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Abstract

This paper focuses on the development of an online data-driven model-based inverse reinforcement learning (MBIRL) technique
for linear and nonlinear deterministic systems. Input and output trajectories of an agent under observation, attempting to
optimize an unknown reward function, are used to estimate the reward function and the corresponding unknown optimal
value function, online and in real-time. To achieve MBIRL using limited data, a novel feedback-driven approach to MBIRL is
developed. The feedback policy and the dynamic model of the agent under observation are estimated from the measured data
and the estimates are used to generate synthetic data to drive MBIRL. Theoretical guarantees for ultimate boundedness of
the estimation errors in general, and convergence of the estimation errors to zero in special cases, are derived using Lyapunov
techniques. Proof of concept numerical experiments demonstrate the utility of the developed method to solve linear and
nonlinear inverse reinforcement learning problems.
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1 Introduction

Based on the premise that the most succinct represen-
tation of the behavior of an entity is its reward struc-
ture [1], this paper aims to recover the reward (or cost)
function of an agent by observing the agent performing a
task and monitoring its inputs and outputs. Methods to
estimate the reward function using inputs and outputs
fall under the umbrella of inverse reinforcement learning
(IRL) (see, for example, [1] and [2]), and in a model-
based context, are also referred to as inverse optimal
control (IOC) [3]. The IRL method developed in this pa-
per learns the reward function and the value function of
an agent under observation, modeled as a deterministic
nonlinear dynamical system, online, in the presence of
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modeling uncertainties, using input-output data.

While IRL in an offline setting has a rich history of lit-
erature [1,2,4–14], traditional IRL methods typically re-
quire a large amount of training data and iterative, com-
putationally intensive training algorithms. As such, of-
fline methods are ill-suited for applications such as real-
time intent monitoring and real-time adaptation from
expert demonstrations, which present challenges such as
changing task objectives and uncertainties/changes in
the dynamics of the demonstrator. To address such ap-
plications, this paper focuses on online, real-time IRL,
for a limited class of systems.

IRL techniques that facilitate reward function estima-
tion in real-time have recently started gaining atten-
tion [15–28]. In [19–22], the authors formulate the on-
line IRL problem as a lifelong learning problem. In [15]
and [17], a batch method is developed for learning cost
functions of demonstrators behaving according to poli-
cies that solve linear and nonlinear infinite horizon op-
timal control problems, while a recursive technique for
linear systems is proposed in [16]. In [29, 30], the au-
thors develop sequential and batch processing methods
for solving the IOC problem for deterministic discrete-
time nonlinear systems with both infinite and finite hori-
zons. In [18], the authors study IRL in the presence of
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unknown disturbances affecting both the learner and the
demonstrator, and in [27], the authors utilize IRL to
learn the unknown reward function for tracking control.
However, results such as [15,16,27] only focus on linear
systems, and results such as [17,18,29,30] require either
full state measurements or exact knowledge of the sys-
tem dynamics. In addition, a majority of the IRL/IOC
methods require trajectories that are sufficiently excit-
ing in order to estimate the reward function online. The
techniques developed in this paper aim to alleviate the
aforementioned limitations of existing IRL/IOC meth-
ods.

In this paper, a model-based IRL (MBIRL) approach is
developed for deterministic systems in continuous time
based on the preliminary results in [15], [17], and [31].
The key contribution of this paper is the development of
a novel method for reward function estimation for linear
and nonlinear systems, using a model-based recursive
IRL technique, in an online setting, using input-output
measurements (as opposed to input-state measurements
used in results such as [17, 18], and [31]), while com-
pensating for uncertainties in the agent dynamics. Us-
ing Lyapunov theory, the developed MBIRL technique
is shown to result in ultimate boundedness of the reward
function estimation error.

Another contribution of this paper, is a novel feedback-
driven approach to MBIRL for the case where the mea-
sured data does not provide sufficient information for
direct reward function estimation. Since a majority of
existing IRL methods are trajectory-driven and model-
free, the measured trajectories need to be sufficiently
information-rich for reward function estimation. The
technique developed in this paper is model-based, and as
a result, once a model is learned, it can utilize arbitrary
state-action pairs for IRL as long as the action is the op-
timal action corresponding to that state. The key idea
in the feedback-driven method is to estimate the opti-
mal feedback policy of the agent online using the mea-
sured output-action pairs, and to use that estimate to
artificially create additional state-action pairs to drive
reward function estimation.

The paper is organized as follows: Section 2 details the
notation, Section 3 introduces the problem, Section 4
presents an overview of the MBIRL approach, Section
5 solves the IRL problem using sufficiently exciting ob-
served trajectories, Section 6 develops a feedback-driven
MBIRL approach for the case where the observed tra-
jectories are insufficient for direct reward function esti-
mation, Section 7 demonstrates the effectiveness of the
developed method through simulations, and Section 8
concludes the paper.

2 Notation

The notation Rn represents the n−dimensional Eu-
clidean space, and the elements of Rn are interpreted as

column vectors, where (·)T denotes the vector transpose
operator. The set of positive integers excluding 0 is de-
noted by N. For a ∈ R, R≥a denotes the interval [a,∞),
and R>a denotes the interval (a,∞). The notations In
and 0n (or I and 0 if the dimension is clear from the
context) denote the n × n identity matrix and the zero
element of Rn, respectively. The notation a(i) is used to
denote the i−th component of a vector a.

3 Problem Formulation

Consider an agent under observation with the dynamics

ẋ = fo(x, u) + g(x, u),

y = h(x, u), (1)

where x ∈ Rn is the state, u ∈ Rm is the control, fo :
Rn × Rm → Rn represents a nominal model, g : Rn ×
Rm → Rn denotes the uncertainty, y ∈ Rl is the output,
and h : Rn×Rm → Rl denotes the measurement model.

The agent under observation uses a controller u(·) that
minimizes the performance index

J(x0, u(·)) =

ˆ ∞
0

Q(x(t;x0, u[0,t))) +
(
u(t)

)T
Ru(t) dt,

(2)
where R ∈ Rm×m is a positive definite (P.D.) matrix,
Q : Rn → R is a positive semi-definite (P.S.D.) con-
tinuously differentiable function with a locally Lipschitz
continuous gradient, and x(·;x0, u[0,t)) is the trajectory
of the agent, in response to the control signal u(·), re-
stricted to the time interval [0, t), starting from the ini-
tial condition x0. Since R can be selected to be sym-
metric without loss of generality, only the elements of R
that are on and above the main diagonal are estimated.
The following assumptions are required to facilitate the
development and the analysis of the MBIRL method.

Assumption 1 The state and control trajectories are
bounded, such that x(t) ∈ X and u(t) ∈ U , for all t ∈ R≥0

and for some compact sets X ⊆ Rn and U ⊆ Rm.

Assumption 2 The partial derivatives of fo and g in
(1) with respect to x and u are locally Lipschitz continu-
ous.

Assumption 3 The optimal control problem defined by
(1) and (2) admits a twice continuously differentiable
optimal value function.

The class of affine systems is large, as it includes linear
systems and Euler Lagrange systems with invertible in-
ertia matrices. While Lipschitz continuity of the partial
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derivatives of the dynamics and twice continuous differ-
entiability of the value function are strict requirements,
many optimal control problems of interest, such as linear
quadratic problems and nonlinear problems similar to
those used for demonstration in Section 7.1, meet these
requirements.

The main objective of this paper is to estimate Q and
R using measurements of the input and the output, un-
der the assumption that u(t) is the optimal action in re-
sponse to the state x(t, x0, u[0,t)). While the estimated
reward function can be used in a forward RL method to
generate optimal policies that imitate the demonstrator,
to focus the discussion on reward function estimation,
this paper does not consider policy synthesis. In the fol-
lowing, the input and the output signals available for
measurement will be denoted by t 7→ u(t) and t 7→ y(t),
respectively, the corresponding unknown true state will
be denoted by t 7→ x(t), and x and u will be used to
denote generic elements of Rn and Rm, respectively.

4 Overview of the Developed Approach

MBIRL utilizes an indirect error metric called the in-
verse Bellman error (IBE) to learn the unknown reward
function. The IBE is a model-based error metric that is
a function of both the unmeasureable system states and
the agent’s uncertain dynamics. In addition, the IBE is
also dependent on the unknown optimal value function.
In this work, estimates of the states, dynamics, and value
function are utilized to estimate the IBE, and the esti-
mated IBE is utilized to realize MBIRL.

