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Dynamic Mode Decomposition with Control
Liouville Operators

Joel A. Rosenfeld and Rushikesh Kamalapurkar

Abstract— This paper builds the theoretical foundations
for dynamic mode decomposition (DMD) of control-affine
dynamical systems by leveraging the theory of vector-
valued reproducing kernel Hilbert spaces (RKHSs). Specif-
ically, control Liouville operators and control occupation
kernels are introduced to separate the drift dynamics from
the input dynamics. A given feedback controller is repre-
sented through a multiplication operator and a composition
of the control Liouville operator and the multiplication op-
erator is used to express the nonlinear closed-loop system
as a linear total derivative operator on RKHSs. A spectral
decomposition of a finite-rank representation of the total
derivative operator yields a DMD of the closed-loop system.
The DMD generates a model that can be used to predict
the trajectories of the closed-loop system. For a large class
of systems, the total derivative operator is shown to be
compact provided the domain and the range RKHSs are
selected appropriately. The sequence of models, result-
ing from increasing-rank finite-rank representations of the
compact total derivative operator, are shown to converge
to the true system dynamics, provided sufficiently rich
data are available. Numerical experiments are included to
demonstrate the efficacy of the developed technique.

Index Terms— dynamic mode decomposition, NL sys-
tem identification, Computational methods, Reduced order
modeling, Nonlinear systems

I. INTRODUCTION

SPECTRAL methods for identification of nonlinear systems
utilize representations of unknown, finite-dimensional

nonlinear dynamics, in discrete or continuous time, as lin-
ear operators over infinite dimensional spaces (cf. [1]). In
the discrete-time case, this linear operator is a composition
operator called the Koopman operator [2]. In the continuous
time case, it is a total derivative operator called the Liouville
operator [3] (or the Koopman generator, in special cases
where it can be obtained as the limit of a sequence of
Koopman operators with decreasing sample times [4, Section
7.5]). In dynamic mode decomposition (DMD), trajectories
of a dynamical system are used to construct a finite-rank
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representation of the aforementioned linear operator [5]. The
finite-rank representation is then diagonalized and the resultant
eigenfunction and eigenvalues are used to provide a representa-
tion of the identity function. This representation provides the
dynamic modes of the system as vector-valued coefficients
attached to the eigenfunctions. Thereafter, a state trajectory
can be predicted as a sum of exponential functions multiplied
by the dynamic modes (cf. [3], [5], [6]).

The primary application area for Koopman spectral analysis
of dynamical systems has been fluid dynamics, where DMD
is compared with proper orthogonal decomposition (POD)
for nonlinear fluid equations (cf. [7]). DMD has also been
employed in the study of stability properties of dynamical
systems [8], [9], neuroscience [10], financial trading [11],
feedback stabilization [12], optimal control [13], modeling
of dynamical systems [14]–[16], and model-predictive control
[17]. For a generalized treatment of DMD as a Markov model,
see [18].

Extensions of the idea of Koopman operator-based DMD
to systems with control can be loosely categorized in three
categories: spectral analysis of the drift (zero-input) dynamics
[19], input-parameterized Koopman operators [20], and refor-
mulation as an autonomous state-control dynamical system
[21]. These methods rely on discretization of continuous-time
systems, either for computation (when Koopman operators are
used), or for analysis (when Koopman generators are used),
and as such, are only applicable to systems that admit a
globally well-defined discretization (i.e., systems that cannot
escape to infinity in finite time starting from any initial
condition). When dealing with Koopman generators, the data
required for a spectral decomposition typically include the
time derivative of the state, which is not generally available.
Recently, inspired by the notion of occupation measures [22]
defined on Banach spaces of continuous functions, the au-
thors in [23] defined analogous objects on reproducing kernel
Hilbert spaces (RKHSs). The so-called occupation kernels,
when combined with operators such as the Liouville operator,
provide a method for spectral analysis of continuous-time
systems directly, without the need for discretization.

The paradigm shift afforded by occupation kernels arises
through the consideration of the state trajectory as the funda-
mental unit of data [23]. This paper, along with the preliminary
results reported in [24], build on the foundations developed
in [23] to address DMD of control-affine dynamical systems.
To address systems with control, the occupation kernels are
augmented by the control signals, resulting in the so-called
control occupation kernels, and the Liouville operator is
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extended to include the input dynamics, to yield the so-called
control Liouville operator [24]. The extension in [24] utilizes
the theory of vector-valued RKHSs (vvRKHSs), introduced in
[25] and [26], and extensively studied in a machine learning
context in [27], [28], and [29]. Multiplication operators that
map between scalar-valued and vector-valued RKHSs are also
utilized to define a total derivative operator that represents
the dynamics of the closed-loop system controlled using a
feedback controller. Using the control occupation kernels, the
control Liouville operators, and the multiplication operators,
a technique for discretization-free DMD of control-affine,
continuous-time, nonlinear systems is developed. The devel-
oped control-Liouville DMD (CLDMD) and singular control-
Liouville DMD (SCLDMD) methods yield a predictor that can
predict the closed-loop behavior of a system under any given
locally Lipschitz continuous feedback controller by measuring
its response to different open-loop control signals.

The definitions of control occupation kernels and control
Liouville operators used in this paper were first reported
in the conference paper [24]. In that paper, a finite-rank
representation of the closed-loop total derivative operator is
indirectly derived through its adjoint. In this paper, a finite-
rank representation of the closed-loop total differential opera-
tor is obtained directly, resulting in a simpler DMD algorithm.
Furthermore, this paper includes a novel singular value de-
composition (SVD)-based finite-rank representation of a new
total derivative operator which converges in norm to the true
operator with increasing rank under a compactness assumption
and given sufficiently rich data. Examples of general classes
of nonlinear systems where the new total derivative operators
are compact are also provided to justify the compactness
assumptions.

II. PROBLEM STATEMENT

Given Carathéodory solutions {γui
: [0, Ti]→ Rn}Mi=1 of a

nonlinear control-affine system of the form

ẋ = f(x) + g(x)ui(t), x(0) = γui
(0) (1)

under Lebesgue measurable, bounded control inputs {ui :
[0, Ti] → Rm}Mi=1, the objective of this paper is to provide
an operator theoretic approach for the analysis of the closed
loop system

ẋ = f(x) + g(x)µ(x) =: Fµ(x), (2)

where x ∈ Rn is the state, µ : Rn → Rm is a locally
Lipschitz continuous feedback controller, f : Rn → Rn and
g : Rn → Rn×m are locally Lipschitz continuous functions
corresponding to the drift dynamics and the control effective-
ness matrix, respectively, and ẋ denotes the time derivative
of x. The observed control trajectories and control inputs will
allow for the construction of a finite-rank representation of the
so-called control Liouville operator, which is a generalization
of the Liouville operator introduced in [3].

Euler-Lagrange systems, which encompass a large class of
physical systems (see, e.g., [30]–[33]), can be expressed in
the control-affine form if their inertia matrices are invertible
[34]. Since most physical systems of practical importance

such as robot manipulators and ground, air, and maritime
vehicles and vessels have inertia matrices that are invertible
over large operating regions [34], [35], control-affine models
also encompass a large class of physical systems.

III. OPERATORS AND DYNAMIC MODE DECOMPOSITION

In this section, the general idea behind the developed
operator-theoretic DMD approach is introduced. The approach
relies on representation of a closed loop dynamical system as
an operator that maps between suitable function spaces. For
the motivational discussion in this section, assume that given
functions f , g, and µ, and RKHSs H̃d and H̃r defined on a
compact set X ⊂ Rn, there exist a set, D

(
AFµ

)
⊂ H̃d and a

total derivative operator AFµ
: D
(
AFµ

)
→ H̃r such that

(R1) for all h ∈ D
(
AFµ

)
, AFµ

h := ∂h
∂xFµ ∈ H̃r, where ∂h

∂x
is a row vector, and

(R2) hid,j ∈ D
(
AFµ

)
for all j = 1, · · · , n, where hid =[

hid,1, · · · , hid,n
]⊤

is the identity function, with
components defined as hid,j(x) = xj for all x ∈ X .

Note that the total derivative operator AFµ
above is the

Liouville operator (or the Koopman generator) with symbol
Fµ = f +gµ as defined in [3]. As such, a DMD of the closed
loop system could be obtained using the methods presented
in [3] provided data generated by the closed loop system
ẋ = Fµ(x) is available. The objective in this paper is to
develop a model of the system using a feedback-agnostic data
set. That is, given any feedback controller µ : Rn → Rm

and a data set recorded by exciting the open-loop system
ẋ = f(x)+g(x)u using control signals u = ui : [0, Ti]→ Rn,
i = 1, . . . ,M , we aim to build a predictive model of the closed
loop system ẋ = Fµ(x).

A. The Eigendecomposition Approach

If H̃d = H̃r, ϕ is an eigenfunction of AFµ
with eigenvalue

λ, and γµ is a controlled trajectory arising from (2), then it
follows that

d(ϕ(γµ(t)))

dt
=
∂ϕ

∂x
(γµ(t))

(
f(γµ(t))+g(γµ(t))µ(γµ(t))

)
=
[
AFµϕ

]
(γµ(t))=λϕ(γµ(t)).

Hence, ϕ(γµ(t)) = eλtϕ(γµ(0)).
If the span of the eigenfunctions {ϕi}∞i=1 of AFµ

is dense
in H̃d, then the identity function can be decomposed using the
eigenfunctions as hid(x) = limM→∞

∑M
i=1 ξi,Mϕi(x), where

ξi,M ∈ Cn are the dynamic modes of the closed loop system.
Moreover, it follows that

γµ(t) = hid(γµ(t)) = lim
M→∞

M∑
i=1

ξi,Mϕi(γµ(0))e
λit, (3)

where λi denotes the eigenvalue corresponding to the eigen-
function ϕi, and the coefficients ξi,M depend on M because
the eigenfunctions are not generally orthogonal.

If the eigenfunctions, the eigenvalues, and the modes could
be computed from data, then a finite truncation of (3) could
be used as a predictive model. However, since the operator
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AFµ
cannot generally be expected to be bounded, even the

existence of eigenfunctions cannot be guaranteed.
The idea in DMD is to construct a rank M approximation

ÂFµ,M of AFµ
. The eigenfunctions {ϕ̂i,M}Mi=1, the eigenval-

ues {λ̂i,M}Mi=1, and the modes {ξ̂i,M}Mi=1 of ÂFµ,M are then
used as proxies in a finite truncation of (3) to generate a
predictive model.

If the operators ÂFµ,M can be shown to converge to
AFµ

in the norm topology, then given any ϵ > 0, there
exists M such that for all i = 1, . . . ,M , the pairs
(ϕ̂i,M , λ̂i,M ) are approximate eigenpairs for the true oper-
ator AFµ

. That is, for all i = 1, . . . ,M and for all x ∈
X ,

∣∣∣[AFµ ϕ̂i,M

]
(x)− λ̂i,M ϕ̂i,M (x)

∣∣∣ < ϵ. The approximate
eigenpairs can then be used to obtain a model that, given rich
enough data and a large enough M , can accurately predict the
system trajectories in X over a finite horizon.

