utilized as a fundamental unit of data, which can reduce the dimension-
ality of the learning problem while retaining some fidelity that would be otherwise
lost through discarding data.

6.5 Time Varying Systems

The present framework can be adapted to handle time varying systems of the
form ẋ = f(t, x) with little adjustment. In particular, an analysis of this system
may be achieved through state augmentation where time is included as a state
variable as z = [t, xT ]T , which leads to an adjusted dynamical system given as
ż = [1, f(t, x)T ]T . Hence, the analysis of time varying dynamics are included in
the present approach.
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6.6 Strong Operator Topology Convergence versus Norm Convergence

One of the major contributions of this manuscript is the definition of the scaled
Liouville operators, which for certain selections of a, these operators are compact
over the exponential dot product kernel’s space. This compactness enables the
norm convergence of DMD routines, where the finite rank operators made for
DMD are essentially operator level interpolants.

Presently, the best convergence results for DMD methods are SOT conver-
gence results [26]. SOT convergence yields pointwise convergence of operators in
that a sequence of bounded operators, Tm, converges to T in SOT if and only if
Tmg → Tg for all g ∈ H. This mode of convergence is limited, and not entirely
appropriate for spectral methods like DMD, where the only guarantees provided
are that the spectrum of the limiting operator may be obtained as a subsequence
of the members of the spectrum of the sequence of operators under consideration.
Thus, as observed by the authors of [26], infinitely many operators Tm, from the
sequence of operators converging in SOT to T , may not be part of the subsequence
for convergence, and as a result, may have dramatically different spectra from T .
Moreover, the convergence result for Koopman-based DMD is a special case of a
more general theorem, which implies that finite rank operators are dense in the
collection of bounded operators with respect to the SOT [32].

In contrast, norm convergence of operators is much stronger, where if two
operators are close in norm, then their spectra are also close. Hence, convergence
in norm of a sequence of bounded operators, Tm, to an operator, T guarantees the
convergence of the spectra. Since DMD is a method where finite rank operators are
designed to represent an unknown operator, the only operators amenable for norm
convergence are compact operators. Compactness of the scaled Liouville operators
thus allows for norm convergence of the finite rank approximations, generated
for DMD, to the respective scaled Liouville operators. As a result, convergence
of the estimated spectra to the spectra of the scaled Liouville operators is also
established. More information concerning spectral theory and operator theory in
general can be found in [32].

Scaled Liouville operators are compact over the native space of the exponential
dot product kernel for a wide range of dynamical systems, including all polynomial
dynamical systems. In contrast, every Koopman operator corresponding to a dis-
cretization of the trivial dynamics ẋ = 0 is the identity operator (for any selection
of underlying function space), which is not compact when the underlying function
space is an infinite dimensional Hilbert space.

7 Conclusions

In this paper, the notion of occupation kernels is leveraged to enable spectral anal-
ysis of the Liouville operator via DMD. A family of scaled Liouville operators is
introduced and shown to be compact, which allows for norm convergence of the
DMD procedure. Two examples are presented, one from fluid dynamics and an-
other from EEG, which demonstrate reconstruction of trajectories, approximation
of the spectrum, and a comparison of Liouville and scaled Liouville DMD.

The method presented here provides a new approach to DMD and builds the
operator theoretic foundations for spectral decomposition of continuous time dy-
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namical systems. By targeting the DMD procedure towards Liouville operators,
which include Koopman generators as a proper subset, continuous time dynam-
ical system are modeled directly, without discretization. Moreover, by obviating
the limiting process used in the definition of Koopman generators, in favor of di-
rect formulation via Liouville operators, the requirement of forward completeness
is relaxed and the resulting methods are applicable to a much broader class of
dynamical systems.

A Proofs of Theorem 1 and Proposition 2

Theorem 1 restated: Let F 2(Rn) be the Bargmann-Fock space of real valued functions,
which is the native space for the exponential dot product kernel, K(x, y) = exp(xT y), a ∈ R
with |a| < 1, and let Af,a be the scaled Liouville operator with symbol f : Rn → Rn. There
exists a collection of coefficients, {Cα}α, indexed by the multi-index α, such that if f is
representable by a multi-variate power series, f(x) =

∑
α fαx

α, satisfying∑
α

|fα|Cα <∞,

then Af,a is bounded and compact over F 2(Rn).

Proof The proof for the case n = 1 is presented to simplify the exposition. The case for n > 1
follows with some additional bookkeeping of the multi-index.

If Ax,a is compact for all |a| < 1, then Axm,a = Am
x, m√a is compact since products of

compact operators are compact. If f(x) =
∑∞
m=0 fmx

m is such that
∑∞
m=0 |fm|‖Axm,a‖ <

∞, then Af,a = limm→∞
∑M
m=0 fmAxm,a, with respect the operator norm via the triangle

inequality, and Af,a is compact since it is the limit of compact operators. Thus, it is sufficient
to demonstrate that Ax,a is compact to prove the theorem.

