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Abstract—In this paper, a concurrent learning based observer
for a perspective dynamical system (PDS) is developed. The
PDS is a widely used model for estimating the depth of the
feature point from a sequence of camera images. Building on
the current progress of concurrent learning (CL) for parameter
estimation in adaptive control, a state observer is developed
for a PDS model where the inverse depth appears as a time-
varying parameter in the dynamics. Using the data-recorded
over a sliding time window in the near past, information about
the recent depth values is used in a CL term and an observer is
developed. A Lyapunov-based stability analysis is carried out to
prove the uniformly ultimately bounded (UUB) stability of the
observer. Comparisons in simulations are presented with the
existing observers in terms of convergence, and error statistics.
Comparisons reveal that CL improves the convergence and
accuracy of the presented observer.

I. INTRODUCTION

Estimating the 3D coordinates of feature points using ob-
servations from a sequence of camera images is referred to as
the Structure from Motion (SfM) problem in computer vision
literature. The estimated 3D coordinates or structure informa-
tion can be used in a variety of automatic control, autonomy,
and intelligent control applications. Existing solutions to this
problem include offline [!] and online [2]-[5] methods. The
focus of this paper is on online methods, where the problem
is formulated as a state estimation problem of a perspective
dynamical system (PDS). The PDS is a class of nonlinear
system that uses inverse depth parametrization, which is
widely used in observer-based methods, and simultaneous
localization and mapping (SLAM).

Building on our prior work in [6]-[8], a concurrent learn-
ing (CL)-based state observer is designed for a PDS. CL
is used in adaptive control for parameter estimation, where
the knowledge of past trajectory data is leveraged to estimate
the constant parameter and achieve state tracking. In PDS, the
inverse depth appears as a parameter in the dynamics of pixel
coordinates. The inverse depth is time-varying with known
dynamics associated with it. Inspired by recent advances in
CL in adaptive control [9]-[! 1], in this paper, an observer
is designed which uses CL terms in the observer design for
PDS. To the authors’ knowledge this is the first attempt to
use CL terms in the state observer structure.

Online methods often rely on the use of an Extended
Kalman Filter (EKF) [12]-[15]. In comparison to Kalman
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filter-based approaches, nonlinear observers are developed for
SfM with analytical proofs of stability. Under the assumption
that the camera motion is known, continuous and discontin-
uous observers are developed. A high-gain observer called
the identifier-based observer (IBO) is presented for range
estimation in [16]. A semi-globally asymptotically stable
reduced-order observer is presented in [!7] to estimate the
range of a stationary object. A continuous observer which
guarantees asymptotic range estimation is presented in [18]
under the assumption that camera motion is known. In [19],
an asymptotically converging nonlinear observer is developed
based on Lyapunov’s indirect method. In [20], a discontin-
uous sliding-mode observer is developed which guarantees
uniformly ultimately bounded (UUB) result of estimation
error to a small ball around the origin of the system. In [21],
a nonlinear observer is developed that achieves exponentially
fast convergence of estimation error provided a persistency
of excitation (PE) condition is satisfied. A local exponential
stability of estimation error dynamics is obtained for this
observer, which means the initial condition of the observer
needs to be close to the ‘true’ depth. This observer is used
in conjunction with visual servoing for simultaneous depth
estimation and VS control. In another recent work [22], an
immersion and invariance (I&I) based approach is used to
design a reduced-order observer to achieve global exponential
convergence of the estimation error. The observer requires
camera velocity and acceleration measurements along with
feature point measurements from the image and the Extended
Output Jacobian (EOJ) observability rank condition must be
satisfied, which is more strict than the PE condition. In our
prior work, we have developed a globally exponentially stable
observer for feature point depth estimation of static objects
using a moving camera [7], [6].

The key idea behind concurrent learning is to use recorded
input and output data, also known as the history stack of the
system, to make updates to the parameter estimation problem.
The concurrent learning method is based on the premise that
excitation will only be for a finite time and convergence can
be guaranteed in finite time. This relaxes the PE condition to
a finite excitation condition, wherein the minimum singular
value of the regressor matrix needs to be positive [23]. Such a
condition can obviously be monitored online in comparison
to the PE condition. The advantage of concurrent learning
for parameter estimation in model reference adaptive control
(MRAC) is presented in [11]. A concurrent learning based
method is developed in [10] for parameter estimation using
dynamic state derivatives. Simultaneous state and parameter



estimation are demonstrated in [24]. Concurrent learning
has been used in a variety of applications where parameter
estimation is critical [25]-[27].

