
ON MODEL-BASED ONLINE INVERSE REINFORCEMENT LEARNING

By

RYAN VOYD SELF

Bachelor of Science in Mechanical Engineering

Oklahoma State University

Stillwater, Oklahoma

2014

Master of Science in Mechanical and Aerospace

Engineering

Oklahoma State University

Stillwater, Oklahoma

2016

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

December, 2020

ON MODEL-BASED ONLINE INVERSE REINFORCEMENT LEARNING

Dissertation Approved:

Dr. Rushikesh Kamalapurkar

Dissertation Advisor

Dr. He Bai

Dr. Jamey Jacob

Dr. Gary Yen

ii

ACKNOWLEDGMENTS

First, I would like to express my sincere gratitude towards my advisor, Dr. Rushikesh

Kamalapurkar, for his guidance, patience, support and encouragement, as I would not

have completed my degree without him. I would also like to thank my committee

members, Dr. He Bai, Dr. Jamey Jacob and Dr. Gary Yen for their valuable in-

sights and advice on my dissertation. Finally, I would like to thank all members of

the SCC and CoRAL research groups for fostering a positive and engaging learning

environment.

This research was supported, in part, by the National Science Foundation (NSF)

under award number 1925147 and the College of Engineering, Architecture and Tech-

nology (CEAT) at Oklahoma State University. 1

1Acknowledgments reflect the views of the author and are not endorsed by committee members

or Oklahoma State University.

iii

Name: RYAN SELF

Date of Degree: DECEMBER, 2020

Title of Study: ON MODEL-BASED ONLINE INVERSE REINFORCEMENT
LEARNING

Major Field: MECHANICAL AND AEROSPACE ENGINEERING

Abstract: Based on the premise that the most succinct representation of the behav-
ior of an entity is its reward structure, inverse reinforcement learning aims to recover
the reward (or cost) function by observing an agent perform a task and monitoring
state and control trajectories of the observed agent [118]. In general, it has been
shown that it is easier to show how to perform a task rather than to describe how
to perform the task [101]. Autonomous agents can use this same ideology to develop
a mathematical representation, called a reward function, which inherently describes
the overall task objective. Inverse reinforcement learning (IRL) is a process in which
machines learn to perform complex tasks through analyzing state and control trajec-
tories. Most research that has been done on IRL has been offline, which only allows
for repetitive tasks and unchanging environments. The development of real-time IRL
techniques, by allowing the autonomous agent to update its reward function in time,
would help autonomous entities adapt to changes in the environment by correcting
previously inaccurate information, and allow for a more dynamic response to un-
foreseen alterations in task objectives. In this dissertation, data-driven model-based
inverse reinforcement learning techniques are developed that facilitate reward function
estimation in real-time. The dissertation then builds off that foundation to explore
techniques to resolve sub-optimal trajectories, data sparsity, and partial/imperfect
measurements, which are inherent challenges to IRL. An application section is then
discussed, including a novel pilot behavior modeling approach.

iv

Contents
Chapter Page

I. INTRODUCTION . 1
1.1 Motivation . 1
1.2 Review of Literature . 4

1.2.1 Learning from Demonstration 4

II. NOTATION . 10

III. STATE AND PARAMETER ESTIMATION 11
3.1 Introduction . 11
3.2 Nonlinear Systems . 14

3.2.1 Problem Formulation . 14
3.2.2 Error System for Estimation 15
3.2.3 State Estimator Design . 17
3.2.4 Parameter Estimator Design 19
3.2.5 Purging . 20
3.2.6 Analysis . 22

3.3 Linear Systems . 33
3.3.1 Problem Formulation . 33
3.3.2 Error System for Estimation 33
3.3.3 Parameter Estimator Design 35
3.3.4 Analysis . 37

3.4 Simulation . 38
3.4.1 Linear System . 38
3.4.2 Nonlinear System . 41

3.5 Conclusion . 47

IV. INVERSE REINFORCEMENT LEARNING IN REAL TIME . 48
4.1 Introduction . 48
4.2 Problem Formulation . 49
4.3 Inverse Reinforcement Learning Utilizing Trajectory Information . 53
4.4 Analysis of the Developed MBIRL Technique 59
4.5 Simulation . 61

4.5.1 Output-Feedback IRL for Linear Systems 62
4.5.2 Output-Feedback IRL for Linear Systems with a Change in

the Reward Function . 65
4.5.3 Output-Feedback IRL for Nonlinear Systems 68

v

Chapter Page

4.6 Conclusion . 70

V. INVERSE REINFORCEMENT LEARNING WITH INCONSIS-
TENT OBSERVATIONS. 71
5.1 Introduction . 71
5.2 Problem Formulation . 74
5.3 Disturbance Estimation . 76
5.4 Parameter Estimation . 78

5.4.1 Design . 78
5.4.2 Analysis . 81

5.5 Inverse Reinforcement Learning 84
5.5.1 Inverse Bellman Error . 84
5.5.2 Formulation of IRL . 85
5.5.3 Analysis . 88

5.6 Simulation . 94
5.6.1 Uncertain Agent Dynamics 94
5.6.2 Exact Model Knowledge 97

5.7 Conclusion . 98

VI. INVERSE REINFORCEMENT LEARNING WITH LIMITED
DATA . 99
6.1 Introduction . 99
6.2 Problem Formulation . 100
6.3 Optimal Policy Estimation . 104
6.4 Analysis of the Optimal Policy Estimator 106
6.5 Inverse Reinforcement Learning Formulation 108
6.6 Analysis of Inverse Reinforcement Learning 111
6.7 Simulation . 114

6.7.1 Feedback-Driven MBIRL 114
6.8 Conclusion . 119

VII. OBSERVER BASED INVERSE REINFORCEMENT LEARN-
ING .120
7.1 Introduction . 120
7.2 Problem formulation . 122
7.3 Inverse Reinforcement Learning 122
7.4 A memoryless observer . 126

7.4.1 Observer Gain Design and Stability Analysis 127
7.5 Inclusion of memory . 128

7.5.1 Observer Gain Design and Stability Analysis 130
7.6 Simulations . 132

7.6.1 Persistently Excited Signal without Noise - Two State System133
7.6.2 Persistently Excited Signal without Noise - Four State System134
7.6.3 Persistently Excited Signal with Noise 136

vi

Chapter Page

7.7 Conclusion . 142

VIII. APPLICATIONS .143
8.1 Consistency Checking/Validation 143
8.2 Pilot Modeling . 144

8.2.1 Introduction . 144
8.2.2 Literature Review . 145
8.2.3 Preliminary Results . 147

8.3 Learning (IRL) and Control (RL) in Real-Time 152

IX. CONCLUSION AND FUTURE WORK . 153

Bibliography .155

vii

Chapter Page

viii

List of Tables

Table Page

1. Sensitivity analysis for the linear system. The nominal values of τ1, τ2,

τ3, β1, and kθ were selected to be τ1 = 1.5, τ2 = 1.2, τ3 = 1.0, β1 = 0.4,

and kθ = 2/N . A zero-mean Gaussian noise with variance 0.001 was

used with a step size ∆t = 0.001. 41

2. Sensitivity analysis for the nonlinear system. The nominal values of

τ1, τ2, β1, and kθ were selected to be τ1 = 1.2, τ2 = 0.9, β1 = 0.7, and

kθ = 0.5/N . The zero-mean Gaussian noise with variance 0.001 was

used with a step size ∆t = 0.001. 46

3. Comparison between concurrent learning (CL), KF based implementa-

tion of HSO (HSO-KF), and exponential pole selection implementation

of HSO (HSO-Exp), with different noise variances. Simulations were

ran for 100 seconds over 50 trials with step size Ts = 0.005. The stan-

dard deviations (SD) simulated are 0.0, 0.1, 0.5, and 1.0. The metric

used for comparison is the average of the average on the trajectories∑
W̃i/W

∗
i , where TT denotes the average over the entire trajectory,

and SS denotes the average over the last 30 seconds of the trajectory.

The exponential HSO gains are selected similar to Section 7.6.1, except

K4 = (1−0.9 exp−t)0.15I. The Kalman filter gain is selected using the

gain matrix KHSO = diag([K3, K4]) where K3 and K4 are independent

Kalman gains. 137

viii

List of Figures

Figure Page

1 Algorithm for history stack purging with dwell time. At each time

instance t, δ (t) stores the last time instance H was purged, Ω (t) stores

the highest minimum singular value of G encountered so far, T (t)

denotes the dwell time, and ξ ∈ (0, 1] denotes a threshold fraction. . . 24

2 Error signals utilized in the stability analysis. 26

3 Parameter estimation errors for the linear system 39

4 Parameter estimation errors for the nonlinear system. 42

5 x1 state estimation errors for the nonlinear system. 44

6 x2 state estimation errors for the nonlinear system. 45

7 Generalized position estimation error. 63

8 Generalized velocity estimation error. 63

9 Estimation error for the unknown parameters in the system dynamics. 64

10 Estimation error for the unknown parameters in the reward function. 64

11 Generalized position estimation error. 66

12 Generalized velocity estimation error. 66

13 Estimation error for the unknown parameters in the system dynamics. 67

14 Estimation error for the unknown parameters in the reward function. 67

15 State estimation errors for the system in (103). 69

16 Parameter estimation errors for the uncertain dynamics in (103). . . . 69

ix

Figure Page

17 Reward and value function weight estimation errors using direct MBIRL

in Section 4.3 for the optimal control problem in (76) with r(x, u) =

x2
2 + u2. 70

18 Learner (Agent 1) and Demonstrator (Agent 2) signal block diagram. 77

19 Estimation error for the unknown parameters in the dynamics of Agent

2. 96

20 Estimation error for the unknown parameters in the reward function

for Agent 2. 96

21 Estimation error for the unknown disturbance acting on Agent 2. . . 96

22 Estimation error for the unknown parameters in the reward function

for Agent 2 with exact model knowledge. 97

23 Trajectory tracking error corresponding to the optimal control problem

in (214). 116

24 State estimation errors for the system in (211). 117

25 Parameter estimation errors for the uncertain dynamics in (211). . . . 117

26 Reward and value function weight estimation errors using direct MBIRL

in Chapter IV for the optimal control problem in (214). 118

27 Control weight estimation errors for the auxiliary controller µ and the

steady state desired controller ud for the optimal control problem in

(214). 118

28 Reward and value function weight estimation errors using feedback-

driven MBIRL in Section 6.5 for the optimal control problem in (214). 119

29 Weight estimation errors for the developed observers with no noise and

PE signal. 135

x

Figure Page

30 Weight estimation errors for the developed HSO observers with no

noise and PE signal with larger dimensional system. 136

31 Weight estimation errors for the developed MLO observer with no noise

and PE signal with larger dimensional system. 136

32 No Noise . 138

33 0.1 Noise Standard Deviation . 139

34 0.5 Noise Standard Deviation . 140

35 1.0 Noise Standard Deviation . 141

36 Kinematic Control Simulation Block Diagrams. 148

37 Quadcopter simulation using linear trajectories and linearized model

inside IRL. 150

xi

Chapter I

INTRODUCTION

1.1 Motivation

The use of robots in everyday life has long been a sought-after goal for humans, and

as a result, over the past few decades, autonomous systems have been utilized to

perform increasingly complex tasks. Autonomous agents have significant advantages

over humans due to their repeatability, precision, and resistance to fatigue. The use

of autonomous systems is also advantageous in a variety of situations that are poten-

tially harmful to humans [148], such as war-zones and toxic areas. However, increased

use of autonomy results in increasingly complex theoretical and practical design chal-

lenges. In particular, as autonomous systems become more sophisticated, control

objectives tend to become increasingly complex and as a result, require advanced

control synthesis strategies.

A popular method for synthesis of complex control strategies is Learning from

Demonstration (LfD) [135]. LfD is an ideology in which traditional programming

techniques are replaced with “programming by demonstration” [21]. Within LfD, a

control strategy is discovered by monitoring a demonstration (i.e., a set of state-action

sequences) provided by an expert teacher. The learner’s goal is to act in a similar

manner using the found policy. LfD is a supervised form of learning using examples,

as opposed to unsupervised learning techniques that facilitate learning from experi-

ence (such as Reinforcement Learning (RL) [141]). LfD has gained significant interest

since it has allowed for synthesis of policies for systems with complicated or poten-

tially unknown dynamics, and for situations in which utilization of traditional control

1

techniques is challenging [45]. However, the potential of autonomous systems will not

be fully realized unless the systems are able to adapt to changes and systematically

update their control objectives in real-time.

One way to increase adaptability is to learn the mathematical representation to

describe the agent’s intent (i.e., reward/cost function) while executing a task, rather

than simply how the agent completed the task (i.e., the policy). If the reward function

can be uncovered for a specific task, the policy can then be synthesized to maximize

a cumulative reward using established methods such as reinforcement learning. If an

agent solely focused on learning how to complete a specific task (i.e., learning a feed-

back controller), then any alterations in the environment or task objectives render

the task previously learned sub-optimal or infeasible. Instead, if the intent driving

the execution of the task is learned (i.e., the reward function), then the agent will

be better equipped to adjust to unforeseen changes in real-time, including changes

to the agent’s dynamics, the environment, or the overall task itself. Learning the

reward function, rather than the policy, also facilitates task transfer between two het-

erogeneous autonomous systems as long as they share the same state space and are

capable of learning policies to meet given tasks. For a given reward function, opti-

mal behaviors to achieve tasks can be significantly different for different autonomous

systems, especially when the system dynamics are nonlinear. For instance, quadro-

tors and fixed wing aircraft with similar objectives will perform tasks differently due

to the holonomic and nonholonomic nature of their kinematics. Therefore, simply

analyzing the trajectories of an agent, though the task trajectories could look very

different, the underlying reward function may be the same. Based on the hypothesis

that the reward function can be used to succinctly encode a task [118], an optimal

control framework, where the behavior describing a task is identified with the reward

function of an optimal control problem, is utilized in this research.

Inverse reinforcement learning (IRL) [4] solves the problem of estimating a reward

2

function that describes a task by observing an agent acting in an environment. IRL

is a way in which machines can learn how to achieve complex tasks without the

explicit programming of the task. IRL is motivated by the difficulty in explicitly

defining a reward function to encode a given task beforehand. For many problems,

weighing the many, possibly infinite, features that define a reward function such

that maximization of cumulative reward that would result in the desired behavior

is a nearly impossible task. The reward function difficulties only magnifies when

considering teams of autonomous systems.

Many applications, such as search and rescue, reconnaissance, and warfare, require

cooperative teams of autonomous systems working together to achieve an overall goal.

Team cooperation has distinct advantages over single agents. The use of multi-agent

teams to achieve the same goal allows for division of labor and the use of simpler,

cheaper robots as opposed to one large complex robot [30, 49]. Though using a

team of autonomous systems does have its advantages, the larger the team gets,

the more complicated the control structure and communication networks become. If

autonomous agents can estimate the reward functions of other agents, they may be

able to properly adapt their actions to support the perceived motivation behind the

observed behavior, even without direct communication.

The overall goal of this research is to develop novel inverse reinforcement learn-

ing (IRL) techniques which facilitate reward function estimation in real-time. To

achieve this goal, a cognitive entity will be modeled as an optimal decision maker

and the reward/cost function that drives the optimization will be interpreted as the

perceived intent of the entity. Estimation of this reward function in real time will

allow for seamless execution of an agent in real time by facilitating adaptation of the

autonomous agents to updated task objectives and robustness to uncertainties in the

environment.

3

1.2 Review of Literature

1.2.1 Learning from Demonstration

Learning from Demonstration [135] (LfD) has become a popular topic of research

with a variety of techniques existing in the literature [122]. However, many of the

methods can be categorized into two distinct approaches. The first, known as appren-

ticeship learning [3], imitation learning [10,12,130,136] or behavioral cloning [133], is

primarily focused on learning a policy, or a mapping of states and actions, from the

demonstrations or mimicking the demonstrations of the expert demonstrator. While

the second one, more commonly referred to as Inverse Reinforcement Learning, aims

to recover the true reward function that describes observed demonstrations.

Apprenticeship learning [1,3] uses trajectories with the goal of achieving a policy

to behave in a similar manner as an expert demonstrator. These methods are good

for situations in which the robot will be performing in a similar environment or if

the robot is working in repetitive situations. Many of the techniques in the field

have greatly helped in complicated situations in which classical control techniques

have been challenging, and there have been numerous methods developed that allow

machines to perform complicated tasks [2, 5, 83]. However, methods in this field are

generally not transferable between robots with different dynamics, and are not aimed

at uncovering true reward functions. The goal of methods that fall in this category

is to uncover any reward function that can be utilized to achieve the desired task.

Inverse Reinforcement Learning [132], sometimes called inverse optimal control

[65], is based on the premise that the most succinct representation of the behavior

of an entity is its reward structure [118]. IRL aims to recover the reward (or cost)

function by observing an agent performing a task and monitoring state and control

trajectories of the observed agent. One of the first, and potentially most obvious,

advantages of IRL is that these methods can facilitate implementation of reinforce-

4

ment learning without reward shaping [88, 89, 117]. Reward shaping is the process

of designing a reward function so that control policies generated via reinforcement

learning methods aimed at maximizing cumulative reward will result in the desired

behavior. For some simple problems, such as most video games [144], the reward

function is the overall score. However, for more complex problems, defining a reward

function may be very difficult. For example, formulating a reward function for driving

a car would be challenging given the nearly infinite feature space. It would be easy

to assign large negative rewards for features such as driving off the road or running

into another car, but assigning rewards for less obvious features becomes increasingly

difficult, such as how often to change lanes, how fast to accelerate, how to interpret

the actions of another driver at a crossroad, what is the safe distance given between

your car and the car in front of you. Taking into consideration all the characteristics

that would define the proper reward function for optimally driving a car is a nearly

impossible task to achieve. One possible solution to address the aforementioned chal-

lenge is to allow the machine to observe the task through set of demonstrations and

formulate the reward function using IRL, instead of having to initially express the

reward function mathematically to achieve some goal beforehand.

Another advantage of IRL is that the reward function is model agnostic and

transferable from one agent to another. The reward function encodes the task, and in

general, is independent of the dynamic model of the learner or the demonstrator. As

long as the learner and the demonstrator share the same state space, the demonstra-

tor’s policy can be readily transferred to the learner using (forward) reinforcement

learning to maximize the cumulative reward.

IRL certainly has some challenges. The first is the reward function ambiguity. In

the field of inverse reinforcement learning, there exist three types of reward function

ambiguities: 1) inherent, where the optimal control problem itself can exhibit similar

behaviors under different linearly independent reward functions, 2) scaling, where a

5

reward function and a constant multiple of that reward function result in the exact

same policy, and 3) data scarcity, where the availability of a relatively small number

of trajectories results in multiple reward functions that can explain the observed

behavior. Therefore, when the goal is to uncover an unknown reward function by

observing a task, an infinite number of reward functions can typically be found. To

address the aforementioned ambiguities, a maximum margin planning technique was

developed in [11, 126] where solutions which resulted in a large margin from the

demonstration are eliminated through a loss function.

Another challenge that has faced the field of IRL is the requirement for optimal

demonstrations. In [159,160], Ziebert et al. presented a Maximum Entropy (MaxEnt)

IRL method to help relax the requirement that the demonstrations provided by the

expert had to be optimal. The benefit of the MaxEnt IRL approach is that reward

function estimation can be achieved in the presence of suboptimal trajectories. This

was a useful development since multiple optimal demonstrations are difficult to re-

produce. In 2011, Boularias et al. [26] further developed on the idea of Maximum

Entropy by using sub-optimal demonstrations for situations in which accurate model

knowledge is unavailable. The authors discuss how inaccurate models can lead to

poor reward function estimation, and their model-free IRL approach alleviates the

difficulty in finding the unknown reward function for such situations. In [157], the

authors developed a Maximum Casual Entropy IRL technique for infinite time hori-

zon problems where a stationary soft Bellman policy which helps enable the learning

of the transition models is utilized.

Considering multi-agent situations and inter-agent coordinations only magnifies

the aforementioned challenges. Multi-agent inverse reinforcement learning was intro-

duced in [114] where they aimed to recover the individual reward function for each

agent and used an average-reward based approach to calculate the overall central-

ized reward function. Bogert and Doshi [22, 23] further developed multi-agent IRL

6

methods by incorporating ideas from the MaxEnt IRL approach. In [140], Šošić et

al. extended the concept of multi-agent IRL to systems of swarms. Swarm systems

have an inherently unique and interesting challenge, in that the number of agents is

so significant that the system cannot be analyzed globally, only locally. Šošić et al.

exploited the homogeneity of the swarm problem and were able to formulate local

IRL problems for each agent which allow for the use of previously developed single

agent IRL approaches.

Generally, inverse reinforcement learning methods involve estimating the reward

function as a linear combination of features. However, [93] and [50] extended the IRL

ideas to nonlinear formulations, such as Gaussian Processes and multilayer neural

networks. In [28], Brown and Niekum took a different approach to the overall IRL

problem. While most work on IRL has been focused on uncovering the single reward

function from the demonstration, Brown and Niekum investigate machine teaching

methods [158] and focused on determining the minimal number of demonstrations

required for single reward function estimation.

In [113], Muelling et al. used a model-free IRL approach to learn reward functions

for playing table tennis which facilitated reward function estimation without having

to develop an accurate model of the human body. Beyond this, many extensions of

IRL have been developed, including formulation of feature construction [92], solving

IRL using gradient based methods [116], Bayesian Inverse Reinforcement Learning

[35–37,107,124] designed to define a probability distribution over of reward functions,

and game theoretic approaches, as in [143], which suggest the possibility of finding

solutions that outperformed the expert.

Techniques such as inverse reinforcement learning, inverse optimal control [65,111,

160] and apprenticeship learning [3, 116, 142], have been used to teach autonomous

agents to perform specific tasks in an offline setting. However, offline approaches

to IRL cannot handle unforeseen changes in task objectives and are ill-suited for

7

adaptation in real-time. The development of real-time IRL techniques is motivated

by the need for robustness to uncertainties in the system model and responsiveness

to adapt to changing reward structures.

Inspired by real-time reinforcement learning techniques [19, 74, 108, 149, 151], in-

verse reinforcement learning techniques which facilitate reward function estimation

in real time have recently started gaining attention [8, 9, 64, 68, 94, 106, 110, 127–129,

137, 138]. In [106, 127–129], the authors formulate the online IRL problem as a life-

long learning problem, [8,9] extends the Maximum Entropy IRL method to situations

in real-time, [64] shows convergence guarantees for real-time IRL, and [68] utilizes a

batch IRL method method for linear infinite horizon optimal control problems, while a

recursive technique for linear systems is proposed in [110]. While IRL techniques for

real-time reward function estimation have started gaining some attention recently,

further research is needed to facilitate reward function convergence utilizing single

demonstrations under non-ideal situations.

In summary, wide-spread use of IRL for real-time behavior monitoring and con-

trol synthesis is hampered by five key challenges: (a) sparsity of available data, (b)

nonuniqueness of solutions, (c) partial measurements, (d) imperfect/noisy measure-

ments, and (e) inconsistent observations. This dissertation aims to partially address

the above challenges by developing novel real-time IRL methods to be utilized for

real-time behavior monitoring and control synthesis. Since the techniques developed

in this dissertation are model-based, Chapter III develops a state and parameter es-

timation technique to help estimate unknowns of the system in real-time. Chapter

IV develops a data-driven model-based inverse reinforcement learning technique that

is less data intensive than its model-free counterparts, which help facilitate reward

function estimation in real-time. Chapter V addresses IRL for scenarios where the

observed trajectories of an agent under observation are inconsistent with its inter-

nal reward function. Chapter VI attempts to further address the issue of sparsity

8

of available data by formulating a method to artificially create additional data to

help drive reward function estimation if trajectories are not sufficiently information

rich. Chapter VII formulates the IRL problem in an observer framework to solve the

IRL problem in the presence of noisy or imperfect measurements. Chapter VIII dis-

cusses applications relevant to the methods developed in this dissertation and presents

preliminary results. Chapter IX details the future work section, and concludes the

dissertation.

9

Chapter II

NOTATION

The notation Rn represents the n−dimensional Euclidean space, and the elements

of Rn are interpreted as column vectors, where (·)T denotes the vector transpose

operator. The set of positive integers excluding 0 is denoted by N. For a ∈ R, R≥a

denotes the interval [a,∞), and R>a denotes the interval (a,∞). Unless otherwise

specified, an interval is assumed to be right-open. If a ∈ Rm and b ∈ Rn, then

[a; b] denotes the concatenated vector

a
b

 ∈ Rm+n. The notations In and 0n denote

the n × n identity matrix and the zero element of Rn, respectively. Whenever it is

clear from the context, the subscript n is suppressed. χ|Rn denotes the projection

of χ ⊆ Rn × Rm onto Rn. The notation f ∈ CN (X, Y) denotes that the function

f : X → Y is N -times continuously differentiable. The notation f ∈ O (g) denotes

that there exists c,M ∈ R>0 such that |f(x)| ≤ c|g(x)| ∀ x > M .

10

Chapter III

STATE AND PARAMETER ESTIMATION

For certain classes of systems (made precise in the following), the data-sparsity chal-

lenge in IRL can be effectively addressed by using additional insights gained from the

dynamic model of the system. Since system models are uncertain and changeable, an

adaptive system identification technique is developed in this chapter to support the

development and implementation of model-based IRL methods.

3.1 Introduction

Traditional adaptive control methods handle uncertainty in the system dynamics

by maintaining a parametric estimate of the model and utilizing it to generate a

feedforward control signal (see, e.g., [60, 85, 134]). While the feedforward-feedback

architecture guarantees stability of the closed-loop, the control law is not robust to

disturbances, and seldom provides information regarding the quality of the estimated

model (cf. [60] and [134]). While accurate parameter estimation can improve ro-

bustness and transient performance of adaptive controllers, (see, e.g., [40, 48, 86]),

parameter convergence typically requires restrictive assumptions such as persistence

of excitation (PE) [7,51,52,60]. An excitation signal is often added to the controller

to ensure persistence of excitation; however, the added signal can cause mechanical

fatigue and compromise the tracking performance. Therefore, the development of

techniques that facilitate parameter convergence without the requirement of PE is

motivated.

Parameter convergence can be achieved under a finite excitation condition us-

11

ing data-driven methods, such as concurrent learning (CL) (see, e.g., [40, 44, 79]),

where the parameters are estimated by storing data during time-intervals when the

system is excited, and then utilizing the stored data to drive adaptation when ex-

citation is unavailable. In addition to parameter estimation, CL adaptive control

methods also possess similar robustness to bounded disturbances as σ−modification,

e−modification, etc., without the associated drawbacks such as drawing the param-

eter estimates to arbitrary set-points [40, 43,44,79].

Adaptation techniques similar to CL are utilized to implement reinforcement

learning under finite excitation conditions in results such as [20, 71, 73, 74, 100, 109].

CL methods have also been extended to classes of switched systems [147,153], systems

driven by stochastic processes [42], and systems with time-varying parameters [90].

A major drawback of CL methods is that they require numerical differentiation of

the state measurements. CL methods that do not require numerical differentiation

of the state measurements are developed in results such as [72] and [120], however,

they require full state feedback. Since full state feedback is often not available, the

development of an output-feedback CL framework is well-motivated.

Due to advantageous properties such as the separation principle, there is a large

body of literature on simultaneous state and parameter estimation for linear sys-

tems [13, 84, 115]. Estimation methods for linear systems typically use popular tech-

niques, such as Kalman filters, because of their well-documented effectiveness. More

recently, researchers have also explored the state and parameter estimation problem

for nonlinear systems [15–18, 33, 39, 46, 87, 99, 103, 146]. While tools such as par-

ticle filters [33], extended Kalman filters [146], multi-observers [39], and adaptive

observers [15–18, 99, 103] have been examined for nonlinear simultaneous state and

parameter estimation, they either do not provide theoretical performance guaran-

tees [33, 146] or require stringent assumptions [15–18, 39, 99, 103], such as PE, which

are generally difficult, if not impossible, to check online. While relaxed PE results

12

are presented in [97, 98, 119], these results still require a persistent excitation condi-

tion. Therefore, this chapter aims to provide both theoretical guarantees and finite

(as opposed to persistent) excitation assumptions that are verifiable online.

In this chapter, the preliminary results from [66] and [67] are consolidated and

generalized to yield an output feedback concurrent learning method for simultane-

ous state and parameter estimation in uncertain linear and nonlinear systems. In

particular, this chapter yields a formal method for simultaneous state and parame-

ter estimation for a broad class of dynamical systems that includes the Brunovsky

canonical form studied in [66] and [67] as a special case. An adaptive state-observer

is utilized to generate estimates of the state from input-output data. The estimated

state trajectories along with the known inputs are then utilized in a novel data-driven

parameter estimation scheme to achieve simultaneous state and parameter estimation.

Convergence of the state estimates and the parameter estimates to a small neighbor-

hood of the origin is established under a finite (as opposed to persistent) excitation

condition.

This chapter is organized as follows. In Section 3.2, the class of nonlinear sys-

tems that the developed method applies to is described. An integral error system

that facilitates parameter estimation is developed in Section 3.2.2. Section 3.2.3 is

dedicated to the design of a robust state observer. Section 3.2.4 details the developed

parameter estimator. Section 3.2.5 details the algorithm for selection and storage of

the data that is used to implement concurrent learning. Section 3.2.6 is dedicated to

a Lyapunov-based analysis of the developed technique. In Section 3.3, linear systems

are considered. A linear error system is developed in Section 3.3.2 to facilitate CL-

based adaptation. A CL-based parameter estimator is designed in Section 3.3.3. A

Lyapunov-based stability analysis of the parameter estimator is presented in Section

3.3.4. Section 3.4 demonstrates the efficacy of the developed method via a numerical

simulation and Section 3.5 concludes the chapter.

