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Abstract— This manuscript presents a framework for re-
solving inverse problems through the use of operator approx-
imations over vector valued RKHSs. This generalizes Koop-
man based methods for data driven analysis and identification
of dynamical systems. Three examples of this framework are
presented to highlight its generality and effectiveness.

I. Introduction

Over the past decade, a variety of operator theoretic
methods have been developed for the study of data
driven methods in dynamical systems (cf. [1], [2], [3]).
These methods cast an unknown dynamical system into a
(hopefully) compact operator, and then leverages the in-
teractions between the operator and certain observables
within a Hilbert space to gain a finite rank approximation
of that operator. This finite rank approximation of
the infinite dimensional operator is then decomposed
into its spectral decomposition, where then the full
state observable is projected onto the eigenbasis, and
ultimately, this results in a model for the system state.

For the Koopman and Liouville operators in particular,
the eigenfunctions of these operators “observe” the state
of a nonlinear system as an exponential involving the
corresponding eigenvalue, and hence, a projection onto
these eigenfunctions results in a linear approximation of
the nonlinear system after composition with the system
state.

Specifically, if {ϕi}Mi=1 is a collection of eigenfunctions
of a Liouville operator, Af , in a Hilbert space H
corresponding to eigenvalues {λi}Mi=1, then if the full
state observable, gid ∈ H, given as gid(x) = x, is
projected onto the eigenfunctions, as Pgid =

∑M
i=1 ξiϕi,

we have x(t) ≈
∑M

i=1 ξie
λitϕi(x(0)) (cf. [3]).

To achieve convergence of the model given by the
eigenfunctions, there are several operator theoretic con-
ditions that should be met. First, if the Hilbert space is a
space of L2 functions, then convergence in this space does

*This work was partially supported by the following grants:
AFOSR Program Awards FA9550-21-1-0134 and FA9550-20-1-0127
and NSF awards ECCS-2027976 and 2027999. It was also supported
by the DOE/NIH/NSF “Collaborative Research in Computational
Neuroscience (CRCNS): Decomposing Neural Dynamics.” Any
opinions, findings and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily
reflect the views of the sponsoring agencies.

1(Corresponding Author) Department of Mathematics and
Statistics, University of South Florida, Tampa, FL 33620 rosen-
feldj@usf.edu

2Riverside Research, New York, NY 10038, USA. rus-
sobp@riversideresearch.org

3Department of Mechanical and Aerospace Engineering, Univer-
sity of Florida, Gainesville, FL 32611 rkamalapurkar@ufl.edu

not imply pointwise convergence, so theoretically, there
might be an uncountable number of points where this
model does not converge. A RKHS helps mitigate this
issue, where norm convergence implies pointwise (and
often uniform) convergence ([4]). Second, it is desirable
for the spectrum of the finite rank approximation to
be close to that of the original operators, which can be
achieved when the operators are compact.

It was shown in [4] and [3] that there are a variety
of different adjustments that can be made to Liouville
operators to achieve compactness of the operator. One of
these methods is first composing with another function
before the application of the Liouville operator to an
observable. This results in what was called a scaled
Liouville operator [4].

Weighted composition operators are defined in a
similar manner, and they can effectively modify an
unbounded multiplication operator into a compact op-
erator, given the right conditions (cf. [5]).

Here we are going to generalize the modeling frame-
work used for studying dynamical systems to other con-
texts and with different operators. To do this properly,
we will use RKHSs, and select our operators to be
compact. First, we will discuss vector valued RKHSs,
which will allow us to give the presentation in the
greatest generality, and we will then give that general
framework for the methodology. The remaining sections
will give examples of this framework, both for data driven
methods in dynamical systems as well as for other inverse
problems.

II. Vector Valued Reproducing Kernel Hilbert Spaces
In this section we give a review of vector valued

RKHSs. A more complete coverage may be found in [6].
Definition 1: A vector valued RKHS from a set X to a

Hilbert space Y is a Hilbert space, H, of functions with
domain X and co-domain Y, for which given any x ∈ X
and ν ∈ Y, the mapping h → 〈h(x), ν〉Y is a bounded
linear functional.

Just as the Reisz theorem provides for the reproducing
kernels corresponding to a point x ∈ X, given any x ∈ X
and ν ∈ Y, the Reisz theorem guarantees that there is a
function, Kx,ν in H such that 〈h(x), ν〉Y = 〈h,Kx,ν〉H .