Let g ∈ F 2(R), then g(x) =
∑∞
m=0 gm

xm√
m!

with norm ‖g‖2
F2(R) =

∑∞
m=0 |gm|2 < ∞.

Applying the scaled Liouville operator, Ax,a, yields

Ax,ag(x) = axg′(ax) =

∞∑
m=0

gma
mm

xm
√
m!
.

Hence, ‖Ax,ag‖2
F (R)

= |a|2mm2|gm|2 < ∞ as for large enough m, |a|2mm2 < 1. Hence, Ax,a

is everywhere defined and by the closed graph theorem Ax,a is bounded.
As |a|mm2 → 0, there is an M such that for all m > M , |a|mm2 < 1. Let PM be the

projection onto span{1, x, x2, . . . , xM}. Now consider

‖(Ax,a −Ax,aPM )g‖2 =

∞∑
m=M+1

|gm|2|a|2mm2

≤
∞∑

m=M+1

|gm|2|a|m

≤ |a|M
∞∑

m=M+1

|gm|2|a|m−M

≤ |a|M
∞∑

m=M+1

|gm|2 ≤ |a|M‖g‖2F2(R).

Hence, the operator norm of (Ax,a − Ax,aPM ) is bounded by |a|M/2, and as |a| < 1,
Ax,aPm → Ax,a in the operator norm. Pm is finite rank and therefore compact. It follows that
Ax,aPm is compact, since compact operators form an ideal in the ring of bounded operators.
Thus, Ax,a is compact as it is the limit of compact operators. ut
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Proposition 2 restated: Let H be a RKHS of twice continuously differentiable functions
over Rn, f be Lipschitz continuous, and suppose that ϕi,a is an eigenfunction of Af,a with
eigenvalue λi,a. Let D be a compact subset of Rn that contains x(t) for all 0 < t < T . In this
setting, if λi,a → λi,1 and ϕi,a(x(0))→ ϕi,1(x(0)) as a→ 1−, then

sup
0≤t≤T

‖ϕi,a(x(t))− eλi,atϕi,a(x(0))‖2 → 0.

Proof Suppose that x(t) remains in a compact set D ⊂ Rn. Since φm,a ∈ H and H consists
of twice continuously differentiable functions, there exists M1,M2, F > 0 such that

sup
x∈D
‖f(x)‖ < F sup

x∈D
, ‖∇φm,a(x)‖ < M1,a, and sup

x∈D
‖∇2φm,a(x)‖ < M2,a.

First, it is necessary to demonstrate that M1,a and M2,a may be bounded independent of

a. For each i, j = 1, . . . , n and y ∈ Rn, the functionals g 7→ ∂
∂xi

g(y) and g 7→ ∂2

∂xi∂xj
g(y)

are bounded (cf. [42]). Setting, ky = K(·, y), it can be seen that the functions ∂
∂xi

ky and

∂2

∂xi∂xj
ky are the unique functions that represent these functionals through the inner product

of the RKHS (cf. [42]). As φm,a is a normal vector, ‖φm,a‖H = 1, and by Cauchy-Schwarz

‖∇φm,a(y)‖2 =

√√√√ n∑
i=1

(
∂

∂xi
φm,a(y)

)2

=

√√√√ n∑
i=1

(〈
φm,a,

∂

∂xi
ky

〉
H

)2

≤

√√√√ n∑
i=1

‖φm,a‖2H

∥∥∥∥ ∂

∂xi
ky

∥∥∥∥2
H

=

√√√√ n∑
i=1

∥∥∥∥ ∂

∂xi
ky

∥∥∥∥2
H

. (13)

(13) is bounded over D as x 7→ ∂
∂xi

ky(x) is continuous. Thus, M1,a is bounded independent of

a. A similar argument may be carried out for M2,a. Let M1 and M2 be the respective bounding
constants.

Note that

∂

∂t
φm,a(ax(t)) = a∇φm,a(ax(t))f(x(t)) = Af,aφm,a(x(t)) = µm,aφm,a(x(t)).

Then by the mean value inequality, Cauchy-Schwarz, and the bounds given above,∣∣∣∣ ∂∂tφm,a(ax(t))−
∂

∂t
φm,a(x(t))

∣∣∣∣
= |a∇φm,a(ax(t))f(x(t))−∇φm,a(x(t))f(x(t))|

≤ F ‖a∇φm,a(ax(t))− a∇φm,a(x(t)) + a∇φm,a(x(t))−∇φm,a(x(t))‖2
≤ |a|F ‖∇φm,a(ax(t))−∇φm,a(x(t))‖2 + F |a− 1|M1‖x(t)‖2
≤ |a||a− 1|M2F‖x(t)‖2 + |a− 1|M1F‖x(t)‖2 = O(|a− 1|).

Setting εa(t) := ∂
∂t
φm,a(ax(t))− ∂

∂t
φm,a(x(t)), it follows that sup0≤t≤T ‖εa(t)‖2 = O(|a−

1|). Hence,

µm,aφm,a(x(t)) =
∂

∂t
φm,a(ax(t))

=
∂

∂t
φm,a(x(t)) + ε(t),
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and

φm,a(x(t)) = eµm,atφm,a(x(0))− eµm,at

∫ t

0
e−µm,aτ ε(τ)dτ.