13

3.2 Nonlinear Systems

3.2.1 Problem Formulation

Consider a nonlinear system of the form

ẋ1 = f1(x−, u),

ẋ2 = f2(x−, u) + x3,

ẋ3 = f3 (x, u) ,

y = x−, (1)

where x1 ∈ Rn1 and x2, x3 ∈ Rn2 denote the state variables, x :=

[
xT1 xT2 xT3

]T
is

the system state, f1 : Rn1+n2×Rm → Rn1 and f2 : Rn1+n2×Rm → Rn2 are known and

locally Lipschitz continuous, f3 : Rn1+2n2×Rm → Rn2 is locally Lipschitz continuous,

u ∈ Rm is the controller, y ∈ Rn1+n2 denotes the output, and x− :=

[
xT1 xT2

]T
denotes the measurable part of the system state. The model, f3, is comprised of a

known nominal part and an unknown part, i.e., f3 = f o+g, where f o : Rn1+2n2×Rm →

Rn2 is known and locally Lipschitz and g : Rn1+2n2×Rm → Rn2 is unknown and locally

Lipschitz. The objective is to design an adaptive estimator to identify the state, x,

and the unknown function, g, online, using input-output measurements.

Systems of the form (1) encompass N th-order linear systems and Euler-Lagrange

models with invertible inertia matrices, and hence, represent a wide class of physical

plants, including but not limited to robotic manipulators and autonomous ground,

aerial, and underwater vehicles.

Assumption 1 A compact set χ ⊆ Rn1+2n2 × Rm such that (x(t), u(t)) ∈ χ, ∀ t ∈

R≥T0
1 and ∀ T0 ≥ 0 is known, where T0 ∈ R≥0 denotes the initial time.

1For a ∈ R, the notation R≥a denotes the interval [a,∞) and the notation R>a denotes the

interval (a,∞).

14

Remark 1 The problem formulation in (1) incorporates commonly occurring dynam-

ical systems described using the Brunovsky canonical form [29]

{ẋi = xi+1}N−1
i=1 , ẋN = f(x, u), y = x−, (2)

and the extended Brunovsky form

{
ẋi = fi(x

−, u) + xi+1

}N−1

i=1
, ẋN = f(x, u), y = x−, (3)

where x1, x2, . . . , xN ∈ Rn denote the state variables, x :=

[
xT1 xT2 . . . xTN

]T
is

the system state, f1, f2, . . . , fN−1 : R(N−1)n × Rm → Rn and f : RNn × Rm → Rn

are locally Lipschitz continuous, u ∈ Rm is the controller, y ∈ R(N−1)n denotes the

output, and x− :=

[
xT1 xT2 . . . xTN−1

]T
denotes the measureable part of the system

state.

3.2.2 Error System for Estimation

Given a constant ε ∈ R>0 , there exist p ∈ N and σ, θ ∈ R>0, such that the unknown

function g can be approximated, over the compact set χ, using basis functions σ :

Rn1+2n2×Rm → Rp as g (x, u) = θTσ (x, u)+ε (x, u), where ε : Rn1+2n2×Rm → Rn2 de-

notes the approximation error, θ ∈ Rp×n2 is a constant matrix of unknown parameters,

and max(x,u)∈χ
∥∥σ (x, u)

∥∥ < σ, max(x,u)∈χ
∥∥∇σ (x, u)

∥∥ < σ, max(x,u)∈χ
∥∥ε (x, u)

∥∥ < ε,

max(x,u)∈χ
∥∥∇ε (x, u)

∥∥ < ε, and ‖θ‖ < θ [58,59]. To obtain an error signal for param-

eter identification, the system in (1) is expressed in the form

ẋ3 = f o (x, u) + θTσ (x, u) + ε (x, u) . (4)

Integrating (4) over the interval [t− τ1, t] for some constant τ1 ∈ R>0 and then over

the interval [t− τ2, t] for some constant τ2 ∈ R>0,

� t

t−τ2

(
x3 (ζ2)− x3 (ζ2 − τ1)

)
dζ2 = [I2f

o] (t) + θT [I2σ](t)

+ [I2ε] (t) ,∀t ∈ R≥T ,where T = T0 + τ1 + τ2, (5)

15

and I2 denotes the double integral operator

f 7→
� t

t−τ2

� ζ2

ζ2−τ1
f
(
x (ζ1) , u (ζ1)

)
dζ1 dζ2.

Using the Fundamental Theorem of Calculus and the fact that x3(t) = ẋ2(t) −

f2(x−(t), u(t)), for almost all t ∈ R≥T0 ,

x2(t− τ2− τ1)−x2(t− τ1)−x2(t− τ2) +x2(t) = [I1f2] (t)− [I1f2] (t− τ1) + [I2f
o] (t)

+ θT [I2σ] (t) + [I2ε] (t), ∀t ∈ R≥T , (6)

and I1 denotes the single integral operator

f 7→
� t

t−τ2
f
(
x1 (ζ2) , u (ζ2)

)
dζ2.

The expression in (7) can be rearranged to form the affine system

X (t) = F (t) + θTG (t) + E (t) , ∀t ∈ R≥T0 , (7)

where2

X (t) :=


x2(t− τ2 − τ1)− x2(t− τ1)− x2(t− τ2) + x2(t), t∈ [T ,∞) ,

0, t < T ,

(8)

F (t) :=


[I1f2] (t)− [I1f2] (t− τ1) + [I2f

o] (t) , t ∈ [T ,∞) ,

0, t < T ,

(9)

G (t) :=


[I2σ] (t) , t ∈ [T ,∞) ,

0, t < T ,

(10)

2The matricesX,F,G, and E are evaluated along the trajectories of (1), and as such, are functions

of T0, x(·) and u(·). Since the bound on x(·) and u(·) imposed by Assumption 1 is uniform in T0,

the dependence of X,F,G, and E on T0 is not relevant to the subsequent analysis, and as such, is

not made explicit in the notation.

16

E (t) :=


[I2ε] (t) , t ∈ [T ,∞) ,

0, t < T .

(11)

The affine relationship in (7) is valid for all t ∈ R≥T0 ; however, it provides useful

information about the vector θ only after t ≥ T . In the following, (7) will be used

to solve the simultaneous state and parameter estimation problem.

While (7) can be used to learn the unknown parameters, θ, knowledge of the state

variable x3 is required to compute the matrices F and G. A robust adaptive state

estimator is developed in the following to generate estimates of x3.

3.2.3 State Estimator Design

To generate estimates of x3, a state estimator inspired by [47] is developed. The

estimator is given by

˙̂x1 = f1(x̂−, u)

˙̂x2 = f2(x̂−, u) + x̂3

˙̂x3 = f o (x̂, u) + θ̂Tσ (x̂, u) + ν, (12)

where x̂1, x̂2, x̂3, x̂, x̂−, and θ̂ are estimates of x1, x2, x3, x, x−, and θ, respectively,

and ν is a feedback term designed in the following.

To facilitate the design of ν, let the state and parameter estimation errors be

defined as

x̃ = x− x̂, θ̃ = θ − θ̂, (13)

and define the model error as

˙̃x1 = f̃1(x−, u, x̂−)− αx̃1, (14)

where α is a positive constant, and f̃1

(
x−, u, x̂−

)
:= f1

(
x−, u

)
− f1

(
x̂−, u

)
. The

feedback component ν is designed as

ν = α2x̃2 − (k + α + β) η, (15)

17

where the signal η is added to compensate for the fact that the state variable x3 is

not measurable. Based on the subsequent stability analysis, the signal η is designed

as the output of the dynamic filter

ζ̇ = − (β + k) η − kαx̃2 + (k + α) f̃2(x−, u, x̂),

η = ζ − (k + α)
(
x̃2 − x̃2(T0)

)
, ζ(T0) = 0, (16)

where k and β are positive constants and the error signal r is defined as

r := ˙̃x2 + αx̃2 − f̃2(x−, u, x̂−) + η, (17)

and f̃2(x−, u, x̂−) := f2(x−, u)− f2(x̂−, u).

Using integration by parts to eliminate the auxiliary variable ζ, the dynamic filter

can be expressed in the equivalent form

η̇ = −βη − kr − αx̃3, η (T0) = 0. (18)

In the following, the filter in (16) is used for implementation and the filter in (18),

which is not implementable due to its dependence on x̃3, is used for analysis.

Since
(
x−, u

)
7→ f1

(
x−, u

)
and

(
x−, u

)
7→ f2

(
x−, u

)
are locally Lipschitz, given a

compact set χ̃ ⊂ χ×Rn1+2n2 , Assumption 1 can be used to conclude that there exists

an L > 0, independent of T0, such that

max
(x−,u,x̃−)∈χ̃

∥∥∥f̃1

(
x−, u, x̂−

)∥∥∥ ≤ L
∥∥x̃−∥∥ ,

and

max
(x−,u,x̃−)∈χ̃

∥∥∥f̃2

(
x−, u, x̂−

)∥∥∥ ≤ L
∥∥x̃−∥∥ . (19)

To generate the estimates θ̂, a concurrent learning [41] technique that utilizes only

the output measurements is developed, motivated by the affine error system in (7).

18

3.2.4 Parameter Estimator Design

To obtain an output-feedback concurrent learning update law for the parameter esti-

mates, a history stack, denoted by H, is utilized. A history stack is defined as a set

of ordered pairs

{(
Xi, F̂i, Ĝi

)}M
i=1

such that

Xi = F̂i + θT Ĝi + Ei, ∀i ∈ {1, · · · ,M} , (20)

where Ei is a matrix with an induced 2-norm that is small enough in a sense that is

made precise in the subsequent analysis. Typically, a history stack that satisfies (20)

is not available a priori. The history stack is recorded online using the relationship

in (7), by selecting an increasing set of time-instances {ti}Mi=1 (see Fig. 1) and letting

Xi = X (ti) , F̂i = F̂ (ti) , Ĝi = Ĝ (ti) , (21)

where3

F̂ (t) :=


[
Î1f2

]
(t)−

[
Î1f2

]
(t− τ1) +

[
Î2f

o
]

(t) , t ∈ [T ,∞) ,

0, t < T ,

(22)

Ĝ (t) :=


[
Î2σ
]

(t) , t ∈ [T ,∞) ,

0, t < T ,

(23)

where Î2 denotes the double integral operator

f 7→
� t

t−τ2

� ζ2

ζ2−τ1
f
(
x̂ (ζ1) , u (ζ1)

)
dζ1 dζ2,

and Î1 denotes the single integral operator

f 7→
� t

t−τ2
f
(
x̂− (ζ2) , u (ζ2)

)
dζ2.

3The matrices F̂ and Ĝ are evaluated along the trajectories of (12), (18), (25), and (26), and as

such, depend on T0, u(·), x(·), x̂(T0), and θ̂(T0). For brevity of notation, the matrices are denoted

as functions of time.

19

In this case, the error term Ei is given by Ei = E(ti)+F (ti)−F̂ (ti)+θ
T
(
G (ti)− Ĝ (ti)

)
.

Let [t1, t2) ⊆ R≥T be an interval over which the history stack was recorded. Provided

the states and the state estimation errors remain within the compact sets χ|x and

χ̃|x̃, respectively,4 over I := [t1 − τ1 − τ2, t2), the error terms can be bounded as

‖Ei‖ ≤ L1ε+ L2x̃I , ∀i ∈ {1, · · · ,M} , (24)

where x̃I := maxi∈{1,··· ,M} supt∈I
∥∥x̃ (t)

∥∥ and L1, L2 > 0 are constants.

The concurrent learning update law to estimate the unknown parameters is de-

signed as

˙̂
θ = kθΓ

M∑
i=1

Ĝi

1 + κ‖Ĝi‖2

(
Xi − F̂i − θ̂T Ĝi

)T
, (25)

where kθ ∈ R>0 is a constant adaptation gain and Γ ∈ Rp×p is the least-squares gain

updated using the update law

Γ̇ = β1Γ− kθΓG Γ, (26)

where the matrix G ∈ Rp×p is defined as G :=
∑M

i=1

(
Ĝi√

1+κ‖Ĝi‖2

)(
Ĝi√

1+κ‖Ĝi‖2

)T
and

κ, β1 ∈ R>0.

3.2.5 Purging

The update law in (25) is motivated by the fact that if the full state were available

for feedback and if the approximation error, ε, were zero, then using[
X1 · · · Xn

]T
=

[
F1 · · · Fn

]T
+

[
G1 · · · Gn

]T
θ, (27)

the parameters could be estimated via the least squares estimate

θ̂LS = G −1

[
G1 · · · Gn

] [
X1 · · · Xn

]T
− G −1

[
G1 · · · Gn

] [
F1 · · · Fn

]T
. (28)

4χ|x := {x ∈ Rn1+2n2 |(x, u) ∈ χ} and χ̃|x̃ := {x̃ ∈ Rn1+2n2 |(x, u, x̃) ∈ χ̃}.

20

However, since the history stack contains the estimated terms F̂ and Ĝ, during the

transient period where the state estimation error is large, the history stack does not

accurately (within the error bound introduced by ε) represent the system dynamics.

Hence, the history stack needs to be purged whenever better estimates of the state

are available.

Since the state estimator exponentially drives the estimation error to a small

neighborhood of the origin, a newer estimate of the state can be assumed to be at

least as good as an older estimate, apart from the small error introduced by practical

stability of the estimator. This fact motivates the dwell time based greedy purg-

ing algorithm developed in the following to utilize newer data for estimation while

preserving stability of the estimator.

The algorithm maintains two history stacks, a main history stack and a transient

history stack, labeled H and G, respectively. As soon as the transient history stack

is full and sufficient dwell time has passed, the main history stack is emptied and

the transient history stack is copied into the main history stack. A lower bound

on the required dwell time, denoted by T , is determined in Section 3.2.6 using a

Lyapunov-based stability analysis.

Parameter identification in the developed framework requires a full rank history

stack H, which is achieved provided the trajectories contain sufficient information, as

quantified by the following assumption.

Assumption 2 There exist c, T > 0 such that for all T0 ∈ R≥0, x̂(T0) ∈ χ̃|x̂, θ̂(T0) ∈

Rp, and system trajectories x : R≥T0 → χ|x in response to the controllers u : R≥T0 →

χ|u, there exist M ∈ N and time instances T0 ≤ t1 < t2 < . . . < tM ≤ T , such that a

history stack recorded using Fig. 1 satisfies

c < λmin

{
G (t)

}
,∀t ∈ R≥T0 , (29)

where λmin (·) denotes the minimum singular value of a matrix.

21

Remark 2 Uniformity of excitation, with respect to initial conditions and the true

state and control trajectories, is required for uniform stability of the estimator (cf.

[119]). If uniformity of excitation cannot be guaranteed, then, as long as (29) holds

for a specific set of initial conditions and state and control trajectories, the estimation

error of the developed state and parameter estimator, starting from the given initial

conditions and evaluated along the given true state and control trajectories, can be

shown to be ultimately bounded using analysis techniques similar to Section 3.2.6.

Motivated by the observation that the rate of decay of the parameter estimation

errors is proportional to the minimum singular value of G , a singular value maxi-

mization algorithm is used to select the time instances {ti}Mi=1. That is, a data-point(
Xj, F̂j, Ĝj

)
in the history stack is replaced with a new data-point

(
X∗, F̂ ∗, Ĝ∗

)
,

where F̂ ∗ = F̂ (t), X∗ = X (t), and Ĝ∗ = Ĝ (t), for some t, only if

λmin

∑
i 6=j

µiĜiĜ
T
i + µjĜjĜ

T
j

 <
λmin

(∑
i 6=j µiĜiĜ

T
i + µ∗Ĝ∗Ĝ∗T

)
(1 + ψ)

, (30)

where λmin (·) denotes the minimum singular value of a matrix, ψ is a tunable constant,

µi = 1
1+κ‖Gi‖2 , µj = 1

1+κ‖Gj‖2 , and µ∗ = 1
1+κ‖G∗‖2 . To simplify the analysis, it is

assumed that new data points are only collected τ1 +τ2 seconds after a purging event.

Since the history stack is updated using a singular value maximization algorithm,

the matrix G is a piece-wise constant function of time with the property that once it

satisfies (29), at some t = T , and for some c, the condition c < λmin

(
G (t)

)
holds for

all t ≥ T . The developed purging algorithm is summarized in Fig. 1.

A Lyapunov-based analysis showing uniform ultimate boundedness of the param-

eter and the state estimation errors is presented in the following section.

3.2.6 Analysis

Each purging event represents a discontinuous change in the system dynamics; hence,

the resulting closed-loop system is a switched system. To facilitate the analysis of

22

the switched system, let ρ : R≥T0 → N denote a switching signal such that ρ (T0) = 1,

and ρ (t) = j + 1, where j denotes the number of times the update H ← G was

carried out over the time interval (T0, t). For a given s ∈ N, let Hs denote the

history stack active during the time interval
{
t | ρ (t) = s

}
, containing the elements{(

Xsi, F̂si, Ĝsi

)}
i=1,··· ,M

, and let ETsi be the corresponding error term. To simplify

the notation, let Gs :=
∑M

i=1
ĜsiĜ

T
si

1+κ‖Gsi‖2 , and Qs :=
∑M

i=1
ĜsiETsi

1+κ‖Gsi‖2 .

Using (20) and (25), the dynamics of the parameter estimation error can be ex-

pressed as

˙̃θ = −kθΓGsθ̃ − kθΓQs. (31)

Since the functions Gs : R≥T0 → Rp×p and Qs : R≥T0 → Rp×n are piece-wise continu-

ous, the trajectories of (31), and of all the subsequent error systems involving Gs and

Qs, are defined in the sense of Carathéodory [54]. The algorithm in Fig. 1 ensures

that there exists a constant c > 0 such that λmin {Gs} ≥ c, ∀s ∈ N.

Using the dynamics in (1), (12) - (18), and the design of the feedback component

in (15), the evolution of the error signal r is described by

ṙ = −kr + f̃ o (x, u, x̂) + θT σ̃ (x, u, x̂)− θ̃T σ̃ (x, u, x̂)

+ θ̃Tσ (x, u) + ε (x, u)− α2x̃2 + αf̃2(x−, u, x̂−) + (k + α) η, (32)

where σ̃ (x, u, x̂) = σ (x, u) − σ (x̂, u) and f̃ o (x, u, x̂) = f (x, u) − f (x̂, u). Since

(x, u) 7→ f (x, u) and (x, u) 7→ σ (x, u) are locally Lipschitz, given a compact set

χ̃ ⊂ χ× Rn1+2n2 , Assumption 1 can be used to conclude that there exist Lf , Lσ > 0,

independent of T0, such that

sup
(x,u,x̃)∈χ̃

∥∥∥f̃ o (x, u, x̂)
∥∥∥ ≤ Lf ‖x̃‖ ,

and

sup
(x,u,x̃)∈χ̃

∥∥σ̃ (x, u, x̂)
∥∥ ≤ Lσ ‖x̃‖ . (33)

23

1: δ (T0)← 0, Ω (T0)← 0

2: if t > δ (t) + τ1 + τ2 and a data point is available then

3: if G is not full then

4: add the data point to G

5: else

6: add the data point to G if (30) holds

7: end if

8: if λmin (G) ≥ ξΩ (t) then

9: if t− δ (t) ≥ T (t) then

10: H ← G and G ← 0 . purge and replace H

11: δ (t)← t

12: if Ω (t) < λmin (G) then

13: Ω (t)← λmin (G)

14: end if

15: end if

16: end if

17: end if

Figure 1: Algorithm for history stack purging with dwell time. At each time instance

t, δ (t) stores the last time instance H was purged, Ω (t) stores the highest minimum

singular value of G encountered so far, T (t) denotes the dwell time, and ξ ∈ (0, 1]

denotes a threshold fraction.

24

To facilitate the analysis, let
{
Ts ∈ R≥0 | s ∈ N

}
be a set of switching time in-

stances defined as Ts =
{
t |ρ (τ)< s+ 1,∀τ ∈ [T0, t) ∧ ρ (τ)≥s+ 1,∀τ ∈ [t,∞)

}
. That

is, for a given switching index s, Ts denotes the time instance when the (s+ 1)th sub-

system is switched on. The analysis is carried out separately over the time intervals

[Ts−1, Ts), s ∈ N, where T1 ≥ T0+τ1+τ2+tM . Since the history stackH is not updated

over the intervals [Ts−1, Ts), s ∈ N, the matrices Gs and Qs are constant over each in-

terval. The history stack that is active over the interval [Ts, Ts+1) is denoted by Hs+1.

To ensure boundedness of the trajectories in the interval t ∈ [T0, T1), the history stack

H1 is computed using arbitrarily selected trajectories x(·), x̂(·), u(·) that are confined

within χ̃ and make H1 full rank5. The analysis is carried out over the aforementioned

intervals using the state vectors Z :=

[
x̃T1 x̃T2 rT ηT vec

(
θ̃
)T]T

∈ Rn1+3n2+p

and Y :=

[
x̃T1 x̃T2 rT ηT

]T
∈ Rn1+3n2 .

A summary of the stability analysis is provided in the following, along with a

graphical representation in Fig. 2.

Interval 1: First, it is established that Z is bounded over [T0, T1), where the bound

is O

(∥∥Z (T0)
∥∥+

∥∥∥∑M
i=1 E1i

∥∥∥+ ε

)
6. Then, for a given ε ∈ R>0, the bound on Z is

utilized to select state estimator gains such that
∥∥Y (T1)

∥∥ < ε.

Interval 2: The history stack H2, which is active over [T1, T2), is recorded over

[T0, T1). Without loss of generality, it can be ensured that H2 represents the system

better than H1 (which is arbitrarily selected), that is,
∥∥∥∑M

i=1 E1i

∥∥∥ ≥ ∥∥∥∑M
i=1 E2i

∥∥∥. The

bound on Z over [T1, T2) is then shown to be smaller than that over [T0, T1), which

is utilized to show that
∥∥Y (t)

∥∥ ≤ ε, for all t ∈ [T1, T2).

Interval 3: Using (24), the errors E3i are shown to be O
(
‖Y3i‖+ ε

)
where Y3i

5Arbitrary selection of H1 results in potentially large initial error E1 in (20). While large E1 could

potentially result in large parameter estimation errors, θ̃, during [T0, T1), as long as H1 is full rank,

the first term in (31) ensures that θ̃ remains bounded over [T0, T1).
6f ∈ O (g) denotes that there exists c,M ∈ R>0 such that |f(x)| ≤ c|g(x)| ∀ x > M .

25

denotes the value of Y at the time when the point
(
X3i, F̂3i, Ĝ3i

)
was recorded.

Using the facts that the history stack H3, which is active over [T2, T3), is recorded

over [T1, T2) and
∥∥Y (t)

∥∥ ≤ ε, for all t ∈ [T1, T2), the error
∥∥∥∑M

i=1 E3i

∥∥∥ is shown to

be O (ε+ ε). If T3 = ∞ then it is established that lim supt→∞
∥∥Z (t)

∥∥ = O (ε+ ε).

If T3 < ∞ then the fact that the bound on Z over [T2, T3) is smaller than that over

[T1, T2) is utilized to show that
∥∥Y (t)

∥∥ ≤ ε, for all t ∈ [T2, T3). The analysis is then

continued in an inductive argument to show that lim supt→∞
∥∥Z (t)

∥∥ = O (ε+ ε) and∥∥Y (t)
∥∥ ≤ ε, for all t ∈ [T2,∞).

First three intervals are critical in the analysis

13
Figure 2: Error signals utilized in the stability analysis.

The stability result is summarized in the following theorem.

Theorem 1 Let ε > 0 be given. If Assumptions 1 and 2 hold, the history stacks

H and G are populated using the algorithm detailed in Fig. 1, the learning gains

selected to satisfy the sufficient gain conditions in (38), (39), (44), and (48), there

exists a time instance T ∈ R>0 such that the system states are informative over

[T0, T], that is, the history stack can be replenished if purged at any time t ∈ [T0, T],

over each switching interval
{
t | ρ (t) = s

}
, let the dwell-time, T , is selected such that

T (t) = Ts, where Ts is selected to be large enough to satisfy (47), and if the excitation

26

interval is large enough so that T2 < T ,7 then lim supt→∞
∥∥Z (t)

∥∥ = O (ε+ ε).

Proof. Consider the candidate Lyapunov function

V (Z, t) :=
α2

2

2∑
j=1

x̃Tj x̃j +
1

2
rT r +

1

2
ηTη +

1

2
tr
(
θ̃TΓ−1(t) θ̃

)
. (34)

Using arguments similar to [60, Corollary 4.3.2], it can be shown that provided

λmin

{
Γ−1 (T0)

}
> 0 and Assumption 2 holds, the least squares gain matrix satis-

fies

ΓIp ≤ Γ (t) ≤ ΓIp,∀t ∈ R≥T0 ,∀ T0 ≥ 0, (35)

where Γ and Γ are positive constants, and In denotes an n× n identity matrix.

The bound in (35) implies that the candidate Lyapunov function satisfies

v ‖Z‖2 ≤ V (Z, t) ≤ v ‖Z‖2 , (36)

where v := 1
2

max
{

1, α2, 1/Γ
}

and v := 1
2

min
{

1, α2, 1/Γ
}

.

Over the time interval [Ts−1, Ts), the orbital derivative of V is given by8,9

V̇s=−α3

2∑
j=1

x̃Tj x̃j+ α2

2∑
j=1

x̃Tj f̃j −krT r− (β − α)ηTη + rT f̃ o + rT θT σ̃ + rT θ̃Tσ

−rT θ̃T σ̃ + rT ε+ αrT f̃2 − kθtr
(
θ̃TQs

)
− 1

2
tr
(
θ̃T
(
kθGs + β1Γ−1

)
θ̃
)
.

Assuming that Hs was computed using values of x̂ that correspond to trajectories

that stay inside χ̃, the orbital derivative can be bounded by

V̇s≤−α3

2∑
j=1

∥∥x̃j∥∥2
+ α2L

2∑
j=1

∥∥x̃j∥∥2
+ 2α2L‖x̃1‖‖x̃2‖ −k ‖r‖2−(β − α) ‖η‖2

+Lf ‖r‖ ‖x̃‖+ ‖r‖ θLσ ‖x̃‖+ Lσ ‖r‖
∥∥∥θ̃∥∥∥ ‖x̃‖+ σ ‖r‖

∥∥∥θ̃∥∥∥+ ‖r‖ ε− 1

2
a
∥∥∥θ̃∥∥∥2

+ αL‖r‖‖x̃1‖+ αL‖r‖‖x̃2‖+ kθ

∥∥∥θ̃∥∥∥Qs, (37)

7A minimum of two purges are required to remove the randomly initialized data, and the data

recorded during transient phase of the derivative estimator from the history stack.
8V̇ (Z, t) := ∂V

∂Z (Z, t)hZ (Z, t) + ∂V
∂t (Z, t) where hZ : Rn1+3n2+p × R≥T0 → Rn1+3n2+p is con-

structed using (18), (17), (26), (31), and (32) so that Ż = hZ (Z, t).
9For brevity, function dependencies will be omitted over the rest of the analysis.

27

where a = kθc + β1

Γ
, Qs is a positive constant such that Qs ≥ ‖Qs‖, and the bounds

L,Lf , Lσ, ε, and σ depend on the compact set χ̃. Provided

k > 2
(
Lf + θLσ

)
+

2

a
σ2 +

2

α3

(
Lf + θLσ + αL

)2

,

α2 > 4αL+ 2L2,

β > α, (38)

then (37) simplifies to

V̇s≤ −
α3

4
‖x̃1‖2 − α3

4
‖x̃2‖2 − k

4
‖r‖2 − a

16

∥∥∥θ̃∥∥∥2

− (β − α) ‖η‖2

−

(
k

4
− 2L2

σ

a
‖x̃‖2

)
‖r‖2 +

ε2

2k
+

4k2
θ

a
Q

2

s.

Since ‖x̃‖2 ≤ ‖Z‖2 , V̇s ≤ −v
(
‖Z‖2 − ιs

v

)
in the domain

D :=

Z ∈ Rn1+3n2+p | ‖Z‖ <

√
ka

8L2
σ

 .

That is, V̇s is negative definite on D provided Hs was computed using values of x̂ that

correspond to trajectories that stay inside χ̃, and provided ‖Z‖ >
√

ιs
v
> 0, where

v :=
1

4
min

{
α3, k, 4(β − α), a

1

4

}
,

and ιs := ε2

2k
+

4k2
θ

a
Q

2

s. Theorem 4.18 from [80] can be invoked to conclude that

provided the gain condition

k >
8L2

σ

av
max

(
V s,

vιs
v

)
, (39)

holds, where V s ≥
∥∥∥V (Z (Ts−1) , Ts−1

)∥∥∥ is a constant, then

V̇s
(
Z (t) , t

)
≤ −v

v
Vs
(
Z (t) , t

)
+ ιs, ∀t ∈ [Ts−1, Ts) .

In particular, by initializing H1 using arbitrary values of x̂ that satisfy x− x̂ ∈ χ̃|x̃

for all x ∈ χ|x, it can be concluded that ∀t ∈ [T0, T1) ,

V
(
Z (t) , t

)
≤
(
V 1 −

v

v
ι1

)
e−

v
v

(t−T0) +
v

v
ι1, (40)

28

where V 1 > 0 is a constant such that
∣∣∣V (Z (T0) , T0

)∣∣∣ ≤ V 1. Using the relationships

in (36) and (40), it can further be concluded ∀t ∈ [T0, T1) ,

∥∥∥θ̃ (t)
∥∥∥ ≤ θ1 :=

√
v

v
max

{√
V 1,

√
v

v
ι1

}
. (41)

If it were possible to use the inequality in (40) to conclude that V
(
Z (t) , t

)
≤

V
(
Z (T0) , T0

)
, then an inductive argument could be used to show that the trajectories

decay to a neighborhood of the origin. However, unless the history stack can be

selected to have arbitrarily large minimum singular value (which is generally not

possible), the constant v
v
ι1 cannot be made arbitrarily small using the learning gains.

Since ιs depends on Qs, it can be made smaller by reducing the estimation errors

and thereby reducing the errors associated with the data stored in the history stack.

To that end, consider the candidate Lyapunov function

W (Y) :=
α2

2

2∑
j=1

x̃Tj x̃j +
1

2
rT r +

1

2
ηTη. (42)

The candidate Lyapunov function satisfies

w ‖Y ‖2 ≤ W (Y, t) ≤ w ‖Y ‖2 , (43)

where w := 1
2

max
{

1, α2
}

, w := 1
2

min
{

1, α2
}

.