MBIRL integrates a state observer that produces state
estimates, a parameter estimator that produces esti-
mates of unknown parameters in the system dynam-
ics, and a new algorithm that produces estimates of the
reward function and the value function. For the case
where information extracted from the agent’s trajectory
is insufficient for direct reward function estimation, a
feedback-driven MBIRL method is developed, where a
policy estimator is utilized to generate artificial training
data.

See Fig. 1 for a block diagram that summarizes the
MBIRL method and Fig. 2 for block diagram that sum-
marizes the feedback-driven MBIRL method.

4.1 The Inverse Bellman Error

Under the premise that the observed agent makes opti-
mal decisions, the state and control trajectories, x(·) and
u(·), satisfy the Hamilton-Jacobi-Bellman equation [32]

H

(
x (t) ,∇x

(
V ∗
(
x (t)

))T
, u (t)

)
= 0,∀t ∈ R≥0, (3)

Agent
State and
parameter
estimator

Optimality
checker

Inverse
Bellman
error

estimator

Adaptive
updatey,u

u

u

x̂,θ̂

x̂,θ̂

Approximate
inverse

Bellman error

Control
residual error

ŴV ,ŴQ,ŴR

ŴV ,ŴR
ŴV ,

ŴQ, ŴR

Fig. 1. Block diagram of the developed MBIRL method.

where V ∗ : Rn → R is the unknown optimal value func-
tion and H : Rn × Rn × Rm → R is the Hamiltonian,
defined as H(x, p, u) := pT

(
fo(x, u) + g(x, u)

)
+Q(x)+

uTRu.

The functions V ∗ and Q can be approximated using a
linear combination of P ∈ N and L ∈ N basis func-
tions, respectively, as V ∗(x) = (W ∗V )TσV (x)+εV (x) and
Q(x) = (W ∗Q)TσQ(x)+εQ(x). The vectorsW ∗V ∈ RP and

W ∗Q ∈ RL denote the ideal weights, σV : Rn → RP and

σQ : Rn → RL denote continuously differentiable known
features with locally Lipschitz continuous gradients, and
εV : Rn → R and εQ : Rn → R denote the approxima-
tion errors. The basis functions are selected such that ap-
proximation of the functions and their derivatives is uni-
form over the compact setX , so that given any constants
εV , εQ ∈ R>0, there exist P,L ∈ N such that εV and εQ
satisfy supx∈χ

∥∥εV (x)
∥∥ < εV , supx∈χ

∥∥∇εV (x)
∥∥ < εV ,

supx∈χ
∥∥εQ (x)

∥∥ < εQ, and supx∈χ
∥∥∇εQ (x)

∥∥ < εQ (see,
e.g., [33, Theorem 1.5]).

Let V̂ : Rn × RP → R, defined as V̂ (x, ŴV ) :=

ŴT
V σV (x) and Q̂ : Rn × RL → R, defined as

Q̂(x, ŴQ) := ŴT
QσQ(x) be parameterized estimates

of V ∗ and Q, respectively, where ŴV and ŴQ are
estimates of W ∗V and W ∗Q, respectively. Furthermore,

let uTRu be parameterized as uTRu =
(
W ∗R

)T
σR1(u)

where σR1 : Rm → RM , is defined as σR1(u):=[
u2

(1),2u(1)u(2),...,2u(1)u(m),u
2
(2),2u(2)u(3),...,2u(2)u(m),

u2
(3),...,u

2
(m−1),2u(m−1)u(m),u

2
(m)

]T
, and W ∗R ∈

RM are the ideal weights, given by W ∗R=[
R11,R

(−1)
1 ,R22,R

(−2)
2 ,...,Rm−1,m−1,R

−(m−1)
m−1 ,Rmm

]T
,

where, for a given matrix R ∈ Rm×m, Rij de-
notes the element in the i-th row and the j-th

column, and R
(−j)
i denotes the i-th row of the

matrix R with the first j elements removed, e.g.,

R
(−3)
3 :=

[
R34, R35, . . . , R3(m−1), R3m

]
.

Using the estimates ŴV , ŴQ, and ŴR in (3) yields the
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IBE δ : Rn × Rm × RL+P+M → R, given by

δ
(
x, u, Ŵ ′

)
= ŴT

V ∇xσV (x)
(
fo(x, u) + g(x, u)

)
+ ŴT

QσQ(x) + ŴT
RσR1 (u) , (4)

where Ŵ ′ =
[
ŴT
V , Ŵ

T
Q , Ŵ

T
R

]T
.

Since (4) utilizes the dynamic model of the agent under
observation, the IRL technique developed in this paper is
model-based, and as such, an accurate model of the agent
under observation is required to estimate the unknown
reward function. To facilitate estimation under modeling
uncertainty, a system identifier is utilized that estimates
the unknown model parameters. Similarly, to remove
the dependence of the inverse Bellman error on the full
state x, a state estimator is also utilized. To keep the
discussion focused on IRL, we assume that a state and
parameter estimator that satisfies properties outlined in
the subsequent Assumption 4 is available. Examples of
such state and parameter estimators can be found in
results such as [34–37].

4.2 State and Parameter Estimation

The unknown function g in (1) can be represented as

g (x, u) = θTσ (x, u) + ε (x, u) , (5)

where σ : Rn×Rm → Rp and ε : Rn×Rm → Rn denote
the vector of continuously differentiable basis functions
and the approximation error, respectively, and θ ∈ Rp×n
is a constant matrix of unknown parameters. The basis
functions are selected such that the approximation of
g and its derivatives is uniform over the compact set
X × U so that given any constant ε, there exist p ∈ N
and σ, θ ∈ R>0 such that sup(x,u)∈(X×U)

∥∥σ (x, u)
∥∥ < σ,

sup(x,u)∈(X×U)

∥∥∇σ (x, u)
∥∥<σ, sup(x,u)∈(X×U)

∥∥ε (x, u)
∥∥

< ε, sup(x,u)∈(X×U)

∥∥∇ε (x, u)
∥∥ < ε, and ‖θ‖ < θ (see,

e.g., [33, Theorem 1.5]).

To focus the discussion on IRL, it is assumed that es-

timates θ̂ and x̂, of the parameters θ and the state x,
respectively, are generated using a state and parameter
estimator that satisfies the following property.

Assumption 4 The state and parameter estimation er-

rors, x̃ := x − x̂ and θ̃ := θ − θ̂, satisfy
∥∥x̃(t)

∥∥ ≤
βx̃

(∥∥x̃(0)
∥∥ , t)+X/2 and

∥∥∥θ̃(t)∥∥∥ ≤ βθ̃ (∥∥∥θ̃(0)
∥∥∥ , t)+Θ/2,

for some real numbers X ≥ 0 and Θ ≥ 0 and class KL
functions βx̃ : R× R≥0 → R and βθ̃ : R× R≥0 → R.

Assumption 4 implies the existence of compact sets

X̂ ⊆ Rn and Θ̂ ⊆ Rp, such that x̂(t) ∈ X̂ and θ̂(t) ∈ Θ̂,

∀t ∈ R≥0, and the existence of T ≥ 0 such that∥∥∥θ̃(t)∥∥∥ ≤ Θ, and
∥∥x̃(t)

∥∥ ≤ X, for all t ≥ T . The state

and parameter estimator is implemented synchronously
with inverse reinforcement learning, and in real-time.

