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Abstract— This manuscript addresses convergence of dy-
namic mode decomposition (DMD) algorithms and the existence
of associated Koopman modes. Convergence relies on refor-
mulation of dynamic mode decomposition in terms of newly
defined compact operators defined with pairs of Hilbert spaces
selected separately as the domain and range of the operator.
With the Hilbert spaces selected so that the domain is embedded
in the range, an eigenfunction approach to DMD is developed
by leveraging a finite rank representation. The finite rank
representation is proven to converge, in norm, to the original
operator with increasing rank. The manuscript concludes with
the description of a DMD algorithm that converges when a
dense collection of occupation kernels, arising from the data,
are leveraged in the analysis.

I. INTRODUCTION

Dynamic mode decomposition (DMD) methods are data
analysis methods that aim to decompose a time series corre-
sponding to a nonlinear dynamical system into a collection of
dynamic modes [1]–[4]. The time series is then expressed as
a linear combination of the dynamic modes. The coefficients
in the linear combination are given by exponential functions
of time. The dynamic modes and the growth rates of the
exponential functions are derived from the spectrum of a
finite rank representation of the Koopman operator (or in the
continuous-time case, Koopman generator). Convergence of
finite rank representations of the Koopman operator has only
been established with respect to the strong operator topology
(SOT) [4], which does not guarantee the convergence of the
spectrum [5], and hence, the corresponding DMD algorithms
are not guaranteed to converge.

Koopman operators analyze continuous time dynamics
through a discrete time proxy obtained by fixing a time-
step for a continuous time system [6]. However, only a
small subset of continuous time dynamics satisfy the forward
complete property necessary to obtain a discretization [7].
Moreover, to establish convergence guarantees for DMD
routines, additional structure is required of Koopman opera-
tors, where a sequence of finite rank operators converge to
Koopman operators in norm only if the Koopman operator
is compact [5]. Since compactness is rarely satisfied for
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Koopman operators [7], the study of alternative operator
representations of nonlinear systems is well-motivated.

Another motivation for the use of Koopman operators in
the study of continuous time dynamical systems is a heuristic
that for small time steps the spectra and eigenfunctions
of the resultant Koopman operator should be close to that
of the Liouville operator representing the continuous time
systems [8]. However, for two fixed time steps, the corre-
sponding Koopman operators can have different collections
of eigenfunctions and eigenvalues, and these are artifacts of
the discretization itself [9]. Since in most cases Koopman
operators are used for this analysis, it is not clear if there
is a method for distinguishing which of these eigenfunctions
and eigenvalues are a product of the discretization and which
are fundamental to the dynamics themselves.

In the approach developed in this paper, the above limi-
tations are addressed by removing Koopman operators from
the analysis in favor of Liouville operators (known as Koop-
man generators in special cases), and these operators are
shown to be compact for certain pairs of Hilbert spaces
selected separately as the domain and range of the operator.
Assuming that the domain is embedded in the range of
the operator, eigenfunctions of the Liouville operator can
be approximated through finite rank approximations that
converge to the Liouville operator. The result is a norm
convergent DMD method which significantly improves upon
the SOT convergent results previously established in the field
[4].

It should be noted that there have been several attempts
at providing compact operators for the study of DMD. The
approaches [10] and [7] find compact operators through
the multiplication of auxiliary operator against Koopman
and Liouville operators respectively. However, the resultant
operators are not the operators that truly correspond to
the dynamics in question, and as such, the decomposition
of those operators can only achieve heuristic results. The
approach taken here generates compact Liouville operators
directly connected with the continuous time dynamics.

The main results of this paper are discussed within a larger
context of singular dynamic mode decomposition in [11].