The orbital derivative of W is given by10

Ẇ =−α3

2∑
j=1

x̃Tj x̃j + α2

2∑
j=1

x̃Tj f̃j − krT r − (β − α)ηTη

+ αrT f̃2 + rT
(
f̃ o+

(
θT − θ̃T

)
σ̃

)
+ rT

(
θ̃Tσ + ε

)
.

If θ̃(t) is bounded over [Ts−1, Ts), then using Cauchy-Schwartz inequality, the

10Ẇ (Y, t) := ∂V
∂Y (Y, t)hY (Y, t) + ∂V

∂t (Y, t) where hY : Rn1+3n2 × R≥T0
→ Rn1+3n2 is constructed

using (18), (17), and (32) so that Ẏ = hY (Y, t).

29

orbital derivative can be simplified and bounded over [Ts−1, Ts) as

Ẇs≤−α3

2∑
i=1

∥∥x̃j∥∥2
+ α2L

2∑
i=1

∥∥x̃j∥∥∥∥x̃−∥∥− k ‖r‖2 − (β − α) ‖η‖2

+

(
Lf +

(
θ + θs

)
Lσ

)
‖r‖ ‖x̃‖+ α ‖r‖

∥∥x̃−∥∥+ (θsσ + ε) ‖r‖ ,

where θs > 0 is a constant such that

θs ≥ sup
t∈[Ts−1,Ts)

∥∥∥θ̃ (t)
∥∥∥ .

In particular, consider the time interval [T0, T1). Using the fact that θ̃(t) is bounded

over t ∈ [T0, T1), provided

k >
3

α
+

6

α3

(
Lf +

(
θ + θ1

)
Lσ

)2

+ 2

(
Lf +

(
θ + θ1

)
Lσ

)
,

α3 > 8α2L+
2

α
L2,

β > α, (44)

then the time-derivative of W over [T0, T1) can be bounded as

Ẇ1 ≤ −
w

w
W1 + γ, where w :=

1

2
min

{
α3

4
, k, 2(β − α)

}
,

and γ = (θ1σ+ε)2

2k
. That is, for all t ∈ [T0, T1) ,

W
(
Y (t) , t

)
≤
(
W 1 −

w

w
γ

)
e−

w
w

(t−T0) +
w

w
γ, (45)

whereW 1 > 0 is a constant such that
∣∣∣W (

Y (T0)
)∣∣∣ ≤ W 1. In particular, ∀t ∈ [T0, T1) .

∥∥Y (t)
∥∥ ≤√w

w
max

(
W 1,

w

w
γ

)
=: Y 1. (46)

Provided the dwell time T1 is large enough so that(
W 1 −

w

w
γ

)
e−

w
w
T1 ≤ w

w
γ,(

V 1 −
v

v
ιs

)
e−

v
v
T1 ≤ v

v
ι1, (47)

30

then from (40) and (45), W
(
Y (T1)

)
≤ 2wγ

w
and V

(
Z (T1) , T1

)
≤ 2vι1

v
. In particular,∥∥Y (T1)

∥∥ ≤ √2w2γ
ww

and
∥∥Z (T1)

∥∥ ≤ √2v2ι1
vv

. Note that the bound on Y (T1) can be

made arbitrarily small by increasing k, α, and β.

Now the interval [T1, T2) is considered. Given any arbitrary bound W 1, a compact

set χ̃, and the learning gains that satisfy the resulting gain conditions in (38), (39),

and (44), can be selected such that B(0, Y 1)11⊆ χ̃, and as a result from (46) it follows

that x̃(t) ∈ χ̃|x̃ for all t ∈ [T0, T1). Since the history stack H2, which is active during

[T1, T2), is recorded during [T0, T1), the bound in (24) can be used to show that

Q2 = O
(
Y 1 + ε

)
.

Since H1 is independent of the system trajectories, Q1 can be selected, without

loss of generality, such that Q2 < Q1, and hence, ι2 < ι1. Thus, provided the constant

V 1 (and as a result, the gain k) is selected large enough so that

2vι1
v

< V 1, (48)

the gain condition in (39) holds over [T1, T2), and hence, a similar Lyapunov-based

analysis, along with the bound V 2 = 2vι1
v

can be utilized to conclude that ∀t ∈ [T1, T2),

∥∥∥θ̃ (t)
∥∥∥ ≤

√
v2

vv
max

{√
2ι1,
√
ι2

}
=: θ2. (49)

The sufficient condition in (48) implies that V 2 < V 1 and hence, (41) and ι2 < ι1

imply that θ2 < θ1.

Since θ2 < θ1, the gain conditions in (44) hold over the interval [T1, T2). A

Lyapunov-based analysis similar to (42)-(46) yields
∥∥Y (t)

∥∥ ≤ √w
w

max
(
W 2,

w
w
γ
)
.

From (47), W 2 = 2wγ
w

, and hence, ∀t ∈ [T1, T2),

∥∥Y (t)
∥∥ ≤√2w2γ

ww
:= Y 2. (50)

Now, the interval [T2, T3) is considered. By selecting W 1 large enough, it can be

ensured that Y 2 < Y 1, and as a result, x̃(t) ∈ χ̃|x̃, ∀t ∈ [T1, T2). Since the history stack

11B(0, Y) denotes the closed ball of radius Y around the origin.

31

H3, which is active during [T2, T3), is recorded during [T1, T2), the bounds in (24) and

(50) can be used to show that Q3 = O
(
Y 2 + ε

)
. Since Y 2 < Y 1, it follows that Q3 <

Q2, which implies ι3 < ι2. Provided T2 satisfies (47), then
(
V 2 − v

v
ι2

)
e−

v
v

(T2−T1) ≤
v
v
ι2, which implies V 3 = 2v

v
ι2, and hence, V 3 < V 2 and θ3 < θ2. Therefore, the gain

conditions in (38), (39), and (44) are satisfied over [T2, T3).

Since the gain conditions are satisfied, a Lyapunov-based analysis similar to (42)

- (46) yields
∥∥Y (t)

∥∥ ≤ √2w2γ
ww

,∀t ∈ [T2, T3). Given any ε > 0, the gains α, β, and k

can be selected large enough to satisfy Y 2 ≤ ε, and hence,
∥∥Y (t)

∥∥ ≤ ε,∀t ∈ [T2, T3) .

Furthermore, a similar Lyapunov-based analysis as (34) - (40) yields V
(
Z (t) , t

)
≤(

V 3 − v
v
ι3

)
e−

v
v

(t−T2) + v
v
ι3,∀t ∈ [T2, T3). If T3 = ∞ then lim supt→∞ V

(
Z (t) , t

)
≤

2v
v
ι3, which, fromQ3 = O

(
Y 2 + ε

)
and ι3 = ε2

2k
+

2k2
θ

a
Q

2

3 implies that lim supt→∞
∥∥Z (t)

∥∥
= O (ε+ ε).

If T3 6= ∞ then an inductive continuation of the Lyapunov-based analysis to the

time intervals [Ts−1, Ts) shows that provided the dwell time Ts satisfies (47), then the

gain conditions in (38), (39), and (44) are satisfied for all t > T3, the state Y satisfies

∥∥Y (t)
∥∥ ≤ ε,∀t > T1, (51)

x̃(t) ∈ χ̃|x̃,∀ t ≥ T0, and Qs ≤ Qs−1, ιs ≤ ιs−1, V s ≤ V s−1, and θs ≤ θs−1, for all

s > 3.

The bound in (51) and the fact that Qs = O
(
Y s−1 + ε

)
indicate that Qs =

O (ε+ ε) ,∀s ∈ N. Furthermore, V
(
Z (t) , t

)
≤
(
V s − v

v
ιs

)
e−

v
v

(t−Ts−1) + v
v
ιs, ∀t ∈

[Ts−1, Ts), ∀s ∈ N, which, along with the dwell time requirement, implies that

lim supt→∞ V
(
Z (t) , t

)
≤ 2v

v
ιs, and hence, lim supt→∞

∥∥Z (t)
∥∥ = O (ε+ ε).

32

3.3 Linear Systems

When the system under consideration is linear, parameter estimation can be directly

achieved using measurements of x1 and without using state estimation. The follow-

ing section details an output-feedback parameter estimator using x1 as the output.

The accompanying state estimator for linear systems is a trivial application of the

estimator in Section 3.2.3, and has been omitted.

3.3.1 Problem Formulation

Consider a linear system of the form

{ẋi = xi+1}N−1
i=1 , ẋN = Ax+Bu, y = x1, (52)

where x1, x2, . . . , xN ∈ Rn denote the state variables, x :=

[
xT1 xT2 . . . xTN

]T
is the

system state, u ∈ Rm is the controller, A ∈ Rn×Nn and B ∈ Rn×m denote the system

matrices, and y ∈ Rn denotes the output. The objective is to design an adaptive

estimator to identify the unknown matrices A and B, online, using input-output

measurements.

3.3.2 Error System for Estimation

To obtain an error signal for parameter identification, the system in (52) is expressed

in the form

ẋN = A1x1 + A2x2 + . . .+ ANxN +Bu, (53)

where A1 ∈ Rn×n, A2 ∈ Rn×n, . . ., and AN ∈ Rn×n are constant matrices such

that A =

[
A1 A2 . . . AN

]
. Integrating (53) over the interval [t− τ1, t] for some

constant τ1 ∈ R>0,

xN (t)− xN (t− τ1) = A1

� t

t−τ1
x1 (ζ1) dζ1 + . . .

+ AN

� t

t−τ1
xN (ζ1) dζ1 +B

� t

t−τ1
u (ζ1) dζ1. (54)

33

Integrating again over the interval [t− τ2, t] for some constant τ2 ∈ R>0,

� t

t−τ2

(
xN (ζ2)− xN (ζ2 − τ1)

)
dζ2 = A1

� t

t−τ2

� ζ2

ζ2−τ1
x1 (ζ1) dζ1 dζ2 + . . .

+ AN

� t

t−τ2

� ζ2

ζ2−τ1
xN (ζ1) dζ1 dζ2 +B

� t

t−τ2

� ζ2

ζ2−τ1
u (ζ1) dζ1 dζ2.

Using the Fundamental Theorem of Calculus and the fact that xN (t) = ẋN−1 (t),

xN−1 (t)− xN−1 (t− τ1)− xN−1 (t− τ2) + xN−1 (t− τ1 − τ2)

= A1

� t

t−τ2

� ζ2

ζ2−τ1
x1 (ζ1) dζ1 dζ2 + . . .+ AN

� t

t−τ2

(
xN−1 (ζ2)− xN−1 (ζ2 − τ1)

)
dζ2

+B

� t

t−τ2

� ζ2

ζ2−τ1
u (ζ1) dζ1 dζ2. (55)

Repeating this process N − 1 more time, results in

x1 (t)− x1 (t− τ1)− . . .+ x1 (t− τ1 − τ2 − . . .− τN)

= A1F1(t) + A2F2(t) + . . .+ ANFN(t) +BU(t), (56)

where

F1 (t) :=


� t

t−τN
. . .

� ζ2

ζ2−τ1
x1 (ζ1) dζ1 . . . dζN−1, t∈ [T ,∞) ,

0, t < T ,

(57)

F2 (t) :=


� t

t−τN
. . .

� ζ3

ζ3−τ2
(x1 (ζ2)− x1 (ζ2 − τ1)) dζ2 . . .dζN−1, t ∈ [T ,∞) ,

0, t < T ,

(58)

...

FN (t) :=


� t

t−τN
(x1 (ζN−1) + x1 (ζN−1 − τ1) + . . .) dζN−1, t∈ [T ,∞) ,

0, t < T ,

(59)

34

U (t) :=


� t

t−τN
. . .

� ζ2

ζ2−τ1
u (ζ1) dζ1 . . . dζN−1, t∈ [T ,∞) ,

0, t < T ,

(60)

and T = T0 + τ1 + . . .+ τN . As opposed to nonlinear systems in Section 3.2.2, where

measurements of all states but the final state are required for parameter estimation,

the integral form in (56) is independent of the state variables x2, . . . , xN , and depends

only on the output, y = x1. The expression in (56) can be rearranged to form the

linear error system

F (t) = G (t) θ, ∀t ∈ R≥T0 . (61)

In (61), θ is a vector of unknown parameters, defined as θ :=
[
vec (A1)T vec (A2)T

. . . vec (AN)T vec (B)T
]T
∈ RNn2+mn, where vec (·) denotes the vectorization op-

erator and the matrices F : R≥0 → Rn and G : R≥0 → Rn×(Nn2+mn) are defined

as

F (t) :=


x1 (t)− x1 (t− τ1)− . . . , t ∈ [T ,∞) ,

0 t < T ,

G (t) :=

[(
F1 (t)⊗ In

)T
. . .

(
FN (t)⊗ In

)T (
U (t)⊗ In

)T] ,
where In denotes an n × n identity matrix, and ⊗ denotes the Kronecker product.

Note that even though the linear relationship in (61) is valid for all t ∈ R≥T0 , it

provides useful information about the vector θ only after t ≥ T .

The linear error system in (61) motivates the adaptive estimation scheme that

follows.

3.3.3 Parameter Estimator Design

To obtain output-feedback concurrent learning update law for the parameter esti-

mates, a history stack denoted by H is utilized. The history stack is a set of ordered

35

pairs
{

(Fi,Gi)
}M
i=1

such that

Fi = Giθ, ∀i ∈ {1, · · · ,M} . (62)

Note that Ei from (20) is absent from (62), since there are no estimated state variables

in Fi or Gi.

If a history stack that satisfies (63) is not available a priori, it can be recorded

online, using the relationship in (61), by selecting a set of time-instances {ti}Mi=1 and

letting

Fi = F (ti) , Gi = G (ti) . (63)

Furthermore, a singular value maximization algorithm is used to select the time in-

stances {ti}Mi=1. That is, a data-point
{(
Fj,Gj

)}
in the history stack is replaced by

a new data-point
{

(F∗,G∗)
}

, where F∗ = F (t) and G∗ = G (t), for some t, only if

λmin

∑
i 6=j

GTi Gi+GTj Gj

<λmin

∑
i 6=j

GTi Gi+G∗TG∗
 ,

where λmin {·} denotes the minimum Eigenvalue of a matrix.

Since the time instances, {ti}Mi=1, vary according to the minimum singular value

maximization algorithm, the history stacks, F(t) and G(t), are time-varying and

piece-wise constant. The following definition establishes a uniform lower bound for

the time-varying history stacks to facilitate the analysis that directly follows.

Definition 1 A history stack
{

(Fi,Gi)
}M
i=1

is called uniformly full rank if there exists

a constant c ∈ R such that

0 < c < λmin

{
G (t)

}
,∀t ≥ T0,∀T0 ∈ R≥0, (64)

where the matrix G ∈ R(Nn2+mn)×(Nn2+mn) is defined as G :=
∑M

i=1 GTi Gi.

The concurrent learning update law to estimate the unknown parameters is then

given by

˙̂
θ = kθΓ

M∑
i=1

GTi
(
Fi − Giθ̂

)
, (65)

36

and the least square update law is

Γ̇ = β1Γ− kθΓG Γ. (66)

Remark 3 To facilitate the following Lyapunov analysis, using (61) and (65), the

parameter estimation error can be expressed as

˙̃θ = −kθΓG θ̃. (67)

Since the function G : R≥T0 → R(Nn2+mn)×(Nn2+mn) is piece-wise continuous, the

trajectories of (67) and all the subsequent functions involving G , are defined in the

sense of Carathéodory [54].

3.3.4 Analysis

The following theorem establishes exponential convergence of the parameter esti-

mates.

Theorem 2 If there exists a time T such that the history stack
{(
Fi(T),Gi(T)

)}M
i=1

is uniformly full rank, then the parameter estimates, θ̂, updated using the parameter

estimator in (65), converge to θ∗, exponentially over the interval [T,∞).

Proof. Consider the following candidate Lyapunov function

V (θ̃, t) = θ̃TΓ−1(t)θ̃. (68)

Using arguments similar to [60, Corollary 4.3.2], it can be shown that provided

λmin

{
Γ−1 (T0)

}
> 0 and Assumption 2 holds, the least squares gain matrix satis-

fies

ΓI(Nn2+mn)≤ Γ(t)≤ ΓI(Nn2+mn),∀t ∈ R≥T0 ,∀T0 ∈ R≥0. (69)

The candidate Lyapunov function satisfies

Γ‖θ̃‖2 ≤ V (θ̃, t) ≤ Γ‖θ̃‖2, (70)

37

where (69) implies that the the bounds, Γ and Γ, in (70) are established independent

of T0.

Using (65) and (66), along with the identity Γ̇−1 = −Γ−1Γ̇Γ−1, the time-derivative

of (68) results in12

V̇ (θ̃, t) = −2θ̃TΓ−1(t)
(
kθΓ (t)

M∑
i=1

GTi (t)
(
Fi(t)− Gi(t)θ̂

))
− θ̃T

(
Γ−1(t)

[
β1Γ(t)− kθΓ(t)G (t)Γ(t)

]
Γ−1(t)

)
θ̃. (71)

Simplifying (71), V̇ (θ̃, t) becomes

V̇ (θ̃, t) = −kθθ̃TG (t)θ̃ − β1θ̃
TΓ−1(t)θ̃. (72)

During the time interval [T0, T], when G is not full rank, Theorem 4.8 from [80] can

be used to show uniform boundedness of θ̃. Once the history stack becomes full rank

in the sense of Def. 1, using (68) and (72), along with the bounds in (64) and (69),

Theorem 4.10 from [80] can be invoked to conclude that θ̃ converges to the origin,

exponentially over the interval [T,∞).

3.4 Simulation

3.4.1 Linear System

The linear system selected for the simulation study is given by

{ẋi = xi+1}2
i=1, ẋ3 =

2 3 1 5 7 3

1 2 1 8 1 3



x1

x2

x3

+

1

3

u.

To satisfy Assumption 1, a controller that results in a uniformly bounded system

response is needed. In this simulation study, the controller, u, is selected to be

12V̇
(
θ̃, t
)

:= ∂V
∂θ̃

(
θ̃, t
)
hθ

(
θ̃, t
)

+ ∂V
∂t

(
θ̃, t
)

where hθ : RNn2+mn × R≥T0 → RNn2+mn is con-

structed using (61) and (65) so that
˙̃
θ = hθ

(
θ̃, t
)

.

38

(a) Noise-free

(b) Gaussian measurement noise with variance = 0.001

(c) Gaussian measurement noise with variance = 0.01

Figure 3: Parameter estimation errors for the linear system

39

a PD controller of the form u = −kp (x1 − xd1) − kd1 (x2 − ẋd1) − kd2 (x3 − ẍd1) so

that the system tracks the trajectory xd11 (t) = xd12 (t) = −1
3

cos(3t) − 1
2

cos(2t) −

cos(t)− 1
5

cos(5t)− 1
7

cos(7t)− 1
11

cos(11t), uniformly in T0, where the notation of xij

represents the jth element of state xi. Since there are fourteen unknown parameters,

and the desired trajectory contains six distinct frequencies, the closed-loop system is

not guaranteed to be persistently excited.

The simulation utilizes Euler forward numerical integration using a sample time

of ∆t = 0.001 seconds. Past τ1+τ2+τ3
∆t

values of the state, x1, and the control input, u,

are stored in a buffer. The matrices F and G for the parameter update law in (65)

are computed using trapezoidal integration of the data stored in the aforementioned

buffer. Values of F and G are stored in the history stack and are updated so as to

maximize the minimum eigenvalue of G .

The initial estimates of the unknown parameters are selected to be zero, and the

history stack is initialized so that all the elements of the history stack are zero. Data is

added to the history stack using a singular value maximization algorithm. To demon-

strate the utility of the developed method, three simulation runs are performed. In the

first run, the parameter estimator has access to noise free measurements of the out-

put, x1. In the second and the third runs, a zero-mean Gaussian noise with variance

0.001 and 0.01, respectively, is added to the output signal to simulate measurement

noise. The values of various simulation parameters selected for the three runs are

τ1 = 1.5, τ2 = 1.2, τ3 = 1.0, N = 350, Γ (T0) = I14, β1 = 0.4, α = 0.5, k = 10,

β = 2, α1 = 1, and kθ = 2/N. Figure 3a demonstrates that in absence of noise, the

developed parameter estimator drives the parameter estimation error, θ̃, to the ori-

gin. Figures 3b and 3c indicate that the developed method is robust to measurement

noise, and results in convergence rates that are similar to the noise-free case, with a

small increase in the steady state error due to measurement noise.

A one-at-a-time sensitivity analysis was performed on the parameters τ1, τ2, τ3, β1,

40

Table 1.: Sensitivity analysis for the linear system. The nominal values of τ1, τ2, τ3,

β1, and kθ were selected to be τ1 = 1.5, τ2 = 1.2, τ3 = 1.0, β1 = 0.4, and kθ = 2/N . A

zero-mean Gaussian noise with variance 0.001 was used with a step size ∆t = 0.001.

Parameter Tested

Values

RMS Error Variation Steady-State RMS

Error Variation

τ1 1.1 - 2.0 55.91 - 64.21 0.1255 - 0.1548

τ2 0.8 - 1.7 56.22 - 65.61 0.1134 - 0.1339

τ3 0.6 - 1.5 56.98 - 64.98 0.1206 - 0.1337

β1 0.05 - 0.9 58.50 - 63.04 0.1265 - 0.2509

kθ 0.5/N - 4/N 58.14 - 62.62 0.1161 - 0.1266

and kθ to gauge robustness of the developed technique. As demonstrated by the

results in Table 1., the developed method is robust to small changes in the integration

intervals and learning gains.

3.4.2 Nonlinear System

The developed state and parameter estimator is validated using a simulation study

involving a two-link robot manipulator arm, where x1 ∈ R2 denotes the angular

position of the two links, x2 ∈ R2 denotes the angular velocities of the two links, and

x =

[
xT1 xT2

]T
. The selected model belongs to a sub-class of systems in (1), where

the function approximation error, ε, is zero. The model is selected because the ideal

parameters, θ, are known, and as a result, the model facilitates direct quantitative

analysis of the parameter estimation error.

41

(a) Noise-free

(b) Gaussian measurement noise with variance = 0.001

(c) Gaussian measurement noise with variance = 0.01

Figure 4: Parameter estimation errors for the nonlinear system.

42

The nonlinear dynamics of the system are described by (1), where

f 0 (x, u) = −
(
M (x1)

)−1
Vm (x1, x2)x2 +

(
M (x1)

)−1
u,

gT (x, u) = θT

[[(
M (x1)

)−1 (
M (x1)

)−1

]
D (x2)

]T
. (73)

In (73), u ∈ R2 is the control input,

D (x2) := diag
[
tanh (x21) , tanh (x22)

]
,

M (x1) :=

a1 + 2a3c2 (x1) , a2 + a3c2 (x1)

a2 + a3c2 (x1) , a2

 ,
and

Vm (x1, x2) :=

−a3s2 (x1)x22 , −a3s2 (x1) (x21 + x22)

a3s2 (x1)x21 , 0

 ,
where c2 (x1) = cos (x12) , s2 (x1) = sin (x12), and a1 = 3.473, a2 = 0.196, and a3 =

0.242 are known constants. The system has four unknown parameters. The ideal

values of the unknown parameters are θ =

[
5.3 1.1 8.45 2.35

]T
.

To satisfy Assumption 1, a controller that results in a uniformly bounded system

response is needed. In this simulation study, the controller, u, is selected to be a PD

controller of the form u = −kp (x1 − xd1) − kd (x2 − ẋd1) so that the system tracks

the trajectory xd11 (t) = xd12 (t) = −1
3

cos (3t)− 1
2

cos (2t), uniformly in T0.

The simulation utilizes Euler forward numerical integration using a sample time

of ∆t = 0.001 seconds. Past τ1+τ2
∆t

values of the output, x1, state estimates, x̂, and the

control input, u, are stored in a buffer. The matrices P , Ĝ, and F̂ for the parameter

update law in (25) are computed using trapezoidal integration of the data stored in

the aforementioned buffer. Values of P , Ĝ, and F̂ are stored in the history stack and

are updated according to the algorithm detailed in Fig. 1.

The initial estimates of the unknown parameters are selected to be zero, and the

history stack is initialized so that all the elements of the history stack are zero13.

13It is clear from the simulation results that full rank initialization of the history stack and the

43

(a) Noise-free

(b) Gaussian measurement noise with variance = 0.001

(c) Gaussian measurement noise with variance = 0.01

Figure 5: x1 state estimation errors for the nonlinear system.

44

(a) Noise-free

(b) Gaussian measurement noise with variance = 0.001

(c) Gaussian measurement noise with variance = 0.01

Figure 6: x2 state estimation errors for the nonlinear system.

45

Table 2.: Sensitivity analysis for the nonlinear system. The nominal values of τ1, τ2, β1,

and kθ were selected to be τ1 = 1.2, τ2 = 0.9, β1 = 0.7, and kθ = 0.5/N . The zero-

mean Gaussian noise with variance 0.001 was used with a step size ∆t = 0.001.

Parameter Tested Values RMS Error Variation Steady-State RMS

Error Variation

τ1 0.8 - 1.7 0.998 - 3.848 0.0325 - 0.1339

τ2 0.5 - 1.4 1.011 - 3.546 0.0294 - 0.1270

β1 0.1 - 1.2 1.224 - 1.763 0.0324 - 0.3273

kθ 0.01/N - 2/N 1.090 - 1.684 0.0296 - 0.0515

Data is added to the history stack using a singular value maximization algorithm. To

demonstrate the utility of the developed method, three simulation runs are performed.

In the first run, the observer is assumed to have access to noise free measurements

of the output, x1. In the second and third runs, a zero-mean Gaussian noise with

variance 0.001 and variance 0.01 are added to the output signal to simulate measure-

ment noise. The values of various simulation parameters selected for the three runs

are τ1 = 1.2, τ2 = 0.9, N = 150, Γ (T0) = I4, β1 = 0.7 (0.9 for variance 0.01), α = 2,

k = 10, β = 2, α1 = 1, κ = 0, and kθ = 0.5/N. Figures 4a - 6a demonstrate that in

the absence of noise, the developed method drives the state estimation errors, x̃, and

the parameter estimation errors, θ̃, to a neighborhood of the origin. Figures 4b - 6c

indicate that the developed technique can be utilized in the presence of measurement

noise, with expected degradation of performance.

One-at-a-time sensitivity analysis was performed on the parameters τ1, τ2, β1, and

kθ to gauge robustness of the developed technique. As demonstrated by the results in

normalization terms in (25) and (26) are sufficient, but not necessary conditions for the analysis in

Section 3.2.6.

46

Table 2., the developed method is robust to small changes in the integration intervals

and learning gains.

3.5 Conclusion

This chapter develops a concurrent learning based adaptive observer and parameter

estimator to simultaneously estimate the unknown parameters and the states of linear

and nonlinear systems using output measurements. The developed technique utilizes

a dynamic state observer to generate state estimates necessary for data-driven adap-

tation. A purging algorithm is developed to improve the quality of the stored data

as the state estimates converge to the true states.

The developed state and parameter estimation method allows for simultaneous

estimation of the system states and uncertain parameters in the system model with-

out the need for full state feedback, and facilitates parameter convergence without

the requirement of PE. Theoretical guarantees for uniform ultimate boundedness of

the estimation errors are established in the absence of measurement noise. Simu-

lation results indicate that the developed method is robust to measurement noise

and not sensitive to design parameters. For the class of linear systems presented,

the parameter estimation can be performed independent of state estimation which

facilitates exponential convergence of the parameter estimation errors. Future work

will involve analyzing applicability of feedback linearization, along with a theoretical

analysis of the developed method under measurement noise and process noise. A

theoretical analysis of the effect of the integration intervals, τi, on the performance

of the developed estimator will also be pursued.

47

Chapter IV

INVERSE REINFORCEMENT LEARNING IN REAL TIME

In this chapter, an output-feedback model-based inverse reinforcement learning method

is developed for a class of linear and nonlinear systems. Real-time reward function es-

timation with sparse data points is shown to result in a unique solution in the presence

of parametric uncertainties in the system dynamics and unmeasureable states.

4.1 Introduction

Based on the premise that the most succinct representation of the behavior of an

entity is its reward structure [118], this chapter aims to recover the reward (or cost)

function of an agent by observing the agent performing a task and monitoring its state

and control trajectories. Methods to estimate the reward function using state and

control trajectories fall under the umbrella of inverse reinforcement learning (IRL)

(see, for example, [118] and [132]). The IRL method developed in this chapter learns

the reward function and the value function of an agent under observation online, and

in the presence of modeling uncertainties and unmeasurable states.

While IRL in an offline setting has a rich history of literature [3, 5, 92, 93, 116,

118,126,132,143,154,157,159,160], traditional IRL methods typically require a large

amount of training data. As such, offline methods are ill-suited for real-time appli-

cations such as consistency checking (comparing the estimated reward function to a

designed reward function for real-time monitoring) or real-time learning from demon-

stration. The development of online IRL techniques is motivated by the need for

robustness to uncertainties in the system model, the need for adaptation to changes

48

in the system model, and the need for adaptation to changing objectives.

In this chapter, a model-based IRL approach is developed for deterministic systems

in continuous time based on the preliminary results in [68], [138], and [139]. The

key contribution of this chapter is the development of a novel method for reward

function estimation for linear and nonlinear systems using a model-based recursive

IRL technique in an online setting, using potentially uncertain agent dynamics, and

input-output measurements (as opposed to input-state measurements in results such

as [137,138], and [139]). Using Lyapunov theory, the developed MBIRL technique is

shown to result in ultimate boundedness of the reward function estimation error.

The chapter is organized as follows: Section 4.2 introduces the problem formu-

lation. Section 4.3 introduces the IRL algorithm. Section 4.4 is the analysis for

convergence of the developed IRL algorithm. Section 4.5 shows the simulations, and

Section 4.6 concludes the chapter.