Note that if Y is Rn, then ν may be selected as a
member of the standard basis. For a vvRKHS from a
set X to Rn, the evaluation operator Ex : H → H,
given as Exh = h(x) is a bounded linear operator. The
concept of the evaluation operator can be extended to
general vvRKHSs. In fact, the mapping ν → Kx,ν is



linear, which means we can think of that assignment
from Y to H as a linear operator.

Thus, we may write Kx,ν as Kxν where Kx is an
operator from Y to H. The operator, Kx is then a
bounded linear operator from Y to H. Therefore, its
adjoint is well defined over all of H and maps to Y.
Moreover, K∗

xh = h(x) for all h ∈ H, and is the
evaluation map.

In [6], the operator K : X × X → B(Y) given as
K(x, y) = K∗

xKy is called a Y-reproducing kernel, we
will frequently refer to K as an operator valued kernel.

Example 1: For a scalar valued RKHS, H, with
kernel function K̃, we can define a vector valued
RKHS Hn where the inner product between two vec-
tor valued functions, g =

(
g1 · · · gn

)T and h =(
h1 · · · hn

)T , is given as 〈g, h〉Hn =
∑n

j=1〈gj , hj〉H .
If v =

(
v1 · · · vn

)T ∈ Cn and x ∈ X, then

〈g(x), v〉Cn = g1(x)v1 + · · ·+ gn(x)vn

= 〈g1, v1K̃x〉H + · · ·+ 〈gn, vnK̃x〉H = 〈g, K̃xv〉Hn .

Hence, Kx,v = K̃xv, where K̃x is the kernel for the scalar
valued RKHS. Moreover, the matrix representation of
K(x, y) with respect to the standard basis, is K(x, y) =
K̃(x, y)In where In is the identity matrix.

III. Operator Approximations for Inverse Problems
This section will be kept abstract to provide a general

framework for operator decomposition methods as ap-
plied to inverse problems. This framework encompasses
Koopman and Liouville based Dynamic Mode Decompo-
sitions, and will also apply to a broader class of inverse
problems, some involving dynamics.

In the context of this problem, we have a series
of measurements, which are stored as a collection of
functionals over an a priori selected vvRKHS, H, from a
set X to a Hilbert space Y and each of these functionals
are represented as {b1, . . . , bM} ⊂ H. In a possibly
different vvRKHS, H̃, from a set X to a Hilbert space
Y, another collection of measurements is collected as
{d1, . . . , dM} ⊂ H̃. Let f : X → Y ′ be a model for
a system that generated these measurements, where f
will be treated as unknown. Let {a1, . . . , aM} ⊂ H be
a collection of functions for which an operator will be
approximated over.

Let Qf : H → H̃ be a compact linear operator for
which:

1) Q∗
fdj = bj

2) Given a collection of projection operators {P` : Y →
Y}∞`=1 for which ⊕`P` = IY and a compact subset
B ⊂ X, for each ` there is a sequence of functions
{gm,`}∞m=1 such that Qfgm,` → P`f pointwise over
B. In the simplest case, we could have P1 = IY ,
or for an orthonormal basis {e`}∞m=1 each P` could
project to each span of e` (or its coefficient).

The operator decomposition method estimates the
operator Qf with a finite rank operator, Q̃f = PβQfPα,

with a matrix representation from α = span{a1, . . . aM}
to δ = span{d1, . . . , dM} as

[Q̃f ]
δ
α =

 〈d1, d1〉H̃ · · · 〈d1, dM 〉H̃
...

. . .
...

〈dM , d1〉H̃ · · · 〈dM , dM 〉H̃


−1

×

 〈Qfa1, d1〉H̃ · · · 〈QfaM , d1〉H̃
... · · ·

...
〈Qfa1, dM 〉H̃ · · · 〈QfaM , dM 〉H̃

 .

Note that in the literal computation of [Q̃f ]
δ
α, the inner

products on the right matrix should be 〈PδQfPαai, dj〉H̃ ,
but since ai ∈ α we have Pαai = ai and projections are
self adjoint, which means

〈PδQfPαai, dj〉H̃ = 〈QfPαai, Pδdj〉H̃ = 〈Qfai, dj〉H̃ ,

since dj ∈ δ.
If we have a countable collection of measurements

for which the corresponding bi’s and di’s have a dense
span in their respective spaces, this approximation of Qf

converges to Qf in norm as we add the measurements
to the approximation, owing to the compactness of Qf .