5 Inverse Reinforcement Learning Utilizing
Trajectory Information

5.1 Approximation of the Inverse Bellman Error

In this section, the state and parameter esti-
mates are utilized to formulate an indirect er-
ror metric, called the approximate IBE, to facili-

tate IRL. Utilizing x̂ and θ̂ from Assumption 4,
and the parametric dynamics from (5), the IBE

from (4) can be approximated as δ̂
(
x̂, u, Ŵ ′, θ̂

)
=

ŴT
V ∇xσV (x̂) Ŷ (x̂, u, θ̂)+ŴT

QσQ(x̂)+ŴT
RσR1 (u), where

Ŷ (x̂, u, θ̂) = fo(x̂, u) + θ̂Tσ(x̂, u). Rearranging,

we get δ̂
(
x̂, u, Ŵ ′, θ̂

)
=

(
Ŵ ′
)T

σ′
(
x̂, u, θ̂

)
, where

σ′
(
x̂, u, θ̂

)
:=

[ (
∇xσV (x̂) Ŷ (x̂, u, θ̂)

)T
,
(
σQ (x̂)

)T
,(

σR1 (u)
)T ]T

. In the ideal case, i.e., if x(·) and u(·)
are optimal with respect to the reward function in
(2), the approximation of V ∗, Q and g is exact (i.e.,

εV = εQ = ε = 0), and x̃ and θ̃ are equal to

zero, then the IBE is equal to zero whenever Ŵ ′ =[(
W ∗V

)T
,
(
W ∗Q

)T
,
(
W ∗R

)T]T
. Therefore, the IBE is an

indirect metric for the quality of a given set of weight
estimates.

Candidate solutions to the IRL problem can thus be gen-
erated by minimizing the approximate IBE. It can be
seen that in the ideal case, Ŵ ′ = 0 trivially minimizes
approximate IBE. Existence of the trivial solution is ex-
pected because minimization of any positive constant
multiple of a reward function generates identical opti-
mal trajectories, and as such, the IRL problem can only
be solved up to a scaling factor. As a result, there is no
loss of generality in arbitrarily assigning a value to one of
the reward function weights. In this paper, it is assumed
that the first element, R11, of ŴR is selected arbitrarily.

The approximate IBE can then be expressed as

δ̂′
(
x̂, u, Ŵ , θ̂

)
= ŴTσ′′

(
x̂, u, θ̂

)
+ R11u

2
1, where

Ŵ :=

[
ŴT
V , Ŵ

T
Q ,
(
Ŵ

(−1)
R

)T]
, and σ′′

(
x̂, u, θ̂

)
:=[ (

∇xσV (x̂) Ŷ (x̂, u, θ̂)
)T

,
(
σQ(x̂)

)T
,
(
σ

(−1)
R1 (u)

)T ]T
.

To estimate the unknown weights using the approxi-
mate IBE, one could update the weight estimates using
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˙̂
W = −Kσ′′

(
x̂, u, θ̂

)((
σ′′
(
x̂, u, θ̂

))T
Ŵ +R11u

2
1

)
,

whereK is a gain matrix. The dynamics of the state esti-
mation error can then be expressed as a perturbed linear

time-varying system with σ′′
(
x̂, u, θ̂

)(
σ′′
(
x̂, u, θ̂

))T
as the system matrix. However, such a formulation re-
quires persistence of excitation for boundedness and con-
vergence of the estimation error [38–41]. The features σ′′

of the IBE are nonlinear, and as such, ensuring persis-
tence of excitation a priori and monitoring persistence
of excitation online are generally difficult.

To relax the PE requirement and help ensure bound-
edness of the weight estimation errors under loss of ex-
citation, the IRL method developed in this paper bor-
rows the idea of history stacks from concurrent learning
(CL) adaptive control [42–44]. A history stack at time
t, denoted by HIRL(t), is a collection of values of x̂(·)
and u(·), recorded at judiciously selected time instances
t1(t) < t2(t) < . . . < tN (t) ≤ t. Using the history stack,
the approximate IBE, evaluated along the trajectories
x̂(·) and u(·), at time instances t1(t), t2(t), . . . , tN (t), can
be compiled in the matrix form

∆′(t,Ŵ ) = Σ̂′(t)Ŵ +R11

[
u2

(1)(t1(t)),...,u2
(1)(tN (t))

]T
,

(6)
where

∆′(t, Ŵ ) :=


δ̂′
(
x̂
(
t1(t)

)
, u
(
t1(t)

)
, Ŵ , θ̂

(
t1(t)

))
...

δ̂′
(
x̂
(
tN (t)

)
, u
(
tN (t)

)
, Ŵ , θ̂

(
tN (t)

))


and

Σ̂′(t) :=



(
σ′′
(
x̂
(
t1(t)

)
, u
(
t1(t)

)
, θ̂
(
t1(t)

)))T
...(

σ′′
(
x̂
(
tN (t)

)
, u
(
tN (t)

)
, θ̂
(
tN (t)

)))T


.

Further information about the weight estimates is gained
by leveraging the optimal policy.

5.2 Optimality Check and the Control Residual Error

If u is the optimal action in response to the state x,

then 1 u = − 1
2R
−1
(
∇uf(x)

)T (∇xV ∗(x)
)T

. That is,

1 Since f, σ, and ε are assumed to be affine in control, their
partial derivatives with respect to u are independent of u.

− 2Ru =
(
∇ufo(x) + θT∇uσ(x)

)T
(∇xσV (x))TW ∗V

+
(
∇ufo(x) + θT∇uσ(x)

)T (
∇xεV (x)

)T
+
(
∇uε(x)

)T ((∇xσV (x)
)T
W ∗V +

(
∇xεV (x)

)T)
. (7)

The product Ru can be linearly parameterized as Ru =
σR2(u)W ∗R, with σR2 : Rm → Rm×M given by σR2(u) =

uT 01×m−1 01×m−2 ... 0

u(1)e2,m
(
u(−1)

)T
01×m−2 ... 0

u(1)e3,m u(2)e2,m−1

(
u(−2)

)T
... 0

...
...

...
. . .

...

u(1)em,m u(2)em−1,m−1 u(3)em−2,m−2 ···
(
u−(m−1)

)T


,

where ei,j denotes a row vector of size j, with a one in
the i−th position and zeros everywhere else.

Using the estimates ŴR and ŴV in (7) for W ∗R and W ∗V ,
respectively, a control residual error ∆′u : Rn × Rm ×
RL+P+M → Rm is obtained as

∆′u(x, u, Ŵ ′) = 2σR2(u)ŴR

+
(
∇ufo(x) + θT∇uσ(x)

)T (
∇xσV (x)

)T
ŴV . (8)

Utilizing the history stack HIRL(t) to subtract 0 =

H
(
x(ti(t)),

(
∇x, V (x(ti(t)))

)T
, u(ti(t))

)
from (6), sub-

stituting estimates x̂ and θ̂ in (8), and appending (8)
evaluated at t1(t), . . . , tN (t) to (6), with the arbitrarily
assigned weight R11 removed, results in the linear sys-
tem of equations

−ΣR1(t)− Σ̂(t)Ŵ = Σ̂(t)W̃ + ∆(t), (9)

where the weight estimation error is defined as W̃ =
W ∗ − Ŵ with

W ∗ :=
[
(W ∗V )

T
,
(
W ∗Q

)T
,
(

(W ∗R)
(−1)

)T ]T
,

Σ̂(t) :=



(
σ′′′
(
x̂
(
t1(t)

)
,u
(
t1(t)

)
,θ̂
(
t1(t)

)))T
...(

σ′′′
(
x̂
(
tN (t)

)
,u
(
tN (t)

)
,θ̂
(
tN (t)

)))T


,

ΣR1(t) :=
[
R11

(
u(1)(t1(t))

)2

,2R11u(1)(t1(t)),

01×(m−1),···,R11

(
u(1)(tN (t))

)2

,

2R11u(1)(tN (t)),01×(m−1)

]T
,
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σ′′′
(
x̂
(
ti(t)

)
,u
(
ti(t)

)
,θ̂
(
ti(t)

))
:=

(
σ′′
(
x̂
(
ti(t)

)
,u
(
ti(t)

)
,θ̂
(
ti(t)

)))T[
G
(
x̂
(
ti(t)

)
,θ̂
(
ti(t)

))
, 0m×L, 2σ

(−1)
R2

(
u(ti(t))

)]

T

,

G
(
x̂
(
ti(t)

)
,θ̂
(
ti(t)

))
:=(

∇ufo(x̂(ti(t)))
)T (
∇xσV (x̂(ti(t)))

)T
+((

θ̂(ti(t))
)T
∇uσ(x̂(ti(t)))

)T (
∇xσV (x̂(ti(t)))

)T
,

and the residual ∆ is independent of W̃ .