4.2 Problem Formulation

Consider an agent under observation with the dynamics

ẋ = f(x, u),

y = h(x, u), (74)

where x ∈ Rn is the state, f : Rn×m → Rn denotes the uncertain dynamics, u ∈ Rm

is the control, y ∈ Rl is the output, and h : Rn×m → Rl denotes the measurement

model. If a nominal dynamic model of the agent is available, then the dynamics in

(74) can then be separated into

ẋ = f o(x, u) + g(x, u), (75)

where f o : Rn × Rm → Rn represents the nominal model, g ∈ Rn × Rm → Rn

represents the uncertainty1.

1If a nominal model is not available, fo(x, u) := 0 ∀ (x, u) ∈ Rn × Rm.

49

The following assumption is required for the proposed methods.

Assumption 3 The partial derivatives of f in (75) with respect to x and u are locally

Lipschitz continuous.

The agent under observation is using a controller u(·) that minimizes the perfor-

mance index

J(x0, u(·)) =

� ∞
0

r(x(t;x0, u[0,t)), u(t)) dt, (76)

where x(·;x0, u[0,t)) is the trajectory of the agent generated using the control signal

u(·), restricted to the time interval [0, t), starting from the initial condition x0. The

main objective of the paper is to estimate the unknown reward function r, in the

presence of uncertain dynamics, using measurements of the input u(·) and the output

t 7→ y(t) = h
(
x(t, x0, u[0,t)), u(t)

)
, under the assumption that u(t) is the optimal

action in response to the state x(t, x0, u[0,t)).

In the following, the input and the output signals available for measurement will

be denoted by t 7→ u(t) and t 7→ y(t), respectively, the corresponding unknown true

state will be denoted by t 7→ x(t), and x and u will be used to denote generic elements

of Rn and Rm, respectively.

The following assumptions are used throughout the analysis.

Assumption 4 The dynamics in (74) is affine in control and the optimal control

problem defined by (74), (76), and (77) admits a twice continuously differentiable

optimal value function.

The class of affine systems is large, it includes linear systems and Euler Lagrange

systems with invertible inertia matrices. While twice continuous differentiability of

the value function is a strict requirement, many optimal control problems of interest,

such as linear quadratic problems and nonlinear problems similar to those used for

demonstration in Section 4.5.3, meet this requirement.

50

Assumption 5 The unknown reward function r is quadratic in control, i.e.,

r(x, u) = Q(x) + uTRu, (77)

where R ∈ Rm×m is a positive definite (P.D.) matrix and Q : Rn → R is a posi-

tive semi-definite (P.S.D.) continuously differentiable function with a locally Lipschitz

continuous gradient.

Remark 4 Since R can be selected to be symmetric without loss of generality, the

developed IRL method only estimates the elements of R that are on and above the

main diagonal.

Assumption 6 The state and control trajectories are bounded such that x(t) ∈ X ,

u(t) ∈ U for some compact sets X ⊆ Rn and U ⊆ Rm.

Under the premise that the observed agent makes optimal decisions, the state and

control trajectories, x(·) and u(·), satisfy the Hamilton-Jacobi-Bellman equation2 [95]

H

(
x (t) ,∇x

(
V ∗
(
x (t)

))T
, u (t)

)
= 0,∀t ∈ R≥0, (78)

where the unknown optimal value function is V ∗ : Rn → R and H : Rn×Rn×Rm → R

is the Hamiltonian, defined as H(x, p, u) := pTf(x, u) + r(x, u).

The functions V ∗ and Q can be represented using P ∈ N and L ∈ N basis

functions, respectively, as V ∗(x) = (W ∗
V)TσV (x) + εV (x) and Q(x) = (W ∗

Q)TσQ(x) +

εQ(x). The vectors W ∗
V := [v1 . . . vP]T ∈ RP and W ∗

Q := [q1 . . . qL]T ∈ RL denote

ideal weights, σV : Rn → RP and σQ : Rn → RL denote continuously differentiable

known features with locally Lipschitz continuous gradients, and εV : Rn → R and

εQ : Rn → R denote approximation errors. Given any constants εV , εQ ∈ R>0, there

exist P,L ∈ N such that εV and εQ satisfy supx∈χ
∥∥εV (x)

∥∥ < εV , supx∈χ
∥∥∇εV (x)

∥∥ <
εV , supx∈χ

∥∥εQ (x)
∥∥ < εQ, and supx∈χ

∥∥∇εQ (x)
∥∥ < εQ [58,59]. Let V̂ : Rn×RP → R,

2For brevity, the full dependencies of the state trajectory, x(t, x0, u(·)), will be omitted wherever

they are clear from the context and the trajectory will be denoted as x(t).

51

(
x, ŴV

)
7→ Ŵ T

V σV (x) and Q̂ : Rn×RL → R,
(
x, ŴQ

)
7→ Ŵ T

QσQ(x) be parameterized

estimates of V ∗ and Q, respectively, where ŴV and ŴQ are estimates of W ∗
V and W ∗

Q,

respectively. Furthermore, let uTRu be parameterized as uTRu =
(
W ∗
R

)T
σR1(u)

where σR1 : Rm → RM , are the basis functions, selected as

σR1(u) := [u2
1, 2u1u2, 2u1u3, . . . , 2u1um, u

2
2,

2u2u3, 2u2u4, . . . , u
2
m−1, . . . , 2um−1um, u

2
m]T ,

and W ∗
R ∈ RM , are the ideal weights, given by

W ∗
R =

[
R11, 2R

(−1)
1 , R22, 2R

(−2)
2 , . . . , 2R

−(m−1)
m−1 , Rmm

]T
,

where, for a given matrix R ∈ Rm×m, Rij denotes the corresponding element in the i-

th row and the j-th column of the matrix R, and R
(−j)
i denotes the i-th row of the ma-

trix E with the first j elements removed, i.e., R
(−3)
3 :=

[
R34, R35, . . . , R3(m−1), R3m

]
.

Using ŴV and ŴQ, along with estimates ŴR of W ∗
R, in (78), a parametric estimate

of the Hamiltonian called the inverse Bellman error δ : Rn × Rm × RL+P+M → R is

obtained as

δ
(
x, u, Ŵ ′

)
= Ŵ T

V ∇xσV (x) f(x, u) + Ŵ T
QσQ(x) + Ŵ T

RσR1 (u) , (79)

where Ŵ ′ =
[
Ŵ T
V , Ŵ

T
Q , Ŵ

T
R

]T
.

Since (79) utilizes the agent’s dynamics, the IRL technique developed in this paper

is model-based, and as such, an accurate model is required to estimate the unknown

reward function. To facilitate estimation under modeling uncertainties, a system

identifier is utilized that estimates the unknown model parameters.

The unknown function g in (75) can be represented using basis functions as

g (x, u, θ) = θTσ (x, u) + ε (x, u) , (80)

where σ ∈ Rn × Rm → Rp and ε : Rn × Rm → Rn denote the basis vector and the

approximation error, respectively, and θ ∈ Rp×n is a constant matrix of unknown

52

parameters. Given any constant ε, there exist p ∈ N and σ, θ ∈ R>0 such that

sup(x,u)∈(X×U)

∥∥σ (x, u)
∥∥ < σ, sup(x,u)∈(X×U)

∥∥∇σ (x, u)
∥∥ < σ, sup(x,u)∈(X×U)

∥∥ε (x, u)
∥∥

< ε, sup(x,u)∈(X×U)

∥∥∇ε (x, u)
∥∥ < ε, and ‖θ‖ < θ.

To focus the discussion on the key contributions of the work, it is assumed that a

state and parameter estimator that satisfies the following properties is available.

Assumption 7 There exists a state and parameter estimator that yields a time in-

stance, T , such that the state and parameter estimation errors, x̃ and θ̃, converge

exponentially for all t < T and

Θ ≥
∥∥∥θ̃(t)∥∥∥ , X ≥

∥∥x̃(t)
∥∥ , ∀t ≥ T , (81)

where Θ, X ∈ R≥0 denote ultimate bounds for the parameter estimation errors and

state estimation errors, respectively, θ̃ := θ− θ̂ and x̃ = x− x̂, where θ̂ and x̂ denote

estimates of the parameters and states, respectively.

For examples of such state and parameter estimators, see [66, 67]. The state

and parameter estimator is implemented synchronously with inverse reinforcement

learning, and in real-time. Assumption 7 also implies existence of compact sets X̂ ⊆

Rn and Θ̂ ⊆ Rp, such that x̂(t) ∈ X̂ and θ̂(t) ∈ Θ̂, ∀t ∈ R≥0.

4.3 Inverse Reinforcement Learning Utilizing Trajectory Information

In this section, the state and parameter estimates are utilized to formulate an indirect

error metric, called the approximate inverse Bellman error, that facilitates IRL.

Utilizing x̂ and θ̂ from Assumption 7, and the parametric dynamics from (80), the

inverse Bellman error from (79) can be approximated as

δ̂
(
x̂, u, Ŵ ′, θ̂

)
= Ŵ T

V ∇xσV (x̂) Ŷ (x̂, u, θ̂) + Ŵ T
QσQ(x̂) + Ŵ T

RσR1 (u) , (82)

where Ŷ (x̂, u, θ̂) =
[
f o(x̂, u) + θ̂Tσ(x̂, u)

]
. Rearranging, we get

δ̂
(
x̂, u, Ŵ ′, θ̂

)
=
(
Ŵ ′
)T

σ′
(
x̂, u, θ̂

)
, (83)

53

where

σ′
(
x̂, u, θ̂

)
:=

[(
∇xσV (x̂) Ŷ (x̂, u, θ̂)

)T
,
(
σQ (x̂)

)T
,
(
σR1 (u)

)T]T
.

If x(·) and u(·) are optimal with respect to the reward function in (77), and

x̃ and θ̃ are equal to zero, then the inverse Bellman error is equal to zero whenever

Ŵ ′ =

[(
W ∗
V

)T
,
(
W ∗
Q

)T
,
(
W ∗
R

)T]T
. Therefore, the inverse Bellman error is an indirect

metric that helps gauge the quality of a given set of weight estimates.

The IRL problem can now be solved by minimizing ‖δ̂‖. It can be seen that

Ŵ ′ = 0 trivially minimizes ‖δ̂‖. Existence of the trivial solution is expected because

minimization of any positive constant multiple of a reward function generates identical

optimal trajectories, and as such, the IRL problem can only be solved up to a scaling

factor. As a result, there is no loss of generality in arbitrarily assigning a value to

one of the reward function weights.

Taking the first element, R11, of ŴR to be known, the approximate inverse Bellman

error in (83) can be expressed as

δ̂′
(
x̂, u, Ŵ , θ̂

)
= Ŵ Tσ′′

(
x̂, u, θ̂

)
+R11u

2
1, (84)

where Ŵ :=

[
Ŵ T
V , Ŵ

T
Q ,
(
Ŵ

(−1)
R

)T]
, and

σ′′
(
x̂, u, θ̂

)
:=

[(
∇xσV (x̂) Ŷ (x̂, u, θ̂)

)T
,
(
σQ(x̂)

)T
,
(
σ

(−1)
R1 (u)

)T]T
.

To estimate the unknown weights using the approximate inverse Bellman error,

one could update the weight estimates using

˙̂
W = −Kσ′′

(
x̂, u, θ̂

)((
σ′′
(
x̂, u, θ̂

))T
Ŵ +R11u

2
1

)
, (85)

where K is a gain matrix. The dynamics of the state estimation error can then be

expressed as a perturbed linear time-varying system with σ′′
(
x̂, u, θ̂

)(
σ′′
(
x̂, u, θ̂

))T
as the system matrix that requires persistency of excitation for boundedness and

54

convergence of the estimation error [51, 60, 112, 134]. The features of the inverse

Bellman error are nonlinear, and as such, ensuring persistency of excitation a priori

and monitoring PE online are generally difficult.

To relax the PE requirement and help ensure boundedness of the weight estimation

errors under loss of excitation, the IRL method developed in this paper borrows the

idea of history stacks from concurrent learning (CL) adaptive control [40, 44, 79]. A

history stack at time t, denoted by HIRL(t), is a collection of values of x̂(·) and u(·),

measured at judiciously selected time instances t1(t) < t2(t) < . . . < tN(t) ≤ t.

The approximate inverse Bellman errors, evaluated along the trajectories x̂(·) and

u(·) at time instances t1(t), t2(t), . . . , tN(t), can be compiled in the matrix form

∆′(t, Ŵ) = Σ̂′(t)Ŵ +R11

[
u2

1(t1(t)), . . . , u2
1(tN(t))

]T
, (86)

where

∆′(t, Ŵ) :=


δ̂′
(
x̂
(
t1(t)

)
, u
(
t1(t)

)
, Ŵ , θ̂

(
t1(t)

))
...

δ̂′
(
x̂
(
tN(t)

)
, u
(
tN(t)

)
, Ŵ , θ̂

(
tN(t)

))
 ,

Σ̂′(t) :=



(
σ′′
(
x̂
(
t1(t)

)
, u
(
t1(t)

)
, θ̂
(
t1(t)

)))T
...(

σ′′
(
x̂
(
tN(t)

)
, u
(
tN(t)

)
, θ̂
(
tN(t)

)))T


.

In addition to the approximate inverse Bellman error, further information is gained

by leveraging the fact that if u is the optimal action in response to state x, then3

3Since f, σ, and ε are assumed to be affine in control, their partial derivatives with respect to u

are independent of u.

55

u = −1
2
R−1

(
∇uf(x)

)T (∇xV
∗(x)

)T
. That is

− 2Ru =
(
∇uf

o(x) + θT∇uσ(x)
)T

(∇xσV (x))TW ∗
V

+
(
∇uf

o(x) + θT∇uσ(x)
)T (
∇xεV (x)

)T
+
(
∇uε(x)

)T ((∇xσV (x)
)T
W ∗
V +

(
∇xεV (x)

)T)
. (87)

The product Ru can be linearly parameterized as Ru = σR2(u)W ∗
R, with σR2 :

Rm → Rm×M given by

σR2(u) =



uT 01×m−1 . . . 0

01×m

(
u(−1)

)T
. . . 0

...
...

. . .
...

01×m 01×m−1 . . .
(
u−(m−1)

)T


. (88)

Using the estimates ŴR and ŴV in (87) for W ∗
R and W ∗

V , respectively, a control

residual error ∆′u : Rn × Rm × RL+P+M → Rm is obtained as

∆′u(x, u, Ŵ
′) =

(
∇uf

o(x) + θT∇uσ(x)
)T (
∇xσV (x)

)T
ŴV + 2σR2(u)ŴR. (89)

Utilizing the estimates x̂ and θ̂ in (89), subtracting

0 = H(x(ti(t)),
(
∇x, V (x(ti(t)))

)T
, u(ti(t))),

and appending (89) evaluated at t1(t), . . . , tN(t) to (86), with the known weight R11

removed, results in the linear system of equations

− ΣR1(t)− Σ̂(t)Ŵ = Σ̂(t)W̃ + ∆(t), (90)

where the weight estimation error is defined as W̃ = W ∗ − Ŵ with W ∗ :=
[(
W ∗
V

)T
,(

W ∗
Q

)T
,
((
W ∗
R

)(−1)
)T]T

,

Σ̂(t) :=



(
σ′′′
(
x̂
(
t1(t)

)
, u
(
t1(t)

)
, θ̂
(
t1(t)

)))T
...(

σ′′′
(
x̂
(
tN(t)

)
, u
(
tN(t)

)
, θ̂
(
tN(t)

)))T


,

56

ΣR1(t) :=
[
R11

(
u1(t1(t))

)2
, 2R11u1(t1(t)), 01×(m−1),

· · · , R11

(
u1(tN(t))

)2
, 2R11u1(tN(t)), 01×(m−1)

]T
,

(
σ′′′
(
x̂
(
ti(t)

)
, u
(
ti(t)

)
, θ̂
(
ti(t)

)))T
:=

(
σ′′
(
x̂
(
ti(t)

)
, u
(
ti(t)

)
, θ̂
(
ti(t)

)))T[
G
(
x̂
(
ti(t)

)
, θ̂
(
ti(t)

))
0m×L 2σ

(−1)
R2

(
u(ti(t))

)]
 ,

G
(
x̂
(
ti(t)

)
, θ̂
(
ti(t)

))
:=(
∇uf

o(x̂(ti(t)))
)T (
∇xσV (x̂(ti(t)))

)T
+
((

θ̂(ti(t))
)T
∇uσ(x̂(ti(t)))

)T (
∇xσV (x̂(ti(t)))

)T
,

and the residual ∆ is independent of W̃ .

Using the fact that the gradients of (x, u) 7→ f (x, u), (x, u) 7→ σ (x, u), x 7→

σV (x), and x 7→ σQ (x) are locally Lipschitz, the residual ∆ can be bounded above

by

‖∆(t)‖ ≤ ∆ε + ¯̃x(t)∆x̃ + ¯̃θ(t)∆θ̃, (91)

where ¯̃x(t) := maxi=1,2,...,N ‖x̃(ti(t))‖ and ¯̃θ(t) := maxi=1,2,...,N ‖θ̃(ti(t))‖. Since t 7→

x(t), t 7→ x̂(t), t 7→ θ̂(t), and t 7→ u(t) are bounded by Assumption 7, the bounds

∆̄ε, ∆̄x̃, and ∆θ̃ can be selected independent of ti and the specific trajectories of x, u,

and x̂ currently stored in the history stack.

The relationship in (90) suggests the following update law for estimation of the

unknown reward function weights

˙̂
W = αΓ(t)Σ̂T (t)

(
−Σ̂(t)Ŵ − ΣR1(t)

)
, (92)

where α ∈ R>0 is a constant adaptation gain and Γ : R≥0 → R(L+P+m−1)×(L+P+m−1)

is the least-squares gain updated using the update law

Γ̇ = βΓ− αΓΣ̂T (t)Σ̂(t)Γ, (93)

57

where β ∈ R>0 is the forgetting factor.

The update law in (92) is motivated by the fact that the dynamics for the weight

estimation error can be described by

˙̃W = −αΓ(t)Σ̂T (t)
(

Σ̂(t)W̃ + ∆(t)
)
, (94)

which can be shown to be a perturbed stable linear time-varying system under con-

ditions detailed in the following section.

Analyzing (94), it can be seen that the rate of decay for the weight estimation

errors is proportional to the minimum singular value of the matrix Σ̂T (t)Σ̂(t). In or-

der to promote faster convergence, a minimum singular value maximization algorithm

(similar to Fig. 1 in [67]) is utilized to select the time instances t1(t), . . . , tN(t). More

specifically, a new data point (x(t), u(t)) replaces an existing data point (x(ti(t)), u(ti(t))),

for some i ∈ {1, . . . , N}, if the replacement results in the largest increase in the min-

imum singular value of Σ̂T (t)Σ̂(t) among all N possible replacements.

Since the size of the perturbation depends on the quality of the state and pa-

rameter estimates in the history stack HIRL(t), a time-based purging algorithm is

utilized to purge poor estimates x̂ and θ̂ from the history stack. Since the state and

parameter estimation errors decay exponentially to a bound, newer estimates of x̂

and θ̂ are assumed to be better. Therefore, a time interval, τ ∈ R>0, is selected so

that a new purging event occurs only after τ seconds have passed since the previous

purge.

The developed purging technique maintains an additional transient history stack,

labeled GIRL populated using minimum singular value maximization. As soon as the

transient history stack is full rank according to (95) and τ seconds have passed, HIRL

is emptied and GIRL is copied into HIRL. The history stack HIRL is kept constant in

between purging instances.

Due to purging, the time instances {t1, · · · tN}, the matrices Σ̂ and ΣR1, and

consequently HIRL, are piecewise constant in time.

58

4.4 Analysis of the Developed MBIRL Technique

Convergence of the estimation error to a neighborhood of the origin follow under the

following condition on the history stack.

Definition 2 The history stack HIRL, is called full rank, uniformly in t, if there

exists σ ∈ R>0 such that4 ∀t ∈ R≥0,

σ < λmin

{(
Σ̂(t)

)T
Σ̂(t)

}
. (95)

Definition 3 The signal (x̂, u) is called finitely informative (FI) if there exist time

instances 0 ≤ t1 < t2 < · · · < tN such that the resulting history stack is full rank and

persistently informative (PI) if for any T ≥ 0, there exist time instances T ≤ t1 <

t2 < · · · < tN such that the resulting history stack is full rank.

The stability result is summarized in the following theorem.

Theorem 3 If the unknown states and parameters are estimated using a state and

parameter estimator that satisfies Assumption 7, the signal (x̂, u) is FI, the time

instances t1, . . . , tN are selected using minimum singular value maximization so that

HIRL is full rank, uniformly in t, and HIRL is refreshed using a time-based purging

algorithm, then t 7→ W̃ (t) is ultimately bounded (UB).

Proof. Consider the candidate Lyapunov function

V (W̃ , t) =
1

2
W̃ TΓ−1 (t) W̃ . (96)

Using arguments similar to [60, Corollary 4.3.2], it can be shown that provided

λmin

{
Γ−1 (0)

}
> 0, the least squares gain matrix satisfies

ΓIL+P+m−1 ≤ Γ (t) ≤ ΓIL+P+m−1,∀ t ≥ 0, (97)

4The history stack HIRL(0) can be initialized using arbitrarily selected trajectories(
x(·), x̂(·), u(·)

)
∈ X × X̂ × U to ensure that the history stack is full rank at t = 0.

59

where Γ and Γ are positive constants.

Using the bounds in (97), the candidate Lyapunov function satisfies

1

2Γ

∥∥∥W̃∥∥∥2

≤ V
(
W̃ , t

)
≤ 1

2Γ

∥∥∥W̃∥∥∥2

. (98)

Using (93), (94), (95), and (97), along with the identity Γ̇−1 = −Γ−1Γ̇Γ−1, and the

Cauchy-Schwartz inequality, the time-derivative V̇ can be bounded by

V̇ (W̃ , t)≤−1

2

(
ασ +

1

Γ
β

)∥∥∥W̃∥∥∥2

+ α
∥∥∥W̃∥∥∥∥∥∥Σ̂(t)

∥∥∥∥∥∆(t)
∥∥ . (99)

Using (91), V̇ can be bounded as

V̇ (W̃ , t) ≤ −1

4

(
ασ +

1

Γ
β

)∥∥∥W̃∥∥∥2

, ∀‖W̃‖ ≥ ρ
(
‖µ‖

)
, (100)

where µ =

[√
∆ε,
√
x̃,

√
θ̃

]T
, ρ(‖µ‖) =

(
4αΣ max{1,∆x,∆θ}

ασ+β/Γ

)
‖µ‖2, and Σ satisfies∥∥∥Σ̂(t)

∥∥∥ ≤ Σ, ∀t ≥ 0. Since t 7→ x(t), t 7→ x̂(t), t 7→ θ̂(t), and t 7→ u(t) are bounded

by Assumption 7, the bound Σ can be selected independent of ti and the specific

trajectories of x, u, and x̂ currently stored in the history stack. Using (98) and

(100), [80, Theorem 4.19] can be invoked to conclude that (94) is input-to-state sta-

ble (ISS) with state W̃ and input µ.

If a time-based purging algorithm is implemented and if the signal (x̂, u) is FI,

there exists a time instance Ts, such that for all t ≥ Ts, the history stack HIRL(t)

remains unchanged. As a result, using Exercise 4.58 from [80], it can be concluded

that the ultimate bound on W̃ can be expressed as

lim sup
t→∞

‖W̃ (t)‖ ≤

√
Γ

Γ

(
4αΣ max{1,∆x,∆θ}

ασ + β/Γ

)
∆ε

+

√
Γ

Γ

(
4αΣ max{1,∆x,∆θ}

ασ + β/Γ

)(
x̃(Ts) + θ̃(Ts)

)
, (101)

where x̃(Ts) and θ̃(Ts) denote bounds on the state and parameter estimation errors,

respectively, in the history stack HIRL(t) for all t ≥ Ts.

60

Furthermore, if (x̂, u) is PI, then lim sup
t→∞

x̃(t)→ X and lim sup
t→∞

θ̃(t)→ Θ. In that

case, (101) reduces to

lim sup
t→∞

‖W̃ (t)‖ ≤

√
Γ

Γ

(
4αΣ max{1,∆x,∆θ}

ασ + β/Γ

)
∆ε

+

√
Γ

Γ

(
4αΣ max{1,∆x,∆θ}

ασ + β/Γ

)(
X + Θ

)
. (102)

The ultimate bound for the estimation error, W̃ , has a direct relationship to the

approximation errors for both the reward function and the value function, along with

the ultimate bounds for the state and parameter estimates. As such, the ultimate

bound can be reduced by reducing those errors. This observation motivates the

following corollary.

Corollary 1 If Θ, X, εQ, and εV are zero, the signal (x̂, u) is PI, the time instance

t1, . . . , tN are selected using minimum singular value maximization so that HIRL is

full rank, uniformly in t, and HIRL is refreshed using a time-based purging algorithm,

then as t→∞, ‖W̃ (t)‖ → 0.

Proof. Immediate from Theorem 3.

Remark 5 If the full state is measurable, the restrictions on the dynamics for the

agent and the basis functions can be relaxed to continuous differentiability.

4.5 Simulation

This section presents simulations for the IRL method developed in this chapter. The

first simulation demonstrates the IRL method detailed in Section 4.3 for output-

feedback linear systems. The second simulation demonstrates the same output-

feedback linear system, however, the reward function changes halfway through the

61

simulation to show the IRL method can adapt to this change. The last simulation

shows an output-feedback nonlinear optimal control problem that is selected with a

known value function. The simultaneous state and parameter estimator developed in

Chapter III is used to satisfy the conditions of Assumption 7.

4.5.1 Output-Feedback IRL for Linear Systems

To verify the performance of the developed method, a linear quadratic optimal control

problem is selected since it has a known optimal value function for comparison. The

linear system is

ṗ
q̇

 =



0 0 1 0

0 0 0 1

1 1 −1 1

5 1 1 1


p
q

+



0 0

0 0

1 3

0 1


u.

The weighing matrices in the reward function are selected as Q = diag
(
[1, 2, 3, 6]

)
and R = [20, 10], where R (1, 1) is assumed to be known. The observed input-

output trajectories, along with a prerecorded history stack are used to implement the

simultaneous state and parameter estimation algorithm in Chapter III. The design

parameters in the system identification algorithm are selected using trial and error

as M = 150, T1 = 1s, T2 = 0.8s, k = 100, α = 20, β = 10, β1 = 5, kθ = 0.3/M , and

Γ (0) = 0.1 ∗ IL+P+m−1.

The behavior of the system under the optimal controller is observed, and at each

time step, a random state vector x∗ is selected and the optimal action u corresponding

to the random state vector is queried from the entity under observation. The queried

state-action pairs (x∗, u) are utilized in conjunction with the estimated state-action

pairs
(
x̂ (t) , u (t)

)
to implement the IRL algorithm developed.

Figs. 7 and 8 demonstrate the performance of the developed state estimator and

Fig. 9 illustrates the performance of the developed parameter estimator. Fig. 10

62

0 2 4 6 8 10
Time (s)

-1

-0.5

0

0.5

1

Figure 7: Generalized position estimation error.

0 2 4 6 8 10
Time (s)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Figure 8: Generalized velocity estimation error.

63

Figure 9: Estimation error for the unknown parameters in the system dynamics.

Figure 10: Estimation error for the unknown parameters in the reward function.

64

indicates that the developed IRL technique can be successfully utilized to estimate

the reward function of an entity under observation within a bound.

4.5.2 Output-Feedback IRL for Linear Systems with a Change in the

Reward Function

To further validate the performance of the developed method, a linear quadratic

optimal control problem is selected and the reward function is chosen to change at

10 seconds. The linear system is

ṗ
q̇

 =



0 0 1 0

0 0 0 1

1 1 −1 1

5 1 1 1


p
q

+



0 0

0 0

1 3

0 1


u.

The weighing matrices in the reward function for t < 10 seconds are selected as Q =

diag
(
[1, 2, 3, 6]

)
and R = [20, 10], and the weighing matrices in the reward function

for t ≥ 10 seconds are selected as Q = diag
(
[3, 4, 2, 10]

)
and R = [2, 8], where

R (1, 1) is assumed to be known throughout the simulation. The observed input-

output trajectories, along with a prerecorded history stack are used to implement the

simultaneous state and parameter estimation algorithm in Chapter III. The design

parameters in the system identification algorithm are selected using trial and error

as M = 150, T1 = 1s, T2 = 0.8s, k = 100, α = 20, β = 10, β1 = 5, kθ = 0.3/M , and

Γ (0) = 0.1 ∗ IL+P+m−1.

Figs. 11 and 12 demonstrate the performance of the developed state estimator

and Fig. 13 illustrates the performance of the developed parameter estimator.

Fig. 14 indicates even with a change in the reward function weights in real-time,

the IRL method developed can estimate the unknown weights within a bound of the

origin.

65

0 5 10 15 20
Time (s)

-1

-0.5

0

0.5

1

Figure 11: Generalized position estimation error.

0 5 10 15 20
Time (s)

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Figure 12: Generalized velocity estimation error.

66

Figure 13: Estimation error for the unknown parameters in the system dynamics.

Figure 14: Estimation error for the unknown parameters in the reward function.

67

4.5.3 Output-Feedback IRL for Nonlinear Systems

The agent under observation has the following nonlinear dynamics

ẋ1 = x2,

ẋ2 = θ1x1

(π
2

+ tan−1(5x1)
)

+
θ2x

2
1

1 + 25x2
1

+ θ3x2 + 3u, (103)

where the parameters θ1, θ2, and θ3 are unknown constants to be estimated. The

exact values of these parameters are θ1 = −1, θ2 = −5
2
, and θ3 = 4.

The agent is trying to minimize the cost function in (76) with r(x, u) = x2
2 + u2,

resulting in the reward function weights Q = diag(
[
WQ1 , WQ2

]
) = diag([0, 1]) and

R = 1. The observed output and control trajectories are used in the estimation of

unknown parameters in the dynamics, the system state, the optimal value function

parameters and the reward function weights.