Note that,

‖Q̃fgm(x)− f(x)‖Y
≤ ‖Q̃fgm(x)−Qfgm(x)‖Y + ‖Qfgm(x)− f(x)‖Y
≤ ‖K∗

x‖‖Q̃f −Qf‖‖gm‖+ ‖Qfgm(x)− f(x)‖Y .

Hence, for close norm approximation of Qf by Q̃f and
large enough m, Q̃fgm(x) is close to f(x). If ‖K∗

x‖ is
bounded over B, then it follows that this estimate of f
can also be made uniform over B.

Of course, this is an estimate ofQf and not an operator
decomposition. The decomposition occurs when we look
at either the Singular Value Decomposition of [Q̃f ]

δ
α or

its eigendecomposition, where the eigendecomposition is
only possible when α ⊂ δ. This can happen if H̃ = H or
when H ⊂ H̃.

Let ϕ̃s be a normalized right singular function of
Q̃f , corresponding to the singular value σ̃s ≥ 0 and
right singular function ψ̃s. Since Qf is compact, the
quantity ‖Qf ϕ̃s(x)− σ̃sψ̃s(x)‖Y ≤ ‖K∗

x‖‖Qf − Q̃f‖ can
be made small for sufficiently close estimate with Q̃f .
In other words, ϕ̃m behaves point-wise closely to a
singular function of Qf when Q̃f closely estimates Qf .
Analogous statements can be derived for eigenfunctions
of Q̃f without any adjustment.

Remark: In the setting of DMD, this inequality sug-
gests that for normalized eigenfunctions of Af , | ddtϕ(x)−
λϕ(x)| < ε when ‖Af − Ãf‖ < ε and K is the Gaussian
RBF. In turn, this means that ϕ(x(t)) ≈ ϕ(x(0))eλt,
which was leveraged for the reconstruction formula in
[3].

The singular functions or eigenfunctions of Q̃f repre-
sent a feature extraction based on the available data,
the form of the operator Qf , and the selected Hilbert



spaces. This is similar to how PCA and SVDs work in
typical data science applications.

To complete the approximation via the spectral de-
composition of Q̃f , we project gm onto the span of a col-
lection of right singular functions of Q̃f , {ϕ1, . . . , ϕM},
as PSgs =

∑M
s=1 ξsϕs, where ξm are the operator modes

corresponding to the data, and S = span{ϕ1, . . . , ϕM}.
The estimate of f is then obtained as

f(x) ≈ Qfgm(x) ≈ Q̃fgm(x) =

M∑
s=1

ξsσsψm(x).

The last equality follows, since Q̃f = PβQfPα, and
S = β but with a different basis. The estimations in the
equation above can be quantified by selecting sufficiently
large m and with sufficiently rich data so that Q̃f ≈ Qf .

The last computational challenge in the implemen-
tation of this method is to apply the finite rank ap-
proximation to gm,`. Since the matrix is defined to
be acting on the α basis, gm,l must first be projected
onto that basis before the application of the matrix to
achieve the approximation. This means we are looking
for the weights that satisfy Pαgm,` =

∑M
j=1 wjaj , which

is the closest element of α to gm,`. These weights can be
determined as

~w =

 〈a1, a1〉H · · · 〈a1, aM 〉H
...

. . .
...

〈aM , a1〉H · · · 〈aM , aM 〉H


−1  〈gm,`, a1〉H

...
〈gm,`, aM 〉H

 .

Hence the approximation manifests from the matrix
representation as ~u = [Q̃f ]

δ
α ~w, where ~u is a vector of

components that, when placed with the basis δ, yield
the approximation of f as

∑M
j=1 ujdj .

The above framework generalizes the DMD methodol-
ogy to a broader collection of inverse problems, beyond
but including dynamical systems. The next several sec-
tions will examine some new and some extant decompo-
sition methods, and extol the connections between the
above framework and the applications.

IV. Function Approximation with Weighted
Composition Operators

In this section, we will demonstrate how the operator
decomposition method could be leveraged for function
approximation via point samples,

{(x1, f(x1)), . . . , (xM , f(xM ))}.

The operator we will using is the weighted composition
operator. Point samples will be represented by the cor-
responding reproducing kernels centered at the samples,
which aligns with scattered data approximation. The
difference between scattered data approximation as typi-
cally done with RBFs in [7], is that this is frequently done
using interpolation methods, which yields a projection
onto the span of the kernels.