II. REPRODUCING KERNEL HILBERT SPACES

A. Occupation Kernels

A reproducing kernel Hilbert space (RKHS), H , over a
compact set X , is a space of functions from X to R such
that the functional of evaluation, Exg := g(x) is bounded
for every x ∈ X . By the Riesz theorem, this means for each
x ∈ X there exists a function Kx ∈ H such that ⟨f,Kx⟩H =
f(x) for all f . The function Kx is called the kernel function



centered at X , and the function K(x, y) := ⟨Ky,Kx⟩H is
called the kernel function corresponding to H . Note that
Ky(x) = K(x, y). Classical examples of kernel functions
in data science are the Gaussian radial basis function for
µ > 0, K(x, y) = exp(− 1

µ∥x − y∥2), and the exponential
dot product kernel, exp( 1µx

⊤y) [12].
The function K(x, y) is a positive definite kernel func-

tion, which means that for every finite collection of points,
{x1, . . . , xM} ⊂ X , the Gram matrix (K(xi, xj))

M
i,j=1 is

positive definite. For each positive definite kernel function,
there exists a unique RKHS for which K is the kernel
function for that space by the Aronszajn-Moore theorem in
[13].

Given a RKHS, H , over X ∈ Rn consisting of continuous
functions and given a continuous signal, θ : [0, T ] → X , the
linear functional g 7→

∫ T

0
g(θ(t))dt is bounded. Hence, there

exist a function, Γθ ∈ H , such that ⟨g,Γθ⟩H =
∫ T

0
g(θ(t))dt

for all g ∈ H . The function Γθ is called the occupation kernel
in H corresponding to θ. These occupation kernels were first
introduced in [14], [15].

B. Dynamic Mode Decomposition from the Perspective of
RKHSs

The motivation in DMD is to compute an invariant sub-
space of a transfer operator that models the evolution of
test functions, known as observables, along the trajectories
of a dynamical system. When the full state observable (a
vector-valued function that maps x to itself) is projected
onto this subspace, a model is obtained in the form of a
linear combination of a basis of the subspace. The subspace
is typically constructed as the span of eigenfunctions of the
transfer operator. While transfer operators over RKHSs may
not admit a complete eigendecomposition, DMD methods
aim to construct a finite rank representation of the transfer
operator and to leverage the eigenfunctions of the approxi-
mating operator for modeling.

The objective is to find functions ϕ in the domain of the
Liouville operator with symbol f , defined as Afg := ∇g ·f ,
that satisfy

|Afϕ(x)− λϕ(x)| < ϵ (1)

for some λ and some small positive ϵ and all x within
some workspace. Once accomplished, given a trajectory,
ẋ = f(x), the eigenfunction behaves approximately as
ϕ(x(t)) = x(0)eλt. The significance of RKHSs is that norm
convergence implies pointwise convergence, which has been
leveraged in approximation and machine learning frame-
works since the 1990s [12], [16]. Since norm convergence in
a RKHS of continuous functions yields uniform convergence
over compact sets, kernel methods allow for a relaxation of
(1), where it is sufficient to satisfy ∥Afϕ − λϕ∥H < ϵ. In
turn, if a finite rank approximation of Af , call it Ãf , is close
enough, it is sufficient to satisfy ∥Af − Ãf∥ < ϵ, and the
rest follows as

|Afϕ(x)− λϕ(x)| < C∥Afϕ− λϕ∥H
C∥Afϕ− Ãfϕ∥H < C∥Af − Ãf∥H < Cϵ,

where C is a positive constant that depends on the workspace
and the kernel function, and the function ϕ is assumed to be
normalized. In the case where the kernel is the Gaussian
RBF, C may be taken to be 1.

It is important to note that finite rank operators themselves
are almost always diagonalizable, and determining a collec-
tion of approximate eigenfunctions from the eigenfunctions
of the finite rank operators is certainly well defined. However,
to obtain a close approximation of a dynamic operator using
a finite rank operator requires compactness, which motivates
the investigation of the present manuscript.

