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Abstract. This manuscript presents a novel approach to nonlinear system identification lever-
aging densely defined Liouville operators and a new “kernel” function that represents an integra-
tion functional over a reproducing kernel Hilbert space (RKHS) dubbed an occupation kernel. The
manuscript thoroughly explores the concept of occupation kernels in the context of RKHSs of contin-
uous functions, and studies Liouville operators over RKHSs. The combination of these two concepts
facilitates embedding of a dynamical system into a RKHS, where function theoretic tools may be
leveraged for the examination of such systems. This framework allows for trajectories of a nonlinear
dynamical system to be treated as a fundamental unit of data, and results in a nonlinear system
identification (sysID) routine that generalizes weak least-squares sysID approaches. Numerical ex-
periments indicate that the developed approach identifies parameters of nonlinear dynamical systems
accurately, while also exhibiting robustness to noise.

1. Introduction. Consider a dynamical system ẋ = f(x), where x : [0, T ]→ Rn
is the system state and f : Rn → Rn are Lipschitz continuous dynamics. Dynamical
systems are prevalent in the sciences, such as engineering [18, 9, 19], biology [1, 12],
neuroscience [16], physics [42], and mathematics [8, 29]. However, in many cases even
physically motivated dynamical systems can have unknown parameters (i.e. a gray
box model), such as mass and length of mechanical components, or the dynamics
may be completely unknown (i.e. a black box model) [25]. In such cases, system
identification methods are leveraged to estimate the dynamics of the system based on
data generated by the system [25].

While many classical tools are available for system identification for linear dynam-
ics using the impulse response and Fourier and Laplace transforms of the dynamical
system, the identification of nonlinear systems proves more challenging as nonlinear-
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ities may manifest in a variety of ways, and linear transform methods for general
nonlinear systems are unavailable [2, 25].

To address these challenges a variety of nonlinear system identification methods
have been developed, such as NARMAX methods [2], Volterra series [14], Lyapunov
methods [26], and neural networks [25]. Recent developments in nonlinear system
identification include reasoning over infinite-dimensional function spaces via kernel
methods [30, 7, 3, 39] and dynamic mode decompositions (DMDs) and their connection
with the Koopman operator [5, 15, 43, 22]. However, given the rich variety of nonlinear
systems, there is no modal approach to resolving the system identification problem
for nonlinear systems [25].

One technical challenge that arises in many of the system identification methods
described above is the estimation of the state derivative [5, 26]. Frequently only
the output trajectory is available and numerical estimation methods are employed to
obtain samples of the state and the state derivative. Unfortunately, numerical state
derivative estimates are prone to error, and introduce an artificial noise component
that requires additional filtering [5].

In an online parameter estimation context, [26] leveraged the technique of integral
concurrent learning, where state derivative estimates were replaced with integrals of
the state. Therein it was demonstrated that the parameters were more precisely
estimated via the integral concurrent learning method than by methods using state
derivative estimates. Moreover, in the online setting the parameter estimation error
was more robust to noise under the integral concurrent learning method [26].

The present manuscript develops a method to compute projection of the dynamics
of a system onto the span of a collection of basis functions using samples of the system
trajectory. The projection is derived for a class of dynamical systems that arise as
symbols for densely defined Liouville operators over a RKHS (RKHS). The developed
method also provides a collection of constraints that can be leveraged for sparse
identification routines, such as the SINDy algorithm [5].

Specifically, the method presented in Section 8 leverages novel kernel techniques
presented in Section 5, where the concept of occupation kernels is introduced along side
that of densely defined Liouville operators. Occupation kernels are a generalization of
occupation measures, which have been used in dynamical systems theory and optimal
control based largely on the seminal work of [20]. The present manuscript links the
theory of occupation measures to function theory by examining integration functionals
over RKHSs rather than the Banach spaces of continuous functions.

While an occupation measure is a member of the dual of a Banach space, an occu-
pation kernel is a function that resides in the RKHS. Moreover, the representation of a
trajectory as an occupation kernel over a RKHS changes with the selection of RKHS,
which allows for different aspects of the trajectory to be emphasized. In particular,
an inner product on the space of dynamical systems may be determined given ob-
served system trajectories through a combination of densely defined operators over a
RKHS and the occupation kernel corresponding to the trajectory. In contrast, due to
the limited availability of computational tools for measures, the study of occupation
measures has been limited to polynomials in both the dynamics of the dynamical sys-
tems as well as the test functions leveraged to provide constraints on the occupation
measures themselves.

The contributions of this manuscript are presented below.
• The concept of Liouville operators is integrated with the theory of RKHSs

to yield a representation of nonlinear dynamical systems in a Hilbert space
setting.
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• Occupation measures are generalized to occupation kernels, where a trajec-
tory is represented inside a Hilbert space as a function.

• An inner product on dynamical systems that give rise to densely defined
Liouville operators over RKHSs is developed in Section 7 via adjoints applied
to occupation kernels.

• Through a factorization of the Gram matrix for projection within the inner
product space, a collection of constraints is developed for a system identifi-
cation method, which is presented in Section 8. These constraints use more
general test functions than polynomials, which is an advantage that arises in
the use of occupation kernels over occupation measures. In particular, the test
functions under consideration correspond to feature maps for the underlying
reproducing kernel.

• The pre-inner product and the inner product developed in Section 7 yield
unique insights for the system identification problem, such as the possibility
to improve numerical stability of the estimation algorithm using a Gram-
Schmidt process, see Section 8.2.

The manuscript is organized as follows. Preliminaries necessary for the develop-
ment of occupation kernels and densely defined Liouville operators are presented in
Section 4, and the densely defined Liouville operators and occupation kernels them-
selves are introduced in Section 5, with commentry on numerical estimation of oc-
cupation kernels in Section 6. In Section 7, these tools are then turned towards the
development of an inner product on nonlinear dynamical systems, where the parame-
ters resolving a system identification routine arise as the coefficients for the projection
of a dynamical system onto its basis functions. Specifically, through a factorization of
the Gram matrix, a collection of linear constraints on the parameters of the dynamics
in Section 8 arise naturally. These constraints may be compared with [5], where state
derivatives are replaced via a collection of integral constraints. Section 6 examines
the convergence properties of occupation kernels associated with various numerical
methods, while Section 9 demonstrates a robustness to noise of the samples used in
Section 8. Finally, the system identification approach is then examined through a
collection of numerical experiments in Section 10 and the experiments are discussed
in Section 11.

2. Problem formulation. In a gray box system identification setting, the sys-
tem dynamics, f : Rn → Rn, is parameterized in terms of a collection of basis func-
tions, Yi : Rn → Rn for i = 1, . . . ,M , as

(2.1) ẋ = f(x) =

M∑
i=1

θiYi(x).

Let X ⊂ Rn be compact, H be a RKHS of continuous functions over X, and 0 <
T ∈ R. The goal of system identification is to determine values of the parameters,
θi for i = 1, . . . ,M , such that (2.1) may be used to reproduce a given a collection of
continuous trajectories, {γj : [0, T ]→ X}Nj=1.

The identification method needs to be data-efficient and robust to process and
sensor noise. In this paper, an operator theoretic generalization of a derivative-free
method similar to integral least squares [26] and weak-SINDy [24] is developed to solve
the identification problem. The generalization is realized by developing the theory of
occupation kernels and Liouville operators and using it to formulating a novel inner
product between dynamics that are symbols of densely defined Liouville operators.
In addition to the system identification algorithm, the inner product provides a new
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measure of distance between two dynamical systems and the Gram-Schmidt process
developed in Section 8.2.

3. System Identification from the Operator Theoretic Viewpoint. The
operator theoretic viewpoint of this article offers not only practical benefits such as the
Gram Schmidt process in Section 8.2 and the improved performance demonstrated
in Experiment 3, but also avenues towards new insights into and new approaches
for data-driven learning. For example, extended dynamic mode decomposition [45]
encodes the action of the dynamics as a Koopman (composition) operator and then
builds finite rank representations. Kernelized support vector machines [41] use a
feature map to send data points to observables in a RKHS. The success of these
techniques is due, in part, to transformation of nonlinear problems into linear problems
over Hilbert spaces, and indicates that the operator theoretic viewpoint is valuable.

In this section, we offer a generalized framework for parameter identification
schemes along with a translation between the operator theoretic viewpoint presented
in this paper and a more conventional weak least-squares viewpoint. It should be
noted that most of the material presented below first appeared in [36].

3.1. Parameter Identification in State Space Models. An overarching as-
sumption in parameter identification techniques is that f is a linear combination of a
finite set of functions {Yi}Mi=1, i.e., f(·) =

∑M
i=1 θiYi(·), θi ∈ R, i = 1, . . . ,M. The

goal is to estimate the weights {θi}Mi=1 from data that contains (part of) the solution
x to the underlying system.