The existing observers designed for PDS in the literature
require a strict PE condition to guarantee the stability of
the observer. By adding the concurrent learning terms that
keeps record of past history of depth values the PE condition
requirement on the converge to the observer is somewhat
relaxed. Even though unlike standard adaptive control, the
depth parameter x is time-varying, the recent past history of
the system contains information about the current y. From
the simulation results of the new observer design, it can be
seen that the inclusion of CL results in a faster convergence
in finite time and has an obvious advantage when the PE
condition cannot be satisfied.

II. PERSPECTIVE CAMERA MOTION MODEL

The movement of a camera capturing a scene results in
a change of location of a static object in the image plane.
The reference frame of the camera changes with the camera
motion and can be transformed using translation and rotation.
For such reference frames, let m(t) € R and m(t) € R?
be the Euclidean and normalized Euclidean coordinates,
expressed as

m(t) = [X,Y, Z]" @)
XY
m(t) = [Z, 71" @

where Z is the depth of a point. To estimate the depth, let’s
define an auxiliary vector y(¢) € R3, given by

y0) =l 5 51"
The auxiliary vector y(t) is related to the feature points in
the image frame as s; = Ay, where A € R3*3 is a camera
calibration matrix. Let s € R?™ be a collection of m feature
points where the first two components of s; are considered.
Taking the time derivative of (3), the dynamics of s as a
function of linear and angular velocities of the camera can
be expressed as

3)

$= Lgs(s,x)u 4

where L, € R?™*6 is the interaction matrix representing
the dynamics associated with the feature point, y € R™
is a vector containing the inverse depth values associated
with all the feature points, u € RS is a vector of 3-
dimensional linear and angular velocities of the camera,
U = [V, Vy, Vzy Wy, Wy, w,] T, Where v = [vg,v,,0,]T € R?
is the linear velocity and w = [wy,wy,w;]T € R3 is the
angular velocity of the camera. The dynamics in (4) can also
be expressed in the following form

$= fm(s,w) +Q7(s,v)x 5)

where f,,(s,w) € R*™ and Q(s,v) € R™*2™ are functions
of measurable quantities or known quantities. The dynamics
associated with the inverse depth x can be modeled as

X = fuls; X, u) (6)

For a single feature point, by formulating the state as s; =
[y1(t), y2()]T and inverse depth is x = y3(t), using (4) and
(6) the dynamics for the motion of a single feature point can
be written as

Y1 = y3(Y10s — V) + Y1yews — wy(1 + y7) + yow,
2 = ys(y2vs — vy) + wo (1 +43) —wyyorn —wsyn (7)

U3 = Y30s + Yoysws — Y1Yawy

From (7), fm(svw) = [2112120)1- _wy(l + y%) + Yyow>, Wx(l +
y3) —wyyoyr —w.tn]" and Q(s,v) = [y1v: — v, Yov. —vy).

Problem Definition: Given the feature point dynamics in
(7), the measurements of feature points in images z = [y; +
€z, Y2 + ey]T where ¢, and ¢, are additive Gaussian white
noise in « and y direction, and linear and angular velocity of
camera u, the depth of each feature point can be estimated
using a sequence of image observations of the same feature
point. To this end, a state observer is designed in Section III
using concurrent learning (CL).

III. CONCURRENT LEARNING-BASED OBSERVER DESIGN

The depth estimation schemes in the existing literature
require a strong observability condition called Persistence
of Excitation (PE). For such estimators the estimation error
converges to zero only if the PE condition is satisfied.
In cases where PE cannot be satisfied the observer may
be unstable. The PE condition is satisfied if there exists
T,p € RT for the following integral condition

t+7T
/ Q(r)QT(7)dr > pI > 0,Vt > tg (8)
t

PE being a strict condition can be impractical to implement
and continuously monitor. Concurrent learning based pa-
rameter estimation schemes use the recorded data generated
by the system to make updates to the parameter estimation
dynamics. Concurrent learning is based on the premise that
PE will not be true and excitation will be available only
for a finite amount of time. Thus, the machinery developed
in [23] guarantees convergence in finite time. As a result,
the integral PE condition is reduced to a rank based finite
excitation condition. Thus, the convergence of the estimated
value to the true value can be guaranteed in finite time.

rank(ZJM:IlQ(;vj)QT(xj)) =m )

where the history stack is 7 ={(&;z;,u;, ;) } 12" contain-
ing the past data points. If the history stack satisfies the
rank condition given in (9), stability of the observer can



be guaranteed. The estimates of s, x are denoted by 3, ¥,
respectively.

Let’s define the state and depth estimation errors as z =
X — X, and £ = s — §, respectively. Using the dynamics in (4)
and (6), the observer for estimating the state and the depth
is designed as follows.