Definition 2: Let H be a vvRKHS from a set X to a
Hilbert space Y and H̃ a scalar valued RKHS over X,
and let f : X → Y and φ : X → X (note that φ is used
here for the composition symbol as opposed to ϕ). The
weighted composition operator Wf,φ : D(Wf,φ) → H̃,
with D(Wf,φ) := {g ∈ H : 〈g(φ(·), f〉Y ∈ H̃}, is given as
Wf,φg = 〈g(φ(·)), f〉Y .

Let {e`}∞`=1 be an orthonormal basis for Y. For the
purpose of this section, we will assume that the constant
function 1`(x) ≡ e` is in the domain of Wf,φ. Hence,

Wf,φ1`(x) = 〈f(x), e`〉Y .

Which fits the projection form on the methodology given
in Section III.

We will further assume that Wf,φ is compact, which
holds when Y = Rn, H = F 2(Rn)n, each component of
f is a polynomial, and φ(x) = ax with |a| < 1.

The adjoints of weighted composition operators in-
teract nicely with kernel functions, as 〈Wf,φg, K̃x〉H̃ =
〈g(φ(x)), f(x)〉Y = 〈g,Kφ(x)f(x)〉H for all g ∈ H. Hence,
W ∗

f,φK̃x = Kφ(x)f(x).
For each xi, φ(xi) is known, since φ is user selected,

and f(xi) is known through measurement. Therefore,
only the operator is unknown in W ∗

f,φK̃xi
= Kφ(x)f(xi)

and this can be treated as a sample of the operator. Let
di = K̃xi and bi = Kφ(xi)f(xi), and ai,j = Kxi,ej in the
above framework with corresponding α and δ subspaces.

V. Approximating Flow Fields
In the setting of learning an unknown dynamical sys-

tem from data, we will consider the data as a collection
of observed trajectories, {γi : [0, Ti] → Rn}Mi=1, each
satisfying the differential equation γ̇i(t) = f(γi(t)) for
t ∈ [0, Ti], for an unknown f : Rn → Rn.

Definition 3: Given a RKHS, H, mapping Rn to Rn,
the operator in question here is the scaled Liouville
operator, Af,a : D(Af,a) → H, given as Af,ag(x) =
aDg(ax)f(x) where Dg is the matrix valued derivative
of the vector valued observable g ∈ D(Af,a) := {h ∈ H :
aDh(ax)f(x) ∈ H}.

Motivated by [4], it will be assumed here that scaled
Liouville operators are compact for the selected param-
eters, dynamics, and Hilbert spaces.

Let gid(x) = x which is known as the identity function
or the full state observable. Note that Dgid(x) = In for
all x and

1

a
Af,agid(x) = f(x).

Since Af,a is compact, so is 1
aAf,a, and this latter

operator is the Qf of this section.
The functionals in question here are occupation ker-

nels. For a given bounded measurable signal θ : [0, T ] →
Rn the occupation kernel corresponding to θ and ν ∈
Rn within a RKHS, H, is the unique function, Γγ,ν

for which 〈g,Γγ,ν〉H = 〈
∫ T

0
g(θ(t))dt, ν〉Rn . Here we

see that ν 7→ Γγ,ν is linear, and as such for each
bounded measurable θ : [0, T ] → Rn there is an



operator Γθ : Rn → H such that Γθν = Γθ,ν for all
ν ∈ Rn. Note that 〈Γθ,ν(x), ω〉Rn = 〈Γθν,Kxω〉H =

〈
∫ T

0
Kx,ω(θ(t))dt, ν〉Rn = 〈

∫ T

0
K∗

θ(t)Kxωdt, ν〉Rn . Thus, if
K(x, y) = K̃(x, y)In, where K̃ is the kernel for a scalar
valued RKHS, Γθ(x) = K∗

xΓθ =
∫ T

0
K̃(x, θ(t))dtIn. That

is, the vector valued RKHS for this vector valued RKHS
is a scalar valued occupation kernel times the identity
matrix.