As the time interval is fixed to [0, T ], eµm,at
∫ t
0 e
−µm,aτ ε(τ)dτ = O(|a − 1|), since µm,a is

bounded with respect to a. ut

Theorem 2 restated: Let |a| < 1. Suppose that {γi : [0, Ti] → Rn}∞i=1 is a sequence of
trajectories satisfying γ̇ = f(γ) for a dynamical system f corresponding to a compact scaled
Liouville operator, Af,a. If the collection of functions, {Γγi}∞i=1 is dense in the Bargmann-
Fock space, then the sequence of operators {PαMAf,aPαM }∞M=1 converges to Af,a in the norm
topology, where αM = {Γγ1 , . . . , ΓγM }.

Proof The following proof is more general than what is indicated in the theorem state-
ment of Theorem 2. In fact, for any compact operator, T , and any set {gi}∞i=1 such that

span({gi}∞i=1) = H, the sequence of operators PαM TPαM → T in norm, where PαM is the

projection onto span({gi}Mi=1). Henceforth, it will be assumed that {gi}∞i=1 is an orthonormal
basis for H, since given any complete basis in H, an orthonormal basis may be obtained via
the Gram-Schmidt process.

First note that every compact operator has a representation as T =
∑∞
i=1 λi〈·, vi〉Hui,

where {vi} and {ui} are orthonormal collections of vectors (functions) in H, and {λi}∞i=1 ⊂ C
are the singular values of T . If TM :=

∑M
i=1 λi〈·, vi〉Hui then TM → T as M → ∞ in the

operator norm.
Suppose that ε > 0. Select M such that ‖T − TM‖ < ε, and select N such that for all

n > N ,

‖ui − Pnui‖H <
ε∑M

i=1 |λi|2
and ‖vi − Pnvi‖H <

ε
√
M
(∑M

i=1 |λi|2
)1/2

for all i = 1, . . . ,M . Let g ∈ H be arbitrary.
Now consider,

‖Tg − PnTPng‖H = ‖Tg − TMg + TMg − PnTPnf‖H
≤ ‖T − TM‖‖g‖H + ‖TMg − PnTPng‖H ≤ ε‖g‖H + ‖TMg − PnTPng‖H .

The second term after the inequality may be expanded as

‖TMg − PnTPng‖H ≤ ‖TMg − PnTMg‖H + ‖PnTMg − PnTPng‖H
‖TMg − PnTMg‖H + ‖TMg − TPng‖H

≤ ‖TMg − PnTMg‖H + ‖TMg − TMPng‖H + ‖TMPng − TPng‖H
≤ ‖TMg − PnTMg‖H + ‖TMg − TMPng‖H + ε‖g‖H .

Now the objective is to demonstrate that both ‖TMg−PnTMg‖H and ‖TMg−TMPng‖H are
proportional to ε‖g‖H . Note that

‖TMg − PnTMg‖H =

∥∥∥∥∥
M∑
i=1

λi〈g, vi〉H(ui − Pnui)

∥∥∥∥∥
H

≤
M∑
i=1

|λi||〈g, vi〉H |‖ui − Pnui‖H

≤

√√√√ M∑
i=1

|〈g, vi〉H |2
(
M∑
i=1

|λi|2‖ui − Pnui‖2H

)1/2

≤ ‖g‖H

(
M∑
i=1

|λi|2‖ui − Pnui‖2H

)1/2

≤ ε‖g‖H ,
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and

‖TM (g − Png)‖H =

∥∥∥∥∥
M∑
i=1

λi〈g − Png, vi〉Hui

∥∥∥∥∥
≤

∥∥∥∥∥∥
M∑
i=1

λi

〈 ∞∑
j=n+1

〈g, gj〉Hgj , vi

〉
H

ui

∥∥∥∥∥∥
≤

∞∑
j=n+1

|〈g, gj〉H |
(
M∑
i=1

|λi||〈gj , vi〉H |
)

≤

 ∞∑
j=n+1

|〈g, gi〉H |2
1/2 ∞∑

j=n+1

(
M∑
i=1

|λi||〈gi, vi〉H |
)2
1/2

≤ ‖g‖H

 ∞∑
j=n+1

(
M∑
i=1

|λi|2
)(

M∑
i=1

|〈gj , vi〉H |2
)1/2

≤ ‖g‖H

(
M∑
i=1

|λi|2
)1/2

 M∑
i=1

∞∑
j=n+1

|〈g, vi〉H |2
1/2

= ‖g‖H

(
M∑
i=1

|λi|2
)1/2( M∑

i=1

‖vi − Pnvi‖2
)1/2

≤ ε‖g‖H .

Thus, for every ε > 0, there is an N such that for all n > N , ‖Tg−PnTPng‖H ≤ 4ε‖g‖H .
Hence, it follows that ‖T − PnTPn‖ ≤ 4ε. Thus, as n → ∞, PnTPn → T in the operator
norm. ut
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