While requirements (R1) and (R2) above, compactness of
the Liouville operator, and density of the eigenfunctions in
H̃d are difficult to guarantee in general, empirical evidence
suggests that the eigenfunctions ϕ̂i,M are expressive enough
to approximate hid,j in a variety of applications [3]. Since
ϕ̂i,M are computed as linear combinations of reproducing
kernels or occupation kernels, the empirical evidence could be
explained by the postulate that the approximate eigenfunctions
inherit universality properties of the reproducing kernels and
the occupation kernels [23]. A theoretical examination of the
expressiveness of the approximate eigenfunctions for a specific
operators, Hilbert spaces, and data set is out of the scope of
this article.

Convergence of the finite-rank representation to the true
operator in the norm topology is also typically impossible to
guarantee in the eigendecomposition-based DMD framework
[3], [21]. As such, similar to most DMD techniques, the
eigendecomposition approach, while well-motivated by the
theory presented in this paper, is a heuristic technique. On
the other hand, as shown in [36], obtaining norm convergence
of finite rank representations to the true Liouville operator is
possible in an SVD-based framework.

B. The Singular Value Decomposition Approach

In the SVD-based framework, two different RKHSs H̃d and
H̃r are selected as the domain and the co-domain of AFµ

,
respectively. If the domain and the range RKHSs are selected
carefully, then for a large class of nonlinear systems, the oper-
ator AFµ

can be shown to be compact. Compactness trivially
ensures satisfaction of Requirement (R1) above. Requirement
(R2) can be met by proper selection of H̃d (see Section VI).
Compactness also allows for the construction of the needed
sequence ÂFµ,M that converges to AFµ

in the norm topology.
The left and right singular functions of ÂFµ,M can then be
used to generate a sequence of system models that converges
to the true system model.

In particular, the closed-loop model ẋ = f(x) + g(x)µ(x)
can be expressed in terms of the total derivative operator as

ẋ =
∂hid
∂x

(x)
[
f(x) g(x)

] [ 1
µ(x)

]
= [AFµ

hid](x), (4)

where the notation AFµ
hid is used to denote the operator AFµ

acting on every row of the vector-valued function hid. If AFµ :

H̃d → H̃r is a compact operator, then there exist singular
values {σi}∞i=1 ⊂ R, left singular functions {ϕi}∞i=1 ⊂ H̃d,
and right singular functions {ψi}∞i=1 ⊂ H̃r such that

ẋ =

∞∑
i=1

σi ⟨hid, ϕi⟩H̃d
ψi(x), (5)

where the notation ⟨hid, ϕi⟩H̃d
is used to denote the n−vector[⟨hid,1, ϕi⟩H̃d

, . . . , ⟨hid,n, ϕi⟩H̃d

]⊤
. In singular DMD, the

idea is to use the SVD of ÂFµ,M as a proxy in a finite
truncation of (5) to construct a predictive model.

C. Related Work

Operator-based DMD methods for systems with control can
be loosely categorized in three categories: spectral analysis
of the drift (zero-input) dynamics [19], input-parameterized
Koopman operators [20], and reformulation as an autonomous
state-control dynamical system [21].

If data can be collected for the system with zero inputs, or
if the system is affine in control, then techniques such as dy-
namic mode decomposition with control (DMDc) [14], sparse
nonlinear system identification with control (SINDYc) [37],
extended dynamic mode decomposition with control (EDMDc)
[21], bilinearization [38], etc., can be utilized to estimate
eigenvalues and eigenfunctions of the Koopman operator, or
the Koopman generator, of the drift (zero-input) dynamics.
In the case of control-affine systems, the eigenvalues and
eigenfunctions can also be utilized to solve a wide variety
of problems including, but not limited to, reachability [38],
optimal control [39], model-based predictive control, [40], and
observer synthesis [19].

A different approach to operator theoretic analysis of sys-
tems with control is via input-parameterized Koopman op-
erators [20]. The central idea in this family of methods is
that if the input is constant, then the dynamical system is
autonomous, and as such, admits a Koopman operator. Given
a set of possible input levels, an input-parameterized family
of Koopman operators (or generators) can thus be constructed
[39]. This observation is particularly useful when utilized for
spectral analysis of control-affine systems, where Koopman
generators are themselves affine in control. The state of the
system can thus be predicted using a linear combination of
a finite number of input-parameterized Koopman generators
[41]. In addition to motivating DMDc and EDMDc, input-
parameterized Koopman generators can also be used for vari-
ous control and estimation tasks [42].

Systems with control can also be analyzed by studying
operators that operate on a more general set of observables.
Instead of observables that are functions of the state in
the typical Koopman framework, the observables here are
functions of the state and the control [20], [21]. The methods in
this category include Koopman with inputs and control (KIC)
[20] and linear and bilinear predictors [21]. The KIC approach
is cogent if the control signal itself is produced by a dynamical
system, and leads to useful heuristics when it is not. In [21],
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the shift operator is used as the dynamics of the control signal
to develop a Koopman operator that operates on observables
defined on an infinite-dimensional state space that includes the
space of all possible control sequences. Spectral analysis of
this operator with carefully selected observables yields linear
and bilinear predictors for the underlying nonlinear system.
Applications of this approach include model-based predictive
control [21], robust model-based predictive control [43], and
system identification [44].

In this paper, the operator AFµ
is constructed as a composi-

tion of two operators, a differential operator that maps from H̃d

into a vvRKHS and a multiplication operator that maps from
the vvRKHS either back into H̃d (the eigendecomposition
approach) or into H̃r (the SVD approach) (see Fig. 1).

IV. VECTOR-VALUED REPRODUCING KERNEL HILBERT
SPACES

In this section, properties of vvRKHSs relevant to topic
under consideration are reviewed. The review relies heavily
on the discussion given in [29].

Definition 1: Let Y be a Hilbert space, and let H be a
Hilbert space of functions from a set X to Y . The Hilbert
space H is a vvRKHS if for every v ∈ Y and x ∈ X , the
functional f 7→ ⟨f(x), v⟩Y is bounded.
A vvRKHS is a direct generalization of a “scalar-valued”
RKHS, since for a fixed v ∈ Y , the collection of functions
{g(x) = ⟨f(x), v⟩Y : f ∈ H} forms an RKHS of scalar-
valued functions.

By the Riesz representation theorem, for each x ∈ X and
v ∈ Y , there exists a unique function Kx,v ∈ H such that
⟨f,Kx,v⟩H = ⟨f(x), v⟩Y for all f ∈ H . The fact that the
mapping v 7→ Kx,v is linear over Y yields a linear operator
Kx : Y → H , defined as Kx := v 7→ Kx,v , called the kernel
centered at x, associated with H . The operator K : X×X →
L(Y,Y), defined as K(x, y) := K∗

xKy , where K∗
x : H →

Y is the adjoint of Kx and L(Y,Y) is the space of linear
operators from Y to Y , is called the reproducing kernel of H .
For any f ∈ H , x ∈ X , and v ∈ Y , we have ⟨K∗

xf, v⟩Y =
⟨f,Kxv⟩H = ⟨f(x), v⟩Y , and as a result, K∗

xf = f(x). With
f = Kyv, we see that for all v ∈ Y , [Kyv](x) = K∗

xKyv =
K(x, y)v.

In the particular case that Y = Rn, K(x, y) is a real-
valued n × n matrix for fixed x, y ∈ X . As a result one can
construct several examples of vector-valued kernels. Indeed,
given a scalar-valued RKHS H̃ over X , with the corresponding
reproducing kernel K̃ : X ×X → R, and a positive definite
matrix, A ∈ Rn×n, the operator (x, y) 7→ AK̃(x, y) that
maps from X ×X to L (Rn,Rn) is a reproducing kernel of
a vvRKHS.

Similar to scalar-valued kernels, it can be shown that the
span of vector-valued kernels is dense in H .

Proposition 1: The span of the set E := {Kx,v : v ∈
Y and x ∈ X}, is dense in H .

Proof: Suppose that h ∈ E⊥, then given a fixed x ∈ X ,
⟨h,Kx,v⟩H = ⟨h(x), v⟩Y = 0 for all v ∈ Y . Hence, h(x) =
0 ∈ Y . Since x was arbitrarily selected, h ≡ 0 ∈ H . Thus,
E⊥ = {0} and span(E) = (E⊥)⊥ = H .

As a consequence of Proposition 1, given ϵ > 0 and h ∈ H ,
there is a finite linear combination of vector-valued kernels
that approximates h with an error smaller than ϵ in the Hilbert
space norm.

In the following development, unless otherwise specified,
it is assumed that X ⊂ Rn is compact, the Hilbert space
Y is selected to be R1×(m+1) with the usual definitions of
vector norms and inner products, H̃d and H̃r are RKHSs of
continuously differentiable functions from X to R, and H
is a vvRKHS of continuous functions from X to R1×(m+1).
The reproducing kernel of H is denoted by K : X × X →
L(R1×(m+1),R1×(m+1)) and the reproducing kernels of H̃d

and H̃r are denoted by K̃d : X×X → R and K̃r : X×X →
R, respectively. When the domain and the range RKHSs are
identical, the subscripts d and r are omitted. The Hilbert space
Y is selected to be a space of row vectors to accommodate
the row vector convention for partial derivatives. As such, the
linear operation of Kx on v ∈ Y is expressed as Kx,v = vKx.

V. CLOSED LOOP NONLINEAR SYSTEMS AS
OPERATORS OVER RKHSS

To solve the problem as stated in Section II in a vvRKHS
framework, the closed-loop nonlinear system is expressed
in terms of operators over two RKHSs and a vvRKHS. A
majority of the definitions and propositions in this section were
first introduced in [24]. The definitions are included here for
completeness and the proofs of most of the propositions are
more detailed than the corresponding proofs in [24].

A. Control Liouville Operators and Multiplication
Operators

Representation of a controlled system in terms of operators
can be realized using the so-called control Liouville Operator.

Definition 2: Let f : Rn → Rn and g : Rn → Rn×m be
locally Lipschitz continuous functions and the set

D(Af,g) := {h ∈ H̃d : x 7→ ∂h

∂x
(x)
[
f(x) g(x)

]
∈ H}

be the domain of the operator, Af,g : D(Af,g)→ H , given as

[Af,gh] (x) :=
∂h

∂x
(x)
[
f(x) g(x)

]
.

The operator Af,g is called the control Liouville operator
corresponding to f and g over H .
Control Liouville operators generalize Liouville operators,
where the drift dynamics and control effectiveness components
of the dynamics are separated on the operator theoretic level.
Vector-valued RKHSs arise naturally in this context, where the
partial derivative of h ∈ D(Af,g) with respect to x is a row
vector of dimension n, and through a dot product with f and
multiplication by the matrix g, the result of the operation of
Af,g on h is a row vector with dimension m+ 1.