III. COMPACT LIOUVILLE OPERATORS

This section demonstrates the existence of compact Liou-
ville operators where compactness is achieved through the
consideration of differing spaces for the domain and range of
the operator. Section III-A builds on a classical result where
differentiation between differing weighted Hardy spaces can
be readily shown to be compact. Following a similar ar-
gument, Section III-B presents several examples of com-
pact Liouville operators over spaces of functions of several
variables. We would like to emphasize that the collections
of compact Liouville operators are not restricted to these
particular pairs of functions spaces, but rather this section
provides several examples demonstrating the existence of
such operators, thereby validating the approach in the sequel.

A. Inspirations from Classical Function Theory

Consider the weighted Hardy spaces (cf. [17]), H2
ω , where

ω = {ωm}∞m=0 is a sequence of positive real numbers
such that |ωm+1/ωm| → 1, and g(z) =

∑∞
m=0 amzm is

a function in H2
ω if the coefficients of g satisfy ∥g∥2H2

ω
:=∑∞

m=0 ωm|am|2 < ∞. Each weighted Hardy space is a
RKHS over the complex unit disc D = {z ∈ C : |z| = 1}
with kernel function given as Kω(z, w) =

∑∞
m=0 ωmzmw̄m,

and the monomials
{

zm
√
ωm

}∞

m=0
form an orthonormal basis

for each space.
The weighted Hardy space corresponding to the sequence

ω(0) := {1, 1, . . .} is the classical Hardy space, H2, that
was introduced by Riesz in 1923 [18]. The Dirichlet space
corresponds to the weight sequence ω(1) = {(m + 1)}∞m=0,
and the Bergman space corresponds to ω(−1) = {(m +
1)−1}∞m=0. Of interest here is the weighted Hardy space
corresponding to ω(3) := {(m + 1))3}∞m=0, which will be
denoted as H2

3 for convenience.
Proposition 1: The operator d

dz : H2
3 → H2 is compact.

Moreover, if f is a bounded analytic function from the
closure of D (denoted by D) to D, corresponding to a
bounded multiplication operator Mfg := g(x)f(x) over the
Hardy space, then the Liouville operator Af = Mf

d
dz from

H2
3 to H2 is compact.

Proof: To see that differentiation is a compact operator
from the H2

3 to the Hardy space, we may select a sequence of
finite rank operators that converge in norm to differentiation.
In particular, note that the monomials form an orthonormal
basis of the Hardy space as is evident from the given norm.
Let αM := {1, z, . . . , zM} be the first M monomials in



z, and let PαM
be the projection onto the span of these

monomials. The operator PαM

d
dz is a finite rank operator,

where the image of this operator is a polynomial of degree
up to M .

To demonstrate that this sequence of finite rank operators
converges to differentiation in the operator norm it must be
shown that the difference under the operator norm,∥∥∥∥PαM

d

dz
− d

dz

∥∥∥∥H2

H2
3

:= sup
g∈H2

3

∥PαM

d
dz g −

d
dz g∥H2

∥g∥H2
3

,

goes to zero. Note that

∥PαM

d

dz
g − d

dz
g∥2H2 =

∞∑
m=M+1

(m+ 1)2|am+1|2

=

∞∑
m=M+1

1

m+ 1
(m+ 1)3|am+1|2

≤ 1

M + 1

∞∑
m=M+1

(m+ 1)3|am+1|2 ≤ 1

M + 1
∥g∥2H2

3
.

Hence
∥∥PαM

d
dz − d

dz

∥∥H2

H2
3
≤ 1

M+1 → 0. This proves that
differentiation is a compact operator from H2

3 to H2.
If a function, f , is a bounded analytic function on the

closed unit disc, then it is the symbol for a bounded
multiplier over H2. Hence, the Mf

d
dz is a compact op-

erator from H2
3 to H2. To be explicit, since PαM

d
dz has

finite rank, Mf

(
PαM

d
dz

)
also has finite rank. Moreover,∥∥MfPαM

d
dz −Mf

d
dz

∥∥H2

H2
3

=
∥∥Mf

(
PαM

d
dz − d

dz

)∥∥H2

H2
3

≤

∥Mf∥H
2

H2

∥∥PαM

d
dz − d

dz

∥∥H2

H2
3
→ 0. Hence, Mf

d
dz is an op-

erator norm limit of finite rank operators, and is compact.
Finally, it can be seen that Mf

d
dz g(z) = g′(z)f(z) =

Afg(z), and Af is a compact Liouville operator from H2
3

to H2.