§:fm(s7w)+QT(s,U)f<+H£ (10)

)% :fu(sv )A(a u) + CMQ(& U)f + KCLCVE;\ilQ(sJH vj)(‘éj
— fm(s5,w;) — QT(s5,v5)%) (1)
where H € Rt, o € Rt and Ko;, € RT are suitable
observer gains. The index M in (11) is for the signals at the
current time instance. Using the system dynamics in (4)-(6)

and the observer in (10)-(11), the estimation error dynamics
can be written as follows.

£=—HE+QT(s,0)2 (12)
2 =—afd(s,v)§ — KCLaEé-VilQ(sj, v;)(8;
— fm(sj,wj) = QT(s5,v5)X) + g(s,x; X, u)  (13)

where g(s,x, X, u) = fu(s,x,u) — fu(s,X,u). The state
derivative term $(¢), i.e., the optical flow, can be substituted
as §; = fm(sj,w;) + Q7(s;,v5)x;. The error dynamics in
(13) can be rewritten as

z2=—af(s,v)§ — KCLanA/ilﬂ(sj,vj)(fm(sj7wj)
+Q7(s5,v5)x5 — fm(s5,w;) — QT (s5,v5)X)
+9(s,x, X, u) (14

which can be written as

i =—aQ(s,v)¢ — KepaX)L Q(s;,v;)Q7 (s5,0;)(xj — X)
+9(s,x, X, u) (15)

Adding and subtracting Q(s;, v,;)Q7(s;,v;)x in the summa-
tion term of (15) yields

2 =—afs,v)¢ — Kepa(SH,Q(s5,v;)Q7 (s5,v;) (x5 — X)
+ Q(s5,v)Q7 (85, v;)x — Q(s5,v5)QT (55, v5)x)
+ (s, x; X, ) (16)

Grouping x and Y, the error dynamics can be written as

Z2=—afd(s,v)§ — KCLoz(EjNilQ(sj,Uj)QT(sj,vj)z

+ 20, Q(s5,0)9Q7 (55, v5) (x5 — X)) + 9(5, % X% w)
17)

Assumption 1: The motion of the camera is smooth such
that the depth change is also smooth, i.e., l(x; — x)|| < X,
where x; are the true depth values during the period ¢ — ¢4
to .

IV. STABILITY ANALYSIS

The stability analysis is carried out for the initial phase
where the data is being collected in the history stack of the
concurrent learning term and the phase where the history
stack is full. In Theorem 1, leveraging our prior work in [7],
it is shown that the estimation error dynamics in (12)-(13) is
stable under a PE condition. In Theorem 2, it is shown that
the estimation error dynamics in (12)-(13) yields uniformly
ultimately bounded error. The advantage of adding the CL
term is that the error is bounded even if the PE is not satisfied.

Theorem 1. When the history stack is incomplete, the
error system in (12)-(13) is uniformly ultimately bounded if
Assumption 1 and the PE condition in (8) are satisfied.

Proof: The error system in (17) can be written

2= —af)(s,v)¢ — KernaQ(sy, var )T (s, var)z
+9(s, % % u) — Keroa(SH1 (s, 0)Q7 (s5,05) 2
+ 201, Q(s5,v)9Q7 (55, v;) (g — x))  (18)

In the subsequent development, result of Theorem 1 of [7] is
used which proves that the error system in (18) without last
two terms is globally exponentially stable.

Consider a domain D C R™*! containing e(0) =
[€(0), 2(0)]T and a continuously differentiable, radially un-
bounded candidate Lyapunov function, V(e) : D — R,
defined as

1 1 1
V==£T64+-2Ta "2 (19)
2 2
where o € R is a constant. The Lyagunov function can be
upper and lower bounded by c¢; [le]® < |[V] < e ]lel®
where ¢; € R and ¢; € R are positive constants. Taking the
time derivative of (19) and substituting the error dynamics in
(12) and (18) yields

V = —€THE — Kopz"(Qsar, var)QT (sar,var)) 2

+a ' 2Tg(s, x, X, w) (20)
- KCLZT(Z;VLIIQ(SJ‘, v;)QT(s5,v5)z
+ 30MQ(s5,v,)Q7 (s5,v;) (x; — X))

When the history stack is incomplete,

M—1
D=1 SUsj,v;)Q7(s5,05)
(20) can be written as

> 0. Using Assumption 1,

V < —€THE — Konz™Q(sar, va) QT (sar, var) 2

+a '2Tg(s, x, X u) + Kepot Mx|| 2| Q1)

Since O’%M X > 0, using the re§ult of Theorem 1 of [7],
V<—allell? Vel > KC%M, which yields an uni-
formly ultimately bound on estimation error ||e(¢)|| according
to Theorem 4.18 of [28]. |

Theorem 2. When the history stack is complete and full rank,
the error system in (12)-(13) is uniformly ultimately bounded
if Assumption 1 is satisfied.