The closed form optimal controller is

u∗ = −1

2
R−1

(
∇uf(x)

)T (∇xV (x)
)T

= −3x2,

with the corresponding optimal value function

V ∗ = x2
1

(
WV1 +WV2 tan−1(5x1)

)
+WV3x

2
2,

resulting in the ideal value function weights WV1 = π
2
, WV2 = 1, and WV3 = 1.

It is assumed that the controller that the agent under observation is utilizing is a

combination of the optimal controller and a known exciting controller, that is,

u(t) = −3x2(t) + 9 cos(3t) + 6 cos(2t) + 3 cos(t) + 15 cos(5t).

The history stack HIRL is initialized so that all the elements in the history stack

are zero5. Data is added to the history stack using a minimum singular value max-

imization algorithm. A time-based purging technique is utilized with τ = 1. The

5It is clear from the simulation results that full rank initialization of the history stack is a

sufficient, but not necessary condition for the analysis in Section 4.4.

68

0 10 20 30 40 50
Time (s)

-4

-2

0

2

4

Figure 15: State estimation errors for the system in (103).

0 10 20 30 40 50
Time (s)

-4

-2

0

2

4

6

Figure 16: Parameter estimation errors for the uncertain dynamics in (103).

69

0 10 20 30 40 50
Time (s)

-15

-10

-5

0

5

10

Figure 17: Reward and value function weight estimation errors using direct MBIRL

in Section 4.3 for the optimal control problem in (76) with r(x, u) = x2
2 + u2.

parameters used for the simulation are: α = 0.0033, N = 100, β = 0.5, and the

simulation time step size is set to Ts = 0.003s.

Figs. 15 - 17 show the performance of the developed MBIRL method. As seen

in Figs. 15 and 16, the uncertain parameters and system state estimates converge

to a small bound near the origin. As seen in Fig. 17, the MBIRL approach is able

to estimate the ideal values of the reward and value functions online even with a

non-zero ultimate bound on the state and parameter estimates.

4.6 Conclusion

In this chapter, an online model-based IRL method is developed that facilitate reward

function estimation utilizing a single demonstration. Theoretical guarantees using

Lyapunov theory are established to show error convergence to a bound. Further

chapters will build off the foundation built in this chapter.

70

Chapter V

INVERSE REINFORCEMENT LEARNING WITH INCONSISTENT

OBSERVATIONS

The method illustrated so far utilize the assumption that the agent under observa-

tion is acting optimally with respect to an unknown reward function. In general, the

requirement of optimal demonstrations is a strong assumption since agents in real

environments are often affected by unknown disturbances. These external distur-

bances result in the agent’s demonstrations being suboptimal, and these suboptimal

demonstrations make model-free IRL methods challenging because model-free IRL,

in general, require either optimal or near optimal demonstrations. Model-based IRL

methods can be used to compensate for the disturbance-induced sub-optimality if a

dynamic model of the agent under observation can be learned. However, the distur-

bances make system identification challenging, and the resulting models are typically

poor. Therefore, this chapter focuses on IRL techniques in real-time that can handle

suboptimal demonstrations from the agent under observation due to external distur-

bances affecting the agent’s otherwise optimal performance.

5.1 Introduction

IRL [3,5,92,93,111,116,118,126,132,143,157,159] and inverse optimal control (IOC)

methods [65] are extensively utilized to teach autonomous machines to perform spe-

cific tasks in an offline setting. However, the offline approaches are, in general,

prohibitively computationally intensive for real-time implementation, or require more

data than is typically available in applications that require real-time learning. In-

71

spired by the success of model-based real-time reinforcement learning methods in,

e.g., [149] and [151], and the online IRL/IOC results for linear [68], [110] and nonlin-

ear systems [138], this paper presents an online IRL technique for systems where the

observed trajectories are inconsistent with its internal reward function due to external

disturbances.

Model-free IRL methods, in general, are entirely trajectory driven, and require

the observed trajectories to be either optimal/near-optimal or require sub-optimal

trajectories to be rare occurrences [124,159]. However, if the agent under observation

is experiencing external disturbances, then the observed trajectories are unlikely to be

optimal, which makes model-free IRL difficult. Even if the unknown disturbances can

be estimated, removing the effects of these disturbances from the observed trajectories

is nontrivial in a model-free IRL setting.

Recently, there has been some work done to develop IRL techniques to help al-

leviate the difficulties in reward function estimation with sub-optimal trajectories.

In [27], the authors consider using preference ranked demonstrations in order to un-

cover the reward functions that extrapolate beyond the set of ranked demonstra-

tions, [38] considers the problem of utilizing unlabeled demonstrations for different

demonstrators with potentially varying skill levels, and [156] develops an approach

aimed at separating out noisy or sub-optimal demonstrations in order to extract

ideal reward functions. In [53], the authors research if helpful information can be

extracted from potentially failed, or severally sub-optimal attempts, instead of dis-

regarding them. The aforementioned methods attempt to extract reward functions

with inconsistent observations through a variety of different approaches. However,

these methods require multiple trajectories, are computationally expensive, and as

such, are not suitable for online implementation.

The novelty of the technique developed in this chapter is the use of a model

to compensate for disturbance-induced sub-optimality. Addressing the complexity

72

resulting from sub-optimality of the demonstrations is a major technical contribution

of this chapter.

This chapter builds on and extends the preliminary work in [137], where the

disturbances affecting both agents, learner and demonstrator, are assumed to be

equal. This strong assumption facilitates the analysis in [137], which utilizes the fact

that disturbance estimation error is exponentially convergent to zero. Instead, in this

chapter, the disturbances of the two agents are allowed to be different, which results

in ultimately bounded disturbance estimates.

In order to implement model-based IRL, if a dynamic model of the demonstrator

is unavailable, it needs to be identified from the data. However, the disturbances

make system identification challenging, and the resulting models are typically poor.

To overcome this challenge, it is assumed that the learner and demonstrator are co-

located and, as a result, experience similar disturbances, such as teams of quadrotors

in a constant wind-field or autonomous watercraft affected by a stream. One can

then estimate the disturbance using its effects on the learner and use the resulting

estimates to identify the dynamic model of the demonstrator. A model-based IRL

method can then be deployed to learn the unknown reward function.

The chapter is organized as follows: Section 5.2 details the problem formulation

and how the additional challenges related to disturbances are addressed. Section 5.3

details the disturbance estimator for this method. Section 5.4 shows the developed

parameter estimator. Section 5.5 explains the IRL algorithm. Section 5.6 shows a

simulation example for the proposed method and Section 5.7 concludes the chapter.

73

5.2 Problem Formulation

Consider two agents, Agent 1 and Agent 2, where Agent 1 is monitoring the behavior

of Agent 2. Agent 1 has the dynamics

ẋ1 = f1(x1, u1) + d1, (104)

where x1 : R≥0 → Rn is the state, u1 : R≥0 → Rm is the control, f1 : Rn × Rm → Rn

is a locally Lipschitz continuous function, and d1 : R≥0 → Rn is a disturbance acting

on Agent 1. The dynamics for Agent 2 are

ẋ2 = f2(x2, u2) + d2, (105)

where x2 : R≥0 → Rn is the state, u2 : R≥0 → Rm is the control, f2 : Rn × Rm → Rn

is a locally Lipschitz continuous function, and d2 : R≥0 → Rn is a disturbance acting

on the Agent 2.

Assume that Agent 2 is using a controller that minimizes the performance index

J(xo2, u2(·)) =

� ∞
0

r(x2(t;xo2, u2(·)), u2(t)) dt, (106)

where x2

(
·;xo2, u2(·)

)
is the trajectory generated by the control signal u2(·), for the

undisturbed dynamics, starting at xo2. The objective is to estimate the unknown

reward function, r, in the presence of uncertainties in the dynamics and sub-optimality

of the measured trajectories due the to unknown disturbance d2.

If Agent 1 and Agent 2 are co-located and have similar dynamic models, then the

disturbances affecting them can be reasonably assumed to be similar.

Assumption 8 The disturbances affecting both agents are similar, i.e.
∥∥d1 (t) −

d2 (t)
∥∥ ≤ εd(t),∀t≥0 where εd := supt∈R≥0

{εd(t)} <∞.

The following assumptions are used throughout the analysis.

74

Assumption 9 The unknown reward function r is quadratic in the control, i.e.,

r(x, u) = Q(x) + uTRu, (107)

where R ∈ Rm×m is a positive definite (P.D.) matrix, such that R = diag([r1, · · · , rm])

and Q : Rn → R is a positive semi-definite (P.S.D.) function.

Assumption 10 The state and control trajectories of Agent 2 are bounded such that

x2(t, xo2, u2(·)) ∈ X , u2(t) ∈ U for some compact sets X ⊆ Rn and U ∈ Rm.

The function Q can be represented using L ∈ N basis functions as Q(x) =

(W ∗
Q)TσQ(x) + εQ(x). The vector W ∗

Q := [q1 . . . qL]T ∈ RL denotes the ideal weights,

σQ : Rn → RL denotes continuously differentiable known features, and εQ : Rn → R

denotes the approximation error. Given any constant εQ ∈ R>0 [58, 59], there exist

L ∈ N such that εQ satisfies supx∈χ
∥∥εQ (x)

∥∥ < εQ, and supx∈χ
∥∥∇εQ (x)

∥∥ < εQ.

Assumption 11 The dynamics of Agent 2 in (105) are affine in control and the

optimal control problem defined by (105), (106), and (107) admits a continuously

differentiable optimal value function.

The class of affine systems is large, it includes linear systems and Euler Lagrange

systems with invertible inertia matrices. Many optimal control problems of interest

satisfy continuously differentiable optimal value functions, such as linear quadratic

problems and nonlinear problems similar to those used for demonstration in Section

5.6.1, meet this requirement.

The dynamics for Agent 2 in (105) can be represented as

ẋ2 = f o2 (x2, u2) + θT2 σ2(x2, u2) + ε2(x2, u2) + d2, (108)

where f o2 : Rn × Rm → Rn denotes the nominal dynamics, θT2 σ2 is a parameterized

estimate of the uncertain part of the dynamics, where θ2 ∈ Rp×n are unknown pa-

rameters and σ2 : Rn×Rm → Rp are known continuously differentiable features, and

ε2 : Rn × Rm → Rn is the approximation error.

75

Due to the unknown disturbance d2 acting on Agent 2, in spite of the optimal

feedback policy employed, the trajectories of Agent 2 will not be optimal with respect

to the reward function in (106). As a result, a purely data-driven implementation

of IRL would yield incorrect reward function estimates. Instead, in this paper, the

reward function is estimated using a model-based approach that compensates for the

trajectory deviations. The unknown disturbance, d1, is estimated by Agent 1 using

their known internal model. Agent 1 also implements a parameter estimator that

uses the disturbance estimates to calculate the unknown parameters in the dynamics

of Agent 2. Finally, both the disturbance and parameter estimates are used by Agent

1 to estimate the unknown reward function that Agent 2 is attempting to optimize.

Disturbance estimation, parameter estimation, and inverse reinforcement learning are

performed by Agent 1 synchronously and in real-time.

A block diagram showing the Agent 1 and Agent 2 architecture is shown in Fig.

18.

5.3 Disturbance Estimation

To implement the IRL method discussed in Section 5.5, Agent 1 can utilize any

disturbance estimator that satisfies the following Assumption.

Assumption 12 There exists a time instance, Td, such that the disturbance estima-

tion error, d̃1 = d1− d̂, where d̂ is the estimate of the unknown disturbance, converges

exponentially for all t < Td and

d1 ≥
∥∥∥d̃1(t)

∥∥∥ , ∀t ≥ Td, (109)

where d1 ≥ 0 is the ultimate bound.

Note that, since the difference between the disturbances acting on the two agents is

assumed to be bounded, the disturbance estimation error, d̃2 = d2−d̂, for the unknown

76

Learner
Measurements

Demonstrator

Disturbance
Estimation

System
Identification

𝑑መ

𝜃መ

Optimality Check

𝑥ଵ, 𝑢ଵ

Adaptive Update
𝑥ଶ, 𝑢ଶ

𝑥ଶ, 𝑢ଶ

𝜃መ

𝑥ଶ, 𝑢ଶ

Inverse
Bellman Error

Critic

Reward Function
Estimate

𝑊෡௏,𝑊෡ோ

𝑊෡௏,𝑊෡ோ,𝑊෡ொ

Policy
Mismatch

Learner

Figure 18: Learner (Agent 1) and Demonstrator (Agent 2) signal block diagram.

77

disturbance acting on Agent 2 is also UB. The ultimate bound of d̃2, denoted as d2,

is bounded from above by d1 + εd, i.e. 0 ≤ ‖d̃2(t)‖ ≤ d2 ≤ d1 + εd, ∀t ≥ Td.

Examples of a disturbance estimator that satisfies Assumption 12 are available in

results such as [31,32].

5.4 Parameter Estimation

Due to disturbance estimation, the parameter estimator developed in [67] is adapted

in the following to compensate for this additional disturbance term.

In Sections 5.4-5.5, the subscripts that denote the agent number in the dynamics

of Agent 2 will be omitted for brevity. The specific disturbance estimation terms

referring to Agent 1 will be denoted with a subscript 1.

5.4.1 Design

Integrating (108) over the interval [t− T, t] for some constant T ∈ R>0, yields

x (t)− x (t− T) =

� t

t−T
f o
(
x(γ), u(γ)

)
dγ + θT

� t

t−T
σ
(
x(γ), u(γ)

)
dγ

+

� t

t−T
ε
(
x(γ), u(γ)

)
dγ +

� t

t−T
d (γ) dγ. (110)

The expression in (110) can be rearranged to form the affine system

X (t) = F (t) + θTS (t) + E (t) +D (t) , ∀t ∈ R≥0, (111)

where

X (t) :=


x(t)− x (t− T) , t ∈ [T,∞) ,

0, t < T,

(112)

F (t) :=


� t
t−T f

o
(
x(γ), u(γ)

)
dγ, t ∈ [T,∞) ,

0, t < T,

(113)

78

S (t) :=


� t
t−T σ

(
x(γ), u(γ)

)
dγ, t ∈ [T,∞) ,

0, t < T,

(114)

E (t) :=


� t
t−T ε

(
x(γ), u(γ)

)
dγ, t ∈ [T,∞) ,

0, t < T,

(115)

and

D (t) :=


� t
t−T d (γ) dγ, t ∈ [T,∞) ,

0, t < T.

(116)

The affine error system in (111) motivates the adaptive estimation scheme that

follows, in which a concurrent learning-like technique [41] is developed that utilizes

recorded data stored in a history stack to drive parameter estimation.

A history stack, HPE, is a set of data points

{(
Xi, Fi, Si, D̂i

)}M
i=1

such that

Xi = Fi + θTSi + D̂i + Ei, ∀i ∈ {1, · · · ,M} , (117)

where Ei = Di − D̂i + Ei, and

D̂ (t) :=


� t
t−T d̂ (γ) dγ, t ∈ [T,∞) ,

0, t < T.

(118)

Definition 4 A history stack HPE is called full rank if there exists a constant c ∈ R

such that

0 < c < λmin {S } , (119)

where the matrix S ∈ Rp×p is defined as S :=
∑M

i=1 SiS
T
i .

The history stack HPE, if time-varying, is called full-rank, uniformly in t, if c in

(119) is independent of t.

79

The concurrent learning update law to estimate the unknown parameters is then given

by

˙̂
θ = αθΓθ

M∑
i=1

Si

(
Xi − Fi − θ̂TSi − D̂i

)T
, (120)

where αθ ∈ R>0 is a constant adaptation gain, and Γθ : R≥0 → Rp×p is the least-

squares gain updated using the update law

Γ̇θ = βθΓθ − αθΓθS Γθ, (121)

where βθ ∈ R>0 is a forgetting factor. Using arguments similar to [60, Corollary

4.3.2], it can be shown that provided λmin

{
Γ−1
θ (0)

}
> 0, the least squares gain

matrix satisfies

ΓθIp ≤ Γθ (t) ≤ ΓθIp,∀t ≥ 0, (122)

where Γθ and Γθ are positive constants. If a full rank history stack that satisfies

(117) is not available a priori, then the data points can be recorded online using

the relationship in (111), by selecting an increasing set of time-instances {ti}Mi=1 and

letting

Xi = X (ti) , Fi = F (ti) , Si = S (ti) , D̂i = D̂ (ti) . (123)

Motivated by the observation that the rate of decay of the parameter estimation

errors (see (124)) is proportional to the minimum singular value of S , a singular

value maximization algorithm is used to select the time instances {ti}Mi=1. That is,

a data-point
(
Xj, Fj, Sj, D̂j

)
in the history stack is replaced with a new data-point(

X∗, F ∗, S∗, D̂∗
)

, where F ∗ = F (t), X∗ = X (t), S∗ = S (t), and D̂∗ = D̂ (t), for

some t, only if

λmin

∑
i 6=j

SiS
T
i + SjS

T
j

 ≤ λmin

∑
i 6=j

SiS
T
i + S∗S∗T

,
where λmin (·) denotes the minimum singular value of a matrix.

80

The update law in (121) is motivated by the fact that the dynamics for the weight

estimation error can be described by

˙̃θ = −αθΓθS θ̃ − αθΓθ
M∑
i=1

SiETi , (124)

where θ̃ := θ − θ̂, which can be shown to be a perturbed stable linear time-varying

system under conditions detailed in the following section.

The magnitude of the perturbation can be decreased by reducing the norm of Ei,

which can be reduced by improving the disturbance estimates D̂i stored in the history

stack. Since the disturbance estimation errors are assumed to converge exponentially

to an ultimate bound, a time-based purging technique, where the history stack is

periodically purged and replaced, is employed to leverage better estimates of d̂ when

they become available in order to yield more accurate estimates θ̂.

The purging technique utilizes two history stacks, a main history stack and a

transient history stack, labeled HPE and GPE, respectively. As soon as the transient

history stack is full rank according to (119), HPE is emptied and GPE is copied into

HPE. The history stack HPE is kept constant in between purging instances.

Due to purging, the time instances {t1, · · · tM} and the matrices D̂ and E , and

consequently HPE, are piecewise constant in time.

5.4.2 Analysis

A Lyapunov based analysis, summarized in the following theorem, shows convergence

of the parameter estimator developed in Section 5.4.1.

Definition 5 The signal (x, u) is called finitely informative (FI) if there exist time

instances 0 ≤ t1 < t2 < · · · < tN such that the resulting history stack is full rank and

persistently informative (PI) if for any T ≥ 0, there exist time instances T ≤ t1 <

t2 < · · · < tN such that the resulting history stack is full rank.

The stability result is summarized in the following theorem.

81

Theorem 4 If a disturbance estimation technique that satisfies Assumption 12 is em-

ployed to generate estimates of d2, the signal (x, u) is FI, the time instances t1, . . . , tM

are selected using minimum singular value maximization so that the history stack,

HPE, is full rank, uniformly in t, and HPE is refreshed using a time-based purging

algorithm, then t 7→ θ̃(t) is ultimately bounded.

Proof. Consider the candidate Lyapunov function

Vθ(θ̃, t) =
1

2
θ̃TΓ−1

θ (t)θ̃. (125)

Using the bounds in (122), the candidate Lyapunov function satisfies

1

2Γθ

∥∥∥θ̃∥∥∥2

≤ Vθ

(
θ̃, t
)
≤ 1

2Γθ

∥∥∥θ̃∥∥∥2

. (126)

The time-derivative of (125) results in

V̇θ(θ̃, t) = θ̃TΓ−1
θ (t) ˙̃θ +

1

2
θ̃T Γ̇−1

θ (t)θ̃. (127)

Using (121) and (124), along with the identity Γ̇−1
θ = −Γ−1

θ Γ̇θΓ
−1
θ , V̇θ can be expressed

as

V̇θ(θ̃, t) = −1

2
αθθ̃

TS (t)θ̃ − 1

2
βθθ̃

TΓ−1
θ (t)θ̃ − αθθ̃T

M∑
i=1

Si(t)ETi (t). (128)

Using the Cauchy-Schwartz inequality, and bounds in (119) and (122), V̇θ can be

bounded by

V̇θ(θ̃, t)≤−
1

2

(
αθc+

βθ

Γθ

)∥∥∥θ̃∥∥∥2

+ αθ

∥∥∥θ̃∥∥∥ M∑
i=1

∥∥Si(t)∥∥∥∥Ei(t)∥∥. (129)

Since the states and controls are bounded,
∥∥Si(t)∥∥ is bounded for all i and for all

t ≥ 0. The upper bound is defined as S := sup(x,u)∈X×U ‖σ (x, u) ‖. Using this upper

bound, V̇θ can be rewritten as

V̇θ(θ̃, t) ≤ −
1

4

(
αθc+

βθ

Γθ

)∥∥∥θ̃∥∥∥2

, ∀
∥∥∥θ̃∥∥∥ ≥ ρ(‖µ‖). (130)

82

where µ =
∑M

i=1 ‖Ei‖ and ρ
(
‖µ‖

)
=

(
4αθS

αθc+
βθ
Γθ

)
‖µ‖. Using (126) and (130), [80,

Theorem 4.19] can be invoked to conclude that the system in (124) is input-to-state

stable with state θ̃ and input µ.

If a time-based purging algorithm is implemented and if the signal (x, u) is FI,

there exists a time instance Ts, such that for all t ≥ Ts, the history stack HPE remains

unchanged. As a result, using Exercise 4.58 from [80], the ultimate bound on θ̃ can

be expressed as

lim sup
t→∞

∥∥∥θ̃(t)∥∥∥ ≤

√

Γθ
Γθ

4αθST
(
ε+ d̃(Ts)

)
αθc+ βθ

Γθ

 , (131)

where ε := sup(x,u)∈X×U ‖ε (x, u) ‖ and d̃(Ts) denotes a bound on the disturbance

estimation error in the history stack HPE(t) for all t ≥ Ts.

Furthermore, if (x, u) is PI, then (131) reduces to

lim sup
t→∞

∥∥∥θ̃(t)∥∥∥ ≤

√

Γθ
Γθ

4αθST
(
ε+ d1 + εd

)
αθc+ βθ

Γθ

 := θ. (132)

The ultimate bound for the estimation error, θ̃, has a direct relationship to the ap-

proximation errors for the agent’s dynamics, along with the disturbance estimation

error. As such, the ultimate bound can be reduced by reducing those errors. This

observation motivates the following corollary.

Corollary 2 If the agent’s dynamics in (108) are linearly parameterizable, both agents

experience the same disturbance, (i.e. εd = 0), the signal (x, u) is PI, the time in-

stances t1, . . . , tM are selected using minimum singular value maximization so that the

history stack HPE is full rank, uniformly in t, HPE is refreshed using a time-based

purging algorithm, and d̃ converges to zero exponentially, then limt→∞ ‖θ̃(t)‖ = 0.

Proof. Immediate from Theorem 4.

83

5.5 Inverse Reinforcement Learning

In this section, parameter estimates from Section 5.4 are utilized to form an error

metric for IRL. The formulation of IRL in the following two subsections, builds off of

the authors’ previous work in [137].

5.5.1 Inverse Bellman Error

Under the premise that Agent 2 implements a feedback controller that would be

optimal in a disturbance-free environment, the state and control trajectories, x(·)

and u(·), satisfy the Hamilton-Jacobi-Bellman (HJB) equation1 [95]

H

(
x (t) ,∇x

(
V ∗
(
x (t)

))T
, u (t)

)
= 0,∀t ∈ R≥0, (133)

where V ∗ : Rn → R is the unknown optimal value function and H : Rn×Rn×Rm → R

is the Hamiltonian, defined as H(x, p, u) := pTf(x, u) + r(x, u).

The function V ∗ can be represented using P ∈ N basis functions as V ∗(x) =

(W ∗
V)TσV (x) + εV (x). The vector W ∗

V ∈ RP denotes ideal weights, σV : Rn →

RP denotes continuously differentiable known features, and εV : Rn → R denotes

approximation error. Given any constant εV ∈ R>0 [58, 59], there exist P ∈ N

such that εV satisfies supx∈χ
∥∥εV (x)

∥∥ < εV and supx∈χ
∥∥∇εV (x)

∥∥ < εV . Let V̂ :

Rn×RP → R,
(
x, ŴV

)
7→ Ŵ T

V σV (x) and Q̂ : Rn×RL → R,
(
x, ŴQ

)
7→ Ŵ T

QσQ(x) be

parameterized estimates of V ∗ and Q, respectively, where ŴV ∈ RP are the estimates

of W ∗
V and ŴQ are the estimates of W ∗

Q. Furthermore, let ŴR be the estimates of

W ∗
R := [r1 . . . rm]T . Using θ̂, ŴV , ŴQ, and ŴR, which are the estimates of θ, W ∗

V ,

W ∗
Q, and W ∗

R, respectively, in (133), a parametric estimate of the Hamiltonian called

the inverse Bellman error δ : Rn × Rm × RL+P+m × Rp → R is obtained as

δ
(
x, u, Ŵ , θ̂

)
= Ŵ T

V ∇xσV (x) Ŷ (x, u, θ̂) + Ŵ T
QσQ (x) + Ŵ T

Rσu(u), (134)

1For brevity, the full dependencies of the state trajectory, x(t, x0, u(·)), will be omitted wherever

they are clear from the context and the trajectory will be denoted as x(t).

84

where σu(u) :=
[
u2

1, . . . , u
2
m

]T
and Ŷ (x, u, θ̂) =

[
f o(x, u) + ĝ(x, u, θ̂)

]
and ĝ(x, u, θ̂) :=

θ̂Tσ(x, u) from (108) with parameter estimates, θ̂. Rearranging, we get

δ
(
x, u, Ŵ ′, θ̂

)
=
(
Ŵ ′
)T

σ′
(
x, u, θ̂

)
, (135)

where Ŵ ′ :=
[
Ŵ T
V , Ŵ

T
Q , Ŵ

T
R

]T
and

σ′
(
x, u, θ̂

)
:=

[(
∇xσV (x) Ŷ (x, u, θ̂)

)T
,
(
σQ(x)

)T
,
(
σu (u)

)T]T
.

5.5.2 Formulation of IRL

Using control signals, trajectories, and parameter estimates stored in a history stack,

denoted as HIRL, the inverse Bellman error in Section 5.5.1, evaluated along the

trajectories x(·) and u(·), at time instances t1(t), t2(t), . . . , tN(t), can be formulated

into the matrix form

∆′(t, Ŵ ′) = Σ̂′(t)Ŵ ′, (136)

where

∆′(t, Ŵ ′) :=


δ
(
x
(
t1(t)

)
, u
(
t1(t)

)
, Ŵ ′, θ̂

(
t1(t)

))
...

δ
(
x
(
tN(t)

)
, u
(
tN(t)

)
, Ŵ ′, θ̂

(
tN(t)

))
 ,

Σ̂′(t) :=


(
σ′
(
x(t1(t)), u(t1(t)), θ̂(t1(t))

))T
...(

σ′
(
x(tN(t)), u(tN(t)), θ̂(tN(t))

))T

 .
Since the HJB equation in (133) is equal to zero along the optimal state and

control trajectories, utilizing the current estimate of θ̂, candidate solutions for Ŵ ′ can

be obtained by minimizing ‖∆′‖ in (136). It can be seen that the solution Ŵ ′ = 0

trivially minimizes ‖∆′‖, which is expected due to the fact that optimal trajectories

that result from minimization of all positive multiples of r are identical. As a result,

r can only be identified up to a scaling factor using x(·) and u(·). To remove the

85

scaling ambiguity without loss of generality, one reward weight will be assigned a

fixed known value. In the following, it is assumed that the first element of ŴR is

known, denoted as r1.

The inverse Bellman error in (135) can then be expressed as

δ′
(
x, u, Ŵ , θ̂

)
= Ŵ Tσ′′

(
x, u, θ̂

)
+ r1σu1 (u) , (137)

where Ŵ :=

[
Ŵ T
V , Ŵ

T
Q ,
(
Ŵ−
R

)T]T
, the vector Ŵ−

R denotes ŴR with the first element

removed, σui (u) denotes the i-th element of the vector σu (u), the vector σ−u denotes

σu with the first element removed, and

σ′′
(
x, u, θ̂

)
:=

[(
∇xσV (x) Ŷ (x, u, θ̂)

)T
,
(
σQ(x)

)T
,
(
σ−u (u)

)T]T
.

Provided Assumption 9 is true, the closed-form optimal controller corresponding

to the reward structure in (106) provides the relationship

− 2Ru =
(
g′(x)

)T
(∇xσV (x))TW ∗

V +
(
g′(x)

)T(∇xεV (x)
)T
, (138)

which can be expressed as

−2r1u1 + ∆u1=σg1W
∗
V

∆u−=σ−g W
∗
V +2diag

(
[u2, . . . , um]

)
(W ∗

R)−, (139)

where g′(x) := [∇uf
o] (x) + θT [∇uσ] (x) (∇uf

o and ∇uσ are independent of u since

the dynamics are affine in control (Assumption 11)), σg1 and ∆u1 denote the first rows

and σ−g and ∆u− denote all but the first rows of σg(x) :=
(
g′(x)

)T
(∇xσV (x))T and

∆u(x) :=
(
g′(x)

)T (∇xεV (x)
)T

, respectively. For simplification, let σ :=

σ′′,
σTg

Θ


 ,

where

Θ :=

0m×L

 01×m−1

2diag
(
[u2, . . . , um]

)


T

.

86

Substituting θ̂, ŴV , and ŴR, in (139) and updating the history stack in (136) by

removing the known reward weight element results in the linear system

− Σu1(t)− Σ̂(t)Ŵ = Σ̂(t)W̃ + ∆(t), (140)

where the estimation error is defined as W̃ = W ∗ − Ŵ , and

Σ̂(t) :=



(
σ
(
x
(
t1(t)

)
, u
(
t1(t)

)
, θ̂
(
t1(t)

)))T
...(

σ
(
x
(
tN(t)

)
, u
(
tN(t)

)
, θ̂
(
tN(t)

)))T


,

Σu1(t) :=

[(
σ′u1

(
u
(
t1(t)

)))T
, · · · ,

(
σ′u1

(
u
(
tN(t)

)))T]T
,

∆(t) :=



∆δ

(
x(t1(t)), u(t1(t)), θ̃(t1(t))

)
∆m

(
x(t1(t)), u(t1(t)), θ̃(t1(t))

)
...