The control Liouville operator does not depend on the
control input, and as such, is not sufficient by itself for
prediction of system behavior. An additional operator is thus
required to complete the construction of the operator AFµ

alluded to in Section III. The controller is incorporated in
the developed framework via a multiplication operator. The
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H

H̃d

H̃r

XR Y

Af,g

Af,gh = ∂h
∂x

[
f g

]

Mµ

MµAf,gh = ∂h
∂x

[
f g

] [1
µ

]

Fig. 1. A schematic diagram of the construction presented in Section
V. The RKHSs are represented by filled circles. The squares at the
endpoints of the dashed arrows passing through the circles indicate the
domains and co-domains of the functions contained in the RKHSs. The
thick arrows between the RKHSs indicate operators.

inclusion of this multiplication operator, in addition to the
newly defined control Liouville operator, sets the theoretical
foundations of DMD of controlled systems apart from the
uncontrolled case studied in [3] and [36].

Definition 3: For a continuous function ν : X → Y , the
multiplication operator with symbol ν, denoted by Mν :
D(Mν)→ H̃r, is defined as

[Mνh] (·) := ⟨h(·), ν(·)⟩Y ,
where D(Mν) := {h ∈ H : x 7→ ⟨h(x), ν(x)⟩Y ∈ H̃r}.

Given the continuous function µ : Rn → R1×m+1 derived
from a feedback controller µ : Rn → Rm as µ(x) :=[
1 µ(x)⊤

]
, the corresponding multiplication operator Mµ :

D(Mµ) → H̃r is given as Mµh = x 7→ h(x)
[
1 µ(x)⊤

]⊤
and D(Mµ) = {h ∈ H : x 7→ h(x)

[
1 µ(x)⊤

]⊤ ∈ H̃r}.
The operator MµAf,g maps from D(Af,g) ⊂ H̃d to H̃r, and
plays the role of the operator AFµ

described in Section III.
In the above construction, it is assumed that the image of
Af,g falls within the domain of Mµ. This assumption is not
easy to verify in general, but it is trivially met in the example
presented in Section VI, where the RKHSs are Bargmann-
Fock spaces restricted to the set of real numbers. The control
Liouville operator will be assumed to be compact in Section VI
and densely defined in Section VII. Further comments on the
density and the compactness assumptions, including examples
of systems and RKHSs for which these assumptions are met,
are provided in the respective sections.

B. Control Occupation Kernels

To facilitate the computation of a finite-rank representa-
tion of AFµ

= MµAf,g, and subsequently, the approximate
eigenfunctions required for DMD, trajectories of controlled
dynamical systems are embedded within vvRKHSs using
the so-called control occupation kernels. Control occupation
kernels arise from a generalization of the idea of occupation
kernels introduced in [23] as follows.

Definition 4 ([23]): Given a continuous function γ :
[0, T ] → X , an RKHS of continuous functions H̃ , and
the bounded functional T : H̃ → C defined as T h =

∫ T

0
h(γ(τ))dτ for all h ∈ H̃ , the unique function1 Γγ ∈ H̃

that satisfies T h = ⟨h,Γγ⟩H̃ for all h ∈ H̃ is called the
occupation kernel corresponding to γ in H̃ .
Boundedness of T in Definition 4 follows from arguments
similar to the vector-valued case below.

Proposition 2: If H is a vvRKHS of continuous functions,
defined on X ⊆ Rn, with reproducing kernel K, then for all
continuous functions γ : [0, T ]→ Rn and bounded measurable
functions u : [0, T ]→ Rm, the functional T : H → C, defined
as

T h :=

∫ T

0

h(γ(t))

[
1
u(t)

]
dt, ∀h ∈ H, (6)

is bounded.
Proof: Let ū(t) =

[
1 u(t)⊤

]
. Using the defining

properties of H ,

T h =

∫ T

0

⟨h(γ(t)), ū(t)⟩Y dt =

∫ T

0

〈
h, ū(t)Kγ(t)

〉
H
dt.

Using the Cauchy-Schwarz inequality and the fact that
K∗

γ(t)Kγ(t) = K(γ(t), γ(t)),

|T h| ≤ ∥h∥H
∫ T

0

√
∥K(γ(t), γ(t))ū(t)∥Y ∥ū(t)∥Ydt.

Since γ is continuous and x 7→ K(x, x) is locally bounded
[29, Proposition 2], there exists K <∞ such that for all x ∈
γ ([0, T ]), the operator norm of K(x, x) satisfies ∥K(x, x)∥ ≤
K. Since u(·) is bounded, we conclude that T is bounded.
An extension of Definition 4 to systems with control results
in control occupation kernels.

Definition 5 ([24]): Given a bounded measurable function
u : [0, T ] → Rm, a continuous function γ : [0, T ] → X , and
the bounded functional T : H → C defined in (6), the unique
function Γγ,u ∈ H that satisfies T h = ⟨h,Γγ,u⟩H for all
h ∈ H is called the control occupation kernel corresponding
to u and γ in H .

Control occupation kernels can be expressed in terms of the
reproducing kernels of H to facilitate computation.

Proposition 3 ([24]): The control occupation kernel Γγ,u ∈
H , corresponding to u and γ, can be expressed as

Γγ,u(x) =

∫ T

0

[[
1 u(t)⊤

]
Kγ(t)

]
(x) dt, (7)

and the norm of Γγ,u is given as

∥Γγ,u∥2H =

∫ T

0

∫ T

0

[
1 u(t)⊤

]
K(γ(τ), γ(t))

[
1

u(τ)

]
dtdτ.

Proof: For x ∈ X and v ∈ C1×(m+1),

⟨Γγ,u(x), v⟩C1×(m+1) = ⟨Γγ,u, vKx⟩H

=

∫ T

0

〈
[vKx] (γ(t)),

[
1 u(t)⊤

]〉
C1×(m+1) dt

=

∫ T

0

〈
vKx,

[
1 u(t)⊤

]
Kγ(t)

〉
H
dt

=

∫ T

0

〈[[
1 u(t)⊤

]
Kγ(t)

]
(x), v

〉
C1×(m+1) dt

1Such a function exists by the Riesz representation theorem.
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=

〈∫ T

0

[[
1 u(t)⊤

]
Kγ(t)

]
(x)dt, v

〉
C1×(m+1)

. (8)

As (8) holds for all v ∈ C1×(m+1), (7) follows. The expression
for the norm of Γγ,u follows from ∥Γγ,u∥2H = ⟨Γγ,u,Γγ,u⟩H
and the defining properties of Γγ,u.

C. Control Liouville Operators and Control Occupation
Kernels

There is a direct connection between the adjoints of densely
defined control Liouville operators and control occupation
kernels that correspond to admissible control signals, u, and
their corresponding controlled trajectories, γu, that satisfy (2).

Definition 6: A bounded, measurable control signal u :
[0, T ]→ Rm is called admissible for the initial value problem
(1) over the time interval [0, T ] and the domain X , if the
corresponding Carathéodory solution γu : [0, T ] → Rn is
contained within X .
To illustrate the connection, the construction of adjoints of
densely defined operators is revisited in the following.

Definition 7: The domain of the adjoint of A : D(A)→ H ,
with D(A) ⊆ H̃d, is defined as

D (A∗) := {h ∈ H | ϕ 7→ ⟨Aϕ, h⟩H is bounded on D (A)} .
If D(A) is dense in H̃d, then the functionals ϕ 7→ ⟨Aϕ, h⟩H
may be extended uniquely to functionals that are bounded
over all of H̃d. As a result, for each h ∈ D (A∗), the Riesz
representation theorem guarantees the existence of a unique
function A∗h ∈ H̃d such that ⟨A∗h, ϕ⟩H̃ = ⟨Aϕ, h⟩H for all
ϕ ∈ D(A). The operator h 7→ A∗h is defined as the adjoint
of A.

The following proposition formalizes the relationship be-
tween control occupation kernels and control Liouville oper-
ators for trajectories of the system under admissible control
signals.

Proposition 4 ([24]): If f and g correspond to a densely
defined control Liouville operator, Af,g : D(Af,g)→ H , with
D(Af,g) ⊂ H̃d and if u is an admissible control signal for the
initial value problem (1) over the time interval [0, T ], with a
corresponding controlled trajectory γu, then Γγu,u ∈ D(A∗

f,g)
and

A∗
f,gΓγu,u = K̃d(·, γu(T ))− K̃d(·, γu(0)). (9)

Proof: To demonstrate that Γγu,u is in D(A∗
f,g) it must be

shown that the functional h 7→ ⟨Af,gh,Γγu,u⟩H is a bounded.
Note that

⟨Af,gh,Γγu,u⟩H

=

∫ T

0

∂

∂x
h(γu(t))

[
f(γu(t)) g(γu(t))

] [ 1
u(t)

]
dt

=

∫ T

0

d

dt
h(γu(t))dt = h(γu(T ))− h(γu(0))

=
〈
h, K̃d(·, γu(T ))− K̃d(·, γu(0))

〉
H̃d

. (10)

The functional h 7→ ⟨Af,gh,Γγu,u⟩H is thus bounded with
norm not exceeding ∥K̃d(·, γu(T ))−K̃d(·, γu(0))∥H̃d

. By the
definition of the adjoint, (10) implies (9).

D. Properties of Multiplication Operators
In this section, multiplication operators that map from

vvRKHSs to scalar-valued RKHSs are studied. Many of the
propositions in this section have been established for scalar-
valued RKHSs (cf. [45]–[47]), and are proved using similar
methods.

The following proposition investigates the interaction be-
tween adjoints of multiplication operators and reproducing
kernels of scalar-valued RKHSs.

Proposition 5 ([24]): If ν : X → Y corresponds to a
densely defined multiplication operator Mν : D (Mν) → H̃r

with D (Mν) ⊂ H , then for each x ∈ X , K̃r(·, x) is in the
domain of M∗

ν and

M∗
ν K̃r(·, x) = Kx,ν(x). (11)

Proof: If h ∈ D(Mν), then

⟨Mνh, K̃r(·, x)⟩H̃r
= ⟨h(x), ν(x)⟩Y = ⟨h,Kx,ν(x)⟩H . (12)

Hence, the mapping h 7→ ⟨Mνh, K̃r(·, x)⟩H̃r
is a bounded

functional with norm bounded by ∥Kx,ν(x)∥H , and as such,
K̃r(·, x) is in the domain of M∗

ν . The proposition then follows
from (10).
Proposition 5, along with the density of the span of the kernels
K̃(·, x) in H̃ implies that the adjoint of the multiplication
operator is also densely defined.

Proposition 6 ([24]): Multiplication operators are closed
operators.