Proof: Consider the same candidate Lyapunov function,
V(e) : D — RT, in (19). Taking the time derivative of (19)
and substituting the error dynamics in (12) and (17) yields

V=—¢THE — KCLzT(Z?;Q(sj, v;)QT(s5,v5)z

+ 20LQ(s5, 0,07 (55, 05) (X5 — X))
+a '2Tg(s,x, X, u)

(22)

The Lipschitz continuous term ¢(s, x, X, ) can be upper
bounded by ||g(s,x,X,u)|| < Lg|lz||, where L, is the
Lipschitz constant. Using the Cauchy-Schwarz inequality and
Lipschitz continuity assumption of ¢(s, x, X, u), the upper
bounds on the term zTg(s, X, X, «) can be derived as follows.

127905, % )l < Ll |21 (23)
Since the history stack is complete,
Z;\izl Qs;,v;)Q7(sj,v5) > 0, the summation term

in (22) containing (x; — x) can be upper bounded using the
the Cauchy-Schwarz inequality as follows

M
ot (1> (G =) (24)
j=1
where 07 is the smallest singular value of Z]Ail Q0T
Using (23), and (24), V in (22) can be modified to
V <~ kill¢])® — Koro?||z|* + Kerot Mx|l2||
+ a7 |2 (25)
< = killg]]* = (Kerot — a7 Ly)|[2]? (26)
+ Kepot MX| 2]
If the following condition is satisfied the effect of
aL;l
Keop > —3 27
g1
then (27) can be written as
V < —kal[€]]” = hall2l]” + ks 2] (28)

where ko = Kcrpoi—a 'Ly, and k3 = Kcro? M. Adding
and subtracting 0||z||? in (28), yields

V < =k lE]® = all2l1? — 0]121% + k3] |]l

e k

< —min(ky, ko)|le||>2 Vle|| > g’ (29)
where k1 = k1 — 0, and ks = ks — 6, and 0 < 6 < 1. Now,
using the upper and lower bounds on V'(e), (29) and invoking
Theorem 4.18 in [28], the error ||e(¢)|| is uniformly ultimately
bounded with an ultimate bound according to Theorem 4.18.

Remark 3. The gain K¢y can be chosen to minimize the
disturbance caused due to a~'2Tg(s,x, X, u). However, a
choice of proper trajectories leading to a higher value of the
minimum singular value would be appropriate in such a case.
With the proper choice of trajectories and high minimum
singular value the estimated depth will rapidly converge to

the true depth. Although the presented analysis contains only
two cases, i.e., before and after the history stack is full, new
data can be continuously added to the stack after time T,
as long as o7 stays positive. Using the Algorithm I, the o7
stays positive after time 7', hence, the upper bound on the
derivative of the Lyapunov function holds for all time after
T. Thus, (19) is a common Lyapunov function (cf. [29]).

Algorithm 1: Depth Estimation using Concurrent Learn-
ing

Data: State vector s and velocity vector u = [v,w]T

Result: Estimates 5§ and x

Initialize s, x, M;

Define the estimator gains for Ko, o, H;

Initialize the History Stack and the Auxiliary Stack
H,G with zeros of size M — 1 and NNV respectively;

while data for the current time step is present do
Measure the linear and angular velocity of the

camera v, w;

Compute feature points and create state vector s;

Compute the Optical flow and obtain s;

Compute f,,(s,w), fu(s, X, u), Qs,w);

Estimate the values for §7 )%;

Integrate §, )% to obtain §, x;

if Number of iterations < M+1 then

Add data point to History Stack H;

end

Add data point to G in a cyclic way;

Search for M data points with maximum o7 in the
G stack;

Replace data in H with the selected M points from
g,

end

V. SIMULATION RESULTS

A simulation was performed using a single feature point to
verify the performance of the observer designed in Section 3.
For simulation purposes, the value of the focal length \ is set
to 1. An initial global point is selected as z(¢9) = [5, 2.5, 3|7
where © = [x1,29,23]T = [X,Y,Z]T. An auxiliary state
vector y = [y1,Y2,y3]T = [;—;,;—z, i]T is constructed for
the measurement of the inverse depth y = i The point
values are simulated by integrating the equation given in
(7), where v = [vg,vy,v,]T are the linear velocities and
W = [wg,wy,w;|T are the angular velocities. From the
mathematics presented in Section 2, we can build our state
vector as s = [y1,y2]T and y = ys.