Using the fact that the gradients of (x, u) 7→ fo (x, u),
(x, u) 7→ σ (x, u), x 7→ σV (x), and x 7→ σQ (x) are lo-
cally Lipschitz, the residual ∆ can be bounded above by

‖∆(t)‖ ≤ ∆ε + ¯̃x(t)∆x̃ +
¯̃
θ(t)∆θ̃, (10)

where ¯̃x(t) := maxi=1,2,...,N ‖x̃(ti(t))‖ and
¯̃
θ(t) :=

maxi=1,2,...,N ‖θ̃(ti(t))‖. Since t 7→ x(t), t 7→ x̂(t), t 7→
θ̂(t), and t 7→ u(t) are bounded by Assumption 4, the
bounds ∆̄ε, ∆̄x̃, and ∆θ̃ can be selected independent of
ti and the specific trajectories x(·), u(·), and x̂(·) cur-
rently stored in the history stack. The relationship in (9)
is used in the following to derive adaptive update laws
for estimation of the unknown weights.

5.3 Adaptive Update Laws

The unknown weights are estimated using the update
law

˙̂
W = αΓ(t)

(
Σ̂(t)

)T (
−Σ̂(t)Ŵ − ΣR1(t)

)
, (11)

where α ∈ R>0 is a constant adaptation gain and
Γ : R≥0 → R(L+P+m−1)×(L+P+m−1) is the least-squares
gain updated using the update law

Γ̇ = βΓ− αΓ
(

Σ̂(t)
)T

Σ̂(t)Γ, (12)

and β ∈ R>0 is the forgetting factor. The update law in
(11) is motivated by the fact that the dynamics for the
weight estimation error can be described by

˙̃W = −αΓ(t)
(

Σ̂(t)
)T (

Σ̂(t)W̃ + ∆(t)
)
, (13)

which can be shown to be a perturbed stable linear time-
varying system under conditions detailed in the following
section.

Analyzing (13), it can be seen that the rate of decay for
the weight estimation errors is proportional to the min-

imum eigenvalue of the matrix
(

Σ̂(t)
)T

Σ̂(t). To yield

faster convergence, a minimum eigenvalue maximiza-
tion algorithm (see Algorithm 1) is utilized to select the
time instances t1(t), . . . , tN (t). Specifically, a new data
point (x̂(t∗(t)), u(t∗(t))) replaces an existing data point
(x̂(ti(t)), u(ti(t))), for some i ∈ {1, . . . , N}, if the re-
placement results in the largest increase in the mini-

mum eigenvalue of
(

Σ̂(t)
)T

Σ̂(t) among all N possible

replacements, i.e.,

λmin

∑
i 6=j

Σ̂Ti Σ̂i + Σ̂Tj Σ̂j

 <

ψλmin

∑
i6=j

Σ̂Ti Σ̂i +
(

Σ̂∗
)T

Σ̂∗

 , (14)

where λmin (·) denotes the minimum eigenvalue of a ma-

trix, Σ̂i := Σ̂(ti(t)), Σ̂j := Σ̂(tj(t)), Σ̂∗ := Σ̂(t∗(t)), and
ψ ∈ (0, 1] is a threshold for replacement.

Algorithm 1 Algorithm for history stack purging with
dwell time. At each time instance t, η (t) stores the last
time instance H was purged, Ω (t) stores the highest
minimum eigenvalue encountered so far, τ denotes the
dwell time, and ξ ∈ (0, 1] is a threshold for purging.

1: η (0)← 0, Ω (0)← 0
2: if GIRL is not full then
3: add the data point to GIRL
4: else
5: add the data point to GIRL if (14) holds
6: end if

7: if λmin

((
Σ̂(t)

)T
Σ̂(t)

)
≥ ξΩ (t) then

8: if t− η (t) ≥ τ then
9: HIRL ← GIRL and GIRL ← 0 . purge and

replace HIRL
10: η (t)← t

11: if Ω (t) < λmin

((
Σ̂(t)

)T
Σ̂(t)

)
then

12: Ω (t)← λmin

((
Σ̂(t)

)T
Σ̂(t)

)
13: end if
14: end if
15: end if

Since the size of the perturbation ∆(t) in (13) depends on
the quality of the state and parameter estimates in the
history stackHIRL(t), a time-based purging algorithm is

utilized to purge poor estimates x̂ and θ̂ from the history
stack. Since the state and parameter estimation errors
are assumed to be bounded by a class of KL functions,

newer estimates of x̂ and θ̂ are expected to be better, and
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are utilized when available by purging older estimates
from the history stack.

The developed purging technique maintains an auxiliary
transient history stack, labeled GIRL populated using
minimum eigenvalue maximization. When the transient
history stack is full rank according to (15),HIRL is emp-
tied and GIRL is copied into HIRL. The history stack
HIRL is kept constant in between purging instances. To
avoid chattering, a constant τ ∈ R>0 is selected so that
a new purging event occurs only after τ seconds have
passed since the previous purging event. Due to purging,
the time instances {t1, · · · tN}, the matrices Σ̂ and ΣR1,
and consequently, the history stack HIRL, are piecewise
constant in time.

5.4 Analysis of the Direct MBIRL Technique

Convergence of the estimation error to a neighborhood
of the origin follows if the data is sufficiently informative
according to the following definitions.

Definition 1 The history stack HIRL, is called full
rank, uniformly in t, if there exists σ ∈ R>0 such that 2

∀t ∈ R≥0,

σ < λmin

{(
Σ̂(t)

)T
Σ̂(t)

}
. (15)

Definition 2 The signal (x̂, u) is called finitely infor-
mative (FI) if there exist time instances 0 ≤ t1 < t2 <
· · · < tN such that the resulting history stack is full rank
and persistently informative (PI) if for any T ≥ 0, there
exist time instances T ≤ t1 < t2 < · · · < tN such that
the resulting history stack is full rank.

The stability result is summarized in the following the-
orem.

Theorem 1 If the unknown state variables and model
parameters are estimated using a state and parameter
estimator that satisfies Assumption 4, the signal (x̂, u) is
FI,HIRL is populated using Algorithm 1, and the weights
are estimated using the update laws in (11) and (12) then

t 7→ W̃ (t) is ultimately bounded (UB). 3

2 The history stack HIRL(0) can be initialized using arbi-
trarily selected trajectories

(
x(·), x̂(·), u(·)

)
to ensure that

the history stack is full rank at t = 0.
3 In the ideal case, if the history stack is full rank, then

the linear system of equations in (9), with Ŵ = W ∗, admits
a unique solution, and therefore, so does the IRL problem
(once R11 is selected). As a result, the finite informativity
requirement in Theorem 1 implicitly restricts the results in
this paper to IRL problems that admit unique solutions up
to a scaling factor.

PROOF. Consider the candidate Lyapunov function

U(W̃ , t) =
1

2
W̃TΓ−1 (t) W̃ .

Using arguments similar to [41, Corollary 4.3.2], it can
be shown that provided λmin

{
Γ−1 (0)

}
> 0, the least

squares gain matrix satisfies

ΓIL+P+m−1 ≤ Γ (t) ≤ ΓIL+P+m−1,∀ t ≥ 0, (16)

where Γ and Γ are positive constants. Using the bounds
in (16), the candidate Lyapunov function can be shown
to satisfy

1

2Γ

∥∥∥W̃∥∥∥2

≤ U
(
W̃ , t

)
≤ 1

2Γ

∥∥∥W̃∥∥∥2

. (17)

Using (12), (13), (15), and (16), along with the iden-

tity Γ̇−1 = −Γ−1Γ̇Γ−1, and the Cauchy-Schwartz in-
equality, the orbital derivative of the candidate Lya-
punov function along the solutions of (11) and (12)

can be bounded by U̇(W̃ , t) ≤ − 1
2

(
ασ + 1

Γ
β
)∥∥∥W̃∥∥∥2

+

α
∥∥∥W̃∥∥∥ ∥∥∥Σ̂(t)

∥∥∥∥∥∆(t)
∥∥. Using (10), U̇ can be bounded as

U̇(W̃ , t) ≤ −1

4

(
ασ +

1

Γ
β

)∥∥∥W̃∥∥∥2

, ∀‖W̃‖ ≥ ρ
(
‖µ‖

)
,

(18)

where µ =

[√
∆ε,
√
x̃,

√
θ̃

]T
,

ρ(‖µ‖) =

(
4αΣ max{1,∆x,∆θ}

ασ + β/Γ

)
‖µ‖2,

and Σ satisfies
∥∥∥Σ̂(t)

∥∥∥ ≤ Σ, ∀t ≥ 0. Since t 7→ x(t), t 7→

x̂(t), t 7→ θ̂(t), and t 7→ u(t) are bounded by Assumption
4, the bound Σ can be selected independent of ti and the
specific trajectories of x, u, and x̂ currently stored in the
history stack. Using (17) and (18), [45, Theorem 4.19]
can be invoked to conclude that (13) is input-to-state

stable (ISS) with state W̃ and input µ.