3.1.1. The Least-squares/SINDy Method. Given {γ(tk)}Kk=1 at time steps

{tk}Kk=1, the least squares method seeks weights θ :=
(
θ1 · · · θM

)>
that satisfy

γ̇(tk) =
∑M
i=1 θiYi(γ(tk)), k = 1, . . . ,K, which is then formulated as a linear system

(3.1) b = Gθ with entries bk = γ̇(tk), and Gk,i = Yi(γ(tk)).

The SINDy method in [5] makes a second fundamental assumption that the underlying
dynamics are sparsely represented in the correct choice of basis, and as such, the above
linear system is solved using a sparsity enforcing solver such as LASSO [44].

3.1.2. The Weak Least-squares/Weak-SINDy Method. The weak-SINDy
method proposed in [24, 23] introduces a class of test functions {ψk : [0, T ]→ R}Kk=1

in addition the basis functions {Yi}Mi=1 used in the SINDy method. We refer to {Yi}Mi=1

as a projection basis and {ψk}Kk=1 as a test function basis. Given γ(t), ∀t ∈ [0, T ], the
weak-SINDy method finds the weights {θi}Mi=1 by solving

(3.2) 〈γ̇, ψk〉L2 =
〈∑M

i=1 θiYi(γ(·)), ψk
〉
L2
, k = 1, . . . ,K,

where 〈·, ·〉L2 denotes the L2 inner product on [0, T ]. In matrix form, Equation 3.2
is written as

(3.3) b = Gθ with entries bk = 〈γ̇, ψk〉L2 and Gk,i = 〈Yi(γ(·)), ψk〉L2 ,

where the entries of b can be computed using integration by parts, i.e.,

(3.4) 〈γ̇, ψk〉L2 = −
〈
γ, ψ̇k

〉
L2
,

under the assumption that {ψk}Kk=0 have compact support in [0, T ].
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The derivatives of the test functions, ψ̇k, are often known a priori, and hence, the
weak-SINDy method avoids direct computations of γ̇. For example, with ψk(t) = t for
all t ∈ [0, T ] and k = 1, · · · ,K, and a collection of N trajectories {γj : [0, T ]→ X}Nj=1,

one recovers the integral least squares (ILS) problem1

(3.5) θ∗ = min
θ

N∑
j=1

∥∥∥∥∥γj(T )− γj(0)−
M∑
i=1

θi

∫ T

0

Yi(γj(t))dt

∥∥∥∥∥
2

2

.

In this paper, ILS/weak-SINDy methods are generalized by posing the system iden-
tification problem as a projection problem in a RKHS using the so-called occupation
kernels. The ILS formulation is recovered when the underlying RKHS is the one
corresponding to the linear kernel K(x, y) = x>y.

3.1.3. The Occupation Kernel Method. The basic form of the operator-
theoretic technique developed in this article is similar to weak-SINDy. Given γ(t),
∀t ∈ [0, T ] and a set of test functions {ψk : X → R}Kk=1, the occupation kernel method
solves

(3.6) 〈∇ψk(γ(·)), γ̇〉L2 =
〈
∇ψk(γ(·)),

∑M
i=1 θiYi(γ(·))

〉
L2

, k = 1, . . . ,K,

where the left-hand side can be reformulated as
(3.7)

〈∇ψk(γ(·)), γ̇〉L2 =
∫ T

0
∇ψk(γ(t))γ̇ dt =

∫ T
0

d
dt (ψk(γ(t)) dt = ψk(γ(b))− ψk(γ(a)) .

Thus, the matrix formulation of Equation 3.6 becomes
(3.8)
b = Gθ with entries bk = ψk(γ(b))− ψk(γ(a)) and Gk,i = 〈Yi(γ(·)), ∇ψk(γ(·))〉L2 ,

which also avoid direct measurements or evaluations of γ̇. The generalization results
in several practical and theoretical advantages. As evidenced by the results of Ex-
periment 3 (see Figure 10.7 and Table 11.1), the method developed in this paper can
yield better results than various implementations of ILS, including the case where suf-
ficiently many trajectories available to yield a well-conditioned ILS regression matrix.

3.2. A Cohesive Vision of System Identification Problems. In this sec-
tion we adapt the use of both the test functions {ψk : [0, T ] → R}Kk=1 and the basis
functions {Yi}Mi=1 as done in weak-SINDy. Foremost, the least-squares/SINDy tech-
nique can be cast into this framework under the assumptions that γ(·), γ̇(·), and
Yi(γ(·)) lie in the same RKHS (defined in Section 4), denoted H[0,T ], and that the
test functions are chosen to be, Ktk , the reproducing kernels centered at the time-steps
tk. The reproducing kernels centered at tk are functions in H[0,T ] with the property
h(tk) = 〈h,Ktk〉H[0,T ]. The right hand side of Equation 3.2 can thus be evaluated as

(3.9) 〈Yi(γ(·)), ψk〉L2 = 〈Yi ◦ γ(·), Ktk〉H[0,T ]
= Yi(γ(tk)).

While the test functions could also be selected to be Dirac delta distributions to yield a
similar result, this paper takes the view point that the test functions will form a finite
dimensional subspace of the underlying Hilbert function space such that Hilbert space

1Since the system is time-invariant, the collection of N trajectories {γj : [0, T ] → X}Nj=1 can also

be obtained by segmenting a single trajectory γ : [0, NT ] → X as γj(t) = γ(jt).
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theory applies to the analysis. The theoretical sacrifice made to enable the Hilbert
space formulation is the assumption that the solution and the basis functions lie in a
RKHS. This assumption relates to decay rate constraints on Fourier coefficients for
functions inside the RKHS (via Mercers theorem) [41, Theorem 4.49].

3.2.1. Operator form of Occupation Kernel System Identification. Con-
sider the Liouville operator Afg = ∇xg · f and the occupation kernel Γγ , with the

property 〈f, Γγ〉H =
∫ T

0
f(γ(t))dt, as defined in Section 5.

We note that
∫ T

0
∇xg(γ(t))f(γ(t))dt = 〈Afg, Γγ〉H . Therefore, given the test

functions {ψk : X → R}Kk=1, the entries in the linear system Equation 3.8 can be
written as

(3.10) bk =
〈
ψk, A

∗
f (Γγ)

〉
H
, and Gk,i =

〈
ψk, A

∗
Yi(Γγ)

〉
H
,

where A∗Yi denotes the adjoint of AYi , as subsequently defined in Section 4.2. The suc-
cess of this method is then is tied to how similar the functions A∗f (Γγ) and A∗∑

i θiYi
(Γγ)

are on the finite dimensional space generated by the test functions ψk. In the im-
plementation given in this paper, the test functions ψk are chosen to be reproducing
kernels.

3.2.2. Operator form of Least-squares/ SINDy/ Weak-SINDy. By in-
voking a composition operator Cγ(f) := f ◦ γ, Equations (3.1) and (3.2) can be
written as

(3.11) bk = 〈Cγ(f), ψk〉 , and Gi,k = 〈Cγ(Yi), ψk〉 .

Again, the least squares/SINDy technique makes the assumption that the test func-
tions are reproducing kernels at the time steps yielding Equation 3.9, while Weak-
SINDy makes the assumption that the test functions have compact support in the
relevant domain allowing the use of Equation 3.4.

Overall, this manuscript takes the viewpoint that under the assumption of in-
creased regularity of the involved functions, parameter estimation problems can be
placed in a setting other than L2. By analyzing in this new setting, we gain sev-
eral theoretical advantages. Often, the assumptions of increased regularity allow for
stronger notions of convergence. For example, in the case of truncation error esti-
mates, we establish convergence in an RKHS, which implies pointwise everywhere
convergence. We also gain new avenues for analysis by considering soft analysis ap-
proaches via the properties of the operator, and the additional structure of an RKHS
can yield new approaches such as the Gram-Schmidt procedure in Section 8.2.

4. Preliminaries. In this section, fundamental properties of RKHSs are sum-
marized before introducing the idea of occupation kernels.

4.1. Reproducing Kernel Hilbert Spaces.

Definition 4.1. A RKHS, H, over a set X is a Hilbert space of real valued
functions over the set X such that for all x ∈ X the evaluation functional, Ex : H →
R, given as Exg := g(x) is bounded.

The Riesz representation theorem guarantees, for all x ∈ X, the existence of a
function kx ∈ H such that 〈g, kx〉H = g(x), where 〈·, ·〉H is the inner product for H
[27, Chapter 1]. The function K(x, y) = 〈ky, kx〉H is called the reproducing kernel
of H. Each reproducing kernel has an associated feature map, Ψ : X → `2(N), such
that K(x, y) = 〈Ψ(x),Ψ(y)〉`2(N). The feature map can be obtained by using an
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orthonormal basis for H, and if K : X×X → R can be represented through a feature
map, then there is a unique RKHS for which K is its reproducing kernel [4].