B. Compact Liouville Operators of Several Variables

The exponential dot product kernel, with parameter µ > 0,
is given as K(x, y) = exp

(
µxT y

)
. In the single variable

case, the native space for this kernel may be expressed as
F 2
µ(R) =

{
f(x) =

∑∞
m=0 amxm :

∑∞
m=0 |am|2 m!

µm < ∞
}

.
This definition can be readily extended to higher dimensions,
where collection of monomials, xα µ|α|

√
α!

, with multi-indices
α ∈ Nn form an orthonormal basis. The norm of functions
in F 2

µ(Rn) will be denoted by ∥g∥µ.
In this setting, compactness of partial differentiation with

respect to each variable can be established under the follow-
ing hypothesis.

Lemma 1: If η < µ, then the operators ∂
∂xi

: F 2
η (Rn) →

F 2
µ (Rn) are compact for all i = 1, . . . , n.

Proof: Follows from arguments similar to Proposition
1.
Since the Liouville operator involves composition of partial
differentiation operators and multiplication operators, and
since multiplication operators are unbounded from F 2

µ (Rn)
to itself for every µ > 0, another step is necessary to ensure
compactness of the Liouville operator.

Lemma 2: Suppose that η < µ, then given any polynomial
of several variables, f , the multiplication operator Mf :
F 2
η (Rn) → F 2

µ(Rn) is bounded.
Proof: See [11, Lemma 3.2].

Remark 1: The authors emphasize that the collection of
bounded multiplication operators between these spaces is
strictly larger than the those with polynomial symbols. The
purpose of this lemma is to simply support the existence
of compact Liouville operators, rather than to provide a
complete classification.

Theorem 1: Let µ3 > µ1, and suppose that f is a vector
valued function over several variables, where each entry is
a polynomial. Then the Liouville operator Af : F 2

µ1
(Rn) →

F 2
µ3
(Rn) given by Afg = ∇g · f is a compact operator.
Proof: Let f = (f1, f2, . . . , fn)

T , and select µ2 such
that µ1 < µ2 < µ3. For each i = 1, . . . , n, the operator
of partial differentiation ∂

∂xi
: F 2

µ1
(Rn) → F 2

µ2
(Rn) is

a compact operator, and the multiplication operator Mfi :
F 2
µ2
(Rn) → F 2

µ3
(Rn) is bounded. Hence, the operator

Mfi
∂

∂xi
is compact. As Af = Mf1

∂
∂x1

+ · · · + Mfn
∂

∂xn
,

it follows that Af is a compact operator from F 2
µ1
(Rn) to

F 2
µ3
(Rn).

This section has thus established the existence of compact
Liouville operators between various pairs of spaces. It is
emphasized that these are not the only pairs for which a
compact Liouville may be determined.

IV. EIGENFUNCTION APPROACH TO CONVERGENT DMD

While the majority of this manuscript is aimed at the
singular DMD, where the domain and range are different for
the compact Liouville operator, there is still a possibility of
obtaining an eigendecomposition in special cases. In partic-
ular, for many of the examples shown above, the domain and
range spaces have similar structure and the range space has
less stringent requirement for the functions it contains. This
means that the domain itself may be embedded in the range
space, and if there is a complete set of eigenfunctions in this
embedded space, then the operator may still be diagonalized.

Note that the operator is still mapping between two
different Hilbert spaces, which means that the inner product
on the embedding is different than the inner product on the
domain. This difference will appear in the numerical methods
given in subsequent sections.