If Algorithm 1 is implemented and if the signal (x̂, u) is
FI, then there exists a time instance Ts, such that for all
t ≥ Ts, the history stack HIRL(t) remains unchanged.
As a result, using Exercise 4.58 from [45], it can be con-

cluded that the ultimate bound on W̃ can be expressed
as

lim sup
t→∞

‖W̃ (t)‖ ≤

√
Γ

Γ

(
4αΣ max{1,∆x,∆θ}

ασ + β/Γ

)
∆ε
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+

√
Γ

Γ

(
4αΣ max{1,∆x,∆θ}

ασ + β/Γ

)(
x̃(Ts) + θ̃(Ts)

)
,

(19)

where x̃(Ts) and θ̃(Ts) denote bounds on the state and
parameter estimation errors, respectively, in the history
stack HIRL(t) for all t ≥ Ts.

Furthermore, if (x̂, u) is PI, then the limits

lim sup
t→∞

x̃(t)→ X and lim sup
t→∞

θ̃(t)→ Θ imply that (19)

reduces to

lim sup
t→∞

‖W̃ (t)‖ ≤

√
Γ

Γ

(
4αΣ max{1,∆x,∆θ}

ασ + β/Γ

)
∆ε

+

√
Γ

Γ

(
4αΣ max{1,∆x,∆θ}

ασ + β/Γ

)(
X + Θ

)
. 2

The ultimate bound decreases with decreasing approx-
imation errors for the reward function, the value func-
tion, the system state, and the model parameters. Since
an exact basis for parameterization of the value function
is not assumed to be known in Theorem 1, the weight
estimation errors cannot be expected to decay to zero.
Furthermore, if the observed dataset is richer, i.e., the
minimum eigenvalue of the history stack in Algorithm
1 is larger, then the ultimate bound is smaller and the
convergence rate is faster.

If the signal (x, u) is PI, the actual reward function and
the optimal value function are linearly parameterizable
with a known basis, and if the state and parameter es-
timator is exact and converges in finite time (which is
possible if the system dynamics are linearly parameter-
izable with a known basis, either under persistence of
excitation [46], or under finite excitation with full state
feedback [47, 48]), then the estimated reward function
converges to the true reward function. This observation
is formalized in the following corollary, which follows
from Theorem 1.

Corollary 1 Under the hypothesis of Theorem 1, if Θ,
X, εQ, and εV are zero, and the signal (x̂, u) is PI, then

limt→∞ ‖W̃ (t) ‖ = 0.

Remark 1 If the full state is measurable, the smooth-
ness restrictions on the agent model and the basis func-
tions can be relaxed to continuous differentiability.

6 Feedback-Driven Inverse Reinforcement
Learning

In optimal control problems that are aimed at driving
the state to a set-point or an error signal to zero, infor-

Agent

State and
parameter
estimator

Optimal
policy

estimator

Sample
generator

Optiality
checker

Inverse
Bellman
error

estimator

Adaptive
update

y,u

x̂

Ŵu

Approximate
inverse

Bellman error

Control
residual error

ŴV ,

ŴQ, ŴR

ŴV ,ŴR
ŴV ,

ŴQ, ŴR

u

{xi, ûi}

{xi, ûi}

Fig. 2. Block diagram of the developed Feedback-Driven IRL
method.

mation content of the state and control trajectories can
quickly decay to zero. As a result, the reward function
estimate may never converge. In this case, artificially
generated state-action pairs can be used to drive esti-
mation. In addition, even if sufficient excitation exists
to estimate the unknown reward function directly, ar-
tificially generated state-action pairs can provide addi-
tional data, potentially resulting in faster estimation of
the reward function. Motivated by the observation that
knowledge of the optimal policy can be leveraged to ar-
tificially synthesize data to drive IRL, the following sec-
tion develops a feedback-driven MBIRL technique that
utilizes an estimate of the optimal policy.

A block diagram that illustrates the Feedback-Driven
IRL method is shown in Fig. 2.

6.1 Optimal Policy Estimation

The closed-form nonlinear optimal policy corresponding
to the reward structure in (2) is

u∗(x) = −1

2
R−1

(
∇uf(x)

)T(
∇xV ∗(x)

)T
. (20)

To facilitate estimation, u∗ will be represented as

u∗(x) = − (W ∗u )
T
σu (x) + εu(x), (21)

where W ∗u ∈ RK×m is a matrix of unknown ideal con-
stant parameters, σu : Rn → RK are known con-
tinuously differentiable features, and εu : Rn → Rm
is the resulting approximation error. The basis func-
tions are selected such that the approximation of u∗

and its derivatives are uniform over the compact set
X × U so that given any constant εu, there exist K ∈ N
and σu ∈ R>0 such that sup(x,u)∈(X×U)

∥∥σu (x, u)
∥∥ <

σu, sup(x,u)∈(X×U)

∥∥∇σu (x, u)
∥∥ < σu, sup(x,u)∈(X×U)∥∥εu (x, u)

∥∥ < εu, sup(x,u)∈(X×U)

∥∥∇εu (x, u)
∥∥ < εu (see,

e.g., [33, Theorem 1.5]).

Collecting values of the state estimates and the control
signals over time instances, tu1 (t), tu2 (t), · · · , tuM (t), in a
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history stack, denoted as Hu(t), and using the fact that
if u(t) is the optimal action in response to the state x(t),
i.e., u(t) = u∗(x(t)), (21) can be reformulated into the
matrix form

−Σu(t)− Σ̂σ(t)Ŵu = Σ̂σ(t)W̃u −∆u(t), (22)

where the weight estimation error is defined as W̃u =
W ∗u − Ŵu, Σu(t) := [u(t1(t)), · · · , u(tM (t))]T , Σ̂σ(t) :=
[σu(x̂(t1(t))), · · · , σu(x̂(tM (t)))]T , the residual ∆u de-
pends on εu and x̃, and the time instances tu1 , . . . , t

u
M

are selected according to minimum eigenvalue maximiza-
tion.

Since x 7→ σu (x) is continuously differentiable, the resid-
ual ∆u can be bounded above by

‖∆u(t)‖ ≤ ∆u + Lu ¯̃x(t), (23)

where ¯̃x(t) = maxi=1,2,...,M ‖x̃(ti(t))‖. Since t 7→
x(t), t 7→ x̂(t), and t 7→ u(t) are bounded by Assumption
4, the bound ∆̄u can be selected independent of ti and
the specific trajectories of x, u, and x̂ currently stored in
the history stack.

The relationship in (22) suggests the following update
law for estimation of the unknown weights

˙̂
Wu = αuΓu(t)

(
Σ̂σ(t)

)T (
−Σu(t)− Σ̂σ(t)Ŵu

)
, (24)

where αu ∈ R>0 is a constant adaptation gain, and Γu :
R≥0 → RK×K is the least-squares gain updated using
the update law

Γ̇u = βuΓu − αuΓu

(
Σ̂σ(t)

)T
Σ̂σ(t)Γu, (25)

where βu ∈ R>0 is the forgetting factor.

The update law in (22) is motivated by the fact that the
dynamics of the weight estimation error can be described
by

˙̃Wu = −αuΓu(t)
(

Σ̂σ(t)
)T (

Σ̂σ(t)W̃u −∆u(t)
)
, (26)

which can be shown to be a perturbed stable linear time-
varying system under conditions detailed in the following
section.

6.2 Analysis of the Optimal Policy Estimator

Convergence of the estimation error to a neighborhood of
the origin follows if the data are sufficiently informative
according to the following definitions.