This manuscript utilizes two RKHSs, which are defined through their reproduc-

ing kernels. For µ > 0, the reproducing kernel KE(x, y) = eµx
>y is called the

exponential dot product kernel, and for µ > 0, the reproducing kernel given as

KG(x, y) = exp
(
− 1
µ‖x− y‖

2
2

)
is called a Gaussian radial basis function (RBF) ker-

nel. Both KE and KG are reproducing kernels for RKHSs over Rn [41, Chapter
4].

4.2. Densely Defined Operators. For many RKHSs of continuously differen-
tiable functions, the differential operator is unbounded, which means that there are
frequently functions in such a RKHS, H, such that their derivative is not a member
of H. The focus of this manuscript is in the study of Liouville operators, which imple-
ment the gradient operation on members of a RKHS. As such, care will be required
in defining these operators and their domain.

Given a Hilbert space, H, and a subspace D(T ) ⊂ H, a linear operator T :
D(T )→ H is called densely defined if D(T ) is a dense subspace of H [28, Chapter 5].
The operator T is closed if g ∈ D(T ) and Tg = h for every sequence {gm}∞m=0 ⊂ D(T )
such that gm → g ∈ H and Tgm → h ∈ H.

The adjoint of a possibly unbounded operator is defined through its domain
D(T ∗)= {g ∈ H : h 7→ 〈Th, g〉H is bounded over D(T )}. Since D(T ) is dense in
H, for each g ∈ D(T ∗), the functional h 7→ 〈Th, g〉H extends to a bounded functional
defined on H [28, Theorem 2.1.11]. As a result, by the Riesz representation theorem,
there exists a unique member T ∗g ∈ H such that 〈Th, g〉H = 〈h, T ∗g〉H . The adjoint
T ∗ is then defined as the operator taking g ∈ D(T ∗) to T ∗g [28, Section 5.1.2]. The
closedness of the operator guarantees the nonemptiness of the domain of its adjoint.
In fact, the following stronger statement holds.

Lemma 4.2. (c.f. [28, Chapter 5]) The adjoint of a closed operator is densely
defined.

5. Liouville Operators and Occupation Kernels. To establish a connection
between RKHSs and nonlinear dynamical systems, the following operator is intro-
duced, which is inspired by the study of occupation measures [20].

Definition 5.1. Let ẋ = f(x) be a dynamical system with the dynamics, f :
Rn → Rn, locally Lipschitz continuous, and suppose that H is a RKHS over a set X,
where X ⊂ Rn is compact. The Liouville operator with symbol f , Af : D(Af )→ H,
is given as Afg := ∇xg · f, where D(Af ) := {g ∈ H : ∇xg · f ∈ H} .

A small subset of Liouville operators can be obtained as infinitesimal generators
for semigroups of Koopman operators. For a Liouville operator to be such an infinites-
imal generator, the associated symbol (or continuous time dynamics) must be forward
invariant (cf. [13, Assumption 1]). Specifically, dynamics that lead to finite escape
times, such as ẋ = 1 + x2, cannot be discretized to yield a Koopman operator, and
as a result, the Liouville operator corresponding to the symbol f(x) := 1 + x2 cannot
be obtained as an infinitesimal generator. More generally, Liouville operators corre-
sponding to globally Lipschitz symbols can be obtained as infinitesimal generators.
However, techniques that rely on global Lipschitz continuity would exclude most poly-
nomial systems and other nonlinear systems with finite escape times. Hence, methods
that allow generators to inherit desirable properties, such as being densely defined and
closed, from their associated semigroups, cannot be leveraged to study a majority of
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Liouville operators. These properties must be established separately to ensure full
generality.

Liouville operators embed the nonlinear dynamics inside of an unbounded op-
erator. The first question to address is that of existence. In particular, are there
reasonable classes of dynamics for which the Liouville operator is densely defined over
a RKHS?

Example 1. The most commonly investigated dynamical systems are those with
polynomial dynamics. In the case that f is a polynomial over Rn, a Liouville operator
with those dynamics maps polynomials to polynomials, when polynomials are contained
in the RKHS in question. One example, where polynomials are not only contained in
the RKHS but are also dense, is the native RKHS of the exponential dot product
kernel [41, Chapter 4]. Moreover, for this space, the collection of monomials forms
an orthogonal basis.

The above example guarantees the existence of densely defined Liouville operators
for a large class of dynamics. In the case when a Liouville operator is not known to
be densely defined, some of the methods of this manuscript may still be applied as a
heuristic algorithm. As a differential operator, Af is not expected to be a bounded
over any RKHS. However, as differentiation is a closed operator over RKHSs consisting
of continuously differentiable functions, which follows from [41, Corollary 4.36], it can
be similarly established that Af is closed under the same circumstances.

Theorem 5.2. Let H be a RKHS of continuously differentiable functions over a
set X and f : Rn → Rn be a function such that Af has nontrivial domain, then Af
is a closed operator.

Proof. By [41, Corollary 4.36], it can be observed that if {gm}∞m=1 ⊂ H such that

‖gm − g‖H → 0 in H then
{

∂
∂xi

gm

}∞
m=0

converges to ∂
∂xi

g uniformly in X. Hence,

if {gm}∞m=0 ⊂ D(Af ) ⊂ H converges to g and {Afgm}∞m=0 converges to h ∈ H then
∇xgm(x)f(x) converges to ∇xg(x)f(x) pointwise. As Afgm(x) = ∇xgm(x)f(x), it
follows that h(x) = limm→∞Afgm(x) = ∇xg(x)f(x). By the definition of D(Af ),
g ∈ D(Af ) and Afg = h.

Thus, Af is a closed operator for RKHSs consisting of continuously differentiable
functions. Consequently, the adjoints of densely defined Liouville operators are them-
selves densely defined by Lemma 4.2. The main object of study of this manuscript
is a class of functions,dubbed occupation kernels, within the domain of the adjoint of
the Liouville operator.

Definition 5.3. Let X ⊂ Rn be compact, H be a RKHS of continuous func-
tions over X, and γ : [0, T ] → X be a continuous trajectory. The functional g 7→∫ T

0
g(γ(τ))dτ is bounded over H, and may be represented as

∫ T
0
g(γ(τ))dτ = 〈g,Γγ〉H ,

for some Γγ ∈ H by the Riesz representation theorem. The function Γγ is called the
occupation kernel corresponding to γ in H.

Proposition 5.4. Let H be a RKHS of continuously differentiable functions over
a compact set X, and suppose that f : Rn → Rn is Lipschitz continuous. If γ : [0, T ]→
X is a trajectory as in Definition 5.3 that satisfies γ̇ = f(γ), then Γγ ∈ D(A∗f ), and
A∗fΓγ = K(·, γ(T ))−K(·, γ(0)).

Proof. For Γγ to be in D(A∗f ), the functional g 7→ 〈Afg,Γγ〉H needs to be bounded
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over D(Af ). Note that

(5.1)

∫ T

0

∇xg(γ(t))f(γ(t))dt = g(γ(T ))− g(γ(0)) = 〈g,K(·, γ(T ))−K(·, γ(0))〉H

as the integrand of (5.1) is the total derivative of g(γ(t)). The left hand side of
(5.1) may be expressed as 〈Afg,Γγ〉H , while the right hand side satisfies the bound
|g(γ(T ))−g(γ(0))| = |〈g,K(·, γ(T ))−K(·, γ(0))〉H | ≤ ‖g‖H‖K(·, γ(T ))−K(·, γ(0))‖H ,

which establishes the boundedness of g 7→ 〈Afg,Γγ〉H . Moreover, since
〈Afg,Γγ〉H = 〈g,K(·, γ(T )) − K(·, γ(0))〉H , it follows that A∗fΓγ = K(·, γ(T )) −
K(·, γ(0))

Proposition 5.4 completes the integration of nonlinear dynamical systems with
RKHSs. In particular, valid trajectories for the dynamical system appear as occupa-
tion kernels within the domain of the adjoint of the Liouville operator corresponding
to the dynamics. This intertwining allows for the expression of finite dimensional
nonlinear dynamics as linear systems in infinite dimensions.

Moreover, the relation 〈Afg,Γγ〉H = g(γ(T ))−g(γ(0)) for all g ∈ D(Af ) uniquely
determines Γγ . This relation will be used subsequently to establish constraints for
parameter identification in a system identification setting.

While occupation kernels representing trajectories of a dynamical systems have
a clear image under the adjoint of the corresponding Liouville operator, it can be
demonstrated that all occupation kernels corresponding to continuous functions are
also in the domains of the adjoints of Liouville operators.

Theorem 5.5. Let H be a RKHS of continuously differentiable functions over a
set X ⊂ Rn, let f be a symbol for a densely defined Liouville operator, Af : D(Af )→
H, and let γ : [0, 1]→ X be a continuous trajectory. Then Γγ ∈ D(A∗f ) and for each
x0 ∈ X, K(·, x0) ∈ D(A∗f ). Moreover, the images of each function may be expressed

as A∗fK(·, x0) = ∇2K(·, x0)f(x0), and A∗fΓγ =
∫ T

0
∇2K(·, γ(t))f(γ(t))dt, where ∇2

indicates that the gradient is performed on the second variable.