Proof: Suppose that {hn}∞n=1 ⊂ D(Mν), hn → h ∈ H ,
and Mνhn →W ∈ H̃r. To show that Mν is a closed operator,
it must be shown that W (x) = ⟨h(x), ν(x)⟩Y for all x ∈ X ,
and thus h ∈ D(Mν) by definition and Mνh =W . Let v ∈ Y
and x ∈ X , then

W (x) = lim
n→∞

⟨Mνhn, K̃r(·, x)⟩H̃r

= lim
n→∞

⟨hn,Kx,ν(x)⟩H = ⟨h,Kx,ν(x)⟩H = ⟨h(x), ν(x)⟩Y ,

where the first equality follows since norm convergence in H̃r

implies pointwise convergence and the third inequality follows
from continuity of the inner product on H .
The following proposition demonstrates how multiplica-
tion operators Mµ, with symbols µ given as µ(x) =[
1 µ(x)⊤

]
,∀x ∈ Rn, connect occupation kernels Γγ with

feedback control occupation kernels Γγ,µ◦γ .
Proposition 7: If µ : X → Rm is a continuous function,

µ : X → Y is defined as µ(x) :=
[
1 µ(x)⊤

]
,∀x ∈ X ,

the corresponding multiplication operator Mµ : D (Mµ) →
H̃r, with D (Mµ) ⊂ H , is densely defined, Γγ ∈ H̃r is the
occupation kernel corresponding to a continuous function γ :
[0, T ]→ X in H̃r, then Γγ is in the domain of M∗

µ and

M∗
µΓγ = Γγ,µ◦γ . (13)

Proof: Let h ∈ D (Mµ). Using definitions 4 and 5, it
can be concluded that

⟨Mµh,Γγ⟩H̃ =

∫ T

0

⟨h(γ(t)), µ(γ(t))⟩Y dt

=

∫ T

0

h (γ (t))

[
1

µ(γ(t))

]
dt = ⟨h,Γγ,µ◦γ⟩H . (14)
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Hence, the norm of the functional h 7→ ⟨Mµh,Γγ⟩H̃r
is

bounded by ∥Γγ,µ◦γ∥H . It can thus be concluded that Γγ ∈
D(M∗

µ), and as a result, (13) follows.

E. Compact and Densely Defined Operators for DMD
As noted in Section III, DMD relies on computation of

eigenfunctions of a finite-rank representation of an operator
that represents the dynamical system. The eigenfunctions
of the finite-rank representations can be shown to converge
to the eigenfunctions of the true operator if the finite-rank
representations themselves converge to the true operator in the
norm topology and the true operator is compact [21]. Koopman
operators, Koopman generators, and Liouville operators are
typically not compact if their domains and co-domains are
viewed as subsets of the same RKHS [21], [36], [48] (see
Remark 1).

As noted in [36], Liouville operators corresponding to a
large class of dynamical systems are compact provided the
domain and the range RKHSs are selected appropriately.
However, since the domain and the range RKHSs need to be
different, the resulting operators do not admit eigenfunctions.
In Section VI, it is shown that when the domain and the range
RKHSs are different, an SVD-based approach can be used
to estimate the system dynamics. The SVD-based approach
relies on compactness of the total derivative operator and
generates sequences of singular values and singular functions
that converge to the true singular values and singular functions.
As shown in Section VI, compact total derivative operators
result from bounded multiplication operators and compact
control Liouville operators, both of which exist for a large
class of dynamical systems and feedback laws.

In Section VII, an eigendecomposition-based DMD ap-
proach is developed that lacks convergence guarantees but
generates useful heuristic approximations of the eigenfunc-
tions under the weaker assumption that the total derivative
operator is densely defined. As shown in Section VII, a
densely defined total derivative operator results from a densely
defined multiplication operator whose range is a subset of
the domain of a densely defined control Liouville operator.
As discussed in Section VII, such multiplication operators
and control Liouville operators also exist for a large class of
dynamical systems and feedback laws.

In the following, for an operator A and finite collections of
functions d and r, in the domain and the range of the operator,
respectively, the notation A|d is used to denote the operator
A restricted to the set span d, and the notation [A]rd is used
to denote a matrix representation of the finite-rank operator
PrA|d, where Pr denotes the projection operator onto span r.

VI. A SINGULAR VALUE DECOMPOSITION APPROACH
TO DMD

With careful selection of the domain and range RKHSs, the
total derivative operator MµAf,g can be made to be compact.
While the results in this section apply to large class of
dynamical systems, a complete characterization of RKHSs and
symbols that yield compact differential operators and bounded
multiplication operators is out of the scope of this paper.

A. Existence of Bounded Multiplication Operators and
Compact Differential Operators

The discussion in this section closely follows [36], where a
similar result is obtained for systems without control. Consider
the exponential dot product kernel with parameter ρ̃, defined
as K̃ρ̃(x, y) = exp

(
x⊤y
ρ̃

)
. In the single variable case, the

RKHS2 of this kernel is the restriction of the Bargmann-Fock
space to real numbers, denoted by F 2

ρ̃ (R). This space consists
of the set of functions of the form h(x) =

∑∞
k=0 akx

k, where
the coefficients satisfy

∑∞
k=0 |ak|

2
ρ̃kk! < ∞, and the norm

is given by ∥h∥2ρ̃ =
∑∞

k=0 |ak|
2
ρ̃kk!. Note that the set of

polynomials in x is a subset of F 2
ρ̃ (R). Extension of this

definition to the multivariable case yields the space F 2
ρ̃ (Rn)

where the collection of monomials, xα ρ̃|α|
√
α!

, with multi-indices
α ∈ Nn forms an orthonormal basis3. In this setting, provided
ρ̃2 < ρ̃1, differential operators from F 2

ρ̃1
(Rn) to F 2

ρ̃2
(Rn) can

be shown to be compact.
Proposition 8: If ρ̃2 < ρ̃1, then the differential operators

∂
∂xi

: F 2
ρ̃1
(Rn)→ F 2

ρ̃2
(Rn), are compact for i = 1, . . . , n.

Proof: To facilitate the clarity of exposition, the proof
is written for functions of a single variable. Extension to
functions of several variables using multi-indices is concep-
tually straightforward. Let h ∈ F 2

ρ̃1
(R) be given by h(x) =∑∞

k=0 akx
k, with ∂h

∂x =
∑∞

k=0 bkx
k, where bk = (k+1)ak+1.

The norm of the derivative in F 2
ρ̃2
(R) is given by∥∥∥∥∂h∂x

∥∥∥∥2
ρ̃2

=

∞∑
k=0

|bk|2 ρ̃k2k!

=

∞∑
k=0

|ak+1|2
k + 1

ρ̃1

(
ρ̃2
ρ̃1

)k

ρ̃
(k+1)
1 (k + 1)!

=

∞∑
k=0

|ak|2
k

ρ̃1

(
ρ̃2
ρ̃1

)(k−1)

ρ̃k1k!

If ρ̃2 < ρ̃1 then there exists a constant C < ∞ such that
k
ρ̃1

(
ρ̃2

ρ̃1

)(k−1)

≤ C for all k ∈ N. As a result,
∥∥∂h
∂x

∥∥2
ρ̃2
≤

C ∥h∥2ρ̃1
, which establishes boundedness of the differential

operator ∂
∂x : F 2

ρ̃1
(R)→ F 2

ρ̃2
(R).

To prove compactness, we construct a sequence of finite-
rank operators that converge, in norm, to ∂

∂x . Let αM :=
{1, x, . . . , xM} be the first M monomials in x, and let PαM

be
the projection onto the span of these monomials. Consider the
sequence {PαM

∂
∂x} of finite-rank operators. Let h ∈ F 2

ρ̃1
(R)

be given by h(x) =
∑∞

k=0 akx
k. Then,∥∥∥∥PαM

∂h

∂x
− ∂h

∂x

∥∥∥∥2
ρ̃2

=

∞∑
k=M+1

(k+1)2 |ak+1|2 ρ̃(k+1)
2 (k+1)!

≤
∞∑

k=M+1

(k + 1)2
(
ρ̃2
ρ̃1

)(k+1) ∞∑
k=M+1

|ak+1|2 ρ̃(k+1)
1 (k + 1)!

2The RKHS of a symmetric positive semidefinite kernel K is the unique
RKHS of which K is the reproducing kernel. Such an RKHS is guaranteed
to exist by the Moore–Aronszajn theorem [49].

3For α ∈ Nn, α! =
∏n

i=1 αi!, |α| =
∑n

i=1 αi, and xα =
∏n

i=1 x
αi
i .
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≤
∞∑

k=M+1

(k + 1)2
(
ρ̃2
ρ̃1

)(k+1)

∥h∥2ρ̃1
.

If ρ̃2 < ρ̃1 then limM→∞
∑∞

k=M+1(k+1)2
(

ρ̃2

ρ̃1

)(k+1)

=0, and

as a result, limM→∞
∥∥PαM

∂h
∂x − ∂h

∂x

∥∥2
ρ̃2

= 0. Therefore, the
operator norm∥∥∥∥PαM

∂

∂x
− ∂

∂x

∥∥∥∥F 2
ρ̃2

(R)

F 2
ρ̃1

(R)
:= sup

h∈F 2
ρ̃1

(R)

∥PαM

∂h
∂x − ∂h

∂x∥ρ̃2

∥h∥ρ̃1

converges to zero as M →∞, which establishes compactness
of ∂

∂x : F 2
ρ̃1
(R)→ F 2

ρ̃2
(R).

Remark 1: Note that if ρ̃2 < ρ̃1 then F 2
ρ̃1
(Rn) ⊂ F 2

ρ̃2
(Rn)

[36, Proposition 5.1]. In this case, one can view the differential
operators as maps from F 2

ρ̃2
(Rn) to itself. However, when

viewed as such, the differential operators may not be compact.
As shown in [36], multiplication operators can be shown to

be bounded provided their symbols are polynomial.
Proposition 9: If ρ̃2 < ρ̃1, then for any polynomial function

p : Rn → R, the multiplication operator Mp : F 2
ρ̃1
(Rn) →

F 2
ρ̃2
(Rn), defined as [Mph] (x) = p(x)h(x), is bounded.

Proof: See [36, Lemma 3.2].
Proposition 9 trivially extends to vvRKHSs defined using
diagonal reproducing kernels.

Proposition 10: Let F 2
ρ (Rn) denote the native (row)

vvRKHS of a diagonal reproducing kernel defined as
K(x, y) := diag

([
K̃ρ1

(x, y), . . . , K̃ρm+1
(x, y)

])
. If ρi <

ρ̃ for i = 1, . . . ,m+ 1, then given any set of polynomials pi,
i = 1, . . . ,m + 1, the multiplication operator Mp1,...,pm+1 :
F 2
ρ̃ (Rn) → F 2

ρ (Rn), defined as
[
Mp1,...,pm+1h

]
(x) =

h(x)
[
p1(x), . . . , pm+1(x)

]
, is bounded. On the other

hand, if ρ̃ < ρi for i = 1, . . . ,m+1, then for any component-
wise polynomial function µ =

[
µ1, . . . , µm

]⊤
: Rn →

Rm, the multiplication operator Mµ : F 2
ρ (Rn) → F 2

ρ̃ (Rn),
defined as [Mµh] (x) = h(x)

[
1, µ1(x), . . . , µm(x)

]⊤
,

is bounded.
Proof: Follows from arguments similar to Lemma 3.2

from [36].
Since Koopman operators are generally unbounded for

nonlinear systems [48], the above propositions make a strong
case for spectral analysis of continuous-time systems in the
Liouville operator (or Koopman generator) framework as op-
posed to the Koopman operator framework via discretization.

B. Finite-rank Representation of the Closed Loop Total
Derivative Operator

Since the dynamic modes may only be extracted from
the composition of Mµ with Af,g, an explicit finite-rank
representation of Af,g and Mµ is needed to determine the
dynamic modes of the resultant system. In the following,
finite collections of linearly independent vectors, dM , ϖM ,
βM , and rM are selected to establish the needed finite-
rank representation. Since the adjoint of Af,g maps control
occupation kernels to kernel differences (Proposition 4), the
span of the collection of kernel differences

dM = {Kd(·, γui
(Ti))−Kd(·, γui

(0))}Mi=1 ⊂ H̃d (15)

is selected to be the domain of Af,g. The corresponding Gram

matrix is denoted by GdM =
(
⟨di, dj⟩H̃d

)M
i,j=1

. The output

of Af,g is projected onto the span of the control occupation
kernels

βM =
{
Γγui

,ui

}M
i=1
⊂ H (16)

before application of Mµ. The corresponding Gram matrix is
denoted by GβM =

(
⟨βi, βj⟩H

)M
i,j=1

.