∆δ

(
x(tN(t)), u(tN(t)), θ̃(tN(t))

)
∆m

(
x(tN(t)), u(tN(t)), θ̃(tN(t))

)


,

where

σ′u1(u(ti(t))) :=
[
r1σu1(u(ti(t))), 2r1u1(ti(t)), 01×(m−1)

]T
,

∆δ

(
x(ti(t)), u(ti(t)), θ̃(ti(t))

)
:=
[
εQ(x(ti(t)))

+
(
σ(x(ti(t)), u(ti(t)))

)T
θ̃(ti(t))

(
∇xσV (x(ti(t)))

)T
W ∗
V

+
(
f o(x(ti(t)), u(ti(t)))

)T(
∇xεV (x(ti(t)))

)T
+
(
θTσ(x(ti(t)), u(ti(t)))

)T(
∇xεV (x(ti(t)))

)T]
,

87

∆m

(
x(ti(t)),u(ti(t)),θ̃(ti(t))

)
:=[(

∇uf
o(x(ti(t)),u(ti(t)))

)T(
∇xεV (x(ti(t)))

)T
+
(
∇uσ(x(ti(t)),u(ti(t)))

)T
θ̃(ti(t))

(
∇xσV (x(ti(t)))

)T
W ∗
V

+
(
∇uσ(x(ti(t)),u(ti(t)))

)T
θ
(
∇xεV (x(ti(t)))

)T]
.

The relationship in (140) suggests the following update law for estimation of the

unknown reward function weights

˙̂
W = αΓ(t)Σ̂T (t)

(
−Σ̂(t)Ŵ − Σu1(t)

)
, (141)

where α ∈ R>0 is a constant adaptation gain and Γ : R≥0 → R(L+P+m−1)×(L+P+m−1)

is the least-squares gain updated using the update law

Γ̇ = βΓ− αΓΣ̂T (t)Σ̂(t)Γ, (142)

where β ∈ R>0 is the forgetting factor.

The update law in (141) is motivated by the fact that, the dynamics for the weight

estimation error can be described by

˙̃W = −αΓ(t)Σ̂T (t)
(

Σ̂(t)W̃ + ∆(t)
)
, (143)

which can be shown to be a perturbed stable linear time-varying system under con-

ditions detailed in the following section.

5.5.3 Analysis

A Lyapunov based analysis is used to show convergence of the IRL method in Section

5.5.2.

Convergence of the estimation error to a neighborhood of the origin follow under

the following condition on the regressor, Σ̂.

88

Definition 6 The time-varying history stack, HIRL, is called full rank, uniformly in

t, if there exists σ ∈ R>0 such that2 ∀t ∈ R≥0,

σ < λmin

{
Σ̂T (t)Σ̂(t)

}
. (144)

Using arguments similar to [60, Corollary 4.3.2], it can be shown that if λmin

{
Γ−1 (0)

}
>

0, and if HIRL is full rank, uniformly in t, then the least squares gain matrix satisfies

ΓIL+P+m−1 ≤ Γ (t) ≤ ΓIL+P+m−1,∀t > 0, (145)

where Γ and Γ are positive constants.

The stability result is summarized in the following theorem.

Theorem 5 If there exists a disturbance estimation technique that satisfies Assump-

tion 12, the signal (x, u) is FI, the time instances t1, . . . , tM and t1, . . . , tN are selected

using minimum singular value maximization so that the history stacks HPE and HIRL

are full rank, uniformly in t, and HPE and HIRL are refreshed using a time-based

purging algorithm, then t 7→ W̃ (t) is ultimately bounded.

Proof. Consider the positive definite candidate Lyapunov function

V (W̃ , t) =
1

2
W̃ TΓ−1 (t) W̃ . (146)

Using the bounds in (145), the candidate Lyapunov function satisfies

v
∥∥∥W̃∥∥∥2

≤ V
(
W̃ , t

)
≤ v

∥∥∥W̃∥∥∥2

. (147)

where v := 1/2Γ and v := 1/2Γ.

The time-derivative of (146) results in

V̇ (W̃ , t) = W̃ TΓ−1 (t) ˙̃W +
1

2
W̃ T Γ̇−1 (t) W̃ . (148)

2The history stack HIRL can be initialized using arbitrarily selected trajectories (x(·), u(·)) ∈

X × U to ensure that the history stack is full rank at t = 0.

89

Using (142) and (143), along with the identity Γ̇−1 = −Γ−1Γ̇Γ−1, after simplifying

the time-derivative can be expressed as

V̇ (W̃ , t) = −1

2
αW̃ T Σ̂T (t)Σ̂(t)W̃ − αW̃ T Σ̂T (t)∆(t)− 1

2
βW̃ TΓ−1 (t) W̃ . (149)

Substituting in Σ̂ = Σ− Σ̃, yields

V̇ (W̃ , t) = −1

2
αW̃ T Σ̂T (t)Σ̂(t)W̃ − 1

2
βW̃ TΓ−1 (t) W̃

− αW̃ TΣT (t)∆(t) + αW̃ T Σ̃T (t)∆(t). (150)

Using the Cauchy-Schwartz inequality, and bounds in (145) and (144), V̇ can be

bounded by

V̇ (W̃ , t)≤−1

2

(
ασ +

1

Γ
β

)∥∥∥W̃∥∥∥2

+ α
∥∥∥W̃∥∥∥∥∥Σ(t)

∥∥∥∥∆(t)
∥∥

+ α
∥∥∥W̃∥∥∥∥∥∥Σ̃(t)

∥∥∥∥∥∆(t)
∥∥ . (151)

The term
∥∥∥Σ̃
∥∥∥ can be expressed in terms of θ̃ as∥∥∥Σ̃(t)

∥∥∥ ≤ θ̃(t) Σ, (152)

where θ̃(t) = maxi=1,2,...,N ‖θ̃(ti(t))‖. Since t 7→ x(t), t 7→ θ̂(t), and t 7→ u(t) are

bounded, the coefficient Σ can be selected independent of ti and the specific trajec-

tories of x and u currently stored in the history stack as

Σ := sup
(x,u)∈X×U

{∥∥∇xσV (x)
∥∥∥∥σ(x, u)

∥∥ ,∥∥∇xσV (x)
∥∥∥∥∇uσ(x, u)

∥∥}. (153)

The term ‖Σ‖, which contains true values of the unknown parameters, is bounded

above since it is a function of only true parameters, θ, and bounded states and

controls, x and u. Let the upper bound on ‖Σ‖ be denoted as

∥∥Σ(t)
∥∥ ≤ Σθ, ∀ t ≥ 0. (154)

The residual ‖∆‖ can be bounded above by

‖∆(t)‖ ≤ θ̃(t) ∆ + ∆ε, (155)

90

where

∆ := sup
(x,u)∈X×U

{
‖∆δ‖ , ‖∆m‖

}
∆ε := sup

(x,u)∈X×U

{
‖∆δε‖ , ‖∆mε‖

}
.

and

‖∆δ‖ :=‖σ(x, u)‖‖∇xσV (x)‖‖W ∗
V ‖,

‖∆δε‖ :=‖εQ(x)‖+ ‖∇xεV (x)‖‖f o(x, u)‖

+ ‖∇xεV (x)‖‖θ‖‖σ(x, u)‖,

‖∆m‖ :=‖∇uσ(x, u)‖‖∇xσV (x)‖‖W ∗
V ‖,

‖∆mε‖ :=‖∇xεV (x)‖‖∇uf
o(x, u)‖

+ ‖∇xεV (x)‖‖θ‖‖∇uσ(x, u)‖.

Using (152), (154) and (155), V̇ becomes

V̇ (W̃ , t) ≤ −1

4

(
ασ +

β

Γ

)∥∥∥W̃∥∥∥2

, ∀
∥∥∥W̃∥∥∥ ≥ ρ(‖µ‖), (156)

where µ =

[
∆ε,∆εθ̃, θ̃, θ̃

2
]T

and

ρ(‖µ‖) =

(
4αmax{Σθ,Σ,∆ Σθ,∆ Σ}

ασ + β

Γ

)
‖µ‖.

Using (147) and (156), [80, Theorem 4.19] can be invoked to conclude that the system

in (143) is input-to-state stable with state W̃ and input µ.

If a time-based purging algorithm is implemented and if the signal (x, u) is FI,

there exists a time instance Ts, such that for all t ≥ Ts, the history stack HIRL(t)

remains unchanged. As a result, using Exercise 4.58 from [80], the ultimate bound

91

on W̃ can be expressed as

lim sup
t→∞

∥∥∥W̃ (t)
∥∥∥ ≤

√
Γ

Γ

(
4αmax{Σθ,Σ,∆ Σθ,∆ Σ}

ασ + β

Γ

)
∆ε

+

√
Γ

Γ

(
4αmax{Σθ,Σ,∆ Σθ,∆ Σ}

ασ + β

Γ

)(
∆εθ̃(Ts) + θ̃(Ts)

)
+

√
Γ

Γ

(
4αmax{Σθ,Σ,∆ Σθ,∆ Σ}

ασ + β

Γ

)(
θ̃(Ts)

)2

, (157)

where θ̃(Ts) denotes a bound on the parameter estimation error in the history stack

HIRL(t) for all t ≥ Ts.

Furthermore, if (x, u) is PI, then lim sup
t→∞

θ̃(t) → θ. In that case, the ultimate

bound reduces to

lim sup
t→∞

∥∥∥W̃ (t)
∥∥∥ ≤

√
Γ

Γ

(
4αmax{Σθ,Σ,∆ Σθ,∆ Σ}

ασ + β

Γ

)
∆ε

+

√
Γ

Γ

(
4αmax{Σθ,Σ,∆ Σθ,∆ Σ}

ασ + β

Γ

)(
∆εθ + θ + θ

2
)
. (158)

The ultimate bound for the estimation error, W̃ , has a direct relationship to the ap-

proximation errors for the agent’s dynamics, along with both the reward and value

function approximation errors. As such, the ultimate bound can be reduced by re-

ducing those errors. This observation motivates the following corollary.

Corollary 3 If the agent’s dynamics in (108) are linearly parameterizable, the ap-

proximation error terms εQ, εV are equal to zero, both agents experience the same

disturbance, i.e. εd = 0, the signal (x, u) is PI, the time instances t1, . . . , tM and

t1, . . . , tN are selected using minimum singular value maximization so that HPE and

HIRL are full rank, uniformly in t, and HPE and HIRL are refreshed using a time-

based purging algorithm, then limt→∞ ‖W̃ (t)‖ = 0.

Proof. Immediate from Theorem 5.

92

If the agent’s dynamics are known, then the developed IRL method in Section 5.5.2

does not require any disturbance estimation. Since the IRL method is model-based

and only requires optimal state-action pairs, not optimal state-action trajectories.

IRL with exact model knowledge does not require disturbance estimation, and as

such, does not require Assumptions 8 or 12.

Theorem 6 If the dynamics of Agent 2 in (105) are known, along with an exact basis

for approximation of Q and V ∗ (i.e., εQ = 0 and εV = 0), the signal (x, u) is FI, the

time instances t1, . . . , tN are selected using minimum singular value maximization so

that HIRL is full rank, uniformly in t, then as t→∞, ‖W̃ (t)‖ → 0, exponentially.

Proof. Consider the positive definite candidate Lyapunov function

V (W̃ , t) =
1

2
W̃ TΓ−1 (t) W̃ . (159)

Using the bounds in (145), the candidate Lyapunov function satisfies

v
∥∥∥W̃∥∥∥2

≤ V
(
W̃ , t

)
≤ v

∥∥∥W̃∥∥∥2

. (160)

where v := 1/2Γ and v := 1/2Γ.

The time-derivative of (159) results in

V̇ (W̃ , t) = W̃ TΓ−1 (t) ˙̃W +
1

2
W̃ T Γ̇−1 (t) W̃ . (161)

Using (142) and (143), along with the identity Γ̇−1 = −Γ−1Γ̇Γ−1, after simplifying

the time-derivative can be expressed as

V̇ (W̃ , t) = −1

2
αW̃ T Σ̂T (t)Σ̂(t)W̃ − αW̃ T Σ̂T (t)∆(t)− 1

2
βW̃ TΓ−1 (t) W̃ . (162)

Since the dynamics are known, there is no approximation error, i.e. ∆ = 0. Then

(162) becomes

V̇ (W̃ , t) = −1

2
αW̃ T Σ̂T (t)Σ̂(t)W̃ − 1

2
βW̃ TΓ−1 (t) W̃ . (163)

93

Using the Cauchy-Schwartz inequality, and bounds in (145) and (144), V̇ can be

bounded by

V̇ (W̃ , t)≤−1

2

(
ασ +

1

Γ
β

)∥∥∥W̃∥∥∥2

(164)

Using (159) and (164), [80, Theorem 4.10] can be invoked to conclude that W̃ con-

verges exponentially to 0.

5.6 Simulation

To demonstrate the performance of the developed method, a nonlinear optimal control

problem that has a known optimal value function is constructed using [65].

5.6.1 Uncertain Agent Dynamics

Agent 1 has the following nonlinear dynamics

ẋ11 = x12 , ẋ12 = x11x12 + 3x2
12

+ 5u1 + d1.

Agent 2 under observation has the following nonlinear dynamics

ẋ21 = x22 ,

ẋ22 = θ1x21

(π
2

+ tan−1(5x21)
)

+
θ2x

2
21

1 + 25x2
21

+ θ3x22 + 3u2 + d2, (165)

where xij denotes state j for Agent i. The parameters θ1, θ2, and θ3 are unknown

constants to be estimated and di is the unknown disturbance acting on Agent i. The

exact values of these parameters are θ1 = −1, θ2 = −5
2
, and θ3 = 4. Inspired by [34],

the disturbance acting on the Agent 1 is assumed to be generated from the exogenous

linear system

ζ̇ = Aζ, (166)

d1 = Cζ, (167)

94

where ζ : R≥0 → RN , A ∈ RN×N , C ∈ Rn×N , and d : R≥0 → Rn is the disturbance,

and where A = [0, 1;−1, 0] and C = [0, 0; 1, 0]. The disturbance estimator3 is designed

as

˙̂
ζ = Aζ̂ +K

(
ẋ1 −

(
f1 (x1, u1) + d̂1

))
, (168)

and

d̂1 = Cζ̂, (169)

where K ∈ RN×n is a gain matrix and chosen as K = [1, 0.5; 0, 5]. The disturbance

acting on Agent 2 is the same disturbance, d1, with an additive zero-mean Gaussian

noise with variance 0.1.

The performance index that Agent 2 is trying to minimize is

J(xo2, u2(·)) =

� ∞
0

(x2
22

+ u2
2) dt, (170)

resulting in the ideal reward function weights Q = diag([q1, q2]) = diag([0, 1]) and

R = 1. The observed state and control trajectories and the disturbance estimates

are used to estimate the unknown parameters in the dynamics of Agent 2, along

with the optimal value function parameters and the reward function weights. The

optimal controller is u∗2 = −3x22 , while the optimal value function is V ∗ = x2
21

(v1 +

v2 tan−1(5x21)) + v3x
2
22

, resulting in the ideal optimal value function parameters v1 =

π
2
, v2 = 1, and v3 = 1.

Figs. 19 - 21 show the performance of the proposed method. As seen in Figs.

19 and 21, the estimation errors of unknown part of the dynamics of Agent 2 and

the unknown disturbance affecting Agent 2 converge to a bound near the origin.

As seen in Fig. 20, the IRL approach is able to estimate the ideal values of the

reward and optimal value functions online even with non-zero ultimate bounds on

the disturbance and parameter estimates. The parameters used for the simulation

3Since the disturbance estimation error using (168) exponentially converges to the origin, it

trivially satisfied Assumption 12.

95

0 20 40 60 80 100

Time (s)

-4

-2

0

2

4

Figure 19: Estimation error for the unknown parameters in the dynamics of Agent 2.

0 20 40 60 80 100

Time (s)

-4

-2

0

2

4

Figure 20: Estimation error for the unknown parameters in the reward function for

Agent 2.

0 20 40 60 80 100

Time (s)

-10

-5

0

5

Figure 21: Estimation error for the unknown disturbance acting on Agent 2.

96

are: T = 1.2s, N = 100, M = 150, β = βθ = 0.5, α = αθ = 1/N, and a time step of

0.0005s.

5.6.2 Exact Model Knowledge

The second simulation is the same as in Section 5.6.1, however, this simulation utilizes

known dynamics of Agent 2. Since Agent 2 is trying to minimize the performance

index in (170), even though Agent 2 is still affected by an unknown disturbance,

each action that Agent 2 takes is the optimal instantaneous action for a given state

corresponding to the reward function in (170). Therefore, since the state-action pairs

are optimal, and there are no estimation errors for the dynamics of Agent 2, the

resulting error term ∆ in (140) is equal to 0. Therefore, disturbance estimation is not

required in this situation to estimate the unknown reward function. Fig. 22 shows

the performance of the proposed method.

0 5 10 15 20

Time (s)

-1

0

1

Figure 22: Estimation error for the unknown parameters in the reward function for

Agent 2 with exact model knowledge.

As seen in Fig. 22, the reward function and optimal value function estimation

result in perfect estimates of the unknown weights without the need for disturbance

estimation. This would potentially be useful for real-world implementation, as certain

situations may facilitate better knowledge of the system dynamics than accurate dis-

turbance estimation, such as quadcopters flying in highly turbulent and unpredictable

97

wind fields.

5.7 Conclusion

A novel IRL framework is developed in this paper for reward function estimation in

the presence of modeling uncertainties and additive disturbances. To compensate for

disturbance-induced sub-optimality of observed trajectories, a model-based approach

is developed that relies on a disturbance estimator.

98

Chapter VI

INVERSE REINFORCEMENT LEARNING WITH LIMITED DATA

Inverse reinforcement learning has a large dependency on the information contained

in observed demonstrations. However, this data dependency becomes an issue for

trajectories with sparse data, and attempting to recover reward functions from a

single demonstration under these sparse data conditions is challenging. Most current

methods developed for IRL require multiple trajectories to uncover reward functions.

This chapter aims to resolve IRL for trajectories with sparse data.

6.1 Introduction

While IRL in an offline setting has a rich history of literature [3,5,92,93,116,118,126,

132,143,154,157,159], these offline approaches to IRL are ill-suited for adaptation in

real-time, and as a result, cannot handle changes to task objectives. The development

of online IRL is motivated by the need for robustness to uncertainties in the system

model and responsiveness to adapt to changing reward structures. However, little

work has been done to address IRL in an online setting and one reason for this is the

limited data provided by a single demonstration.

Preliminary results on online IRL are available for linear systems, in results such

as [68] and [110], and for nonlinear systems, in results such as in [138], [137], and

Chapters IV and V. However, [68], [138] and Chapter IV exploit access to demonstra-

tor’s feedback policy, [110] requires exact model knowledge, and [137] and Chapter V

exploit similar disturbances to provide sufficient excitation. The main contribution

of this chapter is the development of a novel method for reward function estimation

99

for an agent in situations where estimation of the demonstrator’s optimal feedback

law is less data-intensive than direct estimation of its reward function.

In this chapter, a novel feedback-driven approach to MBIRL for the case where

the measured data does not provide sufficient information for direct reward function

estimation. Since a majority of existing IRL methods are trajectory-driven and model-

free, the measured trajectories need to be sufficiently information-rich for reward

function estimation. The technique developed in this chapter is model-based, and as

a result, once a model is learned, it can utilize arbitrary state-action pairs for IRL as

long as the action is the optimal action corresponding to that state. The key idea in

the feedback-driven method, is to estimate the optimal feedback policy of the agent

online using the measured output-action pairs, and to use that estimate to artificially

create additional state-action pairs to drive reward function estimation.

The chapter is organized as follows: Section 6.2 introduces the problem formu-

lation. Section 6.3 develops the update law for the optimal controller. Section 6.4

details the analysis for the optimal controller estimator. Section 6.5 introduces the

IRL algorithm. Section 6.6 shows the IRL convergence analysis. Section 6.7 shows

simulation examples, and Section 6.8 concludes the chapter.

6.2 Problem Formulation

Consider an agent under observation with the dynamics

ẋ = f(x, u),

y = h(x, u), (171)

where x ∈ Rn is the state, f : Rn×m → Rn denotes the uncertain dynamics, u ∈ Rm

is the control, y ∈ Rl is the output, and h : Rn×m → Rl denotes the measurement

model. If a nominal dynamic model of the agent is available, then the dynamics in

100

(171) can then be separated into

ẋ = f o(x, u) + g(x, u), (172)

where f o : Rn × Rm → Rn represents the nominal model, g ∈ Rn × Rm → Rn

represents the uncertainty1.

The following assumption is required for the proposed methods.

Assumption 13 The partial derivative of f in (172) with respect to x and u are

locally Lipschitz continuous.

The agent under observation is using a controller u(·) that minimizes the perfor-

mance index

J(x0, u(·)) =

� ∞
0

r(x(t;x0, u[0,t)), u(t)) dt, (173)

where x(·;x0, u[0,t)) is the trajectory of the agent generated using the control signal

u(·), restricted to the time interval [0, t), starting from the initial condition x0. The

main objective of the paper is to estimate the unknown reward function r, in the

presence of uncertain dynamics, using measurements of the input u(·) and the output

t 7→ y(t) = h
(
x(t, x0, u[0,t)), u(t)

)
, under the assumption that u(t) is the optimal

action in response to the state x(t, x0, u[0,t)).

In the following, the input and the output signals available for measurement will

be denoted by t 7→ u(t) and t 7→ y(t), respectively, the corresponding unknown true

state will be denoted by t 7→ x(t), and x and u will be used to denote generic elements

of Rn and Rm, respectively.

The following assumptions are used throughout the analysis.

Assumption 14 The dynamics in (171) is affine in control and the optimal control

problem defined by (171), (173), and (77) admits a twice continuously differentiable

optimal value function.

1If a nominal model is not available, fo(x, u) := 0 ∀ (x, u) ∈ Rn × Rm.

101

The class of affine systems is large, it includes linear systems and Euler Lagrange

systems with invertible inertia matrices. While twice continuous differentiability of

the value function is a strict requirement, many optimal control problems of interest,

such as linear quadratic problems and nonlinear problems similar to those used for

demonstration in Section 4.5.3, meet this requirement.

Assumption 15 The unknown reward function r is quadratic in control, i.e.,

r(x, u) = Q(x) + uTRu, (174)

where R ∈ Rm×m is a positive definite (P.D.) matrix and Q : Rn → R is a posi-

tive semi-definite (P.S.D.) continuously differentiable function with a locally Lipschitz

continuous gradient.

Remark 6 Since R can be selected to be symmetric without loss of generality, the

developed IRL method only estimates the elements of R that are on and above the

main diagonal.

Assumption 16 The state and control trajectories are bounded such that x(t) ∈ X ,

u(t) ∈ U for some compact sets X ⊆ Rn and U ⊆ Rm.

Under the premise that the observed agent makes optimal decisions, the state and

control trajectories, x(·) and u(·), satisfy the Hamilton-Jacobi-Bellman equation2 [95]

H

(
x (t) ,∇x

(
V ∗
(
x (t)

))T
, u (t)

)
= 0,∀t ∈ R≥0, (175)

where the unknown optimal value function is V ∗ : Rn → R and H : Rn×Rn×Rm → R

is the Hamiltonian, defined as H(x, p, u) := pTf(x, u) + r(x, u).

The functions V ∗ and Q can be represented using P ∈ N and L ∈ N basis

functions, respectively, as V ∗(x) = (W ∗
V)TσV (x) + εV (x) and Q(x) = (W ∗

Q)TσQ(x) +

2For brevity, the full dependencies of the state trajectory, x(t, x0, u(·)), will be omitted wherever

they are clear from the context and the trajectory will be denoted as x(t).

102

εQ(x). The vectors W ∗
V := [v1 . . . vP]T ∈ RP and W ∗

Q := [q1 . . . qL]T ∈ RL denote

ideal weights, σV : Rn → RP and σQ : Rn → RL denote continuously differentiable

known features with locally Lipschitz continuous gradients, and εV : Rn → R and

εQ : Rn → R denote approximation errors. Given any constants εV , εQ ∈ R>0, there

exist P,L ∈ N such that εV and εQ satisfy supx∈χ
∥∥εV (x)

∥∥ < εV , supx∈χ
∥∥∇εV (x)

∥∥ <
εV , supx∈χ

∥∥εQ (x)
∥∥ < εQ, and supx∈χ

∥∥∇εQ (x)
∥∥ < εQ [58,59]. Let V̂ : Rn×RP → R,(

x, ŴV

)
7→ Ŵ T

V σV (x) and Q̂ : Rn×RL → R,
(
x, ŴQ

)
7→ Ŵ T

QσQ(x) be parameterized

estimates of V ∗ and Q, respectively, where ŴV and ŴQ are estimates of W ∗
V and W ∗

Q,

respectively. Furthermore, let uTRu be parameterized as uTRu =
(
W ∗
R

)T
σR1(u)

where σR1 : Rm → RM , are the basis functions, selected as

σR1(u) := [u2
1, 2u1u2, 2u1u3, . . . , 2u1um, u

2
2,

2u2u3, 2u2u4, . . . , u
2
m−1, . . . , 2um−1um, u

2
m]T ,

and W ∗
R ∈ RM , are the ideal weights, given by

W ∗
R =

[
R11, 2R

(−1)
1 , R22, 2R

(−2)
2 , . . . , 2R

−(m−1)
m−1 , Rmm

]T
,

where, for a given matrix R ∈ Rm×m, Rij denotes the corresponding element in the i-

th row and the j-th column of the matrix R, and R
(−j)
i denotes the i-th row of the ma-

trix E with the first j elements removed, i.e., R
(−3)
3 :=

[
R34, R35, . . . , R3(m−1), R3m

]
.

Using ŴV and ŴQ, along with estimates ŴR of W ∗
R, in (175), a parametric esti-

mate of the Hamiltonian called the inverse Bellman error δ : Rn×Rm×RL+P+M → R

is obtained as

δ
(
x, u, Ŵ ′

)
= Ŵ T

V ∇xσV (x) f(x, u) + Ŵ T
QσQ(x) + Ŵ T

RσR1 (u) , (176)

where Ŵ ′ =
[
Ŵ T
V , Ŵ

T
Q , Ŵ

T
R

]T
.

Since (176) utilizes the agent’s dynamics, the IRL technique developed in this

paper is model-based, and as such, an accurate model is required to estimate the

103

unknown reward function. To facilitate estimation under modeling uncertainties, a

system identifier is utilized that estimates the unknown model parameters.

The unknown function g in (172) can be represented using basis functions as

g (x, u, θ) = θTσ (x, u) + ε (x, u) , (177)

where σ ∈ Rn × Rm → Rp and ε : Rn × Rm → Rn denote the basis vector and

the approximation error, respectively, and θ ∈ Rp×n is a constant matrix of un-

known parameters. Given any constant ε, there exist p ∈ N and σ, θ ∈ R>0 such that

sup(x,u)∈(X×U)

∥∥σ (x, u)
∥∥ < σ, sup(x,u)∈(X×U)

∥∥∇σ (x, u)
∥∥ < σ, sup(x,u)∈(X×U)

∥∥ε (x, u)
∥∥ <

ε, sup(x,u)∈(X×U)

∥∥∇ε (x, u)
∥∥ < ε, and ‖θ‖ < θ.

To focus the discussion on the key contributions of the work, it is assumed that a

state and parameter estimator that satisfies the following properties is available.

Assumption 17 There exists a state and parameter estimator that yields a time

instance, T , such that the state and parameter estimation errors, x̃ and θ̃, converge

exponentially for all t < T and

Θ ≥
∥∥∥θ̃(t)∥∥∥ , X ≥

∥∥x̃(t)
∥∥ , ∀t ≥ T , (178)

where Θ, X ∈ R≥0 denote ultimate bounds for the parameter estimation errors and

state estimation errors, respectively, θ̃ := θ− θ̂ and x̃ = x− x̂, where θ̂ and x̂ denote

estimates of the parameters and states, respectively.

For examples of such state and parameter estimators, see [66, 67]. The state

and parameter estimator is implemented synchronously with inverse reinforcement

learning, and in real-time. Assumption 17 also implies existence of compact sets

X̂ ⊆ Rn and Θ̂ ⊆ Rp, such that x̂(t) ∈ X̂ and θ̂(t) ∈ Θ̂, ∀t ∈ R≥0.

6.3 Optimal Policy Estimation

In optimal control problems that are aimed at driving the state to a set-point or

an error signal to zero, information content of the state and control trajectories can

104

quickly decay to zero. As a result, the reward function estimate may never con-

verge. In this case, artificially generated state-action pairs can help the estimation by

providing useful data. In addition, even if sufficient excitation exists to estimate the

unknown reward function directly, artificially generated state-action pairs can provide

additional data and result in faster estimation of the reward function. Motivated by

the observation that knowledge of the optimal policy can be leveraged to artificially

synthesize data to drive IRL, this section develops a process for finding an estimate

of the optimal policy.

The closed-form nonlinear optimal policy corresponding to the reward structure

in (173) is

u = −1

2
R−1

(
∇uf(x)

)T(
∇xV

∗(x)
)T
. (179)

To promote estimation, u will be represented as

u = − (W ∗
u)T σu (x) + εu(x), (180)

where W ∗
u ∈ RK×m is a matrix of unknown ideal constant parameters, σu : Rn → RK

are known continuously differentiable features, and εu : Rn → Rm is the resulting

approximation error. Given any constant εu, there exist K ∈ N and σu ∈ R>0 such

that sup(x,u)∈(X×U)

∥∥σu (x, u)
∥∥ < σu, sup(x,u)∈(X×U)

∥∥∇σu (x, u)
∥∥ < σu, sup(x,u)∈(X×U)∥∥εu (x, u)

∥∥ < εu, sup(x,u)∈(X×U)

∥∥∇εu (x, u)
∥∥ < εu [58, 59]. Collecting values of the

state estimates and the control signals over time instances, tu1(t), tu2(t), · · · , tuM(t), in

a history stack, denoted as Hu(t), (180) can be reformulated into the matrix form

− Σu(t)− Σ̂σ(t)Ŵu = Σ̂σ(t)W̃u −∆u(t), (181)

where the weight estimation error is defined as W̃u = W ∗
u − Ŵu,

Σu(t) := [u(t1(t)), · · · , u(tM(t))]T ,

Σ̂σ(t) := [σu(x̂(t1(t))), · · · , σu(x̂(tM(t)))]T ,

105

the residual ∆u depends on εu and x̃, and the time instances tm1 , . . . , t
u
M are selected

according to minimum singular value maximization.