Proof. For each i = 1, . . . , n, the boundedness of the linear functional g 7→
∂
∂xi

g(x0) follows from [41, Corollary 4.36]. Let {em}∞m=1 ⊂ H be an orthonormal basis

for H, then ∂
∂xi

K(·, ·) =
∑∞
m=1 em(·) ∂

∂xi
em(·). More generally, if g =

∑∞
m=1 amem

then ∂
∂xi

g(x0) =
∑∞
m=1 am

∂
∂xi

em(x0). Thus,

∂

∂xi
g(x0)fi(x0) =

〈
g,

∂

∂xi
K(·, x0)

〉
H

fi(x0) =

〈
g,

∂

∂xi
K(·, x0)fi(x0)

〉
H

.

It follows that A∗fK(·, x0) = ∇2K(·, x0)f(x0) via a linear combination. The formula
for A∗fΓγ follows from a limiting argument leveraging Proposition 6.2 below and the
closedness of A∗f .

The last theorem of this section characterizes symbols that give rise to densely
defined Liouville operators over RKHSs consisting of real analytic functions. Many
frequently used RKHSs are of this form, including the native RKHSs of exponential
dot product kernels and Gaussian RBF kernels [41, 21]. The characterization below
is essential for the construction of one of the inner products in Section 7.

Theorem 5.6. If f is the symbol for a densely defined Liouville operator over a
RKHS consisting of real analytic functions of several variables over a set X ⊂ Rn
such that the collection of gradient of the functions in the space are universal in Rn,
then f must be a vector valued real analytic function of several variables.
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Remark 1. The universality of the gradients of the kernels are readily established
for the exponential dot product kernel, where the gradients of the monomials will span
the collection of vectors of monomials in Rn. Gradients of the Gaussian RBF kernel
are shown to be universal in [6].

Proof. Write f = (f1, . . . , fn)>. Given any v ∈ Rn\{0} and x ∈ X, the proof
of Theorem 5.5 established that the functional g 7→ ∇g(x)v is bounded as real an-
alytic functions are continuously differentiable. Hence, there is a function hx,v that
represents that functional through the inner product of the RKHS. The universality
of the gradients of functions in the Hilbert space guarantees that there is at least one
function for which ∇g(x)v is nonzero. Hence, hx,v is not the zero function for any
v ∈ Rn \ {0} and x ∈ Rn.

Select x ∈ X, then Wx := span{∇g(x)}g∈D(Af ) = Rn. If not, then there is a
v ∈ Rn \ {0} such that ∇g(x)v = 0 for all g ∈ D(Af ), and hence, 〈g, hx,v〉H = 0 for
all g ∈ D(Af ). As a result, D(Af ) has codimension at least 1 in H and is not dense
(which is a contradiction).

Thus, for a fixed x0 ∈ Rn, a complete basis for Rn may be selected from Wx0 as
∇g1(x0), . . . ,∇gn(x0), and there are linear combinations of these vectors that yield the
standard basis in Rn at the point x0. In particular, this means that x 7→ det(B(x)),

with B(x) :=
(
∇g1(x)> · · · ∇gn(x)>

)>
, is an analytic function that is nonvanish-

ing at x0 (by linear independence). The analyticity follows since products and sums
of real analytic functions are real analytic, and each component of ∇gi(x) is a real
analytic function.

Now consider Gi(x) := Afgi(x) = ∇gi(x)f(x). Let Bi(x) be matrix obtained by
replacing the i-th column of B(x) by the column vector consisting of the functions
Gi(x). Then, det(Bi(x)) is also a real analytic function.

Finally, by Cramer’s rule, fi(x) = det(Bi(x))/ det(B(x)), and since det(B(x0)) 6=
0, fi is real analytic at x0. As x0 was arbitrary, fi is real analytic everywhere.

6. Estimation of Occupation Kernels. The occupation kernels can be ex-
pressed as an integral against the reproducing kernel in a RKHS as demonstrated in
Proposition 6.1. As a result. inner products against occupation kernels in a RKHS
can be approximated using quadrature techniques for integration. Proofs of all results
in this section follow from numerical integration theory and can be found in [35] (an
arXiv pre-print of this article).

Proposition 6.1. Let H be a RKHS over a compact set X consisting of contin-
uous functions and let γ : [0, T ]→ X be a continuous trajectory as in Definition 5.3.
The occupation kernel corresponding to γ in H, Γγ , may be expressed as

(6.1) Γγ(x) =

∫ T

0

K(x, γ(t))dt.

Leveraging Proposition 6.1, quadrature techniques can be demonstrated to give
not only pointwise convergence but also norm convergence in the RKHS, which is a
strictly stronger result.

Proposition 6.2. Under the hypothesis of Proposition 6.1, let t0 = 0 < t1 <
t2 < . . . < tF = T , suppose that γ is a continuously differentiable trajectory and H is
composed of continuously differentiable functions. Consider

(6.2) Γ̂γ(x) :=

F∑
i=1

(ti − ti−1)K(x, γ(ti)).
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The norm distance is bounded as ‖Γγ−Γ̂γ‖2H = O(h), where h = maxi=1,...,F |ti−ti−1|.
It should be clear from the proof of Proposition 6.2 that higher order quadrature rules
for estimating the integral in (6.1) will also lead to higher order convergence rates of
the difference in Hilbert space norms of the occupation kernel and the quadrature es-
timate with the added caveat of higher order continuous differentiability of the kernels
and trajectories. Additional propositions that address homotopic parameterizations
of curves and their respective occupation kernels can be found in [35].

7. Inner Products on Symbols of Densely Defined Liouville Operators.
This section presents a method for parameter identification that builds on the Hilbert
space and operator theoretic framework presented in Section 5. In particular, the
development of this section uses the adjoint relation between Liouville operators and
occupation kernels to establish an inner product on the collection of symbols for
densely defined Liouville operators, F , over a RKHS. This section begins with a pre-
inner product arising from a single trajectory for the dynamical system, and then
develops two different inner products based on this pre-inner product.

Let γ : [0, T ]→ Rn satisfying γ̇ = f(γ). As the identity A∗fΓγ =
∑M
m=1 θmA

∗
Ym

Γγ
holds the following quadratic form arises as

0 =

∥∥∥∥∥A∗fΓγ −
M∑
m=1

θmA
∗
YmΓγ

∥∥∥∥∥
2

H

(7.1)

=
∥∥A∗fΓγ

∥∥2

H
− 2

M∑
m=1

θm〈A∗fΓγ , A
∗
YmΓγ〉H +

M∑
m,m′=1

θmθm′〈A∗YmΓγ , A
∗
Ym′ Γγ〉H .

The challenge in leveraging (7.1) to generate constraints on θ for system identification
lies in the ability to compute the various elements of (7.1). For example the first two
terms can be computed without appealing to a particular kernel space or determining
the adjoint operator A∗Ym as

‖A∗fΓγ‖2H = 〈K(·, γ(T ))−K(·, γ(0)),K(·, γ(T ))−K(·, γ(0))〉H
= K(γ(T ), γ(T ))− 2K(γ(T ), γ(0)) +K(γ(0), γ(0)), and

〈A∗fΓγ , A
∗
YmΓγ〉H =

∫ T

0

AYm(K(·, γ(T ))−K(·, γ(0))) |γ(t) dt,

where the notation (·) |γ(t) stands for evaluation at γ(t).
Closed form expressions of A∗Ym are not expected to be easily determined for most

choices of Ym and RKHSs (e.g. [37]). Hence, computation of the third term in (7.1)
relies on the action of A∗Ym on an occupation kernel (which is easier to determine, and
was given in Theorem 5.5) as

(7.2) 〈A∗YmΓγ , A
∗
Ym′ Γγ〉H =

∫ T

0

∫ T

0

∇1 (∇2K(γ(t), γ(τ))Ym(γ(τ)))Ym′(γ(t))dτdt.

Hence, parameter identification can be performed using only the occupation kernel
and the Liouville operators by setting the gradient of (7.1) equal to zero. As the norm
squared in (7.1) is zero at the true parameters of the system, which is the smallest
value the norm can take, this must be the minimum of the quadratic equation in
(7.1), and hence the true parameters must also set the gradient equal to zero. The
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parameters θ1, . . . , θM must then satisfy

(7.3)

 〈Y1, Y1〉F,γ · · · 〈Y1, YM 〉F,γ
...

. . .
...

〈YM , Y1〉F,γ · · · 〈YM , YM 〉F,γ


 θ1

...
θM

 =

 〈f, Y1〉F,γ
...

〈f, YM 〉F,γ

 ,

where for a collection, F of symbols of densely defined Liouville operators, the bilinear
form 〈f, g〉F,γ is given as 〈f, g〉F,γ := 〈A∗gΓγ , A∗fΓγ〉H . The bilinear form induces a
pre-inner product on the space of dynamical systems giving rise to densely defined
Liouville operators over H. The resolution of (7.3) gives the projection of an arbitrary
f ∈ F onto the span of {Y1, · · · , YM} with respect to the pre-inner product 〈·, ·, 〉F,γ .