The following is a well known result (cf. [19]), and is
included here for completeness.

Proposition 2: If µ1 < µ2, then F 2
µ1
(Rn) ⊂ F 2

µ2
(Rn).

A simple example demonstrating that an eigenbasis may be
found between the two spaces arises in the study of Ax :
F 2
µ1
(R) → F 2

µ2
(R) for µ1 < µ2.

Example 1: Given Ax : F 2
µ1
(R) → F 2

µ2
(R) for µ1 <

µ2, an eigenfunction, φ, for Ax must reside in F 2
µ1
(R) ∩

F 2
µ2
(R) = F 2

µ1
(R), and satisfy φ′(x)x = λφ(x). Conse-

quently, takes the form φ(x) = xλ, and is in F 2
µ1
(R) only

for λ = 0, 1, 2, . . .. Hence, the eigenfunctions of Ax are the
monomials. Monomials are contained in F 2

µ1
(R) and form a



complete eigenbasis for both spaces. Note that the norm of
xm is

√
m!
µm
1

in F 2
µ1
(R) and

√
m!
µm
2

in F 2
µ2
(R).

The following proposition is obtained in the same manner
as in the classical case.

Proposition 3: Suppose that H and H̃ are two RKHSs
over Rn, and that H ⊂ H̃ . If φ ∈ H is an eigenfunction for
Af as Afφ = λφ, then given a trajectory x : [0, T ] →
Rn satisfying ẋ = f(x) the following holds φ(x(t)) =
eλtφ(x(0)).

Proof: Since Afφ = ∇φf , it follows that

d

dt
φ(x(t)) = ∇φ(x(t))f(x(t)) = Afφ(x(t)) = λφ(x(t)).

That is, d
dtφ(x(t)) = λφ(x(t)). Thus, the conclusion fol-

lows.
Suppose that Af : H → H̃ has a complete eigenbasis in

the sense that the span of the eigenfunctions, {φm}∞m=1, are
dense in H . If gid, is the full state observable, then each
entry of gid, (x)i for i = 1, . . . , n, may be expressed as
(x)i = limM→∞

∑M
m=1(ξm,M )iφm(x), where (ξm,M )i is

the m-th coefficient obtained from projecting (x)i onto the
span of the first M eigenfunctions. If the eigenfunctions are
orthogonal, then the dependence on M may be removed
from ξm,M . Hence, the full state observable is obtained
from gid(x) = limM→∞

∑M
m=1 ξm,Mφm(x), with ξm,M

being the vector obtained by stacking (ξm,M )i. Finally, by
substituting x(t) into this representation (where ẋ = f(x)),
x(t) = gid(x(t)) = limM→∞

∑M
m=1 ξm,Meλtφm(x(0)).

Hence, this methodology yields a DMD routine, where the
finite rank representations will converge to the compact Li-
ouville operators, following the proof given in the Appendix
of [7].

V. THE EIGENFUNCTION BASED DMD ALGORITHM

In this section it will be assumed that Af : H → H̃ is a
compact operator, and that H ⊂ H̃ . Since Af is compact,
it is bounded, which means that unlike [9] and [7], no
additional assumptions are needed concerning the domain
of this operator.

A. Derivation of the Eigenfunction Method
Let Af : H → H̃ be the Liouville operator with

symbol f and let H ⊂ H̃ . For a collection of trajectories,
{γ1, . . . , γM} let α = {Γγ1

, . . . ,ΓγM
} be the corresponding

occupation kernels in H and β = {Γ̃γ1 , . . . , Γ̃γM
} be the

corresponding occupation kernels in H̃ . Let Pα : H → H
be the projection onto the span of α viewed as a subspace
of H , P̃α : H → H̃ be the projection onto the span of α
viewed as a subspace of H̃ , and P̃β : H → H̃ be projection
onto the span of β. The following theorem constructs a
matrix representation for the operator P̃αP̃βAf restricted
to spanα ⊂ H , denoted by P̃αP̃βAf |α. In particular, the
matrix, [P̃αP̃βAf ]

α
α, represents the operator P̃αP̃βAf |α.