Since x 7→ σu (x) is continuously differentiable, the residual ∆u can be bounded

above by

‖∆u(t)‖ ≤ ∆u + Lu ¯̃x(t), (182)

where ¯̃x(t) = maxi=1,2,...,M ‖x̃(ti(t))‖. Since t 7→ x(t), t 7→ x̂(t), and t 7→ u(t) are

bounded by Assumption 17, the bound ∆̄u can be selected independent of ti and the

specific trajectories of x, u, and x̂ currently stored in the history stack.

The relationship in (181) suggests the following update law for estimation of the

unknown weights

˙̂
Wu = αuΓu(t)Σ̂

T
σ (t)

(
−Σu(t)− Σ̂σ(t)Ŵu

)
, (183)

where αu ∈ R>0 is a constant adaptation gain, and Γu : R≥0 → RK×K is the least-

squares gain updated using the update law

Γ̇u = βuΓu − αuΓuΣ̂T
σ (t)Σ̂σ(t)Γu, (184)

where βu ∈ R>0 is the forgetting factor.

The update law in (181) is motivated by the fact that the dynamics of the weight

estimation error can be described by

˙̃Wu = −αuΓu(t)Σ̂T
σ (t)

(
Σ̂σ(t)W̃u −∆u(t)

)
, (185)

which can be shown to be a perturbed stable linear time-varying system under con-

ditions detailed in the following section.

6.4 Analysis of the Optimal Policy Estimator

Convergence of the estimation error to a neighborhood of the origin follow under the

following condition on the regressor, Σ̂σ.

106

Definition 7 The time-varying history stack, Hu, is called full rank, uniformly in t,

if there exists a k > 0 such that3 ∀t ∈ R≥0,

k < λmin

{
Σ̂T
σ (t)Σ̂σ(t)

}
. (186)

Using arguments similar to [60, Corollary 4.3.2], it can be shown that if λmin

{
Γ−1
u (0)

}
> 0, and if Hu is full rank, uniformly in t, then the least squares gain matrix satisfies

ΓuIK ≤ Γu (t) ≤ ΓuIK ,∀ t ≥ 0, (187)

where Γu and Γu are positive constants.

Theorem 7 If there exists a state and parameter estimator that satisfies Assumption

17, the signal (x̂, u) is FI, the time instances tu1 , . . . , t
u
M are selected using minimum

singular value maximization so that Hu is full rank, uniformly in t, and Hu is refreshed

using a time-based purging algorithm, then t 7→ W̃u(t) is ultimately bounded.

Proof. Consider the following positive definite candidate Lyapunov function

Vu(W̃u, t) = tr(W̃ T
u Γ−1

u (t)W̃u), (188)

Using the bounds in (187), the candidate Lyapunov function satisfies

1

Γu

∥∥∥W̃u

∥∥∥2

≤ Vu

(
W̃u, t

)
≤ 1

Γu

∥∥∥W̃u

∥∥∥2

. (189)

Taking the time derivative of (188), using (184), (185), (186) and (187), along with

the identity Γ̇−1
u = −Γ−1

u Γ̇uΓ
−1
u and using the Cauchy-Schwartz inequality, V̇u can be

bounded by

V̇u(W̃u, t) ≤ −
(
αuk +

βu

Γu

)∥∥∥W̃u

∥∥∥2

+ 2αu

∥∥∥W̃u

∥∥∥∥∥∥Σ̂σ(t)
∥∥∥∥∥∆u(t)

∥∥ . (190)

Using (182), V̇u can be bounded as

V̇u(W̃u, t) ≤ −
1

2

(
αuk +

βu

Γu

)∥∥∥W̃u

∥∥∥2

,∀‖W̃u‖ ≥ ρ
(
‖µ‖

)
, (191)

3The history stack Hu(0) can be initialized using arbitrarily selected trajectories
(
x̂(·), u(·)

)
∈

X̂ × U to ensure that the history stack is full rank at t = 0.

107

where µ =
[√

∆u,
√
x̃
]T

, ρ
(
‖µ‖

)
=

(
4αuΣσ max{1,Lu}

αuk+ 1
Γu
βu

)
‖µ‖2, and Σσ is an upper bound

of ‖Σ̂σ(t)‖, ∀t ≥ 0. Since t 7→ x̂(t), and t 7→ u(t) are bounded by Assumption 17, the

bound Σσ can be selected independent of ti and the specific trajectories of u and x̂

currently stored in the history stack. Using (189) and (191), [80, Theorem 4.19] can

be invoked to conclude that (185) is input-to-state stable with state W̃u and input µ.

If a time-based purging algorithm is implemented and if the signal (x̂, u) is FI,

there exists a time instance Ts, such that for all t ≥ Ts, the history stack Hu(t)

remains unchanged. As a result, using Exercise 4.58 from [80], it can be concluded

that the ultimate bound on W̃u can be expressed as

lim sup
t→∞

‖W̃u(t)‖ ≤

√
Γu
Γu

(
4αuΣσ max{1, Lu}

αuk + 1
Γu
βu

)
∆u

+

√
Γu
Γu

(
4αuΣσ max{1, Lu}

αuk + 1
Γu
βu

)
x̃(Ts). (192)

Furthermore, if (x̂, u) is PI, then the bound can be reduced to

lim sup
t→∞

‖W̃u(t)‖ ≤

√
Γu
Γu

(
4αuΣσ max{1, Lu}

αuk + 1
Γu
βu

)
∆u

+

√
Γu
Γu

(
4αuΣσ max{1, Lu}

αuk + 1
Γu
βu

)
X := γu. (193)

Remark 7 Theorem 7 implies existence of a compact set Û ⊆ Rm, such that û(t) ∈

Û , ∀t ∈ R≥0.

Remark 8 If the full state is measurable, the optimal controller estimate converges

exponentially, see [139].

6.5 Inverse Reinforcement Learning Formulation

In this section, the optimal feedback estimator developed in the previous section is

utilized to create a data-set of estimated near-optimal state-action pairs to drive IRL.

108

For each time ti, select an arbitrary state, denoted by xi, and let ûi := −Ŵ T
u (ti)σu(xi)

be the estimate of the optimal controller ui at state xi and time ti. The inverse Bell-

man error, when evaluated at the arbitrarily selected state and at time ti using the

estimates of the model and the optimal policy, is given by

δ′′
(
xi, ûi, Ŵ

′, θ̂(ti)
)

=
(
Ŵ ′
)T
σ′
(
xi, ûi, θ̂(ti)

)
, (194)

where

Ŵ ′ :=
[
Ŵ T
V , Ŵ

T
Q , Ŵ

T
R

]T
,

and

σ′
(
xi, ûi, θ̂(ti)

)
:=
[(
σ(xi, ûi))

)T
θ̂(ti)

(
∇xσV (xi)

)T
+
(
f o(xi, ûi)

)T (∇xσV (xi)
)T
,
(
σQ (xi)

)T
,
(
σR1 (ûi)

)T]T
.

Taking the first element, R11, of ŴR to be known, the inverse Bellman error in

(194) can be expressed as

δ′′
(
xi, ûi, Ŵ , θ̂(ti)

)
= Ŵ Tσ′′

(
xi, ûi, θ̂(ti)

)
+R11û

2
i1, (195)

where Ŵ :=

[
Ŵ T
V , Ŵ

T
Q ,
(
Ŵ

(−1)
R

)T]T
, ûi1 denotes the first element of the vector ûi,

and

σ′′
(
xi, ûi, θ̂(ti)

)
:=
[(
σ(xi, ûi))

)T
θ̂(ti)

(
∇xσV (xi)

)T
+
(
f o(xi, ûi)

)T (∇xσV (xi)
)T
,
(
σQ (xi)

)T
,
(
σ

(−1)
R1 (ûi)

)T]T
. (196)

A history stack, denoted as HIRL, is a set of ordered pairs of parameter estimates,

θ̂(ti), and data pairs, (xi, ûi), collected over time instance t1, t2, . . . , tN into matrices(
Σ̂, Σ̂R1

)
. Similar to Section 4.3, the history stack here contains potentially poor es-

timates ûi and θ̂(ti). Since the control estimation error and the parameter estimation

error both decay exponentially to an ultimate bound, a time-based purging algorithm

similar to Section 4.3 is needed to remove the erroneous estimates from the history

109

stack once newer estimates become available. As a result, the data points (xi, ûi) and

the time instance ti are time-varying.

Utilizing estimates θ̂(ti) and data pairs (xi, ûi) in (179), subtracting

0 = H
(
xi,
(
∇xV (xi)

)T
, ui
)
,

from (195), where ui denotes the ideal value of ûi, evaluating (195) and at time

instances {ti}Ni=1, and stacking the results in a matrix form, we get

− Σ̂(t)Ŵ − Σ̂R1(t) = Σ̂(t)W̃ −∆(t), (197)

where the weight estimation error is defined as W̃ = W ∗ − Ŵ with W ∗ :=
[(
W ∗
V

)T
,(

W ∗
Q

)T
,
((
W ∗
R

)(−1)
)T]T

,

Σ̂(t) :=



(
σ′′′
(
x1(t), û1(t), θ̂

(
t1(t)

)))T
...(

σ′′′
(
xN(t), ûN(t), θ̂

(
tN(t)

)))T


,

Σ̂R1(t) :=
[
R11û

2
11(t), 2R11û11(t), 01×(m−1), · · · , R11û

2
N1(t), 2R11ûN1(t), 01×(m−1)

]T
,

where(
σ′′′
(
xi(t), ûi(t), θ̂(ti(t))

))T
:=

(
σ′′
(
xi(t), ûi(t), θ̂(ti(t))

))T[
G
(
xi(t), θ̂(ti(t))

)
0m×L 2σ̂

(−1)
R2 (ûi(t))

]
 , (198)

G
(
xi(t), θ̂(ti(t))

)
:=

(
∇uf

o(xi(t))+
(
θ̂(ti(t))

)T
∇uσ(xi(t))

)T(
∇xσV (xi(t))

)T
, (199)

and the residual ∆ depends on ε, εQ, εV , θ̃, and ũi := ui − ûi,∀i ∈ [1, . . . , N].

Since (x, u) 7→ f (x, u), (x, u) 7→ σ (x, u), u 7→ σR1 (u), and u 7→ σR2 (u) are

continuously differentiable, the term
∥∥∆(t)

∥∥ can be bounded above by

∥∥∆(t)
∥∥ ≤ ∆ε + ũ(t) ∆ũ + θ̃(t) ∆θ̃, (200)

110

where ũ(t) = maxi=1,2,...,N ‖ũi(t)‖ and θ̃(t) = maxi=1,2...,N ‖θ̃(ti(t))‖. Since t 7→

x(t), t 7→ û(t), t 7→ u(t) and t 7→ θ̂(t) are bounded by Assumption 17, the bounds

∆ε,∆ũ, and ∆θ̃ can be selected independent of ti and the specific trajectories of x, u,

and û currently stored in the history stack.

The relationship in (197) suggests the following update law for estimation of the

unknown reward function weights

˙̂
W = αΓ(t)Σ̂T (t)

(
−Σ̂(t)Ŵ − Σ̂R1(t)

)
, (201)

where α ∈ R>0 is a constant adaptation gain and Γ : R≥0 → R(L+P+m−1)×(L+P+m−1)

is the least-squares gain updated using the update law

Γ̇ = βΓ− αΓΣ̂T (t)Σ̂(t)Γ, (202)

where β ∈ R>0 is the forgetting factor.

The update law in (201) is motivated by the fact that the dynamics for the weight

estimation error can be described by

˙̃W = −αΓ(t)Σ̂T (t)
(

Σ̂(t)W̃ −∆(t)
)
, (203)

which can be shown to be a perturbed stable linear time-varying system under con-

ditions detailed in the following section.

6.6 Analysis of Inverse Reinforcement Learning

Using arguments similar to [60, Corollary 4.3.2], it can be shown that if λmin

{
Γ−1 (0)

}
>

0, and if HIRL is full rank, uniformly in t, then the least squares gain matrix satisfies

ΓIL+P+m−1 ≤ Γ (t) ≤ ΓIL+P+m−1,∀ t ≥ 0, (204)

where Γ and Γ are positive constants.

The stability result is summarized in the following theorem.

111

Theorem 8 If there exists a state and parameter estimator that satisfies Assumption

17, the signal (x̂, u) and sequence (xi, ûi) are FI, the time instances tu1 , . . . , t
u
M and

t1, . . . , tN are selected using minimum singular value maximization so that Hu and

HIRL are full rank, uniformly in t, and Hu and HIRL are refreshed using a time-based

purging algorithm, then t 7→ W̃ (t) is ultimately bounded.

Proof. Consider the positive definite candidate Lyapunov function

V (W̃ , t) =
1

2
W̃ TΓ−1 (t) W̃ . (205)

Using the bounds in (204), the candidate Lyapunov function satisfies

1

2Γ

∥∥∥W̃∥∥∥2

≤ V
(
W̃ , t

)
≤ 1

2Γ

∥∥∥W̃∥∥∥2

. (206)

Using (95), (202), (204) and (203), along with the identity Γ̇−1 = −Γ−1Γ̇Γ−1, and

using the Cauchy-Schwartz inequality, the time-derivative can be expressed as

V̇ (W̃ , t) ≤ −1

2

(
ασ +

1

Γ
β

)∥∥∥W̃∥∥∥2

+ α‖W̃‖‖Σ̂(t)‖‖∆(t)‖. (207)

Using (200), V̇ can be bounded as

V̇ (W̃ , t) ≤ −1

4

(
ασ +

1

Γ
β

)∥∥∥W̃∥∥∥2

,∀‖W̃‖ ≥ ρ
(
‖µ‖

)
, (208)

where µ =

[√
∆ε,
√
ũ,

√
θ̃

]T
, ρ
(
‖µ‖

)
=

(
4αΣ max{1,∆u,∆θ}

ασ+ 1
Γ
β

)
‖µ‖2, and Σ satisfies

‖Σ̂(t)‖ ≤ Σ, ∀t ≥ 0. Since t 7→ x(t), t 7→ û(t), t 7→ u(t) and t 7→ θ̂(t) are bounded

by Assumption 17, the bound Σ can be selected independent of ti and the specific

trajectories of x, u, and û currently stored in the history. Using (206) and (208), [80,

Theorem 4.19] can be invoked to conclude that (203) is input-to-state stable with

state W̃ and input µ.

If a time-based purging algorithm is implemented and if the signal (x̂, u) and

sequence (xi, ûi) are FI, there exists a time instance Ts, such that for all t ≥ Ts, the

112

history stacks Hu(t) and HIRL(t) remain unchanged. As a result, using Exercise 4.58

from [80], it can be seen that the ultimate bound on W̃ can be expressed as

lim sup
t→∞

‖W̃ (t)‖ ≤

√
Γ

Γ

(
4αΣ max{1,∆u,∆θ

ασ + 1
Γ
β

)
∆ε

+

√
Γ

Γ

(
4αΣ max{1,∆u,∆θ

ασ + 1
Γ
β

)(
ũ(Ts) + θ̃(Ts)

)
, (209)

where ũ(Ts) denotes the bound on the control estimation error in the history stack

HIRL(t) for all t ≥ Ts.

Furthermore, if (x̂, u) and (xi, ûi) are PI, then the ultimate bound on W̃ reduces

to

lim sup
t→∞

‖W̃ (t)‖ ≤

√
Γ

Γ

(
4αΣ max{1,∆u,∆θ

ασ + 1
Γ
β

)
∆ε

+

√
Γ

Γ

(
4αΣ max{1,∆u,∆θ

ασ + 1
Γ
β

)(
γu + Θ

)
. (210)

The ultimate bound for the estimation error, W̃ , has a direct relationship to the

approximation errors for both the reward function and the value function, along with

the ultimate bounds for the state and parameter estimates. As such, the ultimate

bound can be reduced by reducing those errors. This observation motivates the

following corollary.

Corollary 4 If Θ, X, εQ, εV , and εu are zero, the signal (x̂, u) and sequence (xi, ûi)

are PI, the time instances tu1 , . . . , t
u
M and t1, . . . , tN are selected using minimum sin-

gular value maximization so that Hu and HIRL are full rank, uniformly in t, and

Hu and HIRL are refreshed using a time-based purging algorithm, then as t → ∞,

‖W̃ (t)‖ → 0.

Proof. Immediate from Theorem 8.

113

6.7 Simulation

This section presents simulations for the IRL method developed in Section 6.5. The

simulation demonstrates the feedback-driven IRL method detailed in Section 6.5 to

estimate the reward function when the trajectories of the system are not exciting

enough to directly estimate the reward function.

6.7.1 Feedback-Driven MBIRL

In the simulation, the unknown reward and value function weights are estimated using

feedback-driven MBIRL in the case where direct MBIRL using the measured data

results in large reward function estimation errors. To demonstrate the performance

of feedback-driven IRL, a linear optimal trajectory tracking problem with a known

value function is designed using the method developed in [69, 70]. The state and

parameter estimator developed in Chapter III is used to satisfy the conditions of

Assumption 17.

Consider an agent with the linear dynamics

ẋ =

 0 1

θ1 θ2

+

 0

θ3

u, (211)

where the ideal values of the unknown parameters are θ1 = −0.5, θ2 = −0.5, and

θ3 = 1.

The trajectory the agent is attempting to follow is generated from the linear

system

ẋd =

 0 1

−2 0

xd. (212)

Since the agent under observation is attempting to follow a desired trajectory, the

optimal control signal will likely be non-zero almost everywhere, resulting in an infi-

nite cost. Following [70], to avoid infinite costs, it is assumed that the agent under

114

observation solves an optimal control problem formulation to penalize an auxiliary

controller, µ = u − ud, which converges to zero as the agent’s controller u converges

to the desired steady state control controller ud.

The error dynamics are given by

ė =

 0 1

−0.5 −0.5

 e+

0

1

µ, (213)

with the optimal control problem

J(e0, µ(·)) =

� ∞
0

e(t)T

1.1 0

0 3

 e(t) + 50µ(t)2 dt, (214)

where t 7→ e(t) denotes the solution of the error system in (213) under the con-

troller µ(·). The ideal reward function weights to be estimated corresponding to

the optimal control problem in (214) are Q = diag([WQ1 , WQ2]) = diag([1.1, 3])

and R = 50. The steady state controller needed to track the desired trajectory is

ud = [Wd1 Wd2]xd = [1.5, −0.5] xd. Since the objective is to estimate the reward

function using measurements of x, xd, and u, the steady-state policy ud needs to be

estimated along with the agent’s dynamics.

The optimal value function to be estimated is

V ∗ = WV1e
2
1 +WV2e

2
2 +WV3e1e2, (215)

where the ideal weights are WV1 = 3.00,WV2 = 4.71, and WV3 = 2.15. The optimal

controller to be estimated is µ = −
[
Wp1 , Wp2

]
e = −[0.0215, 0.0942]e. To generate

an estimate of the optimal controller µ, the update law in (183) is used with the

estimated state x̂ and the known desired state xd, found from (212) at current time

t, concatenated into Σ̂σ. The estimated controller is then queried with random error

values ei in the set [−5, 5], which produce estimates of the optimal control signal, µ̂i.

The pairs (ei, µ̂i) are then iteratively collected in HIRL, and utilized to implement

the feedback-driven MBIRL method in Section 6.5.

115

0 20 40 60 80 100
Time (s)

-1

-0.5

0

0.5

1

Figure 23: Trajectory tracking error corresponding to the optimal control problem in

(214).

The history stacks, Hu and HIRL, are initialized so that all the elements in the

history stacks are zero4. Data is added to the history stacks using a minimum singular

value maximization algorithm. A time-based purging technique is utilized with τ = 1.

The parameters used for the two simulations are: β = 0.1, α = 0.01/M, βu = 10, αu =

4, N = 100, M = 10, and a step size of 0.005s.

First, the method developed in Chapter IV is utilized to estimate the reward

function using only the trajectory. As demonstrated by Fig. 26, since the tracking

errors and corresponding auxiliary controller converge to the origin within 20 sec. (see

Fig. 23), the trajectories do not contain sufficient information to accurately estimate

the unknown reward function using the direct MBIRL technique in Chapter IV.

As seen in Fig. 28, even though the tracking error has converged, the feedback-

driven MBIRL in Section 6.5 estimates the ideal values of the reward and value

functions online utilizing the synthesized estimates µ̂i (which, according to Fig. 27,

4It is clear from the simulation results that full rank initialization of the history stacks is a

sufficient, but not a necessary condition for the analysis in Sections 6.4 and 6.6.

116

0 20 40 60 80 100
Time (s)

-0.5

0

0.5

1

Figure 24: State estimation errors for the system in (211).

0 20 40 60 80 100
Time (s)

-1

-0.5

0

0.5

Figure 25: Parameter estimation errors for the uncertain dynamics in (211).

117

Figure 26: Reward and value function weight estimation errors using direct MBIRL

in Chapter IV for the optimal control problem in (214).

0 20 40 60 80 100
Time (s)

-1

-0.5

0

0.5

1

1.5

Figure 27: Control weight estimation errors for the auxiliary controller µ and the

steady state desired controller ud for the optimal control problem in (214).

118

Figure 28: Reward and value function weight estimation errors using feedback-driven

MBIRL in Section 6.5 for the optimal control problem in (214).

converge to the true policy, µi), while direct MBIRL in Chapter IV has large estima-

tion errors (see Fig. 26).

6.8 Conclusion

In this chapter, an online model-based IRL method is developed that facilitate reward

function estimation utilizing a single demonstration. Since a large majority of optimal

control problems are aimed at driving a state to a set-point or an error signal to zero,

single demonstrations may not provide sufficient excitation to directly estimate the

reward function from only measured data. Therefore, the developed method in this

chapter utilizes an estimated policy to synthetically create additional data that aims

to represent the system under observation.

119

Chapter VII

OBSERVER BASED INVERSE REINFORCEMENT LEARNING

Real-time inverse reinforcement learning utilizing a single demonstration has been

discussed in this dissertation. However, the previous chapters present work under the

idea that the trajectory measurements are provided without noise, which is generally

never the case in real-world applications. In the limited data context that is real-time

inverse reinforcement learning, each data point becomes increasingly vital in order to

uncover the unknown reward function. Yet, if the data is corrupt or noisy, extracting

the best information is an unique challenge. This chapter aims to resolve the issue

for real-time IRL utilizing noisy trajectory measurements.

7.1 Introduction

Inspired by recent results in online Reinforcement Learning methods [75,149,151], IRL

has been extended to online implementations where the objective is to learn from a

single demonstration or trajectory [68,110,138,139]. In [68,138], batch IRL techniques

are developed to estimate reward functions in the presence of unmeasureable system

states and/or uncertain dynamics for both linear and nonlinear systems. The case

where the trajectories being monitored are suboptimal due to an external disturbance

is addressed in [137] and Chapter V, and [139] and Chapter VI estimates a feedback

policy and generates artificial data using the estimated policy to compensate for the

sparsity of data in online implementations. However, results such as [68,110,137–139],

either require full state feedback, or rely on state estimators that require dynamical

systems in Brunovsky Canonical form. In addition, none of the aforementioned online

120

IRL methods address uncertainty in the state and control measurements.

This chapter builds on the authors’ previous work in [137, 139] and Chapters

IV-VI, where concurrent learning (CL) update laws are utilized to estimate reward

functions online using output feedback. However, the dynamical systems in [137,139]

are required to be in Brunovsky canonical form, and as such, only the output feedback

case where the state is comprised of the output and its derivatives is addressed.

In contrast, the IRL observer (IRL-O) technique in this chapter generalizes to any

observable linear system, since the developed IRL-Os are in a standard observer form

where the state estimates are modified based on the innovation (i.e., the error between

the actual and the estimated output). As a result, in the case of noisy measurements,

they can be implemented as Kalman filters by using the Kalman gain, instead of the

developed Lyapunov-based gain design, to select the observer gain. While stability of

the filters in the case where the measurements are noisy is not studied in this chapter,

simulation results demonstrate that the IRL-Os utilizing both the Lyapunov-based

gains and the Kalman filter gain are robust to measurement noise.

This chapter details two IRL-O formulations. The first method, called the IRL

memoryless observer (MLO), is similar to a standard Luenberger observer with a

modified observer gain, and guarantees parameter convergence under a persistence of

excitation (PE) condition. The second observer implements a novel idea of re-using

previous system state estimates and control measurements, along with the Hamilton-

Jacobi-Bellman equation, to gain insights into the quality of the current estimate of

the reward function. The key advantage of the IRL history stack observer (HSO) over

MLO is that it provides an additional guarantee for boundedness of the estimation

errors under finite (as opposed to persistent) excitation [131].

The chapter is organized as follows. Section 7.2 formulates the problem to be

solved. Section 7.3 develops the innovation terms that are used in the developed

IRL-O techniques using the theory of linear quadratic optimal control and details the

121

formulation of the IRL problem as a state estimaton problem. The MLO and the

HSO are designed in sections 7.4 and 7.5, respectively, along with the correspond-

ing theoretical guarantees. Section 7.6 presents simulation results and Section 7.7

concludes the chapter.

7.2 Problem formulation

Consider an agent under observation with the following linear dynamics

ẋ = Ax+Bu, y′ = Cx, (216)

where x : R≥0 → Rn is the state, u : R≥0 → Rm is the control, A ∈ Rn×n and

B ∈ Rn×m are constant system matrices, y′ ∈ RL are the outputs, and C ∈ RL×n

denotes the output matrix1.

The agent under observation is using the policy which minimizes the following

performance index

J(x0, u(·)) =

� ∞
0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (217)

where x(·;x0, u(·)) is the trajectory of the agent generated by the optimal control

signal u(·) starting from the initial condition x0. The objective of this chapter is to

estimate the unknown matrices Q and R by utilizing noisy input-output pairs.

Remark 9 Since Q and R can be selected to be symmetric without loss of generality,

the developed IRL method only estimates the elements of Q and R that are on and

above the main diagonal.

7.3 Inverse Reinforcement Learning

Under the premise that the observed agent makes optimal decisions, the state and

control trajectories, x(·) and u(·), satisfy the Hamilton-Jacobi-Bellman (HJB) equa-

1For a ∈ R, the notation R≥a denotes the interval [a,∞) and the notation R>a denotes the

interval (a,∞).

122

tion [95]

H

(
x (t) ,∇x

(
V ∗
(
x (t)

))T
, u (t)

)
= 0,∀t ∈ R≥0, (218)

and the optimal control equation

u(x(t)) = −1

2
R−1BT∇x

(
V ∗
(
x (t)

))T
, (219)

where V ∗ : Rn → R is the unknown optimal value function and H : Rn×Rn×Rm → R

is the Hamiltonian, defined as H(x, p, u) := pT (Ax+Bu) + xTQx + uTRu. Given

a solution S of the Algebraic Riccati Equation, the optimal value function can be

calculated as V ∗(x) = xTSx.

To aid in the estimation of the reward function, note that V ∗, xTQx, and uTRu

can be linearly parameterized as V ∗(x) =
(
W ∗
V

)T
σV (x), xTQx =

(
W ∗
Q

)T
σQ(x), and

uTRu =
(
W ∗
R

)T
σR1(u), respectively, where σV (x) : Rn → RP , σQ(x) : Rn → RP , and

σR1(u) : Rm → RM , are the basis functions, selected as

σV (x) = σQ(x) := [x2
1, 2x1x2, 2x1x3, . . . , 2x1xn, x

2
2,

2x2x3, 2x2x4, . . . , x
2
n−1, . . . , 2xn−1xn, x

2
n]T ,

σR1(u) := [u2
1, 2u1u2, 2u1u3, . . . , 2u1um, u

2
2,

2u2u3, 2u2u4, . . . , u
2
m−1, . . . , 2um−1um, u

2
m]T ,

and W ∗
V ∈ RP , W ∗

Q ∈ RP , and W ∗
R ∈ RM , are the ideal weights, given by

W ∗
V =

[
S11, 2S

(−1)
1 , S22, 2S

(−2)
2 , . . . , 2S

−(n−1)
n−1 , Snn

]T
,

W ∗
Q =

[
Q11, 2Q

(−1)
1 , Q22, 2Q

(−2)
2 , . . . , 2Q

−(n−1)
n−1 , Qnn

]T
,

W ∗
R =

[
R11, 2R

(−1)
1 , R22, 2R

(−2)
2 , . . . , 2R

−(m−1)
m−1 , Rmm

]T
,

where, for a given matrix E ∈ Rn×n, Eij denotes the corresponding element in the

i-th row and the j-th column of the matrix E, and E
(−j)
i denotes the i-th row of the

matrix E with the first j elements removed, i.e., E
(−3)
3 :=

[
E34, E35, . . . , E3(n−1), E3n

]
.

123

Using ŴV , ŴQ, and ŴR, which are the estimates ofW ∗
V , W ∗

Q, andW ∗
R, respectively,

in (218), the inverse Bellman error (IBE) δ′ : Rn × Rm × R2P+M → R is obtained as

δ′
(
x, u, Ŵ ′

)
= Ŵ T

V ∇xσV (x) (Ax+Bu) + Ŵ T
QσQ(x) + Ŵ T

RσR1(u), (220)

where Ŵ ′ :=

[
Ŵ T
V Ŵ T

Q Ŵ T
R

]T
.

Utilizing 2Ru = −BT∇x

(
V ∗ (x)

)T
, Ru can be linearly parameterized as Ru =

σR2(u)W ∗
R, where W ∗

R is as previously defined in the IBE and σR2(u) : Rm → Rm×M ,

where the features σR2(u) can be explicitly calculated as

σR2(u) =



uT 01×m−1 . . . 0

01×m

(
u(−1)

)T
. . . 0

...
...