Note that, in contrast with the SINDy method found in [5], (7.3) yields a deriva-
tive free approach for the system identification problem. Here, the only derivatives to
be performed are those that can be computed symbolically, which are easily computed
for many reproducing kernels. Moreover, the above formulation only leverages a sin-
gle trajectory of the system, and the size of the positive semidefinite Gram matrix
G := (〈Ym, Ym′〉F,γ)

M
m,m′=1 corresponding to (7.1), is governed only by the number of

basis functions.

7.1. Computational Challenges and Feature Space Representations.
The conditioning of the Gram matrix, G is frequently poor. One approach to im-
prove the condition number is to recognize that the weights are unchanged when the
inner product is adjusted between two different trajectories satisfying the same dy-
namics. The linear systems in (7.3) corresponding to each trajectory may then be
concatenated, and a left psuedo-inverse may be employed to determine the parameters
for the system.

However, as is typical of numerical methods and matrix computations (e.g. [10,
46]), a more reliable result may be extracted via a simplification obtained through a
factorization of the Gram matrices. If the reproducing kernel K is associated with
the feature map Ψ(x) = (Ψ1(x),Ψ2(x), . . .)> ∈ `2(N) as K(x, y) =

∑∞
s=1 Ψs(x)Ψs(y),

then A∗YiΓγ and A∗fΓγ may be written as

A∗YiΓγ =

∞∑
s=1

Ψs(x)

∫ T

0

∇Ψs(γ(t))Yi(γ(t))dt, and(7.4)

A∗fΓγ =

∞∑
s=1

Ψs(x) (Ψs(γ(T ))−Ψs(γ(0))) .(7.5)

Hence, the Gram matrix on the left hand side of (7.3) may be expressed as

(7.6) V >γ Vγ , where Vγ :=

(∫ T

0

∇Ψi(γ(t))Yj(γ(t))dt

)∞,M
i,j=1,1

.

The right hand side of (7.3) is expressible as

(7.7)


〈f, Y1〉F,γ
〈f, Y2〉F,γ

...
〈f, YM 〉F,γ

 = V >γ (Ψ(γ(T ))−Ψ(γ(0))) = V >γ


Ψ1(γ(T ))−Ψ1(γ(0))
Ψ2(γ(T ))−Ψ2(γ(0))
Ψ3(γ(T ))−Ψ3(γ(0))

...

 .
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Since both (7.7) and (7.6) have the infinite matrix V >γ on the left hand side, the
resolution of the system

(7.8) Vγθ = Ψ(γ(T ))−Ψ(γ(0))

also satisfies (7.3).
As Ψ is infinite dimensional for most reproducing kernels, Vγ is an infinite dimen-

sional matrix. For a given reproducing kernel, such as the Gaussian RBF kernel, one
option to obtain a finite-dimensional representation is to leverage decaying factors
for the feature space representation and set a cutoff after the size of the features fall
under a pre-specified precision, as was done in [10] for scattered data interpolation.
Conversely, given a finite collection of real-valued functions {g1, . . . , gS} over a set

X, a reproducing kernel, K(x, y) =
∑S
s=1 gs(x)gs(y), may be constructed yielding a

matrix V of finite dimensions. In the sequel, a collection of test functions will be
employed for the resolution of the system identification problem given in (2.1). These
test functions can be any collection of continuously differentiable functions, provided
that the collection is either finite or constitutes the members of a feature map to
`2(N). Each collection of test functions gives rise to a reproducing kernel and in turn,
give a different inner product on the collection of densely defined Liouville operators
over the native space of that reproducing kernel.

It should also be noted that if f is known to be explicitly representable as a
linear combination of a finite number of Yi’s, then the matrix Vγ only needs to be
evaluated up until its rank matches the number of basis functions, M . At that point,
θ is completely determined.

7.2. Inner Products from Pre-Inner Products. Pre-inner products give
rise to pseudonorms on vector spaces. When ∇1∇2(K(x, y) + K(y, x)) is positive
definite and bounded below for all x, y ∈ γ ([0, T ]), then the pseudonorm induced by
the pre-inner product 〈f, g〉F,γ can be seen to dominate the L2 norm on γ ([0, T ])2.
As a result, agreement in the pseudonorm implies agreement in the L2 norm over a
trajectory. However, since functions, say η(·), that vanish identically on the trajectory
cannot be observed through this pseudonorm, there remains some ambiguity, where
f(·) and f(·)+η(·) are different functions over Rn but are indistinguishable according
to the induced pseudonorm.

It should be noted that in this setting, if one is only interested in modeling the
system along the trajectory, then the pre-inner product would be a proper inner
product. However, since the purpose of system identification to extend the system
model outside of the trajectory to all of Rn, adjustments are necessary to achieve an
inner product of this form.

7.2.1. Quotient Approach to Inner Products. In the case where only one
trajectory is available for the dynamical system, there is a limited number of options
available. First, if f is known to be explicitly a linear combination of the basis func-
tions, then the weights may be determined through the factorization of the Gram
matrix above. The pre-inner product can also be made into a proper inner prod-
uct by restricting it to the quotient space, F/N , where N := {η : Rn → Rn|η ∈
F and η (γ([0, T ])) = {0}}. The space F/N is then an inner product space consisting
of equivalence classes of functions from F , where two members of F are equivalent if

2Commonly used kernels such as polynomial, exponential dot product, and Gaussian RBF kernels
satisfy these conditions, see Appendix A of [35].

13



their difference is in N . This is a typical construction of an inner product space from
a pre-inner product space. Details can be found in standard references, such as [28].

Computations of the inner product in this form are precisely the same as those
for the pre-inner product, where a member of each equivalence class is selected to
represent each of f and Yi for i = 1, . . . ,M . This will motivate the algorithm for
parameter identification in Section 8.

7.2.2. Integration Approach to Inner Products. When a large collection
of trajectories is available from a dynamical system, this collection of trajectories can
be used to generate an inner product from the collection of corresponding pre-inner
products. In particular, if an (n − 1) dimensional sub-manifold of initial points for
a collection of observed trajectories is given, where there is at least one point on the
submanifold where the dynamics is nonzero, then this collection of trajectories can
be leveraged to give an inner product on the collection of dynamical systems giving
rise to densely defined Liouville operators.

Theorem 7.1. Let f : Rn → Rn be a dynamical system that gives rise to a
densely defined Liouville operator over a universal RKHS of real analytic functions
on Rn, such that the operator valued kernel, ∇1∇2K(x, y) is universal. Let X ⊂ Rn
be a compact smooth Riemann submanifold of Rn. Suppose that Ω := ∪ξ∈X{γξ(t) :
t ∈ [0, T ]} ⊂ Rn is a collection of trajectories corresponding to f , such that γξ(0) =
ξ ∈ X, and Ω has a nonempty interior. Define the bilinear form on F , 〈·, ·〉F,Ω, as
〈p, q〉F,Ω =

∫
X
〈p, q〉F,γξdξ. This bilinear form is an inner product.

Proof. Linearity and the semidefinite property of the bilinear form follows directly
from the same properties of 〈p, q〉F,γξ for each ξ ∈ X.

Let Ψ = (Ψ1,Ψ2, . . .) be a feature map for the reproducing kernel K, where
each {Ψm}∞m=1 forms an orthonormal basis for the RKHS. Note that the matrix
K(x, y) := ∇1∇2K(x, y) =

∑∞
m=1∇Ψ>m(x)∇Ψm(x) is an operator valued kernel for a

RKHS [6]. The universality of K yields the universality of its features [6].
Let Y, Ỹ ∈ F , and suppose that

∫
X
〈A∗

Y−Ỹ Γγξ , A
∗
Y−Ỹ Γγξ〉dξ = 0. Hence,

A∗
Y−Ỹ Γγxi =

∞∑
m=1

Ψm(x)

∫ T

0

∇Ψm(γξ(t))(Y (γξ(t))− Ỹ (γξ(t)))dt = 0

for almost all ξ ∈ X. By the linear independence of the features,∫ T
0
∇Ψm(γξ(t))(Y (γξ(t)) − Ỹ (γξ(t))dt = 0 for all m. By the universality of Ψm, for

any ε > 0 there is a linear combination of the Ψm that uniformly approximates Y − Ỹ
over γξ([0, T ]) within ε. Hence,

∫ T
0
‖Y (γξ(t)) − Ỹ (γξ(t))‖22dt = 0. As Y and Ỹ are

both continuous functions, Y (x) = Ỹ (x) for all x ∈ γξ([0, T ]). As this holds for almost

all ξ ∈ X, Y (x) = Ỹ (x) for all x ∈ Ω by continuity.
Since, Y and Ỹ are vector valued real analytic functions over Rn by Theorem 5.6

and Ω has a nonempty interior, it follows that Y = Ỹ as functions over Rn.