Theorem 2: If h =
∑M

i=1 aiΓγi
∈ spanα ⊂ H and g =∑M

i=1 biΓγi
∈ spanα ⊂ H̃ are functions such that g =

P̃αP̃βAfh, then

b = G−1

α,H̃
Gα,β,H̃G−1

β,H̃
Dαa,

where the matrix Gβ,H̃ :=
[
⟨Γ̃γi

, Γ̃γj
⟩H̃

]M
i,j=1

is the Gram

matrix for the basis β in the space H̃ , the matrix Gα,H̃ :=[
⟨Γγi ,Γγj ⟩H̃

]M
i,j=1

is the Gram matrix for the basis α in the

space H̃ , Gα,β,H̃ =
[
⟨Γγi , Γ̃γj ⟩H̃

]M
i,j=1

is the interaction

matrix, and Dα =
[
Γγj

(γi(Ti))− Γγj
(γi(0))

]M
i,j=1

is the
matrix of occupation kernel differences. That is, the matrix

[P̃αP̃βAf ]
α
α := G−1

α,H̃
Gα,β,H̃G−1

β,H̃
Dα (2)

represents the operator P̃αP̃βAf |α.
Proof: See [11, Section 7].

Note that when H = H̃ and the occupation kernels are
assumed to be in the domain of the Liouville operator, the
product G−1

α,H̃
Gα,β,H̃ reduces to the identity matrix and the

representation reduces to that of [7].

Algorithm 1 Pseudocode for the eigenfunction based DMD
routine of Section V. Once the singular DMD modes, the
normalized eigenfunctions, and the eigenvalues are returned,
(5) can be used along with a numerical integration routine
to reconstruct trajectories of the system starting from any
given initial condition x(0). Evaluation of the eigenfunc-
tions at x(0) requires the integral representation Γγj (·) =∫ Tj

0
K (·, γj(t)) dt. The choice of numerical integration rou-

tine can have a significant impact on the overall results, and
it is advised that a high accuracy method is leveraged in
practice. If the matrices in steps 1, 2, and 3 are close to
singular, they can be regularized by adding ϵIM×M where
ϵ > 0 is a small constant.
Require: Sampled trajectories {γj : [0, T ] → Rn}Mj=1

Require: Kernel function K : Rn×Rn → R of the domain
RKHS H

Require: Kernel function K̃ : Rn × Rn → R of the range
RKHS H̃

Require: A numerical integration routine
1: Construct the matrix Gβ,H̃ using ⟨Γ̃γj , Γ̃γi⟩H̃ =∫ Ti

0

∫ Tj

0
K̃(γi(τ), γj(t))dtdτ and a numerical integra-

tion routine (cf. [7])
2: Construct the matrix Gα,H̃ using (8) and a numerical

integration routine
3: Construct the matrix Gα,β,H̃ using (7) and a numerical

integration routine
4: Construct the matrix Dα using the integral representation

Γγj
(·) =

∫ Tj

0
K (·, γj(t)) dt and a numerical integration

routine
5: Construct the matrix [P̃αP̃βAf ]

α
α using (2) and compute

its eigenvalues, λi, and eigenvectors, Vi

6: Use (3) and a numerical integration routine to compute
the eigenfunctions φ̂j

7: Use (4) and a numerical integration routine to compute
the singular DMD modes ξ̂j

8: return Singular DMD modes, ξj , eigenfunctions, φ̂j ,
and eigenvalues λj for j = 1, · · · ,M

Under the assumption of diagonalizability for (2), which



holds for almost all matrices, an eigendecomposition for (2)
may be determined as