Definition 3 The time-varying history stack, Hu, is
called full rank, uniformly in t, if there exists a k > 0
such that 4 ∀t ∈ R≥0,

k < λmin

{(
Σ̂σ(t)

)T
Σ̂σ(t)

}
. (27)

Using arguments similar to [41, Corollary 4.3.2], it can
be shown that if λmin

{
Γ−1
u (0)

}
> 0, and if Hu is full

rank, uniformly in t, then the least squares gain matrix
satisfies

ΓuIK ≤ Γu (t) ≤ ΓuIK ,∀ t ≥ 0, (28)

where Γu and Γu are positive constants.

Theorem 2 If the unknown state variables and model
parameters are estimated using a state and parameter
estimator that satisfies Assumption 4, the signal (x̂, u) is
FI,Hu is populated using a time-based purging algorithm
similar to Algorithm 1, and the weights are estimated
using the update laws in (24) and (25), then t 7→ W̃u(t)
is ultimately bounded.

PROOF. Consider the following positive definite can-
didate Lyapunov function

Uu(W̃u, t) = tr(W̃T
u Γ−1

u (t)W̃u), (29)

Using the bounds in (28), the candidate Lyapunov func-
tion satisfies

1

Γu

∥∥∥W̃u

∥∥∥2

≤ Uu
(
W̃u, t

)
≤ 1

Γu

∥∥∥W̃u

∥∥∥2

. (30)

Taking the orbital derivative of (29), using (25),
(26), (27) and (28), along with the identity

Γ̇−1
u = −Γ−1

u Γ̇uΓ−1
u and using the Cauchy-Schwartz

inequality, U̇u can be bounded by U̇u(W̃u, t) ≤
−
(
αuk + βu

Γu

)∥∥∥W̃u

∥∥∥2

+ 2αu

∥∥∥W̃u

∥∥∥∥∥∥Σ̂σ(t)
∥∥∥∥∥∆u(t)

∥∥.

Using (23), U̇u can be bounded as

U̇u(W̃u,t)≤−
1

2

(
αuk+

βu

Γu

)∥∥∥W̃u

∥∥∥2

,∀‖W̃u‖≥ ρ
(
‖µ‖

)
,

(31)

where ρ
(
‖µ‖

)
=

(
4αuΣσ max{1,Lu}

αuk+ 1

Γu
βu

)
‖µ‖2, µ =[√

∆u,
√
x̃
]T

, and Σσ is an upper bound of ‖Σ̂σ(t)‖,

4 The history stackHu(0) can be initialized using arbitrarily

selected trajectories
(
x̂(·), u(·)

)
∈ X̂ × U to ensure that the

history stack is full rank for all t ≥ 0.
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∀t ≥ 0. Since t 7→ x̂(t), and t 7→ u(t) are bounded by
Assumption 4, the bound Σσ can be selected indepen-
dent of ti and the specific trajectories of u and x̂ that
are currently stored in the history stack. Using (30) and
(31), [45, Theorem 4.19] can be invoked to conclude that

(26) is input-to-state stable with state W̃u and input µ.

If a time-based purging algorithm, similar to Algorithm
1, is implemented and if the signal (x̂, u) is FI, there
exists a time instance Ts, such that for all t ≥ Ts, the
history stack Hu(t) remains unchanged. As a result, us-
ing Exercise 4.58 from [45], it can be concluded that the

ultimate bound on W̃u can be expressed as

lim sup
t→∞

‖W̃u(t)‖ ≤

√
Γu
Γu

4αuΣσ max{1, Lu}
αuk + 1

Γu
βu

∆u

+

√
Γu
Γu

4αuΣσ max{1, Lu}
αuk + 1

Γu
βu

 x̃(Ts).

Furthermore, if (x̂, u) is PI, then the bound can be re-
duced to

lim sup
t→∞

‖W̃u(t)‖ ≤

√
Γu
Γu

4αuΣσ max{1, Lu}
αuk + 1

Γu
βu

∆u

+

√
Γu
Γu

4αuΣσ max{1, Lu}
αuk + 1

Γu
βu

X =: γu. 2

Remark 2 Theorem 2 implies existence of a compact
set Û ⊆ Rm, such that û(t) ∈ Û , ∀t ∈ R≥0.

Remark 3 If the full state is measurable, the optimal
controller estimate converges exponentially, see [31].

6.3 Sample Generation for Feedback-driven Inverse Re-
inforcement Learning

In this section, the optimal feedback estimator developed
in the previous section is utilized to create a data-set of
estimated near-optimal state-action pairs to drive IRL.

For each time ti, select an arbitrary state, denoted by xi,

and let ûi := −
(
Ŵu(ti)

)T
σu(xi) be the estimate of the

optimal controller ui at state xi and time ti. The IBE,
evaluated at the arbitrarily selected state xi and at time
ti, using estimates of the model and the optimal policy,
is then given by

δ′′
(
xi, ûi, Ŵ

′, θ̂(ti)
)

=
(
Ŵ ′
)T

σ′
(
xi, ûi, θ̂(ti)

)
, (32)

where Ŵ ′ :=
[
ŴT
V , Ŵ

T
Q , Ŵ

T
R

]T
, and

σ′
(
xi,ûi,θ̂(ti)

)
:=
[(
σ(xi,ûi))

)T
θ̂(ti)

(
∇xσV (xi)

)T
+(

fo(xi,ûi)
)T (∇xσV (xi)

)T
,
(
σQ(xi)

)T
,
(
σR1(ûi)

)T ]T
.

Taking the first element, R11, of ŴR to be known, IBE
in (32) can be expressed as

δ′′
(
xi, ûi, Ŵ , θ̂(ti)

)
= ŴTσ′′

(
xi, ûi, θ̂(ti)

)
+R11û

2
i1,

(33)

where Ŵ :=

[
ŴT
V , Ŵ

T
Q ,
(
Ŵ

(−1)
R

)T]T
, ûi1 de-

notes the first element of the vector ûi, and

σ′′
(
xi,ûi,θ̂(ti)

)
:=

[(
σ(xi,ûi))

)T
θ̂(ti)

(
∇xσV (xi)

)T
+(

fo(xi,ûi)
)T (∇xσV (xi)

)T
,
(
σQ(xi)

)T
,
(
σ

(−1)
R1 (ûi)

)T ]T
.

In feedback-driven MBIRL, the history stackHIRL con-
tains a set of ordered pairs of parameter estimates,

θ̂(ti), and data pairs, (xi, ûi), collected over time in-

stance t1, t2, . . . , tN into matrices
(

Σ̂, Σ̂R1

)
(introduced

in (34)). Similar to Section 5, the history stack contains
potentially poor estimates of ui and θ. Since the con-
trol estimation error and the parameter estimation error
both decay exponentially to an ultimate bound, a time-
based purging algorithm similar to Section 4 is needed
to remove the erroneous estimates from the history stack
once newer estimates become available. As a result, the
data points (xi, ûi) and the time instance ti are time-
varying.

Utilizing estimates θ̂(ti) and data pairs (xi, ûi) in (20),

subtracting 0 = H
(
xi,
(
∇xV (xi)

)T
, ui
)

from (33),
where ui := u∗(xi) is the ideal value of ûi, evaluating
(33) at time instances {ti}Ni=1, and stacking the results
in a matrix form, we get

−Σ̂(t)Ŵ − Σ̂R1(t) = Σ̂(t)W̃ −∆(t), (34)

where the weight estimation error is defined as W̃ =
W ∗ − Ŵ with

W ∗ :=
[

(W ∗V )
T
,
(
W ∗Q

)T
,
(

(W ∗R)
(−1)

)T ]T
,

Σ̂(t) :=



(
σ′′′
(
x1(t), û1(t), θ̂

(
t1(t)

)))T
...(

σ′′′
(
xN (t), ûN (t), θ̂

(
tN (t)

)))T


,

Σ̂R1(t) :=
[
R11û

2
1(1)(t), 2R11û1(1)(t), 01×(m−1), · · · ,

R11û
2
N(1)(t), 2R11ûN(1)(t), 01×(m−1)

]T
,
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where

σ′′′
(
xi(t), ûi(t), θ̂(ti(t))

)
:=

(
σ′′
(
xi(t), ûi(t), θ̂(ti(t))

))T[
G
(
xi(t), θ̂(ti(t))

)
, 0m×L, 2σ̂

(−1)
R2 (ûi(t))

]

T

,

G
(
xi(t), θ̂(ti(t))

)
:=(

∇ufo(xi(t))+
(
θ̂(ti(t))

)T
∇uσ(xi(t))

)T(
∇xσV (xi(t))

)T
,

and the residual ∆ depends on ε, εQ, εV , θ̃, and ũi :=
ui − ûi,∀i ∈ [1, . . . , N ].