8. Parameter Identification via Occupation Kernels. To utilize the inte-
gral formulation of the occupation kernel determined in Section 6, the collection of
test functions leveraged in the sequel will be a finite collection of reproducing ker-
nels. The method below may be seen as a weak formulation in the sense of Hilbert
space inner products, where instead of determining the parameters directly from
Af =

∑M
m=1 θmAYm , the problem is resolved on test functions through an integral.

Selection of reproducing kernels as test function allows for the analysis of various
error sources using the developed framework. It should be noted that the errors may
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also be analyzed using different methods specific to other possible selections of test
functions.

For a compact set X ⊂ Rn, let {γj : [0, T ]→ X}Nj=1 be a collection of trajectories

satisfying the dynamics ẋ = f(x) =
∑M
i=1 θiYi(x), and let Γγj be the corresponding

occupation kernels inside a RKHS, H̃ of continuously differentiable functions over X.
Suppose that span{cs}∞s=1 ⊂ X is dense. The feature map generated by the set of test
functions {K(·, cs)}Ss=1} is Ψ(x) = (K̃(x, c1), . . . , K̃(x, cs))

>. The feature map yields
a finite-dimensional representation of the constraints in (7.8) as

(8.1) 〈Af K̃(·, cs),Γγj 〉H =

M∑
i=1

θi〈AYiK(·, cs),Γγj 〉H = K̃(γj(T ), cs)− K̃(γj(0), cs),

for each s = 1, . . . ,∞ and j = 1, . . . , N , which can be expressed in a matrix notation
as

Aθ= K(T )−K(0), where(8.2)

A =

Vγ1...
VγN

∈RSN×M , θ=
(
θ1 · · · θM

)> ∈RM , and K(t) =

Ψ(γ1(t))
...

Ψ(γM (t))

∈RSN .
Under the additional assumption of continuous differentiability of both the repro-

ducing kernels and the trajectories {γj}Mj=1, it can be observed through the Cauchy-
Schwarz inequality that

|〈AYiK̃(·, cs), Γ̂γj 〉H − 〈AYiK̃(·, cs),Γγj 〉H | ≤ ‖AYiK̃(·, cs)‖H‖Γ̂γj − Γγj‖H .

Hence, by Proposition 6.2

(8.3) 〈AYiK̃(·, cs), Γ̂γj 〉H = 〈AYiK̃(·, cs),Γγj 〉H +O
(√

h
)
,

so that quadrature techniques can be successfully employed for estimation of the inner
products contained in (8.2).

Since the matrix A must be numerically estimated, written as Â, the parameter
values obtained using this method are approximate, and will be represented as θ̂,
obtained via

θ̂ := (Â>Â)−1Â>(K(T )−K(0)).

The complete algorithm for the system identification method is given in Algorithm
8.1. Note that in the case of N = 1, A>A = V >γ1Vγ1 is the Gram matrix given in

Section 7, with respect to the reproducing kernel K(x, y) =
∑S
s=1 K̃(x, cs)K̃(y, cs).

8.1. A note on the independence of the algorithm. As was noted above,
the constraints for the parameter identification routine can be established independent
of the framework of Section 7. However, the utilization of the Hilbert space framework
for error estimates requires one additional assumption on the basis functions Yi.

Assumption 1. Given a RKHS, H, over a set X, each of the operators, AYi :
D(AYi)→ H are densely defined. Moreover, ∩Mi=1D(AYi) is dense in H. That is, the
operators AY1

, . . . , AYM have a common dense domain.
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Algorithm 8.1 Pseudocode for the system identification routine of Section 8. In
the description some quantities are left in their analytic form, such as the integral of
line 7. The choice of quadrature routine can have a significant impact on the overall
results, and it is advised that a high accuracy method is leveraged in practice.

1: Input: Trajectories {γj : [0, T ]→ Rn}Mj=1, Centers {cs}Ss=1, and basis {Yi}Ni=1

2: Initialize the empty matrix A and empty vector b
3: for j’=1:M do
4: Initialize S ×N matrix Aj′ and the length S vector bj′

5: for s’=1 to S do
6: for i’=1 to N do
7: Assign the value of the integral

∫ T
0
∇K̃(γj′(t), cs′)Yi(γj′(t))dt to the (s′, i′)

entry of Aj′ .

8: Assign the value K̃(γj′(T ), cs′)− K̃(γj′(0), cs′) to the s′ entry of bj′ .
9: end for

10: end for
11: Append Aj′ and bj′ to A and b respectively.
12: end for
13: return θ as (A>A)−1A>b.

Assumption 1 ensures the validity of decomposing Af into a linear combination
of densely defined Liouville operators, {AYi}Mi=1. Liouville operators are closely con-
nected to densely defined multiplication operators (c.f. [31, 32, 33, 38]), and the
unavailability of complete classifications of densely defined multiplication operators
over many RKHSs indicates that characterizing the necessary and sufficient condi-
tions that a dynamical system must meet to allow a Liouville operator to be densely
defined may be an intractable problem in many cases. However, sufficient conditions
can certainly be established. In particular, Assumption 1 is borne out through exam-
ination of the exponential dot product kernel, where a polynomial function f may be
decomposed into linear combinations of polynomials, each of which has a correspond-
ing Liouville operator containing polynomials inside of its domain. More sophisticated
examples of decompositions can be expressed and treated individually.

For other collections of test functions, where methods outside of the Hilbert space
framework can be employed for error analysis, Assumption 1 is not necessary.

8.2. A Gram-Schmidt procedure to improve conditioning. Recall that
the main matrix equation involved in the system identification method is Aθ = K(T )−
K(0), where A, θ, and K are introduced in (8.2). Restricting to a single trajectory
for simplicity, and picking kernels centered at points {cs} as test functions {kcs}, the
matrix A reduces to a single Vγ given by:

(8.4) Vγ :=

(∫ T

0

∇kci(γ(t))Yj(γ(t))dt

)S,M
i,j=1,1

Selecting K(x, y) =
∑S
s=1 kcs(x)kcs(y) under reformulation of the system identi-

fication problem into a new inner product space via Section 7, we conclude that:

(8.5) (〈Yi, Yj〉F,γ)
M,M
i,j=1,1 = V >γ Vγ
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and

(8.6) 〈Ym, Ym′〉F,γ =

∫ T

0

∫ T

0

Ym′(γ(t))> · ∇1 (∇2K(γ(t), γ(τ)) · Ym(γ(τ))) dτdt.

Thus, numerical stability of the developed method can be studied by inspecting
either Vγ or the matrix V >γ Vγ , as the singular numbers of one are the roots of the
eigenvalues of the other. Moreover, if presented with poor conditioning, the form of
Equation 8.5 suggests and enables a Gram-Schmidt procedure to select basis elements
Yi tailored to the data γ(t). Specifically, given a selection of basis elements {Ym} we

construct a new basis {Um} by U1 = Y1 and U` = Ym −
∑m−1
`=1

〈Ym, U`〉F,γ
〈U`, U`〉F,γ

U`. Here,

each new basis element is given as a linear combination of the previous basis elements.
Thus to define our new basis {Um} it is only necessary to keep track of the scalar

values
{ 〈Ym, U`〉F,γ
〈U`, U`〉F,γ

}
`,m

.

9. Impact of Signal Noise on Samples. An immediate advantage evident in
the usage of occupation kernel methods for system identification over that of methods
employing numerical derivative estimates is a robustness to noise. Proofs of all results
in this section follow from numerical integration theory and can be found in [35].

9.1. Measurement Noise. Signal noise added to a signal requires sophisticated
filtering techniques to allow for reasonable numerical derivative estimates [5]. On
the other hand, normally distributed white noise has a smaller effect on integration
based methods, since peaks in the noise are infinitesimally small and carry less weight
through the integration process.

In the context of occupation kernel based methods, a sample for the system iden-

tification method takes the form 〈AYlK̃(·, ci), Γ̃γj 〉H =
∫ T

0
∇K̃(γj(t), ci)Yl(γj(t))dt as

in (8.2). Let ε : [0, T ] → Rn be a disturbance term acting as signal noise, then the

noise corrupted sample may be expressed as 〈AYlK̃(·, ci), Γ̃γj+ε〉H =
∫ T

0
∇K̃(γj(t) +

ε(t), ci)Yl(γj(t) + ε(t))dt. The following theorem provides a bound on the difference
between the corrupted and uncorrupted signals, see Figure 9.1 for a numerical exam-
ple.

Theorem 9.1. Suppose that H is a RKHS consisting of twice continuously dif-
ferentiable functions and Yl is continuously differentiable for each l, then the error
introduced by a bounded zero mean disturbance3, ε ∈ L2([0, T ],Rn), is O(T · σ(ε))
where σ(ε) is the standard deviation of ε with respect to the uniform probability dis-
tribution over [0, T ].