HH̃d

span dM

spanβMH̃r

span rM

Af,g

PβM

Mµ

PrM

PdM

PrMMµPβMAf,g|dM

MµAf,g

Fig. 2. A schematic diagram of the finite-rank representation of the total
derivative operator.

Since the adjoint of Mµ maps occupation kernels to control
occupation kernels of the form Γγui

,µ◦γui
(Proposition 7), the

derivation also requires the collection

ϖM =
{
Γγui

,µ◦γui

}M
i=1
⊂ H (17)

of feedback control occupation kernels in H corresponding to
the trajectories γui and control signals µ ◦ γui . Finally, the
result of Mµ is projected onto the span of the occupation
kernels

rM =
{
Γγui

}M
i=1
⊂ H̃r. (18)

The corresponding Gram matrix is denoted by GrM =(
⟨ri, rj⟩H̃r

)M
i,j=1

.

A rank-M representation of the operator MµAf,g is then
given by PrMMµPβMAf,gPdM : H̃d → span rM , where PrM ,
PdM , and PβM denote projection operators onto span rM ,
span dM , and spanβM , respectively. The construction is
illustrated in Fig. 2.

Under the compactness assumptions and given rich enough
data so that the spans of {di}∞i=1, {ri}∞i=1, and {βi}∞i=1 are
dense in H̃d, H̃r, and H , respectively, the sequence of finite-
rank operators {PrMMµPβMAf,gPdM }∞M=1 can be shown to
converge, in norm, to MµAf,g. To facilitate the proof of
convergence, we recall the following result from [3].

Lemma 1: Let H and G be RKHSs defined on X ⊂ Rn

and let AN : H → G be a finite-rank operator with rank N .
If the spans of {di}∞i=1 and {ri}∞i=1 are dense in H and G,
respectively, then for all ϵ > 0, there exists M(N) ∈ N such
that for all i ≥ M(N) and h ∈ H , ∥ANh−ANPdih∥G ≤
ϵ ∥h∥H and ∥ANh− PriANh∥G ≤ ϵ ∥h∥H .

Proof: See the proof of [3, Theorem 2].
The convergence result for Liouville operators on Bargmann-
Fock spaces restricted to the set of real numbers follows from



ROSENFELD et al.: DYNAMIC MODE DECOMPOSITION WITH CONTROL LIOUVILLE OPERATORS 9

the following more general result.
Proposition 11: If B : H → H̃r is a bounded linear

operator, A : H̃d → H is a compact operator, and the spans of
{di}∞i=1, {ri}∞i=1, and {βi}∞i=1 are dense in H̃d, H̃r, and H ,

respectively, then limM→∞
∥∥BA− PrMBPβMAPdM

∥∥H̃r

H̃d
=

0, where ∥·∥H̃r

H̃d
denotes the operator norm of operators from

H̃d to H̃r.
Proof: Let {AN}∞N=1 be a sequence of rank-N operators

converging, in norm, to A. For an arbitrary h ∈ H̃d,∥∥BAh− PrMBPβMAPdMh
∥∥
H̃r

≤ ∥BAh−BANh∥H̃r
+ ∥BANh−BANPdMh∥H̃r

+
∥∥BANPdMh−BPβMANPdMh

∥∥
H̃r

+
∥∥BPβMANPdMh− PrMBPβMANPdMh

∥∥
H̃r

+
∥∥PrMBPβMANPdMh− PrMBPβMAPdMh

∥∥
H̃r
.

Assuming that the operator norm of B is B,∥∥BAh− PrMBPβMAPdMh
∥∥
H̃r
≤ B ∥Ah−ANh∥H +

B ∥ANh−ANPdMh∥H +B
∥∥ANPdMh− PβMANPdMh

∥∥
H

+
∥∥BPβMANPdMh− PrMBPβMANPdMh

∥∥
H̃r

+B ∥ANPdMh−APdMh∥H .

Using the fact that AN and BPβMANPdM are finite-rank
operators, Lemma 1, can be used to conclude that for all ϵ > 0,
there exists M(N) ∈ N such that for all i ≥M(N)∥∥BAh− PriBPβiAPdih

∥∥
H̃r
≤ B ∥Ah−ANh∥H

+ 3Bϵ ∥h∥H̃d
+B ∥ANPdih−APdih∥H .

Since AN converges to A in norm, given ϵ > 0, there
exists N ∈ N such that for all j ≥ N , and g ∈ H̃d

∥Ag −Ajg∥H ≤ ϵ ∥g∥H̃d
. Thus, for all j ≥ N and i ≥M(j),∥∥BAh− PriBPβiAPdih
∥∥
H̃r
≤ 5Bϵ ∥h∥H̃d

.
The convergence result can then be stated as follows.

Theorem 1: Let ρd ∈ R, ϱd ∈ R, ρr ∈ R, and ρ =[
ρ1 . . . ρm+1

]⊤ ∈ Rm+1 be parameters such that ρr <
ρi, ρi < ϱd, and ϱd < ρd for i = 1, . . . ,m + 1. Let
H̃d = F 2

ρ̃d
(Rn), G̃d = F 2

ϱ̃d
(Rn), H̃r = F 2

ρ̃r
(Rn), and

H = F 2
ρ (Rn). If f , g, and µ are component-wise polynomial,

and if the spans of the collections {di}∞i=1, {ri}∞i=1, and
{βi}∞i=1 are dense in H̃d, H̃r, and H , respectively, then

limM→∞
∥∥MµAf,g − PrMMµPβMAf,gPdM

∥∥H̃r

H̃d
= 0.

Proof: Propositions 8, 9, and 10 imply that Mµ is
bounded and Af,g is compact. Since multiplication operators
are linear by definition, the theorem follows from Proposition
11.

C. Matrix Representation of the Finite-rank Operator
To formulate a matrix representation of the finite-rank

operator PrMMµPβMAf,gPdM , the operator is restricted
to span dM to yield the operator PrMMµPβMAf,g|dM :
span dM → span rM . For brevity of exposition, the super-
script M is suppressed hereafter and d, β, ϖ, and r are
interpreted as M−dimensional vectors.

Proposition 12: If h = δ⊤d ∈ span d is a function with
coefficients δ ∈ RM and if g = PrMµPβAf,gh, then g = a⊤r,
where a = G+

r IG
+
βGdδ, I :=

(
⟨ϖi, βj⟩H

)M
i,j=1

, and (·)+
denotes the Moore-Penrose pseudoinverse.

Proof: Propositions 4 and 7 imply that that for all j =
1, · · · ,M , A∗

f,gβj = dj , and M∗
µrj = ϖj , respectively. Note

that since g is a projection of MµPβAf,gh onto span r, g =
a⊤r for any a that solves

Gra =

 ⟨MµPβAf,gh, r1⟩H̃r

...
⟨MµPβAf,gh, rM ⟩H̃r

 =


〈
Af,gh, PβM

∗
µr1
〉
H

...〈
Af,g, PβM

∗
µrM

〉
H

 .
(19)

Furthermore, for all j = 1, · · · ,M , PβM
∗
µr1 = b⊤j β, for any

bj that solves

Gβbj =


〈
M∗

µrj , β1
〉
H

...〈
M∗

µrj , βM
〉
H

 =

 ⟨ϖj , β1⟩H
...

⟨ϖj , βM ⟩H

 . (20)

As a result, b :=
[
b1, . . . , bM

]
is a solution of

Gβb =
(
⟨ϖj , βi⟩H

)M
i,j=1

= I⊤. (21)

Substituting (20) into (19),

Gra =


〈
Af,gh, b

⊤
1 β
〉
H

...〈
Af,gh, b

⊤
Mβ
〉
H

 =


〈
h, b⊤1 A

∗
f,gβ

〉
H̃d

...〈
h, b⊤MA

∗
f,gβ

〉
H̃d

 ,
where A∗

f,gβ is interpreted as A∗
f,gβ =[

A∗
f,gβ1, . . . , A∗

f,gβM
]⊤

. Using A∗
f,gβj = dj and

h = δ⊤d,

Gra =


〈
δ⊤d, b⊤1 d

〉
H̃d

...〈
δ⊤d, b⊤Md

〉
H̃d

 =

b
⊤
1 Gdd

...
b⊤MGdd


Selecting solutions of (19) and (21) that minimize the 2-norm
of a and bj , respectively,

a = G+
r b

⊤Gdδ = G+
r IG

+
βGdδ = G+

r IG
+
βGdδ. (22)

That is, a matrix representation [MµPβAf,g]
r
d of the operator

PrMµPβAf,g|d is given by G+
r IG

+
βGd.

Note that matrix representations are generally not unique. Dif-
ferent representations may be obtained by selecting different
solutions of (19) and (21). In the case where the Gram matrices
Gr and Gβ are nonsingular, equations (19) and (21) have
unique solutions, resulting in the unique matrix representation
G−1

r IG−1
β Gd.

In the following section, the matrix representation
[MµPβAf,g]

r
d is used to construct a data-driven representation

of the singular values and the left and right singular functions
of PrMµPβAf,g|d.

D. Singular Functions of the Finite-rank Operator
Recall that the tuples {(σi, ϕi, ψi)}Mi=1, with σi ∈ Rn, ϕi ∈

H̃d, and ψi ∈ H̃r, are singular values, left singular vectors,
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and right singular vectors of PrMµPβAf,g|d, respectively, if
∀h ∈ span d, PrMµPβAf,gh =

∑M
i=1 σiψi ⟨h, ϕi⟩H̃d

. The
following proposition states that the SVD of PrMµPβAf,g|d
can be computed using matrices in the matrix representation
[MµPβAf,g]

r
d derived in the previous section.

Proposition 13: If (W,Σ, V ) is the SVD of G+
r IG

+
β with

W =
[
w1, . . . , wM

]
, V =

[
v1, . . . , vM

]
, and Σ =

diag
([
σ1, . . . , σM

])
, then for all i = 1, . . . ,M , σi are

singular values of PrMµPβAf,g|d with left singular functions
ϕi := v⊤i d and right singular functions ψi := w⊤

i r.
Proof: Let ϕi = v⊤i d and ψi = w⊤

i r and h = δ⊤d.
Then,

PrMµPβAf,gh =

M∑
i=1

σiψi ⟨h, ϕi⟩H̃d

⇐⇒ PrMµPβAf,gδ
⊤d =

M∑
i=1

σiw
⊤
i r
〈
δ⊤d, v⊤i d

〉
H̃d

Using the finite-rank representation, the collection
{(σi, ϕi, ψi)}Mi=1, is an SVD of PrMµPβAf,g|d, if for
all δ ∈ RM ,(

G+
r IG

+
βGdδ

)⊤
r =

(
M∑
i=1

σi
〈
δ⊤d, v⊤i d

〉
H̃d
w⊤

i

)
r. (23)

Simple matrix manipulations yield the chain of implications

(23)⇐= ∀δ ∈ RM , G+
r IG

+
βGdδ =

M∑
i=1

σi
〈
δ⊤d, v⊤i d

〉
H̃d
wi

⇐⇒ ∀δ ∈ RM , G+
r IG

+
βGdδ =

M∑
i=1

σi
(
wiv

⊤
i Gd

)
δ

⇐= G+
r IG

+
βGd =

M∑
i=1

σi
(
wiv

⊤
i

)
Gd

⇐= G+
r IG

+
β =

M∑
i=1

σiwiv
⊤
i =WΣV ⊤,

which proves the proposition.
In the following section, the singular values and the left and
right singular vectors are used, along with a finite truncation
of (5) to generate a data-driven model.