Since (x, u) 7→ f (x, u), (x, u) 7→ σ (x, u), u 7→ σR1 (u),
and u 7→ σR2 (u) are continuously differentiable, the
term

∥∥∆(t)
∥∥ can be bounded above by

∥∥∆(t)
∥∥ ≤ ∆ε + ũ(t)∆ũ + θ̃(t)∆θ̃, (35)

where ũ(t) = maxi=1,2,...,N ‖ũi(t)‖. Since t 7→ x(t), t 7→
û(t), t 7→ u(t) and t 7→ θ̂(t) are bounded by Assump-
tion 4, the bounds ∆ε,∆ũ, and ∆θ̃ can be selected inde-
pendent of ti and the specific trajectories of x, u, and û
currently stored in the history stack.

6.4 Feedback-driven Adaptive Update Law

The relationship in (34) suggests the following update
law for estimation of the unknown reward function
weights

˙̂
W = αΓ(t)

(
Σ̂(t)

)T (
−Σ̂(t)Ŵ − Σ̂R1(t)

)
, (36)

where α ∈ R>0 is a constant adaptation gain and
Γ : R≥0 → R(L+P+m−1)×(L+P+m−1) is the least-squares
gain updated using the update law

Γ̇ = βΓ− αΓ
(

Σ̂(t)
)T

Σ̂(t)Γ, (37)

and β ∈ R>0 is the forgetting factor. The update law in
(36) is motivated by the fact that the dynamics for the
weight estimation error can be described by

˙̃W = −αΓ(t)
(

Σ̂(t)
)T (

Σ̂(t)W̃ −∆(t)
)
, (38)

which can be shown to be a perturbed stable linear time-
varying system under conditions detailed in the following
section.

6.5 Analysis of Feedback-Driven Inverse Reinforce-
ment Learning

Using arguments similar to [41, Corollary 4.3.2], it can
be shown that if λmin

{
Γ−1 (0)

}
> 0, and if HIRL is full

rank, uniformly in t, then the least squares gain matrix
satisfies

ΓIL+P+m−1 ≤ Γ (t) ≤ ΓIL+P+m−1,∀ t ≥ 0, (39)

where Γ and Γ are positive constants.

The stability result is summarized in the following the-
orem.

Theorem 3 If the unknown state variables and model
parameters are estimated using a state and parameter es-
timator that satisfies Assumption 4, the signal (x̂, u) and
sequence (xi, ûi) are FI, Hu and HIRL are populated us-
ing Algorithm 1, and the weights are estimated using the
update laws in (36) and (37), then t 7→ W̃ (t) is ultimately
bounded.

PROOF. Consider the positive definite candidate Lya-
punov function

U(W̃ , t) =
1

2
W̃TΓ−1 (t) W̃ .

Using the bounds in (39), the candidate Lyapunov func-
tion satisfies

1

2Γ

∥∥∥W̃∥∥∥2

≤ U
(
W̃ , t

)
≤ 1

2Γ

∥∥∥W̃∥∥∥2

. (40)

Using (15), (37), (39) and (38), along with the iden-

tity Γ̇−1 = −Γ−1Γ̇Γ−1, and using the Cauchy-Schwartz
inequality, the orbital derivative of the candidate Lya-
punov function, along the trajectories of (36) and (37)

can be expressed as U̇(W̃ , t) ≤ − 1
2

(
ασ + 1

Γ
β
)∥∥∥W̃∥∥∥2

+

α‖W̃‖‖Σ̂(t)‖‖∆(t)‖. Using (35), U̇ can be bounded as

U̇(W̃ ,t)≤−1

4

(
ασ+

1

Γ
β

)∥∥∥W̃∥∥∥2

,∀‖W̃‖≥ρ
(
‖µ‖

)
, (41)

where ρ
(
‖µ‖

)
=

(
4αΣ max{1,∆u,∆θ}

ασ+ 1

Γ
β

)
‖µ‖2, µ =[√

∆ε,
√
ũ,

√
θ̃

]T
, and Σ satisfies ‖Σ̂(t)‖ ≤ Σ, ∀t ≥ 0.

Since t 7→ x(t), t 7→ û(t), t 7→ u(t) and t 7→ θ̂(t) are
bounded by Assumption 4, the bound Σ can be selected
independent of ti and the specific trajectories of x, u, û,

and θ̂ currently stored in the history stack. Using (40)
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and (41), [45, Theorem 4.19] can be invoked to conclude

that (38) is input-to-state stable with state W̃ and input
µ.

If Algorithm 1 is implemented and if the signal (x̂, u)
and the sequence (xi, ûi) are FI, there exists a time in-
stance Ts, such that for all t ≥ Ts, the history stacks
Hu(t) and HIRL(t) remain unchanged. As a result, us-

ing Exercise 4.58 from [45], the ultimate bound on W̃
can be expressed as

lim sup
t→∞

‖W̃ (t)‖ ≤

√
Γ

Γ

(
4αΣ max{1,∆u,∆θ

ασ + 1

Γ
β

)
∆ε

+

√
Γ

Γ

(
4αΣ max{1,∆u,∆θ

ασ + 1

Γ
β

)(
ũ(Ts) + θ̃(Ts)

)
,

where ũ(Ts) is an upper bound on the control estimation
errors corresponding to estimates stored in the history
stack HIRL(t) for all t ≥ Ts.

If (x̂, u) and (xi, ûi) are PI, then the ultimate bound on

W̃ reduces to

lim sup
t→∞

‖W̃ (t)‖ ≤

√
Γ

Γ

(
4αΣ max{1,∆u,∆θ

ασ + 1

Γ
β

)
∆ε

+

√
Γ

Γ

(
4αΣ max{1,∆u,∆θ

ασ + 1

Γ
β

)(
γu + Θ

)
. 2

Similar to Section 5.4, the following corollary, immediate
from Theorem 3, states the ideal case where the basis are
exact and the state and the parameters are estimated
exactly.

Corollary 2 Under the hypothesis of Theorem 3, if Θ,
X, εQ, εV , and εu are zero and the signal (x̂, u) and the

sequence (xi, ûi) are PI, then limt→∞ = ‖W̃ (t) ‖.

Remark 4 The rate of convergence of the approxima-
tion errors to the ultimate bound (in the case of Theo-
rems 1, 2, and 3) or zero (in the case of Corollary 1,
Remark 3, and Corollary 2) depend on the minimum
eigenvalue, σ, and how fast the state estimation errors,
x̃, and parameter estimation errors, θ̃, decay to their re-
spective ultimate bounds. Assumption 4 does not impose
any convergence rate constraints on the state and param-
eter estimator for ease of exposition. However, given the
convergence rates of the state and parameter estimation
errors, the minimum eigenvalue of the regressor, and a
desired neighborhood of the ultimate bound, the time re-
quired for the reward function estimation errors to enter
the said neighborhood can be estimated, albeit conserva-
tively, using Lyapunov-based techniques such as [45, The-
orem 4.18].

7 Simulation

In the following, the first simulation demonstrates the
IRL method detailed in Section 5 utilizing the measured
data directly for reward function estimation. The sec-
ond simulation demonstrates the feedback-driven IRL
method detailed in Section 6 to estimate the reward func-
tion when the trajectories of the system are not exciting
enough to directly estimate the reward function.

7.1 Direct MBIRL

To validate the performance of direct MBIRL, a non-
linear optimal control problem is selected with a known
value function. The simultaneous state and parameter
estimator developed in [35] is used to satisfy the condi-
tions of Assumption 4. The agent under observation has
the nonlinear dynamics

ẋ(1) = x(2),

ẋ(2) = θ(1)x(1)

(π
2

+ tan−1(5x(1))
)

+
θ(2)x

2
(1)

1 + 25x2
(1)

+ θ(3)x(2) + 3u, (42)

where the parameters θ(1), θ(2), and θ(3) are assumed to
be unknown. The ideal values of these parameters are
selected to be θ(1) = −1, θ(2) = − 5

2 , and θ(3) = 4.