[P̃αP̃βAf ]
α
α = V ΛV −1,

where each column, Vj , of the matrix V is an eigenvector of
[P̃αP̃βAf ]

α
α with eigenvalue λj , the j-th diagonal element

of the diagonal matrix Λ. The corresponding normalized
eigenfunction is given as

φ̂j(x) =
1√

V ⊤
j Gα,HVj

V ⊤
j

Γγ1

...
ΓγM

 , (3)

where the normalization is performed using Gα,H :=[
⟨Γγi ,Γγj ⟩H

]M
i,j=1

, the Gram matrix for the basis α in
the Hilbert space H . Set V̄j := 1√

V ⊤
j Gα,HVj

Vj , and let

V̄ :=
(
V̄1 · · · V̄M

)
.

The Gram matrix for the normalized eigenbasis may be
quickly computed as V̄ ⊤Gα,H V̄ , and the weights for the
projection of the full state observable onto this eigenbasis
may be written as− ξ̂⊤1 −

...
−ξ̂⊤M−

 = (V̄ ⊤Gα,H V̄ )−1V̄ ⊤


∫ T1

0
γ1(t)

⊤dt
...∫ T1

0
γM (t)⊤dt

 (4)

and thus, gid(x) ≈
∑M

m=1 ξ̂mφ̂m(x). The approximation
error (with respect to the norm of the RKHS) approaches zero
if the number of trajectories increases and the corresponding
collection of occupation kernels forms a dense set. Conver-
gence in the norm of the RKHS implies uniform convergence
on compact subsets of the domain.

Consequently, a trajectory x : [0, T ] → Rn satisfying ẋ =
f(x) may be approximately expressed as

x(t) = gid(x(t)) ≈
M∑

m=1

ξ̂meλmtφ̂m(x(0)), (5)

where the eigenfunctions for the finite rank approximation of
Af play the role of eigenfunctions for the original operator,
Af . Furthermore, the vector field f may be approximated as

f(x) ≈ f̂(x) :=

M∑
m=1

λmξ̂mφ̂m(x). (6)

B. Computation of Inner Products

Some entries for the matrices in the above computations
require a bit more analysis. Namely, this includes the inner
products, ⟨Γγi

,Γγj
⟩H̃ and ⟨Γγi

, Γ̃γj
⟩H̃ . All the other quan-

tities have been discussed at length in [7], [14], [15].
The second quantity simply utilizes the functional defini-

tion of the function Γ̃γj
as a function in H̃ , ⟨Γγi

, Γ̃γj
⟩H̃ =∫ Tj

0
Γγi(γj(t))dt =

∫ Tj

0

∫ Ti

0
K(γj(t), γi(τ))dτdt, where K

is the kernel function for H . Note that this means

⟨Γγi , Γ̃γj ⟩H̃ = ⟨Γγi ,Γγj ⟩H . (7)

However, the first quantity is more complicated and is
context dependent. In particular, Γγi is not the occupation
kernel corresponding to H̃ , so it’s functional relationship
cannot be exploited in the same manner. On the other hand,
Γγi

(x) =
∫ Ti

0
K(x, γi(t)). To compute the inner product in

H̃ , a specific selection of spaces must be considered.
In the particular setting where H = F 2

µ1
(Rn) and

H̃ = F 2
µ2
(Rn), with µ1 < µ2, it follows that Γγi

(x) =∫ ⊤
0

eµ1x
⊤γi(t)dt. Moreover, K(x, γi(t)) = eµ1x

⊤γi(t) =

e
µ2x

⊤
(

µ1
µ2

γ(t)
)

= K̃(x, (µ1/µ2)γi(t)). Hence, Γγi
(x) =

Γ̃(µ1/µ2)γi
(x), and

⟨Γγi ,Γγj ⟩H̃ = ⟨Γ̃(µ1/µ2)γi
, Γ̃(µ1/µ2)γj

⟩H̃

=

∫ Ti

0

∫ Tj

0

K̃((µ1/µ2)γi(t), (µ1/µ2)γj(τ))dτdt. (8)

The eigenfunction approach to convergent DMD is summa-
rized in Algorithm 1.