The adjoint of the scaled Liouville operator
corresponding to the dynamics f applied to Γγ

where γ̇ = f(γ) can be expressed in terms of
a difference of kernels. This is demonstrated
quickly by examining, for arbitrary g ∈ H,
〈Af,ag,Γγ,ν〉H = 〈

∫ T

0
aDg(aγ(t))f(γ(t))dt, ν〉Rn =

〈
∫ T

0
Dg(aγ(t))aγ̇(t)dt, ν〉Rn = 〈g(aγ(T )) −

g(aγ(0)), ν〉Rn = 〈g, (Kaγ(T ) − Kaγ(0))ν〉H . Hence,
for each ν ∈ Rn we have A∗

f,aΓγν = (Kaγ(T ) −Kaγ(0))ν,
hence A∗

f,aΓγ = Kaγ(T )−Kaγ(0), where A∗
f,aΓγ : Rn → H

is a bounded operator.

VI. Approximating Flow Fields with Weighted
Composition Operators

The operator in Section V is a natural generalization of
the Liouville operator or Koopman generator that is used
in DMD [8], [4], but which is also a compact operator,
allowing for convergence guarantees based on the density
of the occupation kernels within a RKHS. This section
presents an approach for estimating flow fields that was
introduced in [9], but which also is an example of this
framework in execution.

Consider the weighted composition operator mapping
from a space of a functions of a single time variable, H, to
a space of functions of both time and the state variable,
H̃, given formally as Wf,φg(t, x) = 〈g(t), f(x)〉Rn . The
approach presented in Section V leverages the chain rule
and the fundamental theorem of calculus which aligns
well with the system identification method presented
in [10]. Using the weighted composition operator gives
an operator theoretic interpretation of the weak-SINDy
method of [11], [12] in that integration by parts plays a
central role for the interaction between the operator and
the embedding of the trajectories through occupation
kernels.

In particular, suppose that γ : [0, T ] → Rn is
the solution to the dynamical system ẋ = f(x),
and consider 〈Wf,φg,Γγ〉H =

∫ T

0
〈g(t), f(γ(t))〉Rndt =∫ T

0
〈g(t), γ̇(t)〉Rndt = 〈g(T ), γ(T )〉Rn − 〈g(0), γ(0)〉Rn −∫ T

0
〈ġ(t), γ(t)〉Rndt.

Recognizing that g 7→ 〈g(T ), γ(T )〉Rn−〈g(0), γ(0)〉Rn−∫ T

0
〈ġ(t), γ(t)〉Rndt is a bounded linear functional, this

may be represented, via the Riesz theorem, as a function
inside of the Hilbert space, H̃ as Φγ .

This relation was leveraged in [9] to produce a method
of recovering a flow field from trajectory data.

VII. Convolution Operators and Recovering Impulse
Response Function

In this setting we will assume we have an unknown
linear differential operator L and a collection of in-
puts (or forcing functions) {G1, . . . , GM} and outputs
{y1, . . . , yM} satisfying Lym = Gm. The objective is to
find the impulse response function for this system, h, so
that given a new forcing function, G, the output yG may
be predicted.

The relation between the input and the outputs
naturally falls into a function theoretic operator, such as
G 7→ h?G where ? represents convolution. The operator
we are looking for needs to leverage convolution in some
nontrivial way.

Let H̃ be a RKHS of scalar valued functions from Rn

to R. A signal valued RKHS, H is a Hilbert space of
functions that take C([0, T ],Rn) signals to C([0, T ],Rn)
signals, and H is constructed from functions in H̃.
Specifically, for each φ ∈ H, there exists a unique
g ∈ H̃ such that given a signal θ : [0, T ] → Rn,
φ[θ](t) = φg[θ](t) := g(θ(t)) for t ∈ [0, T ].

Consequently, the inner product of two elements
φg, φg′ ∈ H is given as 〈φg, φg′〉H = 〈g, g′〉H̃ . More details
about signal valued RKHSs may be found in [cite].

The occupation kernel corresponding to a signal, G :
[0, T ] → Rn, is then given as the unique function,
ΓG, such that

∫ T

0
φg[G](t)dt = 〈φg,ΓG〉H . However, this

means that
∫ T

0
g(G(t))dt = 〈g,ΓG〉H̃ , where we use ΓG

to mean either the occupation kernel for the ordinary
RKHS or the occupation kernel that takes signals as
inputs in the signal valued case.

The function θ 7→ g(h ? θ(·)) is well defined as
a mapping that takes continuous functions over some
interval, [0, T ], to continous functions from [0, T ], given
continuity of g and h. Hence, the operator, Qh, formally
defined as

Qhφg = g(h ? (·))

makes sense as an operator acting on a signal valued
RKHS.