E. The SCLDMD Algorithm
Motivated by (4), assuming that hid,j ∈ H̃d for

j = 1, · · · , n, the system dynamics are approximated
using the rank-M representation as ẋ ≈ F̂µ,M (x) :=
[PrMµPβAf,gPdhid](x), where PrMµPβAf,gPdhid denotes
row-wise operation of the operator PrMµPβAf,gPd on the
function hid. Since PrMµPβAf,gPd converges to MµAf,g in
norm as M →∞, and since the space F 2

ρ̃d
(Rn) contains hid,j

for j = 1, · · · , n, the following result is immediate.
Corollary 1: Under the hypothesis of Theorem 1,

limM→∞
(
supx∈X

∥∥∥F̂µ,M (x)− Fµ(x)
∥∥∥
2

)
= 0.

Proof: Since the space F 2
ρ̃d
(Rn) contains hid,j for j =

1, · · · , n, the functions F̂µ,M,j := PrjMµPβjAf,gPdjhid,j
and Fµ,j := MµAf,ghid,j that denote the j−th row of F̂µ,M

and Fµ, respectively, exist as members of H̃r. Since x 7→
K̃r(x, x) = exp

(
x⊤x
ρ̃r

)
is continuous and X is compact, there

exists a real number K such that supx∈X K̃r(x, x) = K.
Theorem 1 can then be used to conclude that for all ϵ > 0
and j = 1, . . . , n, there exists M(j) ∈ N such that for all

i ≥ M(j),
∥∥∥F̂µ,i,j − Fµ,j

∥∥∥2
H̃r

≤ ϵ2

nK
2 . Using the reproducing

property, for i ≥M := maxj M(j),∥∥∥F̂µ,i(x)− Fµ(x)
∥∥∥2
2
=

n∑
j=1

〈(
F̂µ,i,j − Fµ,j

)
, K̃r(·, x)

〉2
H̃r

≤
n∑

j=1

∥∥∥F̂µ,i,j − Fµ,j

∥∥∥2
H̃r

∥∥∥K̃r(·, x)
∥∥∥2
H̃r

≤
n∑

j=1

ϵ2

nK
2

〈
K̃r(·, x), K̃r(·, x)

〉2
H̃r

=
ϵ2

K
2 K̃r(x, x)

2.

As a result, for all ϵ ≥ 0 there exists M such that for all
i ≥M ,

sup
x∈X

∥∥∥F̂µ,i(x)− Fµ(x)
∥∥∥
2
≤
√

ϵ2

K
2 sup

x∈X
K̃r(x, x)2 = ϵ,

which completes the proof.
Using the definition of singular values and singular functions,

ẋ ≈
M∑
i=1

σiξiw
⊤
i r(x) = ξΣW⊤r(x), (24)

where ξi := ⟨Pdhid, ϕi⟩H̃d
and ξ :=

[
ξ1, . . . , ξM

]
.

The modes ξ can be computed using ϕi = v⊤i d as

ξ =


〈
Pdhid,1, v

⊤
1 d
〉
H̃d
, . . . ,

〈
Pdhid,1, v

⊤
Md
〉
H̃d

...
. . .

...〈
Pdhid,n, v

⊤
1 d
〉
H̃d
, . . . ,

〈
Pdhid,n, v

⊤
Md
〉
H̃d



=


〈
δ⊤1 d, d1

〉
H̃d
, . . . ,

〈
δ⊤1 d, dM

〉
H̃d

...
. . .

...〈
δ⊤n d, d1

〉
H̃d
, . . . ,

〈
δ⊤n d, dM

〉
H̃d

V = δ⊤GdV,

where δ :=
[
δ1, . . . , δn

]
. Using the reproducing property

of the reproducing kernel of H̃d, the coefficients δi in the
projection of hid,i onto d satisfy

Gdδi=

 ⟨(hid)i,d1⟩H̃d

...
⟨(hid)i,dM ⟩H̃d

=
 (γu1

(T1))i−(γu1
(0))i

...
(γuM

(TM ))i−(γuM
(0))i

.
Letting D :=

((
γuj (Tj)

)
i
−
(
γuj (0)

)
i

)n,M
i,j=1

it can be con-
cluded that δ⊤Gd = D. Finally, the modes ξ are given by
ξ = DV and the estimated closed-loop model is given by

ẋ ≈ F̂µ,M (x) = DV ΣW⊤r(x) = DG+
β I

⊤G+
r r(x) (25)

The SCLDMD technique is summarized in Algorithm 1. The
characterization Γγuj

=
∫ Tj

0
K̃
(
·, γuj

(t)
)
dt of occupation

kernels, introduced in [23], is used on line 8.
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Algorithm 1 The SCLDMD algorithm
Input: Trajectories {γui

}Mi=1, a feedback law µ, a numerical
integration procedure, reproducing kernels K̃d, K̃r, and
K of H̃d, H̃r, and H , respectively, and regularization
parameters ϵr and ϵ̃.

Output: {ξj , σj , φj , ϕj}Mj=1

1: Gβ ←
(〈

Γγui
,ui ,Γγuj

,uj

〉
H

)M
i,j=1

(see (34))

2: Gr ←
(〈

Γγui
,Γγuj

〉
H̃r

)M

i,j=1

(see (35))

3: I ←
(〈

Γγui
,µ◦γui

,Γγuj
,uj

〉
H

)M
i,j=1

(see (37))

4: D ←
((
γuj (Tj)

)
i
−
(
γuj (0)

)
i

)n,M
i,j=1

5: (W,Σ, V )← SVD of G+
r IG

+
β (See Remark 2)

6: ξ ← DV
7: ϕj ←

∑M
i=1 ← (V )i,j (Kd(·, γui

(Ti))−Kd(·, γui
(0)))

8: ψj ←
∑M

i=1

∫ Ti

0
(W )i,jK̃ (·, γui

(t)) dt
9: return {ξj , σj , φj , ϕj}Mj=1

VII. EIGENDECOMPOSITION APPROACH TO DMD

In this section, an alternative finite-rank representation of
the operator MµAf,g is presented, where its domain and
range are assumed to be subsets of the same RKHS H̃ of
complex-valued continuously differentiable functions, with a
real-valued reproducing kernel K̃. In particular, the finite-rank
representation of MµAf,g is selected to be PrMµPβAf,g|r,
where the domain and the range are both span r. A con-
sequence of this choice is that the finite-rank representation
admits eigenfunctions which could potentially generate an
approximate invariant subspace of the closed-loop system.

While eigenfunctions of the finite-rank representation exist,
they generally cannot be shown to converge to eigenfunctions
of the original operator, since the operators Mµ and Af,g

can no longer be assumed to be bounded and compact,
respectively. Instead, they are assumed to be densely defined.
Since the operators are not defined everywhere, we need the
additional assumptions that 1) the image of Af,g is contained
within the domain of Mµ, 2) the span of r is a subset of
the domain of Af,g, and 3) the functions hid,j can be well-
approximated by linear combinations of the eigenfunctions of
the finite-rank representation for j = 1, . . . , n. Due to the
lack of convergence guarantees and since the assumptions on
span r and hid,j are difficult to verify, the resulting algorithm,
while useful, is heuristic in nature. Since unbounded operators
over Hilbert spaces of real-valued functions can have empty
spectra, in this section, the RKHS H̃ is assumed to be
composed of complex-valued functions of real variables of
the form h : X → C.

The operators Mµ and Af,g are densely defined in a large
class of problems. For example, if the domain and range spaces
in Section VI-A are selected to have identical kernel param-
eters, then the resulting operators are densely defined [23],
and the image of Af,g is also contained within the domain of
Mµ. The assumption that span r ⊂ D(Af,g) can be removed
in favor of the assumption that the matrix that encodes the

finite rank representation of MµAf,g is approximately equal
to the transpose of the matrix that encodes the finite rank
representation of the adjoint A∗

f,gM
∗
µ (see [24]).

A. Matrix Representation of the Finite-rank Operator
In this section, a matrix representation of the finite-rank

representation is developed.
Proposition 14: If h = δ⊤r ∈ span r is a func-

tion with coefficients δ ∈ CM , Af,g and Mµ are
densely defined, span r ⊂ D(Af,g), spanβ ⊂ D(Mµ),
and g = PrMµPβAf,gh, then g = a⊤r with a =

G+
r IG

+
β Ĩ

⊤δ, where I :=
(〈
M∗

µrj ,Γγuk
,uk

〉
H

)M
j,k=1

and

Ĩ :=
(〈
ri, A

∗
f,gΓγuk

,uk

〉
H̃

)M
i,k=1

.

Proof: The coefficients a =
[
a1 · · · aM

]⊤ ∈ CM in
the projection of MµPβAf,gh ∈ H̃ onto span r are given by
the solution of the linear system

Gra =

 ⟨MµPβAf,gh, r1⟩H̃
...

⟨MµPβAf,gh, rM ⟩H̃

 . (26)

A matrix representation of PrMµPβAf,g|r relates the coeffi-
cients δ =

[
δ1 · · · δM

]⊤ ∈ CM of a function h = δ⊤r ∈
span r, with the coefficients a above. Using the properties
of the multiplication operator and the control Liouville oper-
ator established in the previous sections, the inner products
⟨MµPβAf,gh, rj⟩H̃ on the right hand side can be evaluated
as

⟨MµPβAf,gh, rj⟩H̃ =

M∑
i=1

δi
〈
Af,gri, PβM

∗
µrj
〉
H

=

M∑
i=1

δi

〈
Af,gri,

M∑
k=1

bk,jΓγuk
,uk

〉
H

,

where {bk,j}Mk=1 ⊂ R are the coefficients in the projection of
M∗

µrj ∈ H onto spanβ, which can be computed by solving

Gβ

 b1,j...
bM,j

 =


〈
M∗

µrj ,Γγu1 ,u1

〉
H

...〈
M∗

µrj ,ΓγuM
,uM

〉
H

 . (27)

Note that since the control occupation kernels
βi = Γγui

,ui
the occupation kernels ri = Γγui

,
and the symbol µ are all real-valued functions, the
coefficients bi,j are real numbers. The inner product
can thus be further simplified as ⟨MµPβAf,gh, rj⟩H̃ =∑M

i=1 δi
∑M

k=1 bk,j

〈
ri, A

∗
f,gΓγuk

,uk

〉
H̃

= δ⊤Ĩbj , where

bj :=
[
b1,j · · · bM,j

]⊤
. Stacking the inner products

on the left hand side in a column and selecting solutions
of (26) and (27) that minimize the 2-norm of a and bj ,
respectively, it can be concluded that a = G+

r IG
+
β Ĩ

⊤δ. A
matrix representation [MµPβAf,g]

r
r ∈ RM of the finite-rank

representation PrMµPβAf,g|r of the operator MµAf,g is
thus given by [MµPβAf,g]

r
r = G+

r IG
+
β Ĩ

⊤.
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In the following section, the matrix representation
[MµPβAf,g]

r
r is used to construct a data-driven representation

of the eigenvalues and the eigenfunctions of PrMµPβAf,g|r.