Note that the above theorem may be modified to accommodate a possibly unbounded
disturbance in L2([0, T ],Rn) when Yl and ∇K̃(·, ci) have bounded derivatives and
Jacobians respectively.

9.2. Process Noise. The above discussion concerns measurement or signal noise
for the system. Another common source of noise is process noise, where a state
dependent disturbance, η : Rn → Rn, impacts the dynamics directly as ẋ = f(x) +
η(x). In this case, there is an impact on the occupation kernel as well as the state
variable and Liouville operator.

3L2([0, T ],Rn) denotes the Lebesgue space of functions g : [0, T ] → Rn such that
∫ T
0 ‖g(t)‖22dt <

∞.
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Fig. 9.1: A trajectory, sin(t) over [0, 2π], is shown in the left figure (blue) along with
a noise corrupted trajectory (red) and a 10 point moving average filter of the noise
corrupted trajectory trajectory (green). The disturbance, ε, is normally distributed
white noise with mean zero and standard deviation 0.01. The center figure shows nu-
merical derivatives obtained from each trajectory, and the right figure shows samples
obtained using occupation kernels. This figure demonstrates the occupation kernel
samples’ robustness to noise, where even when an unfiltered noisy signal is used, there
is a very small error in the sample.

Theorem 9.2. If the system is subjected to a process noise, η, that is bounded
over a compact set containing the trajectories, Ω, which yields a densely defined Li-
ouville operator, then error induced in the samples may be bounded as√

‖∇1∇2K̃(c, c)‖F ‖η(c)‖22‖Γ̃x(·)‖H

+

√
‖∇1∇2K̃(c, c)‖F ‖f(c)‖22

√
S̃2T

∫ T

0

e2Lt

(∫ t

0

e−Lτ‖η(x(τ))‖2dτ
)2

dt,

which is O(supx∈Ω ‖η(x)‖2).

The error induced by the process noise is ultimately larger than that induced by
measurement noise. However, process noise with small bounds leads to small errors
in the samples.

10. Numerical Experiments. Two simulated systems were examined to eval-
uate the system identification method of Section 8, and one system arising from real
world data was also examined. For each simulated system, the trajectories were gen-
erated using the Runge-Kutta 4 algorithm with step size h = 0.001. On each system
several different experiments were performed to evaluate the effects of various pa-
rameters, such as the kernel width, the selection of kernel, the numerical integration
method, and the number of trajectories utilized. For each system, the centers of the
kernel were kept constant throughout the experiments. The dynamics in each ex-
ample are treated as unknown and are parameterized with respect to the collection
monomials of degree up to two. Unless otherwise noted, the matrix A in (8.2) for
each experiment was computed using Simpson’s Rule for numerical integration.

System 1. The first dynamical system is sourced from a collection of benchmark
examples for the formal verification community presented in [40]. The two dimen-
sional dynamics are given as

(10.1) ẋ = f(x) =

(
2x1 − x1x2

2x2
1 − x2

)
.
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Twenty five trajectories were generated for this system over the time interval [0, 1] and
the initial points were selected from the rectangle [−0.5, 0.5] × [−2.5,−1.5] through a
lattice with width 0.25. The collection of trajectories are presented in Figure 10.2.

The centers for the reproducing kernels for System 1 were selected from a lattice
of width 1 over [−3, 3]× [−3, 5].

Experiment 1. The first experiment examines the error committed in the param-
eter estimation by varying the number of trajectories used in the system identification
method of Section 8. In this experiment two reproducing kernels were used; the Gaus-
sian RBFs and the exponential dot product kernels. The Gaussian RBFs were used
with kernel width µ = 10, and the exponential dot product kernels used parameter
µ = 1/25. The results of Experiment 1 may be observed in Figure 10.4.

Experiment 2. The second experiment explores the effect of the kernel width, µ,
on the parameter estimation when using the Gaussian RBF in the system identification
routine on System 1. The results of Experiment 2 can be observed in Figure 10.5.

System 2. The second system is the three dimensional Lorenz system [29, 5],

(10.2) ẋ = f(x) =

 σ(x2 − x1)
x1(ρ− x3)− x2

x1x2 − βx3

 .

Following [5] a single trajectory was generated over the time interval [0, 100] where
σ = 10, β = 8/3, ρ = 28, and the initial condition was given as x0 = (−8, 7, 27)>.
The plot of this trajectory is given in Figure 10.3.

The centers for System 2 were obstained from a lattice with width 10 within
[−20, 20]× [−50, 50]× [−20, 50].

Experiment 3. This experiment introduces zero mean normally distributed white
noise with standard deviation of 0.01 to System 1 using the same parameters as in
Experiment 1. The system identification method is used on the noise corrupted tra-
jectories as well as the corrupted trajectories treated with a 20 point moving average
filter. The results of the parameter estimates obtained for this experiment are shown
in Table 10.2.

The experiment also includes a set of a one hundred Monte-Carlo trials that com-
pare the results of the developed occupation kernel system identification method with
the ILS approach described in (3.5). Zero mean Gaussian white noise with a stan-
dard deviation of 0.01 is added to trajectories of the Lorenz system. To see the effect
of the number, N , and the length, T , of the trajectories, the experiment compares
the performance of the two methods across nine different combinations of N and T .
To ensure all combinations use the same data, N and T are selected so as to keep
the product NT constant within rounding errors. The trajectory lengths range from
T = 0.002s (two samples per trajectory) to T = 1.2s (1201 samples per trajectory).
Monomials in 3 variables, up to order 3, are utilized as basis functions to yield a set
of 60 parameters to be estimated. A set of 180 Gaussian RBF kernels with µ = 202/3

are used to implement the occupation kernel method. The norm of the error, ‖θ− θ̂‖,
is used in Figure 10.7 and Table 11.1 as a metric for comparison.

Experiment 4. This experiment leveraged the constraints of (8.1) in combina-
tion with the LASSO algorithm (`1 regularization) for System 1, where a monomial
basis was selected to consist of all monomials of degree 5 or less. Of the 42 basis
functions leveraged in this experiment, the LASSO algorithm selected only 6 nonzero
weights. These nonzero components corresponded to a collection of basis functions,
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Signal Benchmark Occupation Kernels
Position 8.025e-3 8.038e-3
Velocity 4.789e-1 4.729e-1

Acceleration 1.982e+1 1.954e+1
Force 8.941e+0 9.046e+0

Table 10.1: Comparison of percentage errors committed by the developed method
and the IDIM-LS method from [17]. A model that uses the identified parameters is
simulated forward in time to obtain the simulated position, velocity, force, and accel-
eration trajectories using the same controller that was used to collect the validation
data. The trajectories are then compared against the validation data, where velocity
and acceleration are obtained through filtered central difference differentiation.

where the true basis was a proper subset. The parameter values deviated significantly
from those of the true parameters, however with the reduced system, the weights can
be determined using the pseudo-inverse as in the rest of the manuscript. This method
aligns with the SINDy algorithm of [5].

Experiment 5. This experiment applies the developed technique to identify the
Electro-Mechanical Positioning System (EMPS) from the nonlinear system identi-
fication benchmarks archive [17]. The system is a controlled system of the form
ẋ1 = x2, ẋ2 =

(
τ −x2 −sign (x2) −1

)
θ with θ ∈ R4. Due to presence of the

controller τ , this is a time-varying system. To reformulate the problem in terms of
an autonomous system, time is augmented to the state vector to get a system of the
formẋ1

ẋ2

ẋ3

 =

x2

0
1

+

 0 0 0 0
τ(x3) −x2 −sign (x2) −1

0 0 0 0

 θ = h(x) +

i=4∑
i=1

θiYi(x)

The system identification is then carried out using a slight modification of the devel-

oped technique to accommodate for the known part h(x) =
(
x2 0 1

)>
:

θ̂ := (Â>Â)−1Â>(K(T )−K(0)−B), B =
(
〈AhK(·, cnj,1),Γγnj,2 〉H

)j=SN
j=1

∈ RSN .

The results of the parameter estimates obtained for this experiment using the validation
data provided in [17] are shown in Table 10.1 and Figure 10.1.

11. Discussion. It may be observed through the numerical experiments per-
formed in Section 10 that the system identification method of Section 8 is effective at
identifying the parameters for nonlinear systems. In particular, for System 1 parame-
ter estimation errors were as low as 10−11 and for System 2 the parameter estimation
errors were as low as 10−5. The systems given in Section 10 are of two and three
dimensions, and the dynamics are nonlinear. The basis functions utilized to represent
the unknown dynamics are monomials of degree up to two with appropriate dimen-
sionality. For example, for a three dimensional system the cardinality of the basis of
monomials of degree up to two is 30 when accounting for each dimension (i.e. there
is a copy of the 10 monomial basis vectors for each dimension). The actual dynam-
ics in each case use only a handful of the basis functions, which results in a sparse
representation of the dynamics in the given basis.
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Fig. 10.1: EMPS: Cross-test validation between the simulated and measured data.
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Fig. 10.2: Twenty five trajectories cor-
responding to System 1.
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Fig. 10.3: A single trajectory for the
three dimensional Lorenz system given
in Example 2.