VI. NUMERICAL EXPERIMENT

This section presents the results obtained through im-
plementation of the developed method in with the do-
main viewed as embedded in the range of the opera-
tor. To demonstrate the effectiveness of the developed al-
gorithm, 100 trajectories of the Duffing oscillator ẋ =(

x2

−δx2 − βx1 − αx3
1

)
with δ = 0.011, α = 1, and β = −1

are generated, starting from a 10×10 grid of initial conditions
in the domain D := [−5, 5] × [−5, 5]. Each trajectory is 10
seconds long and sampled every 0.05 seconds. The conver-
gent DMD algorithm is implemented using exponential dot
product kernels with µ1 = 300 and µ2 = 298. The Gram
matrices are regularized using ϵ = 10−8.

To verify the model generated by convergent DMD, a

trajectory x̂(·) starting from x̂(0) =

(
3
−2

)
is estimated

by solving the differential equation ˙̂x = f̂(x̂), where f̂ is
the vector field defined in (6). The estimated trajectory is
plotted against the true trajectory x(·) in Figure 1. Figure
2 shows the pointwise 2-norm of the trajectory estimation
error, ∥x(t) − x̂(t)∥, plotted as a function of time. Figure
3 shows the pointwise 2-norm of the relative vector field
estimation error, ∥f(x)−f̂(x)∥

maxx∈D ∥f(x)∥ , as a function of x.

VII. RESULTS AND DISCUSSION

Simulation results demonstrate the efficacy of the devel-
oped method. As shown in Figure 1, the developed model
can generate trajectories of the Duffing oscillator starting
from initial conditions that are within the domain spanned
by the data. A 20 second long trajectory is reproduced from
a dataset that uses 100 trajectories, each 10 seconds long. As
demonstrated by Figure 3, the Duffing vector field is well-
approximated on the same domain by the convergent DMD-
based model. While the approximation results in Figures 1
and 3 indicate divergence of the reproduced trajectory and
vector field from the true trajectory and vector field for large
t and x near the boundary of the domain spanned by the
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Fig. 1. True (dashed) and reconstructed (solid) trajectories of the Duffing
oscillator. Reconstruction is done by numerically solving (using Matlab®

ode45 function) ẋ = f̂(x) where f̂ is the estimated vector field in (6).
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Fig. 2. Comparison of reconstruction errors for convergent Liouville DMD
and the Liouville DMD method in [7].

data, respectively, such divergence is to be expected in purely
data-driven methods.

One interesting result of the structure of the finite rank
approximation given in Section V is that as µ1 → µ2, the first
two matrices cancel. The matrix computations then approach
the computations in [7]. Hence, as seen in Figure 2, for
close enough µ1 and µ2 the computations and the results
of convergent DMD are very similar to those of [7] over a
fixed compact set containing the trajectories.

VIII. CONCLUSION

In this paper, a theoretical and algorithmic framework that
achieves many long standing goals of DMD is developed. To
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Fig. 3. Pointwise 2-norm of the relative vector field estimation error
∥f(x)−f̂(x)∥

maxx∈D ∥f(x)∥ , as a function of x.

wit, it is shown that compact versions of Liouville operators
(sometimes Koopman generators) can be obtained by select-
ing differing domains and ranges. This comes at the sacrifice
of eigenfunctions when the domain is not embedded in the
range of the operator. If the domain is in the range of the
operator, then eigenfunctions can be appropriately defined
and constructed. Reconstruction of system trajectories can
then be achieved by solving initial value problems. The
resulting algorithm, while comparable in performance with
algorithms based on more traditional definitions of the Li-
ouville operator, achieves theoretical convergence guarantees
that are lacking in the traditional formulation.
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