The agent attempts to minimize the cost function in (2)
with Q(x) = x2

(2) and R = 1, resulting in basis functions

σQ(x) =
[
x2

(1), x
2
(2)

]T
and ideal weights WQ =

[
0 1
]T

.

The observed output and control trajectories are used to
estimate the system state and the unknown parameters
in the dynamics, the optimal value function, and the
reward function.

The closed form optimal policy is

u∗(x) = −1

2
R−1

(
∇uf(x)

)T (∇xV (x)
)T

= −3x(2),

with the corresponding optimal value function

V ∗(x)=x2
(1)

(
WV (1)+WV (2)tan−1(5x(1))

)
+WV (3)x

2
(2),

resulting in the ideal value function weights WV (1) =
π
2 , WV (2) = 1, and WV (3) = 1. It is assumed that the
controller that the agent under observation is utilizing
is a combination of the optimal controller and a known
exciting controller, that is,

u(t) = −3x(2)(t) + 9 cos(3t) + 6 cos(2t) + 3 cos(t)

+ 15 cos(5t).
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Fig. 3. State estimation errors for the system in (42).
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Fig. 4. Parameter estimation errors for the uncertain dynam-
ics in (42).
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Fig. 5. Reward and value function weight estimation errors
using direct MBIRL in Section 5 for the optimal control
problem in (2) with Q(x) = x22 and R = 1.

The history stack, HIRL is initialized to be zero 5 .
Data are added to the history stack using a minimum
eigenvalue maximization algorithm. A time-based purg-
ing method is utilized with τ = 0.1. Trajectories of the
system and the adaptive update laws are simulated using
the MathWorks® MATLAB® Simulink® implementa-
tion of the fourth order Runge-Kutta method with adap-
tive step size, capped to a maximum of 0.01s. The weight
estimates are initialized to be zero. The learning gains
are selected, through trial and error, as N = 150, α =
0.01/N, β = 0.6, and Γ(0) = 0.001diag([1, 1, 1, 1, 0.1]).

5 Full rank initialization of the history stacks is a sufficient,
but not necessary, condition for the analysis in Sections 6.2
and 6.5.

Figs. 3 - 5 show the performance of the developed
MBIRL method. As seen in Figs. 3 and 4, the uncertain
parameters and system state estimates converge to the
origin. As seen in Fig. 5, the MBIRL approach is able to
estimate the ideal values of the reward and value func-
tions online.

7.2 Feedback-Driven MBIRL

In the second simulation, the unknown reward and value
function weights are estimated using feedback-driven
MBIRL in the case where direct MBIRL using the mea-
sured data results in large reward function estimation er-
rors. To demonstrate the performance of feedback-driven
IRL, a linear optimal trajectory tracking problem with
a known value function is designed using the method de-
veloped in [49, 50]. The state and parameter estimator
developed in [34] is used to satisfy the conditions of As-
sumption 4.

Consider an agent modeled as a linear time-invariant
system ẋ = Ax+Bu, where x ∈ R2, u ∈ Rn,

A =

 0 1

θ(1) θ(2)

 , and B =

0

1

 . (43)

The parameters θ(1) and θ(2) are assumed to be un-
known, with ideal values θ(1) = −0.5 and θ(2) = −0.5.

The trajectory the agent is attempting to follow is gen-
erated from the linear system ẋ = Adx, where

Ad =

 0 1

−2 0

 .
Since the agent under observation is attempting to fol-
low a desired trajectory, the optimal control signal will
likely be non-zero almost everywhere, resulting in an in-
finite cost. Following [49], to avoid infinite costs, it is
assumed that the agent under observation solves an op-
timal control problem formulated to penalize an auxil-
iary controller, µ = u − ud, which converges to zero as
the agent’s controller u converges to the desired steady
state controller ud.

The error dynamics are given by

ė =

 0 1

θ(1) θ(2)

 e+

0

1

µ, (44)

and the agent under observation minimizes the perfor-
mance index

J(e0, µ(·)) =

ˆ ∞
0

eT (t)Qe(t) +Rµ(t)2 dt, (45)
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Fig. 6. Trajectory tracking error corresponding to the opti-
mal control problem in (45).

where t 7→ e(t) denotes the solution of the error system in

(44) under the controller µ(·),Q =

1.1 0

0 3

, andR = 50.

The diagonal elements of the state penalty matrix, Q,
are assumed to be unknown, resulting in the ideal reward

function weights WQ =
[
1.1, 3

]T
.

The steady state controller needed to track the de-

sired trajectory is given by ud =
[
0 1
]

(Ad − A)xd =

[1.5, −0.5] xd. Since the learner only has access to mea-
surements of x, xd, and u, the steady-state controller,
ud, needs to be approximated by the learner using esti-
mates of θ.

The optimal value function to be estimated is V ∗ =
WV (1)e

2
(1) + WV (2)e

2
(2) + WV (3)e(1)e(2), where the ideal

weights are WV (1) = 3.00,WV (2) = 4.71, and WV (3) =
2.15. The optimal policy to be estimated is µ =
−Wu(1)e(1) − Wu(2)e(2), where the ideal weights are
Wu(1) = 0.0215 and Wu(2) = 0.0942. To generate an es-
timate of the optimal policy µ, the update law in (24)
is used with the estimated state x̂ and the known de-
sired state xd, at current time t, concatenated into Σ̂σ.
The estimated policy is then queried with random error
values ei in the set [−5, 5], which produce estimates of
the optimal control command, µ̂i, in response to ei. The
pairs (ei, µ̂i) are then collected in a history stack HIRL,
and utilized to implement the feedback-driven MBIRL
method in Section 6.

The history stacks, Hu and HIRL, are initialized to be
zero. Data are added to the history stack using a mini-
mum eigenvalue maximization algorithm. A time-based
purging method is utilized with dwell time τ = 1s for es-
timation of the value function and the reward function,
and τ = 0.1s for estimation of the optimal policy. The
weight estimates are initialized to be zero. The learning
gains are selected, through trial and error, as β = 0.2,
N = 10, α = 0.1/N, βu = 1, αu = 1, M = 40, Γ(0) = I,
and Γu(0)− 0.002I.
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Fig. 7. State estimation errors for the system in (43).
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Fig. 8. Parameter estimation errors for the uncertain dynam-
ics in (43).
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Fig. 9. Reward and value function weight estimation errors
using direct MBIRL in Section 5 for the optimal control
problem in (45).
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Fig. 10. Control weight estimation errors for the auxiliary
controller µ for the optimal control problem in (45).
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Fig. 11. Reward and value function weight estimation errors
using feedback-driven MBIRL in Section 6 for the optimal
control problem in (45).

The tracking errors and corresponding auxiliary con-
troller trajectories converge to the origin within 20 sec-
onds (see Fig. 6). It is clear from Fig. 9 that the direct
MBIRL method Section 5, implemented using these tra-
jectories, results in large estimation errors. The errors
are attributed, heuristically, to lack of sufficient infor-
mation regarding the reward function in the recorded
data. The lack of information can be compensated for in
feedback-driven MBIRL via artificially synthesized ex-
pert response µ̂i to randomly selected tracking errors ei.
Since the estimation errors W̃u corresponding to the un-
known weights in the optimal policy go to zero (see Fig.
10), the artificially synthesized demonstrator responses
asymptotically approach true expert responses, facilitat-
ing accurate reward function estimation, as observed in
Fig. 11.

8 Conclusion

In this paper, an online MBIRL method is developed
that facilitate reward function estimation utilizing a sin-
gle demonstration. Since a large majority of optimal con-
trol problems are aimed at driving a state to a set-point
or an error signal to zero, single demonstrations may
not provide sufficient excitation to directly estimate the
reward function from only measured data. Therefore, a
second method is developed that utilizes an estimated
policy to synthesize additional data that mimics the con-
trol policy of the agent under observation.

As stated in Footnote 3, the finite informativity require-
ment implicitly restricts the results in this paper to IRL
problems that admit unique solutions up to a scaling fac-
tor. A detailed examination of IRL problems with solu-
tions that are nonunique beyond a scaling factor is out-
side the scope of this paper. However, numerical experi-
ments indicate that, when applied to such problems, the
developed method converges to different equivalent solu-
tions of the IRL problem depending on the initial guess
of Ŵ , where two reward functions are called equivalent
if the corresponding optimal policies are identical.
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