A fourth order Runge-Kutta integrator with a fixed
timestep of 0.001s is used to integrate the equations and
generate trajectories for all values of y. The velocities used
for the simulation are

¢
v = [0.3,0.2005(%), —0.3]7



T
— CL Based Observer
7L -+ Actual Depth

0 L4 Il Il Il Il Il Il Il Il Il
0 2 4 6 8 10 12 14 16 18 20
Time (s)
Figure 1. Comparison between the actual depth and estimated depth over

a period of 20 seconds

Depth Estimation Error
N

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Figure 2. Error between the true and the estimated depth

10 T T
: - Actual Y1
Actual Y2
Estimated Y1
8r - -Estimated Y2]|
3
> 6f ]
<
>
o)
S 4 B
(2]
i
2m B
.I'......-""”' :”\\‘:-&_‘.&
- T me—————
o L L L L L L L L - 1
0 2 4 6 8 10 12 14 16 18 20
Time (s)
Figure 3. Comparison between the actual and estimated state values
2
- - Estimation Error for Y1
- - Estimation Error for Y2
1L i
So
i
c
£ .
©
£
G2 :
3 i
4 . . . . . . . . .

0 2 4 6 8 10 12 14 16 18 20
Time (s)

Figure 4. Error between the true and estimated state

o ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12 14 16 18 20
Time (s)
Figure 5. Change in minimum singular value of the history stack
6 T
---Deluca et al.
— CL based Observer
5r Actual Depth [l
4l J
E
< 307 i
5 |
o |
a2p 1
!
0 J
A ‘ ‘ ‘ ‘ ‘
0 2 4 6 8 10 12
Time (s)
Figure 6. Comparison of the convergence of the CL based observer and

the observer presented in [2]

m
307
Additive white Gaussian noise with a signal to noise ratio
(SNR) of 40 dB is added to the image pixel measurements,
and noise with a variance of .01 and zero mean is added to
the velocity signal. The gain values used for the simulation
are Ko, = 3, a = 0.5, H = 10. The initial values for
the state estimate and inverse depth estimate are selected
as §(tg) = [10,5]7 and X(to) = 3. The history stack and
the auxiliary stack are initialized with two points for the
purpose of simulation. The results of the simulation can be
summarized by the plots shown in Figs. 1-5.

Fig. 1 shows the value of the actual depth compared with
the estimated depth. After a high initial error the depth
estimation of the CL Based Observer quickly converges
to the true value in about 1.5 seconds, and then closely
approximates the true depth as time progresses. In Fig. 2,
the depth estimation error can be seen for the simulation.
Fig. 3. shows the actual state trajectories compared to the
estimated state trajectories. The state trajectories generated

by the estimator perfectly follow the actual state trajectories
Table 1
COMPARISON OF THE CL BASED OBSERVER WITH THE OBSERVER
PRESENTED IN [2].

w=[0,—=,0]T

[ | CL based Observer | Observer in [2] |

Total RMSE 0.1173 0.4003
Convergence time(seconds) 0.228 9.83
MAPE(%) 0.4352 6.0204




after initial error. The state estimation error in Fig. 4 goes
to zero in approximately 0.8s. The value of the minimum
singular value of the history stack A varies with time and
in shown in Fig. 5. Due to the time varying nature of the
depth signal and constant purging of the history stack, the
minimum singular value varies. However, at all times it is
evident that the minimum singular value stays positive, which
is an essential condition for the convergence of the estimated
depth to the true depth.

Fig 6. shows the comparison of the convergence speed of
the CL based observer and the observer developed in [2]
using the same velocity signal and initial conditions present
in the first signal. The CL based observer converges rapidly
in 0.228s compared 9.83s required by the other observer.
The CL observer also achieves better error statistics which
are demonstrated in Table I. The root mean squared error
and the mean absolute percentage error values computed
for the CL observer at 0.1172 and 0.4352 are much lower
compared to the observer in [2]. The faster convergence of
the CL observer can be associated to the recorded history
stack which is absent in the compared observer.

VI. CONCLUSION

A concurrent learning based estimator is presented for the
estimation of depth of a stationary feature point in an image
using a moving camera. The estimator error is shown to
be UUB. The simulation result shows the performance of
the designed estimator and its comparison with the existing
estimator in the presence of noise. The estimator designed in
this paper shows faster convergence and achieves better error
statistics in the presence of measurement noise.
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