In this setting, letting ai = di = ΓGi and bi = Γyi ,
we can derive a matrix representation of a finite rank
approximation of Qh. The impulse response function can
then be recovered as 〈Qhgid,Γδ̃(·−t)〉H ≈ h(t), where δ̃
is a continuous signal estimating the delta function.

VIII. Numerical Experiments
A. Scattered Data Approximation

For this experiment the function f(x) = sin(x) +
cos(3x) was sampled at a collection of equally spaces
points in the interval [0, 2π] with spacing 0.25, and an
approximation was generated via a weighted composition
operator, Wf,φ with φ(x) = 0.9x. The kernel function se-
lected was the exponential dot product kernel, exp(µxT y)
with µ = 0.2.

A total of 26 modes were derived from the weighted
composition operator’s eigendecomposition. It can be
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Fig. 1. A demonstration of the approximation of a function
through modes determined through a data driven approximation of
a weighted composition operator using the exponential dot product
kernel. Out of a total of 26 modes, 10 are sufficient for determing
a good approximation.

seen in Figure 1 that the function can be approximated
well using 10 of the data driven modes.

B. Approximation of flow fields
In this experiment, the technique described in Section

V is applied to estimate the dynamics of a damped,
unforced Duffing oscillator

ẋ1 = x2, ẋ2 = −δ x2 − β x1 − αx31, (1)

with parameters α = 1, β = −1, and δ = 0.1.
To train the model, MATLAB ode45 solver is used

to generate trajectories starting from initial conditions
on a 12 × 12 uniform grid over [−5, 5] × [−5, 5] (144
trajectories). Each trajectory is 5 seconds long and
sampled every 0.05 s. An exponential dot-product kernel
with parameter µ = 190 is used to define the underlying
RKHS. λ = 10−8. A scaling factor s = 0.5 is applied to
ensure compactness of the scaled Liouville operator. The
algorithm returns a learned vector field f̂(·).

To evaluate the learned model, a reference trajectory
is computed starting from the initial condition x(0) =
(1, 1). A predicted trajectory is the computed by inte-
grating the learned dynamics ẋ = f̂(x). Figure 2 shows
the true trajectory x(·0 and the predicted trajectory x̂(·)
and Figure 3 shows the the resulting error ‖x(t)− x̂(t)‖2
as a function of time.

To assess the learned vector field, the true and learned
vector fields are evaluated on a 25×25 grid over [−5, 5]×
[−5, 5], and the relative error ‖ftrue(x)−flearned(x)‖2

maxx ‖ftrue(x)‖2
is

visualized in Figure 4 as a function of x. Figures 2 -
4 demonstrate that the technique described in Section
V is can accurately estimate vector fields for dynamical
systems. An ablation study with respect to the scaling
parameter a reveals that the results are identical for
any a ∈ (0, 1). That is, in practice, the technique is not
sensitive to scaling.
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Fig. 2. True versus predicted state trajectories for the Duffing
oscillator.
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Fig. 3. Norm of the prediction error over time for the Duffing
oscillator.

C. Approximating Flow Fields with Weighted Composi-
tion Operators

This numerical experiment estimates the duffing os-
cillator corresponding to α = 1, β = −1, and δ = 0
using a collection of observed trajectories initialized at a
lattice within [−1, 1]2 with spacing 0.25. The trajectories
were generated using RK4 and a step-size of 0.05. The
computation of both the occupation kernels and Φγ

terms were executed leveraging the standard Simpson’s
rule using the exponential dot product kernel, K(x, y) =
exp(µxT y) with µ = 1/1000 for both the space H and H̃,
with dimensions 1 and 3 respectively. These results were
first presented in [9], and are included here as another
example of the generalized methodology presented in this
manuscript.

The resultant approximations are presented in Figure
??, and the error plots given in Figure 5.

IX. Conclusion

This manuscript gives a generalized framework for
solving a variety of inverse problems through operators
and their decompositions. The method was inspired by
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Fig. 4. Relative error between the true and the learned vector
fields for the Duffing oscillator.

Dynamic Mode Decompositions and Koopman operator
methods for dynamical systems, and the generalized
approach yielded several different operators and ap-
proaches to resolving inverse problems in dynamical
systems as well as scattered data approximation. Several
numerical experiments were presented, which utilized
both weighted composition operators for scattered data
approximation and flow field estimation, and scaled
Liouville operators for flow field approximation. In each
case, close estimation of the unknown functions were
presented.
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