B. Eigenfunctions of the finite-rank representation
Given an eigenvalue λ̃j ∈ C and the corresponding eigen-

vector ṽj :=
[
ṽ1,j · · · ṽM,j

]⊤ ∈ CM of [MµPβAf,g]
r
r and

the vector r :=
[
r1 · · · rM

]⊤
of occupation kernels in

H̃ , it is straightforward to show that φj =
(
1/

√
ṽ†
jGr ṽj

)
ṽ⊤j r

is an eigenfunction of PrMµPβAf,g|r, where (·)† denotes
the conjugate transpose. Indeed, by the definition of the
matrix [MµPβAf,g]

r
r, it can be seen that PrMµPβAf,g|rφj =(

1/
√

ṽ†
jGr ṽj

)
([MµPβAf,g]

r
rṽj)

⊤
r = λ̃j

(
1/

√
ṽ†
jGr ṽj

)
ṽ⊤j r.

Using the fact that ri(x) = Γγui
(x) =

∫ Ti

0
K̃(x, γui

(t))dt,
the eigenfunctions, evaluated at a point x ∈ X , can be
computed as

φj(x) =
1√

ṽ†jGrṽj

M∑
i=1

ṽi,j

∫ Ti

0

K̃ (x, γui
(t)) dt. (28)

In the following section, the eigenvalues and the eigenfunc-
tions are used to generate a data-driven model.

C. The CLDMD Algorithm

Let W̃ =
(
ṽi,j/

√
ṽ†
jGr ṽj

)M
i,j=1

∈ CM×M be the matrix of
coefficients of the normalized eigenfunctions, arranged so that
each column corresponds to an eigenfunction. Assuming that
hid,j is in the span of the above eigenfunctions for each j =
1, · · · , n, a representation of the identity function as a linear
combination of a fixed number of eigenfunctions is given as
hid(x) ≈

∑M
i=1 ξiφi(x), where {ξi}Mi=1 ⊂ Cn are the so-

called control-Liouville modes. Similar to [3, Section 4.2], by
examining the inner products ⟨hid,j , ri⟩H̃ , the matrix ξ :=[
ξ1, · · · , ξM

]
can be shown to be a solution of the linear

system of equations

ξ
(
W̃⊤GrW̃

)
= RW̃ , (29)

where R :=
(
⟨hid,j , ri⟩H̃

)n,M
j,i=1

and W̃ denotes the complex
conjugate of W̃ . Indeed, letting ξi,j denote the j−th element of
the vector ξi, the row of coefficients ξj :=

[
ξ1,j , . . . , ξM,j

]
∈

C1×M in the projection of hid,j onto the span of the eigen-
functions {φi}Mi=1 is a solution of

ξjG⊤
φ =

[
⟨hid,j , φ1⟩H̃ , . . . , ⟨hid,j , φM ⟩H̃

]
, (30)

where Gφ =
(
⟨φi, φj⟩H̃

)M
i,j=1

∈ CM×M . Using the fact
that ⟨φi, φj⟩H̃ =

〈
w̃⊤

i r, w̃
⊤
j r
〉
H̃

= w̃†
jGrw̃i, where w̃j :=(

1/
√

ṽ†
jGr ṽj

)
ṽj , denotes the j−th column of W̃ , the Gram

matrix Gφ can be expressed as Gφ = W̃ †GrW̃ . Further-
more, using the fact that ⟨hid,j , φi⟩H̃ =

〈
hid,j , w̃

⊤
i r
〉
H̃

=[
⟨hid,j , r1⟩H̃ , . . . , ⟨hid,j , rM ⟩H̃

]
w̃i, where w̃i denotes the

complex conjugate of w̃i, the right hand side of (30)
can be expressed as

[
⟨hid,j , φ1⟩H̃ , . . . , ⟨hid,j , φM ⟩H̃

]
=[

⟨hid,j , r1⟩H̃ , . . . , ⟨hid,j , rM ⟩H̃
]
W̃ . Concatenating (30)

for j = 1, . . . , n into a column vector, the matrix ξ is seen

to be a solution of (29). Using the fact that any solution
of ξW̃⊤Gr = R is also a solution of (29), selecting the
solution of ξW̃⊤Gr = R that minimizes the 2-norm of ξi
for i = 1, · · · ,M , and using the relationship ⟨hid,j , ri⟩H̃ =〈
hid,j ,Γγui

〉
H̃

=
∫ Ti

0
γui,j(t)dt, where γui,j(t) denotes the

j−th component of γui
(t), a set of control Liouville modes

can be obtained as

ξ =
[∫ T1

0
γu1

(t)dt · · ·
∫ TM

0
γuM

(t)dt
] (
W̃⊤Gr

)+
.

(31)
The response t 7→ γµ(t) of the system, starting from the initial
condition γµ(0) = γ0, under the feedback control law µ, can
then be predicted as

γµ(t) ≈
M∑
j=1

ξjφj(γ0)e
λ̃jt. (32)

Furthermore, a pointwise approximation of the closed-loop
model can also be obtained as

ẋ ≈ F̂µ,M (x) :=

M∑
j=1

λ̃jξjφj(x). (33)

The CLDMD method is summarized in Algorithm 2.

Algorithm 2 The CLDMD algorithm
Input: Trajectories {γui}Mi=1, a feedback law µ, a numerical

integration procedure, Reproducing kernel K̃ of H̃ , Re-
producing kernel K of H , and if needed, regularization
parameters ϵ and ϵ̃.

Output: {ξj , λj , φj}Mj=1

1: Gβ ←
(〈

Γγui
,ui
,Γγuj

,uj

〉
H

)M
i,j=1

(see (34))

2: Gr ←
(
⟨ri, rj⟩H̃

)M
i,j=1

(see (35))

3: I ←
(〈
M∗

µrj ,Γγuk
,uk

〉
H

)M
j,k=1

(see (37))

4: Ĩ ←
(〈
ri, A

∗
f,gΓγuk

,uk

〉
H̃

)M
i,k=1

(see (36))

5: [MµPβAf,g]
r
r ← G+

r IG
+
β Ĩ

⊤ (See Remark 2)
6: {λj , ṽj}Mj=1 ← eigendecomposition of [MµPβAf,g]

r
r

7: W̃ ←
(
ṽi,j/

√
ṽ†
jGr ṽj

)M
i,j=1

8: Compute {ξj , φj}Mj=1 using (31) and (28) (See Remark 2)
9: return {ξj , λj , φj}Mj=1

VIII. COMPUTATION OF INNER PRODUCTS

The elements of the Gram matrix Gβ , corresponding to β,
can be computed using Proposition 3 as〈

Γγui
,ui
,Γγuj

,uj

〉
H

=

Tj∫
0

Ti∫
0

[
1 u⊤i (τ)

]
K
(
γuj

(t), γui
(τ)
) [ 1
uj(t)

]
dτdt (34)

The elements of the Gram matrix Gr can be computed using
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the double integral (cf. [3])

〈
Γγui

,Γγuj

〉
H̃

=

Tj∫
0

Ti∫
0

K̃
(
γuj(t), γui(τ)

)
dτdt. (35)

Using Proposition 4, the elements of the interaction matrix Ĩ
can be evaluated as〈
Γγui

, A∗
f,gΓγuk

,uk

〉
H̃
=
〈
Γγui

,K̃(·, γuk
(Tk))−K̃(·, γuk

(0))
〉
H̃

=

Ti∫
0

(
K̃(γui(t), γuk

(Tk))− K̃(γui(t), γuk
(0))

)
dt. (36)

Using Proposition 7, the elements of the interaction matrix I
can be evaluated as〈

M∗
µΓγui

,Γγuk
,uk

〉
H

=
〈
Γγui

,µ◦γui
,Γγuk

,uk

〉
H

=

Tj∫
0

Ti∫
0

[
1 µ⊤(γui(τ)))

]
K
(
γuj (t), γui(τ)

)[ 1
uj(t)

]
dτdt. (37)

Assuming that each trajectory is sampled at N points in time,
the computation of Gβ and I is O(nN2M2(m + 1)2), the
computation of Gr is O(nN2M2), and the computation of Ĩ is
O(nNM2). Computation of the finite-rank representation and
its decomposition are O(M3). Evaluation of the occupation
kernel is O(nN).

Remark 2: The SCLDMD and CLDMD algorithms can
also be implemented using regularization, where the Gram
matrices Gβ and Gr, if singular, are replaced by Gβ+ϵIM and
Gr+ ϵ̃IM , respectively, where IM denotes the M×M identity
matrix, and ϵ > 0 and ϵ̃ > 0 are regularization coefficients.

IX. NUMERICAL EXPERIMENTS

Two numerical experiments are performed to evaluate the
developed SCLDMD and CLDMD methods, one using a
simulated controlled Duffing oscillator and another using a
simulated two-link robot manipulator.

A. Controlled Duffing oscillator

This experiment concerns the controlled Duffing oscillator

ẋ1 = x2, ẋ2 = x1 − x31 + (2 + sin(x1))u,

where x =
[
x1 x2

]⊤ ∈ R2 is the state and u ∈ R is the
control. A total of 225 open-loop trajectories of the controlled
Duffing oscillator are generated using the MATLAB® ode45
solver, starting from initial conditions on a 15 × 15 regular
grid on a 6×6 square centered at the origin of the state space,
R2. The control signal used for trajectory generation is of the
form u(t) =

∑15
i=1 bi sin(ωit+ φi), where the magnitudes bi,

the frequencies ωi, and the phase differences φi are generated
randomly from a uniform distribution on the interval [−1, 1].
All trajectories are recorded over a duration of 1s, and are
sampled at a frequency of 20 Hz.

The trajectories are then utilized to predict the behavior
of the oscillator under the state feedback controller µ(x) =

[
−2 −2

]
x. CLDMD is implemented using the exponen-

tial dot product reproducing kernel K̃ρ̃ = exp
(

x⊤y
ρ̃

)
with

parameter ρ̃ = 5, and a diagonal kernel given by K =
diag

[
K̃ρ̃ K̃ρ̃

]
. SCLDMD is implemented using K̃r = K̃5,

K = diag
[
K̃6 K̃6

]
, and K̃d = K̃7. Simpson’s 1/3 rule is

used to compute the integrals involved in algorithms 1 and 2.
1) Vector Field Reconstruction: Fig. 3 shows a side by side

comparison of the pointwise 2-norm of the relative error
between the approximated vector field F̂µ,M (generated using
(25) for SCLDMD and (33) for CLDMD), and the true
vector field, Fµ. The results in Fig. 3 indicate that both
the CLDMD and the SCLDMD methods are able to obtain
accurate estimates of the closed-loop vector field on a domain
contained within the grid of initial conditions of the data.
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Fig. 3. Relative error ∥Fµ(x)−F̂µ(x)∥2

maxx∈[−2,2]×[−2,2] ∥Fµ(x)∥2
in the estimation

of the vector field Fµ of the controlled Duffing oscillator as a function of
x, obtained using SCLDMD (left) and CLDMD (right).