The adjustment of several parameters affect the accuracy of the determine param-
eters, θ. The most obvious impact on the accuracy of the parameters arises through
the selection of the reproducing kernel. While theoretically it is established that Li-
ouville operators with polynomial symbols are densely defined over the exponential
dot product kernel’s native space, the exponential dot product kernel suffers from
poor conditioning. This poor conditioning can lead to inaccuracies that appear from
numerical uncertainties in the expression of the (left) inverse matrix for A in (8.2).
The Gaussian RBF exhibits less conditioning issues than the exponential dot product
kernel, especially when a small kernel width is selected. In the case of the Gaussian
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Fig. 10.4: A log-plot of the parameter
estimation error, ‖θ−θ̂‖2, for System 1
using exponential (red) and Gaussian
RBF (blue) kernels with varying num-
ber of trajectories.
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Fig. 10.7: Log-scale box plots of the
parameter estimation error committed
by the developed occupation kernel
(OK) method (magenta) and the ILS
method in (3.5) (black) algorithms in
100 repeated trials. See Experiment 3
for details.

RBF, the size of the kernel width has an impact on the accuracy of the system identifi-
cation method as shown in Figure 10.5. Specifically, occupation kernels corresponding
to Gaussian RBFs with smaller kernel widths can distinguish nearby trajectories more
effectively than those with larger kernel widths, which leads to better conditioning of
A in (8.2). However, it is well known in approximation contexts that larger values of
µ lead to faster convergence [11]. The minimum error at µ = 4 in Figure 10.5 thus
strikes a balance between the conditioning of the matrix and the advantages gained
from larger µ.

The most significant contribution to errors in the estimation of the parameters
is the method of numerical integration performed. The simple example presented
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Monomial Dim No Noise Noise Moving Average Target
x0

1x
0
2 1 8.882e-16 8.051e-3 -2.093e-3 0

x1
1x

0
2 1 2.000e+0 2.000e+0 2.000e+0 2

x2
1x

0
2 1 8.882e-16 -3.840e-3 1.346e-3 0

x0
1x

1
2 1 -1.554e-15 3.968e-3 -1.523e-3 0

x1
1x

1
2 1 -1.000e+0 -9.988e-1 -9.994e-1 -1

x0
1x

2
2 1 -6.939e-17 -2.173e-4 -3.066e-4 0

x0
1x

0
2 2 -8.691e-12 -7.179e-3 -1.363e-3 0

x1
1x

0
2 2 0 1.471e-3 -2.271e-4 0

x2
1x

0
2 2 2.000e+0 2.003e+0 2.001e+0 2

x0
1x

1
2 2 -1.000e+0 -1.007e+0 -1.001e+0 -1

x1
1x

1
2 2 -8.327e-17 1.834e-4 9.210e-5 0

x0
1x

2
2 2 2.652e-12 8.280e-4 -2.650e-4 0

Max Error 8.691e-12 8.051e-3 2.093e-3

Table 10.2: This table presents the results of the nonlinear system identification
method applied to the trajectories presented in Figure 10.2. The target parameters are
listed in the last column, and the columns “No Noise,” “Noise,” and “Moving Average”
show the obtained parameters from their respective experiments. The “Monomial”
column lists the specific basis function that the parameter of that row is tied to, and
“Dim” expresses which dimension that particular basis function is contributing to.
Note that the bolded rows correspond to the non-zero target values. The presented
results demonstrate that even in the case of unfiltered noise, the nonlinear system
identification method of Aim 1 obtains parameter estimates while committing an
error of a most 8.051e− 3.

in Proposition 6.2 gives an estimation of the occupation kernel via a right hand rule
method of numerical integration, and while Proposition 6.2 provides a proof of concept
demonstrating norm convergence to the occupation kernel in question, it is observed
in (8.3) that this method results in a relatively slow convergence rate. When other
methods, such as the trapezoid or Simpson’s rule is leveraged for numerical integra-
tion, a significant improvement in the performance of the system identification method
may be realized.Consequently, the fourth order method of Simpson’s rule was utilized
for most of the results presented in Section 10.

The results of Experiment 3 are summarized in Figure 10.7, which shows box
plots for the norm of the parameter estimation error committed by the two methods
for each of the nine selected combinations of N and T . Box plots corresponding to the
developed method are in magenta and those corresponding to the ILS method are in
black. The trend in Figure 10.7 indicates that for a large number of short trajectories,
ILS out-performs the developed occupation kernel method, and for a small number of
long trajectories, the developed occupation kernel method out-performs ILS. However,
as indicated by Table 11.1, the average parameter estimation error committed by the
developed occupation kernel method with 20 trajectories, 1.2s long, is smaller than
the average errors committed by all nine ILS implementations. The improvement is
attributed to the ability of the developed framework to extract more information from
the same set of trajectories by integrating them against different test functions.

Two other factors that contribute to the success of the system identification algo-
rithm of Section 8 are the selection of the centers of the reproducing kernels as well as
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T 0.002 0.003 0.019 0.038 0.076 0.151 0.301 0.601 1.201
OK 57.873 12.853 2.835 5.259 3.751 0.918 0.688 0.584 0.489
ILS 35.718 4.763 1.315 0.945 0.758 0.727 0.998 1.957 6.268

Table 11.1: Mean of the norm of the parameter estimation error over 100 repeated
trials with different combinations of trajectory lengths and number of trajectories.
Across all combinations, the smallest norm of the parameter estimation error for the
developed occupation kernel (OK) method method is found to be 0.489 and that for
the ILS method in (3.5) is found to be 0.727. See Experiment 3 for details.

the number of trajectories. The contribution of the Gaussian RBFs are largest when
the centers are distributed over the working space containing the trajectories. That
is, if the centers are too far away from the trajectories, the decay of the Gaussian
RBFs will lead to near zero row vectors of A in (8.2). For the algorithm in Section
8, each reproducing kernel is evaluated for every trajectory, but this isn’t technically
necessary and reproducing kernels that will contribute less or redundant information
may be ignored for a specific trajectory.

Experiment 5 provides a real world test of the system identification method pre-
sented in this manuscript. Several features appear in the dynamics of this system that
are not present in the other experiments including discontinuities in the acceleration.
Table 10.1 demonstrates that performance of the present method closely matches that
of the benchmark method from [17]. It should be noted that the poor performance
of both methods in estimating the acceleration occurs because of the discontinuities
in acceleration, where sharp “ringing” phenomena occur at the jumps in acceleration.
This occurs as the basis functions used to approximate the dynamics corresponding
to acceleration are continuous.

The key difference between existing kernel based approaches and the present ap-
proach is that the basis functions are separated from data integration. Whereas typical
kernel based approaches leverage the representer theorem to yield an approximation
of the dynamics with respect to a linear combination of reproducing kernels centered
at the data points (cf. [30]). The method presented in this manuscript leverages the
form of the occupation kernel to incorporate the trajectory inside a RKHS, and the
selection of occupation kernel is largely independent of the selection of basis functions.
In the present context, the selection of basis functions is such that the functions should
give a densely defined Liouville operator in the selected kernel space to guarantee the
soundness of the developed methods. The advantage gained in the use of occupation
kernels is that the occupation kernel itself is not as strongly influenced by noisy mea-
surements as the kernel counterparts, since it can be represented as the integral of
kernels that have centers along the trajectory.

12. Conclusion. In this manuscript a new approach to system identification was
developed through the use of Liouville operators and occupation kernels over a RKHS.
Liouville operators are densely defined operators whose adjoint contains occupation
kernels corresponding to solutions to differential equations within its domain. Hence,
a dynamical system may be embedded into a RKHS where methods of numerical
analysis, machine learning, and approximation theory affiliated with RKHSs may be
brought to bear on problems in dynamical systems theory. Specifically, an inner
product on dynamical systems that give rise to densely defined Liouville operators
was developed, where the projection of a dynamical system on a linear combination
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of basis function is realized through the solution of a parameter identification routine
that generalized that found in [5] through a weak formulation using integrals. In
this setting, the features of a reproducing kernel become test functions for designing
contraints on parameters for system identification.

The domain of Liouville operators depends nontrivially on the selection of RKHS.
It was demonstrated that Liouville operators with polynomial symbols are densely de-
fined over the RKHS corresponding to the exponential dot product kernel. Moreover,
it was demonstrated in the system identification routine that the selection of repro-
ducing kernel may have an effect on the results of parameter estimation.

The system identification method developed in the manuscript was validated on a
two dimensional and a three dimensional system through several different experiments
designed to evaluate the effects of various integration and RKHS parameters, such as
kernel width for the Gaussian RBF, the selection of numerical integration scheme,
the selection of kernel, and so on. Through each experiment, accurate estimations of
the parameters were achieved. However, it was demonstrated that the largest error
source arises through the choice of numerical integration method, where Simpson’s
rule provided the most accurate results.
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