2) Indirect Closed-loop Response Prediction: The closed
loop response can be predicted using either SCLDMD or
CLDMD by numerically solving the initial value problems
in (25) and (33), respectively, starting from the desired initial
condition. Fig. 4 shows the prediction error resulting from this
indirect approach, starting from x0 =

[
2 −2

]⊤
. The results

in Fig. 4 indicate that both the CLDMD and the SCLDMD
methods, when coupled with indirect prediction, accurately
predict the desired closed-loop trajectory.
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5
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x1(t)− x̂1(t)
x2(t)− x̂2(t)

0 2 4 6 8 10

−5

0

5
·10−4

Time [s]

CLDMD

x1(t)− x̂1(t)
x2(t)− x̂2(t)

Fig. 4. Error between predicted and true trajectories of the controlled
duffing oscillator for the experiment in Section IX-A. The figure on the
left is obtained using SCLDMD indirect prediction by solving (25) and
the figure on the right is obtained using CLDMD indirect prediction by
solving (33), both using the MATLAB® ode45 solver.

3) Direct Closed-loop Response Prediction: The CLDMD
method can also be used to predict the behavior of the closed-
loop system starting from a given initial condition, and under
the given feedback controller. Direct reconstruction is imple-
mented using (32). Fig. 5 shows the true and the predicted



14 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXXX 2024

trajectories starting from the initial condition x0 =
[
2 −2

]⊤
.

The predicted trajectory is denoted by x̂. The results in Fig. 5
indicate that the CLDMD method, when coupled with direct
prediction, fails to obtain accurate prediction of the closed-
loop trajectories.
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x̂2(t)
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−1

0

1

Time [s]

x1(t)− x̂1(t)
x2(t)− x̂2(t)

Fig. 5. Predicted and true trajectories (left) and the corresponding pre-
diction errors (right) of the controlled duffing oscillator for the experiment
in Section IX-A. This result is obtained using CLDMD direct prediction
(32) with kernel parameter ρ̃ = 1e8.

B. Two-link Robot Manipulator

This experiment concerns a planar two-link robot manipu-
lator described by Euler-Lagrange dynamics

M(q)q̈ + Vm(q, q̇)q̇ + F (q̇) = τ,

where q = (q1 q2)
⊤ ∈ R2 and q̇ = (q̇1 q̇2)

⊤ are the angular
positions (rad) and angular velocities (rad s−1) of the two
links, respectively, τ = (τ1 τ2)

⊤ is the torque (Nm) produced
by the motors that drive the joints, M(q) is the inertia matrix,
and Vm(q, q̇) is the centripetal-Coriolis matrix, defined as

M (q) :=

[
p1 + 2p3c2 (q) p2 + p3c2 (q)
p2 + p3c2 (q) p2

]
,

and

Vm (q, q̇) =

[
p3s2 (q) q̇2 −p3s2 (q) (q̇1 + q̇2)
p3s2 (q) q̇1 0

]
,

where p1 = 3.473 kgm2, p2 = 0.196 kgm2, p3 =
0.242 kgm2, c2 (q) = cos(q2), s2 (q) = sin(q2), and
F (q̇) =

[
fd1q̇1 + fs1 tanh(q̇1) fd2q̇2 + fs2 tanh(q̇2)

]⊤
is

the model for friction, where fd1 = 5.3 kgm2 s−1,
fd2 = 1.1 kgm2 s−1, fs1 = 8.45 kgm2 s−1, and fs2 =
2.35 kgm2 s−1. The model can be expressed in the form
ẋ = f(x) + g(x)u with x =

[
q⊤ q̇⊤

]⊤
, u =

τ , f(x) =
[
q̇⊤

(
M−1(q)(−Vm(q, q̇)q̇ + F (q̇))

)⊤], and

g(x) =
[
02×2 (M−1(q))⊤

]⊤
, where 02×2 denotes a 2 × 2

matrix of zeros.
A total of 200 open-loop trajectories of the manipulator are

generated using the MATLAB® ode45 solver, starting from
initial conditions selected to fill a hypercube of side 1, centered
at the origin of the state space, R4, using a Halton sequence.
The control signal used for trajectory generation is of the
form u =

[
u1 u2

]⊤
with uj(t) =

∑15
i=1 bj,i sin(ωj,it+φj,i),

for j = 1, 2, where the magnitudes bj,i, the frequencies ωj,i,
and the phase differences φj,i are generated randomly from a
uniform distribution on the interval [−1, 1]. All trajectories are
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x2(t)− x̂2(t)
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Fig. 6. Predicted and true trajectories (left) and the corresponding
prediction errors (right) of the 2-link robot manipulator for the experiment
in Section IX-B. This result is obtained using CLDMD direct prediction
(32) with kernel parameter ρ̃ = 1e5 and regularization parameter
ϵ̃ = ϵ = 1e − 7.
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Fig. 7. Error between the predicted and the true trajectories of the 2-
link manipulator for the experiment in Section IX-B. The figure on the
left is obtained using SCLDMD indirect prediction by solving (25) and
the figure on the right is obtained using CLDMD indirect prediction by
solving (33), both using the MATLAB® ode45 solver.

recorded over a duration of 1s, and are sampled at a frequency
of 10 Hz.

The trajectories are then utilized to predict the behavior
of the oscillator under the state feedback controller µ(x) =[
−5 −5
−15 −15

]
x, starting from x0 =

[
1 −1 1 −1

]⊤
.

CLDMD is implemented using the exponential dot product
reproducing kernel with parameter 10 and a diagonal kernel
given by K = diag

[
K̃10 K̃10 K̃10

]
. SCLDMD is imple-

mented using K̃r = K̃5, K = diag
[
K̃10 K̃10 K̃10

]
, and

K̃d = K̃15. Gram matrices are regularized as described in
Remark 2 using regularization coefficients ϵ = ϵ̃ = 1e − 3.
Simpson’s 1/3 rule is used to compute the integrals involved
in algorithms 1 and 2. Since the vector field is now a function
of 4 variables in each dimension, direct visualization of the
true and approximate vector fields is not possible. However,
the reconstruction accuracy may be indirectly gauged through
indirect prediction of trajectories of the system.

Fig. 6 shows the true and the predicted trajectories using
the direct reconstruction method, implemented using (32). The
results in Fig. 6 indicate that the CLDMD method, when
coupled with indirect prediction, is able to predict the desired
closed-loop trajectory much better in this experiment than
the Duffing oscillator experiment in Fig. 5. Fig. 7 shows the
predicted trajectories and the prediction error resulting from
the indirect approach. The results in Fig. 7 indicate that both
the CLDMD and the SCLDMD methods, when coupled with
indirect prediction, accurately predict the desired closed-loop
trajectory.
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X. DISCUSSION

As is evident from Fig. 3, the methods developed in
algorithms 1 and 2 can effectively utilize data collected under
open-loop control signals to construct the closed-loop vector
field under a given feedback policy.

Figures 5 and 4 indicate that the prediction error for the
highly nonlinear controlled Duffing oscillator is significantly
higher in direct prediction as compared to indirect prediction.
We postulate that this is due to the linear nature of the model
in (32). Since (32) is a solution of a system of linear ordinary
differential equations, the resulting reconstruction diverges
quickly from the trajectories of the nonlinear model. On the
other hand, we postulate that due to the presence of the
eigenfunctions in (33), the model used in the indirect approach
includes nonlinear effects and as a result, generates a better
prediction. When the nonlinearities in the original system are
mild, like the trigonometric nonlinearities in the two link robot
model, the predictions from the direct and the indirect method
are close, as seen in figures 6 and 7.

The theory and the computations that support the developed
algorithms require data-richness. In the convergence proofs,
data-richness manifests as the density of the kernel differences,
the occupation kernels, and the control occupation kernels in
their respective RKHSs. In the computations, data-richness is
required for the Gram matrices Gr and Gβ of the occupation
kernels and the control occupation kernels, respectively to
be invertible. It is shown in [50] that for Gaussian radial
basis function reproducing kernels, the rank of the occupation
kernel Gram matrix Gr can be characterized using the so-
called trajectory separation distance. Roughly, the trajectory
separation distance is the largest radius q such that when
all trajectories are inflated to tubes of radius q, the resulting
tubes are disjoint. Since multiple, shorter trajectories, starting
from initial conditions that are well-separated, would generally
result in better separation distances, such a dataset would be
preferred. However, if the trajectories are too short, then the
matrix D of trajectory endpoint differences can reduce to a
zero matrix, resulting in poor performance. Obtaining similar
results for other reproducing kernels and for characterization
of the rank of the control occupation kernel Gram matrix Gβ

is a topic for future research.
The condition number of Gr and Gβ depends not only

on the trajectories but also on the selected reproducing ker-
nels. For example, the condition number of Gram matrices
corresponding to Gaussian radial basis functions, given as
K̃(x, y) = exp(− 1

ρ̃∥x − y∥22) for ρ̃ > 0 is larger for larger
ρ̃. However, large ρ̃ values correspond to faster convergence
of interpolation problems within the RKHS of the kernel
(cf. [51]). Data-richness conditions similar to the persistence
of excitation (PE) condition in adaptive control that relate
the trajectories and the kernels can potentially be formulated
to ensure a well-conditioned Gr and Gβ , however, such
formulation is a topic for future research.

Numerical experiments indicate that while direct trajectory
reconstruction can be poor for systems with severe nonlinear-
ities, the developed techniques generate accurate estimates of
the closed-loop vector field from data. Unlike traditional sys-

tem identification techniques, the algorithms developed in this
paper do not require careful selection of basis functions. While
the implementation can be done using any universal kernels,
careful tuning of the kernel parameter is often necessary.

XI. CONCLUSION

In this paper, a novel operator-theoretic framework is de-
veloped for the study of controlled nonlinear systems. The
framework utilizes RKHSs, where feedback-controlled non-
linear systems are expressed using a composition of infinite
dimensional multiplication operator and an infinite dimen-
sional control Liouville operator. A provably convergent finite-
rank representation of the composition, that utilizes trajectories
of a system, observed under open-loop control inputs uj , is
developed. Eigendecomposition and SVD of the finite-rank
representation is utilized to predict the behavior of the system
response to a query feedback controller, µ. The same dataset
can be used to predict the system behavior in response to a
multitude of query feedback controllers.

To the best of our knowledge, this paper, along with the con-
ference paper [24], are the first to study spectral decomposition
of continuous-time feedback-controlled nonlinear systems in a
provably convergent manner. While this paper focuses solely
on system identification, the uniform convergence guarantees
established by Corollary 1, makes the developed modeling
technique an attractive candidate for use in a variety of
applications, including, but not limited to, data-driven control
synthesis and data-driven analysis and validation of feedback
controllers.
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