. . .
...

01×m 01×m−1 . . .
(
u−(m−1)

)T


, (221)

where for a given vector u ∈ R1×m, u(−j) denotes the vector u with the first j elements

removed. Using ŴR and ŴV in the optimal controller equation for W ∗
R and W ∗

V ,

respectively, after rearranging, a control residual error ∆′u : Rn×Rm×R2P+M → Rm

is obtained as

∆′u(x, u, Ŵ
′) = BT

(
∇xσV (x)

)T
ŴV + 2σR2(u)ŴR.

Augmenting the control residual error and the inverse Bellman error yields the

error equation  δ′
(
x, u, Ŵ ′

)
∆′u

(
x, u, Ŵ ′

)
 =

 σδ′ (x, u)

σ∆′u (x, u)



ŴV

ŴQ

ŴR

 , (222)

where

σδ′ (x, u) =
[

(Ax+Bu)T
(
∇xσV (x)

)T
, σQ(x)T , σR1(u)T

]
,

and

σ∆′u (x, u) =
[
BT
(
∇xσV (x)

)T
, 0m×n, 2σR2(u)

]
.

124

The IRL problem is then formulated as the need to estimate ŴV , ŴQ, and ŴR

by minimizing δ′ and ∆′u. However, the IRL problem, as formulated above, is ill-

posed, because the minimization problem minŴ ′ |δ′|+‖∆′u‖ admits an infinite number

of solutions, including the trivial solution ŴV = ŴQ = ŴR = 0 and the scaled

solutions ŴV = αW ∗
V , ŴQ = αW ∗

Q, and ŴR = αW ∗
R ∀α ∈ R>0. To address the

scaling ambiguity and to remove the trivial solution, a single reward weight will be

assumed to be known. Since the optimal solution corresponding to a cost function is

invariant with respect to arbitrary scaling of the cost function, establishing the scale

by assuming that one of the weights as known is without loss of generality. Selecting

r1 as the known weight and removing it from (222) yields

 δ
(
x, u, Ŵ

)
∆u

(
x, u, Ŵ

)
 =

 σδ (x, u)

σ∆u (x, u)



ŴV

ŴQ

Ŵ−
R

+


u2

1r1

2u1r1

0m−1×1

 , (223)

where Ŵ−
R denotes ŴR with the first element removed, Ŵ :=

[
Ŵ T
V Ŵ T

Q

(
Ŵ−
R

)T]T
,

σδ (x, u) =
[

(Ax+Bu)T
(
∇xσV (x)

)T
, σQ(x)T ,

(
σ−R1(u)

)T]
,

and

σ∆u (x, u) =

[
BT
(
∇xσV (x)

)T
0m×n 2σ−R2(u)

]
,

where
(
σ−R1(u)

)T
and σ−R2(u) denote σTR1(u) and σR2(u) with the first columns removed.

We can formulate the IRL problem as a state estimation problem by utilizing

the IBE and the controller equation in an observer framework. Such a formulation

allows us to address general output feedback linear systems and to leverage the use

of Kalman gains under noisy conditions.

To cast the IRL problem in a state estimation form, the ideal weights are concate-

nated with the system state to yield the concatenated state vector z =

[
xT (W ∗)T

]T
,

125

where W ∗ :=

[(
W ∗
V

)T (
W ∗
Q

)T ((
W ∗
R

)−)T]T . Since the ideal weights are constant,

the dynamics of the concatenated state is expressed as

ż =

 Ax+Bu

02P+M−1×1

 ,
and y = h(z), where y denotes the measurement vector and h(z) is the corresponding

measurement model to be designed in the following.

7.4 A memoryless observer

The key idea behind MLO is to treat the measurements, y′, and the measured/known

quantities in (223) as the output, y ∈ RL+1+m, used for estimation of the concatenated

state. The output is thus given by

y =

[
(y′)T −u2

1r1 −2u1r1 01×m−1

]T
.

The corresponding measurement model is developed by using (223) to express the

output as a function of the concatenated state as

h(z) =



Cx σδ (x, u)

σ∆u (x, u)




W ∗
V

W ∗
Q(

W ∗
R

)−




.

Let g(x̂, u) :=

 σδ (x̂, u)

σ∆u (x̂, u)

 and σu(u1) :=


−u2

1r1

−2u1r1

0m−1×1

. The observer can then be

designed as  ˙̂x

˙̂
W

 =

 Ax̂+Bu

02P+M−1×1

+K


 Cx

σu(u1)

−
 Cx̂

g(x̂, u)Ŵ


 , (224)

126

where K ∈ Rn+2P+M−1×L+m+1 is the observer gain matrix, designed in the following

section.

7.4.1 Observer Gain Design and Stability Analysis

In the following analysis, the gain matrix K will be designed in a block diagonal form.

In particular, we choose

KMLO :=

 K1 0n×1+m

02P+M−1×L γg(x̂, u)TK2


and γ := 1/(ν‖g(x̂,u)T g(x̂,u)‖+1) where ν ∈ R≥0 is a tunable constant.

The following theorem analyzes the stability properties of the resulting MLO using

persistence of excitation.

Definition 1 A signal t 7→ A(t) is called persistently excited, if for all t ≥ 0 there

exists α1, α2, δ ∈ R>0 such that2 α2I ≥
� t0+δ

t0
A(τ) dτ ≥ α1I.

Theorem 9 Provided the gain K1 is selected such that (A−K1C) is Hurwitz, the

gain K2 is selected to be a symmetric positive definite matrix, and g(x̂, u) is PE, then

limt→∞ W̃ (t) = 0.

Proof. The dynamics for the system state estimation errors can be described by ˙̃x =

Ax + Bu − Ax̂ − Bu − K1Cx̃ = ˙̃x = (A − K1C)x̃. If A − K1C is Hurwitz, then x̃

converges exponentially to the origin.

The dynamics of the weight estimation error can be expressed as

˙̃W = −γg(x̂, u)TK2σu(u1) + γg(x̂, u)TK2g(x̂, u)Ŵ .

Adding ±γg(x̂, u)TK2g(x̂, u)W ∗ and using the fact that σu(u1) = g(x, u)W ∗, the

weight estimation error dynamics can be expressed as a perturbed linear time-varying

2The notation I denotes an identity matrix.

127

system

˙̃W = −A(t)W̃ +B(t), (225)

where

A(t) := γ(t)g(x̂(t), u(t))TK2g(x̂(t), u(t)),

and

B(t) := γ(t)g(x̂(t), u(t))TK2(g(x̂(t), u(t))− g(x(t), u(t)))W ∗.

Since x̂, x, u ∈ L∞, Theorem 2.5.1 from [134] implies that the nominal system ˙̃W =

−A(t)W̃ is globally exponentially stable (GES) if K2 is a symmetric positive definite

matrix and the signal (x̂, u) is PE.

Lemma 4.6 from [80] can then be invoked with B(t) as the input and W̃ as the

state to conclude that (225) is input-to-state stable (ISS). Furthermore, as t → ∞,

x̃(t) → 0, and as a result, B(t) → 0. Exercise 4.58 in [80] can then be invoked to

conclude that limt→∞ W̃ (t) = 0.

7.5 Inclusion of memory

The observer designed in the previous section relies on persistent excitation for sta-

bility and convergence. As a result, it suffers from the well-known lack of robustness

of PE-based adaptive control methods under loss of excitation. This section devel-

ops an observer (called the HSO) that relies on re-use of previously recorded data

(henceforth referred to as the history stack) for robustness. If the system trajectories

are PE, then the HSO results in convergence of the estimation errors to the origin,

similar to the MLO. However, as opposed to the MLO, through the use of a history

stack, the HSO guarantees boundedness of the state estimation errors even under loss

of excitation.

The output for the HSO is

y(t) =
[(
y′(t)

)
T,−u2

1(t1)r1,−2u1(t1)r1, 01×m−1, . . . ,−u2
1(tN)r1,−2u1(tN)r1, 01×m−1

]T
,

128

with the corresponding measurement model, obtained by using past control values

and past state estimates in (223), given by

h(z) =



Cx

σδ
(
x(t1), u(t1)

)
σ∆u

(
x(t1), u(t1)

)
...

σδ
(
x(tN), u(tN)

)
σ∆u

(
x(tN), u(tN)

)




W ∗
V

W ∗
Q(

W ∗
R

)−




, (226)

where σδ
(
x(ti), u(ti)

)
and σ∆u

(
x(ti), u(ti)

)
denotes σδ

(
x(t), u(t)

)
and σ∆u

(
x(t), u(t)

)
evaluated at time ti, respectively.

It is assumed that at every time instance t, the observer has access to a history

stack H :=
{

Σ̂,Σu

}
, defined as

Σ̂ :=



σδ
(
x̂(t1), u(t1)

)
σ∆u

(
x̂(t1), u(t1)

)
...

σδ
(
x̂(tN), u(tN)

)
σ∆u

(
x̂(tN), u(tN)

)


, Σu :=



−u2
1(t1)r1

−2u1(t1)r1

0m−1×1

...

−u2
1(tN)r1

−2u1(tN)r1

0m−1×1



,

where time instances t1, . . . , tN are selected to ensure that the resulting history stack

is full rank, as subsequently defined in Def. 2. Denoting the observer gain matrix by

K ∈ Rn+2P+M−1×L+N(1+m), the HSO is designed as

 ˙̂x

˙̂
W

 =

Ax̂+Bu

02P+M−1

+K


Cx

Σu

−
 Cx̂

Σ̂Ŵ


 . (227)

129

The error in equation (222) implies that the innovation Σu − Σ̂Ŵ in (227) corre-

sponds to the weight estimation error W̃ only if Σ̂ = Σ. Since Σ̂ depends continuously

on x̂ and because x̂ exponentially converges to x, Σ̂ exponentially converges to Σ. As

a result, newer and better estimates of x can be leveraged to improve the estimates of

W ∗ by purging and refreshing the history stack H. Due to purging, the time instances

{t1, · · · tN} and the matrices Σ̂ and Σu are piecewise constant functions of time.

Definition 2 The history stack is called full rank if rank
(

Σ̂
)

= 2P +M − 1.

The signal (x̂, u) is called finitely informative (FI) if there exist time instances 0 ≤

t1 < t2 < · · · < tN such that the resulting history stack is full rank and persistently

informative (PI) if for any T ≥ 0, there exist time instances T ≤ t1 < t2 < · · · < tN

such that the resulting history stack is full rank.

A history stack management algorithm similar to [68, Fig. 1] is used to ensure the ex-

istence of a time instance tM such that, if the signal (x̂, u) is FI, then the history stack

is full rank for all t ≥ tM , and in addition, if it is PI, then limt→∞

∥∥∥Σ(t)− Σ̂(t)
∥∥∥ = 0.

7.5.1 Observer Gain Design and Stability Analysis

The HSO gain matrix is designed in the block diagonal form

KHSO :=

 K3 0n×N+Nm

02P+M−1×L K4

(
Σ̂T Σ̂

)−1

Σ̂T

 ,
where K3 ∈ Rn×L is a constant gain matrix and K4 : R≥0 → R2P+M−1×2P+M−1 is

a potentially time-varying gain matrix. Provided the gain matrices are selected to

satisfy the hypothesis of Theorem 10 below, the resulting observer in (227) can be

shown to be convergent in the presence of PE and bounded under loss of excitation.

Finite excitation is needed for the history stack to be full rank so that (Σ̂T Σ̂)−1 is

well-defined.

130

Theorem 10 Provided K3 is selected such that (A−K3C) is Hurwitz, K4(t) is se-

lected such that for t < tM , K4(t) = 0 and for t ≥ tM , K4(t) is symmetric positive

definite, 0 < k ≤ inft≥tM
{
λminK4(t)

}
and supt≥tM

{∥∥K4(t)
∥∥} ≤ k < ∞, then W̃ is

ultimately bounded (UB) if the signal (x̂, u) is FI and limt→∞ W̃ (t) = 0 if it is PI.

Proof. Using Theorem 9, if (A−K3C) is Hurwitz, x̃(t)→ 0 exponentially as t→∞.

Using (227), the dynamics of the weight estimation error can be expressed as

˙̃W = K4(t)Ŵ −K4(t)
(

Σ̂T (t)Σ̂(t)
)−1

Σ̂T (t)Σu(t).

Since K4 is set to 0, the weight estimates are constant over [0, tM). For t ≥ tM ,

adding ±K4(t)W ∗ to ˙̃W , and using the fact that ΣW ∗ = Σu, the weight estimation

error dynamics can be treated as the controlled system

˙̃W = −K4(t)W̃ +K4(t)w, (228)

where w(t) :=

(
I −

(
Σ̂T (t)Σ̂(t)

)−1

Σ̂T (t)Σ(t)

)
W ∗ is treated as the control input.

Using the Cauchy-Schwartz Inequality and the Rayleigh-Ritz Theorem [57], the or-

bital derivative of the positive definite candidate Lyapunov function V
(
W̃
)

:=

1
2
W̃ T W̃ along the trajectories of (228) can be bounded as

V̇
(
t, W̃

)
≤ −k

∥∥∥W̃∥∥∥2

+ k
∥∥∥W̃∥∥∥ ‖w‖ , ∀t ≥ tM , (229)

and W̃ ∈ R2P+M−1.

In the domain ‖W̃‖ > 2k‖W ∗‖
k
‖w‖, the orbital derivative satisfies the bound

V̇
(
t, W̃

)
≤ −k

2
‖W̃‖2. Using Theorem 4.19 from [80], it can be concluded that

the controlled system in (228) is input-to-state stable (ISS).

If the signal (x̂, u) is PI, then the history stack can be purged and refreshed

infinitely many times such that w(t)→ 0 as t→∞. Utilizing Exercise 4.58 from [80],

it can then be concluded that W̃ (t)→ 0 as t→∞.

If the signal (x̂, u) is FI but not PI, then there exists a time instance T such

that the history stack remains unchanged for all t ≥ T . As a result, there exists a

131

constant w such that for all t ≥ T ,
∥∥w(t)

∥∥ ≤ w. By the definition of ISS, it can then

be concluded that W̃ is UB.

Remark 10 The UB result in the absence of PE is a distinct advantage of HSO

over MLO, which provides no such guarantee. Once the system states are no longer

exciting, the MLO could potentially become unstable.

Remark 11 The IRL-O formulation is not restricted to the choices of K in Theorems

9 and 10. Different stabilizing or heuristic gain selection methods can be incorporated

in the developed framework. For example, motivated by robustness to measurement

noise, the use of a Kalman filter for gain selection is explored in Section 7.6.

7.6 Simulations

A key motivation for casting the IRL problem into the observer framework is that the

observer can be extended to a Kalman filter in a straightforward fashion to address

measurement noise. To implement the developed observers as Kalman filters, all that

is needed is to select the gains K3 and K4 using the Kalman gain update equations.

The following simulation study demonstrates the validity, the robustness, and the

performance of the designed observers and their Kalman filter implementation.

While the developed observer IRL methods are applicable to general output feed-

back linear systems, the concurrent learning (CL) method used for comparison is

only applicable to a restricted set of systems (the state estimator in [66] is modified

slightly for the non-Brunovsky form of (230)). In the following, to make comparisons

feasible, a system that both methods are applicable to is selected.

The agent under observation has linear dynamics

ẋ =

2 1

3 2

x+

 2

0.5

u, y =

[
1 0

]
x. (230)

132

The optimal controller, u∗(x) = −
[
4.14 5.53

]
x, minimizes an LQR problem, Q =

diag([2, 11]) and R = 1.5, with an optimal value function

V ∗(x) = 2.54x2
1 + 7.59x2

2 + 4.50x1x2.

The ideal weights that are to be estimated are W ∗
V 1 = 2.54, W ∗

V 2 = 7.59, W ∗
V 3 = 4.50,

W ∗
Q1 = 2, W ∗

Q2 = 11, and R = 1.5 is selected as the known value to remove the scaling

ambiguity.

Since the system state estimates converge exponentially to the true system states,

a time based purging technique similar to [68, Fig. 1] is utilized to reduce the esti-

mation error associated with the system state estimates stored in the history stack.

Furthermore, to improve numerical stability of gain computation, the history stack

management algorithm also attempts to minimize the condition number of Σ̂T Σ̂. In

the presented simulation studies, the history stacks contain data for five previous time

instances and are purged every 0.5 seconds if they can be repopulated.

Three simulation studies are performed. The first shows the performance of the

designed observers in a noise-free setting for a system with two states and one control.

The second simulations shows the designed observers in a noise-free setting for a lager

dimensional system. The last simulation incorporates noise in order to investigate the

observers/filter robustness.

The error metric used to compare all of the observers/filters is the summation of

the five relative weight estimation errors, defined as

∑ W̃i

W ∗
i

:=
‖W̃V1‖
W ∗
V1

+
‖W̃V2‖
W ∗
V2

+
‖W̃V3‖
W ∗
V3

+
‖W̃Q1‖
W ∗
Q1

+
‖W̃Q2‖
W ∗
Q2

.

7.6.1 Persistently Excited Signal without Noise - Two State System

The first simulation study concerns a noise-free environment. The controller that the

agent under observation implements is a combination of the optimal controller, u∗,

133

and a known additive excitation signal, i.e., the feedback controller of the agent is

u(t, x(t)) = u∗(x(t)) + uexc(t), where

uexc(t) := 5 sin(t) + 18 cos(0.4t) + 36 sin(2t) + 0.5 cos(3t),

induces excitation in the signal x̂.

The HSO in (227), is implemented using three different KHSO matrices, comprised

of the same K3 matrices, computed using the “place” command in MATLAB for poles

p1 = −2 and p2 = −4, and three different K4 matrices. The first two K4 matrices

are computed using gains K4 = −I and K4 − 0.5I (denoted in Fig. 29 as HSO -

P = −1 and HSO - P = −0.5, respectively). The third K4 matrix is selected to be

an exponentially varying gain matrix, K4 = (1 − 0.9 exp−t)0.5I (denoted as HSO -

Exp in Fig. 29). The MLO in (224) is implemented using a single KMLO matrix,

with K1 computed using the “place” command for poles p1 = −2 and p2 = −4, and

K2 = 10000I.

As seen in Fig. 29, all of the weight estimation errors for the designed observers

converge to the origin as expected. Even though there is a larger initial estimation

error for the HSO, with constant gains, compared to the MLO, the history stack

based observers converge much quicker than the MLO. The initial estimation er-

ror can be reduced for the HSO either by moving the poles closer to the origin, or

implementing an exponentially varying gain matrix, as in the HSO-Exp case. The

exponentially varying gain matrix combines the benefits of initial small gains, when

the state estimates are inaccurate, with those of progressively larger gains, leading to

fast convergence.

7.6.2 Persistently Excited Signal without Noise - Four State System

The second simulation shows a four state system with the exponentially varying HSO

and the Kalman filter implementation of the HSO observer in a noise-free setting.

134

Figure 29: Weight estimation errors for the developed observers with no noise and

PE signal.

Similarly to Section 7.6.1, the agent under observation implements a combination

of the optimal controller and a known exciting controller. In this simulation, the

exciting controller is randomly selected from a uniform distribution in the set [0, 10].

The dynamical system of the agent under observation is

ẋ =



2 4 1 0

0 3 6 2

3 2 2 6

3 5 6 2


x+



7 2

4 5

3 3

2 6


u, y =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


x. (231)

The optimal controller,

u∗(x) =

 1.79 −0.235 1.022 0.487

−0.345 1.75 3.96 4.35

x,
minimizes an LQR problem, Q = diag([2, 5, 8, 11]), R = diag([1.5, 0.5]), and R(1, 1) =

1.5 is selected as the known weight.

As seen in Figure 30, both the exponential and Kalman filter implementations

of the HSO converge to the origin. In Figure 31, the MLO eventually estimates

the unknown weights in the reward and value function, however, the MLO takes

135

0 10 20 30 40 50 60 70 80 90 100
Time (s)

0

50

100
HSO-Exp
HSO-KF

Figure 30: Weight estimation errors for the developed HSO observers with no noise

and PE signal with larger dimensional system.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (s)

0

10

20

30

40
MLO

Figure 31: Weight estimation errors for the developed MLO observer with no noise

and PE signal with larger dimensional system.

significantly longer than the HSO implementations. This further validates the design

for using previously recorded data to help update the weight estimates.

7.6.3 Persistently Excited Signal with Noise

The last simulation is an investigation into noise robustness of the HSO and the

Kalman filter implementation of the HSO (called HSO-KF) compared to the CL

update law in [137, 139]. The simulation comparison is the same two state system

as in Section 7.6.1. The state estimator used for the CL method is developed in [66]

(with a slight modification to address the non-Brunovsky form of the dynamics).

136

Zero-mean Gaussian noise is added to y′ and u, with three noise variances used to

simulate low-noise (R1 = diag([0.12, 0.12])), medium noise (R2 = diag(0.52, 0.52]) and

high noise (R3 = diag([12, 12])) scenarios. Fifty Monte-Carlo simulations for each

noise level are conducted and compared with the no-noise case. The Monte-Carlo

simulations are shown for each noise level and each method in Figs. 32 - 35. We

do not study the behavior of the MLO under noisy measurements due to the added

robustness of the HSO due to the use of past data.

Table 3.: Comparison between concurrent learning (CL), KF based implementation of

HSO (HSO-KF), and exponential pole selection implementation of HSO (HSO-Exp),

with different noise variances. Simulations were ran for 100 seconds over 50 trials with

step size Ts = 0.005. The standard deviations (SD) simulated are 0.0, 0.1, 0.5, and

1.0. The metric used for comparison is the average of the average on the trajectories∑
W̃i/W

∗
i , where TT denotes the average over the entire trajectory, and SS denotes

the average over the last 30 seconds of the trajectory. The exponential HSO gains

are selected similar to Section 7.6.1, except K4 = (1− 0.9 exp−t)0.15I. The Kalman

filter gain is selected using the gain matrix KHSO = diag([K3, K4]) where K3 and K4

are independent Kalman gains.

CL HSO-Exp HSO-KF

SD TT SS TT SS TT SS

0.0 0.9855 7.43e-05 0.9101 8.41e-05 0.0446 1.86e-14

0.1 0.8977 0.2647 0.8463 0.1652 0.2591 0.2279

0.5 2.1766 2.0336 1.3064 0.6894 0.7291 0.7277

1.0 5.5415 5.5223 1.9055 1.4667 1.5055 1.4111

The results of the simulation study are shown in Table 3.. As seen from the data,

all three methods perform well in the noise free case, and the performance of all three

137

(a) CL (b) HSO-Exp

(c) HSO-KF

Figure 32: No Noise

138

(a) CL (b) HSO-Exp

(c) HSO-KF

Figure 33: 0.1 Noise Standard Deviation

139

(a) CL (b) HSO-Exp

(c) HSO-KF

Figure 34: 0.5 Noise Standard Deviation

140

(a) CL (b) HSO-Exp

(c) HSO-KF

Figure 35: 1.0 Noise Standard Deviation

141

methods is comparable in the low noise scenario. The advantages of the two HSO

methods over the CL method are evident in the medium and high noise scenarios.

Both the HSO-Exp and HSO-KF show better robustness to noise when compared to

the CL method, especially in high the noise situation (CL steady state (SS) error is

almost four times higher than both HSO methods). Comparing the results of HSO-

Exp to HSO-KF, HSO-Exp has lower SS errors for the low and medium noise cases,

while, HSO-KF has lower SS errors for the no noise and high noise cases. In addition,

HSO-KF converges quicker in every case compared to both CL and HSO-Exp, as

evidenced by the average over the whole time interval (TT).

7.7 Conclusion

This chapter presents a novel observer-like formulation for performing online esti-

mation of reward functions using input-output observations. Two observers are pro-

posed and their convergence guarantees are established. The Monte-Carlo simulations

demonstrate that the developed observer based IRL techniques, utilizing exponen-

tially varying gains and Kalman gains, demonstrate better noise robustness than

existing CL based IRL techniques [137,139].

142

Chapter VIII

APPLICATIONS

The previous chapters investigate techniques for inverse reinforcement learning which

facilitate reward function estimation in real-time. Specifically, Chapter IV develops a

model-based real-time inverse reinforcement learning technique, Chapter V deals with

the case where the observed trajectories of an agent are not consistently representative

of its internal reward function due to external disturbances, Chapter VI addresses data

sparsity issues by estimating the optimal controller and querying for additional data,

and Chapter VII formulates the IRL problem in an observer framework to estimate

the unknown reward function with noisy measurements.

This chapter aims to discuss potential real-world applications that align with the

work developed in this dissertation.

8.1 Consistency Checking/Validation

As autonomy increases in the workforce, misbehavior and fault detection of au-

tonomous entities becomes increasingly important. Traditional detection methods

[77, 78, 145] generally classify actions into predefined categories and analyze the tra-

jectories of agents without attention to the underlying intent that generates the tra-

jectories. As a result, these methods lack the full understanding of what the agent

is trying to achieve. If only the trajectories are used to detect misbehavior, then

malicious, yet seemingly normal behavior might not be detected. Additionally, intent

monitoring methods that lack the ability to adapt to alterations in task objectives

online are liable to generate false alarms.

143

Adaptability can make the misbehavior detection problem significantly more diffi-

cult to solve. Adaptation necessitated by a fault could potentially be misdiagnosed as

misbehavior, even though the agent is acting in accordance with it’s intended design.

Intent understanding and estimation could potentially result in monitoring systems

that can accurately distinguish between faults and misbehavior.

The work developed in this dissertation may allow for improved monitoring of

autonomous entities and help increase safety in the workforce. The intent of an

entity will be interpreted as a reward function and estimation of this reward function

is achieved utilizing real-time IRL techniques developed in this dissertation. This

monitoring would be achieved by utilizing the estimated intent, or reward function,

of the autonomous agent and comparing the estimate to the designed reward function

that the agent is supposed to be acting with respect to. Area surveillance utilizing

UAVs, assembly line robots, and autonomous taxis are some of the specific scenarios

that consistency checking utilizing real-time IRL methods in this dissertation can

help resolve.

8.2 Pilot Modeling

8.2.1 Introduction

Everyday use of unmanned aerial vehicles (UAVs) will soon be commonplace, and

the need for safe navigation in urban areas is critical if the UAV market is going to

be expanded to tasks such as package delivery, search and rescue, etc. The task to

maintain a congested airfield in cities becomes even more difficult in the presence

of disturbances. While steady wind fields can be predicted, unpredictable gusts can

make urban air mobility challenging. Collisions with buildings or other UAVs can

result in injury to civilians and property damage. Therefore, a framework is needed

in order to facilitate human remote controlled UAVs and autonomous systems to

safely navigate a common airspace. A pilot modeling project is part of a group effort

144

at Oklahoma State University to develop an all encompassing method for UAVs, both

human controlled and autonomous, where gust estimation is incorporated in a path

recommendation/implementation platform to facilitate safe navigation and increase

urban air density of vehicles.

The research task is to develop techniques for modeling pilot preferences and up-

dating these preferences in real-time by observing the pilot’s behavior. The proposed

concept is to model pilot behavior as a reward, or cost, function using optimal control

theory, with the goal to uncover a pilots preferences. The model will then be used to

recommend pilot-specific paths to navigate through a wind field.

The proposed reward function based pilot modeling research could use a combi-

nation of offline IRL methods existing in literature, concurrently with the real-time

IRL techniques from Chapters IV - VII, to estimate reward functions and to update

them continuously using new data. The updated reward function will then be used

for forward reinforcement learning or optimal control to recommend optimal paths to

the pilot or the autonomous system based on current gust predictions and observed

obstacles.

8.2.2 Literature Review

The vast majority of pilot modeling literature can be structured into two distinct

categories: physiological modeling and psychological modeling.

Physiological pilot models are focused on how the body of the pilot is affected

during flight and how to accurately model these affects, along with how pilots perceive

the aircraft in flight. This category can be broken down further into categories such

as sensory dynamics (perception) and bio-dynamics (human body) [96]. Sensory

dynamics include systems such as visual and vestibular (spatial orientation) systems

[102]. The bio-dynamic modeling generally models human body responses as classical

mechanical systems, such as incorporating spring, mass, dampers systems, or flexible

145

beams [81], for modeling human spines in flight. Since, the work in this dissertation

will focus on unmanned aircraft, the physiological effects of flight on pilots are not

important.

Psychological modeling is focused on the control component of pilot modeling

and attempts to model a pilot’s thought process during flight. This category can be

broken down into a variety of methods, however, the majority of pilot modeling in

the literature use classical control approaches [56, 104, 105]. These classical control

approaches are based on the concept of the “crossover model” [104], where a pilot’s

control action, whether that constitutes lead or lag control, drives the open loop

function approximately to

YpYc =
ωce
−jωτe

jω
, (232)

where Yc is the controlled element dynamics, Yp is the pilot’s control action, ωc is

the crossover frequency, and (232) includes a time-delay constant term, where τe is

modeled as the pilot’s response time resulting in quasi-linear [76] describing functions.

There has been some work focused on human in the loop modeling [55] using

optimal control theory for linear systems [14, 82, 150, 152], and more recently, there

has been some research focused on newer control techniques for reward function based

pilot modeling utilizing machine learning approaches [6, 155]. Results such as [6,

155] categorize the pilots goals into a variety of categories such as minimizing effort,

staying on assigned trajectory, maintaining proper distance among other aircraft, how

many aircraft occupy the current space, etc., and use game theory and reinforcement

learning approaches to predict each players strategy. The results in [91,121] use game

theory to predict pilot behavior during mid-air encounters, and utilize the assumption,

as the authors state in [91], that pilots, in general, actively direct the aircraft to avoid

collisions as opposed to relying on avoidance recommendation systems currently in

place.

However, most of the aforementioned methods described in literature are focused

146

on manned fixed wing aircraft, while the pilot modeling task in this dissertation is

focused on unmanned multirotor aircraft. Of the methods developed for unmanned

aircraft pilot modeling using reward function based pilot models, nearly all focus on

specific scenarios, such as collision avoidance. However, since pilot models are likely

to change drastically through the duration of the flight depending on the current

task, different pilot models may be needed for a variety of scenarios that may develop

during a full flight mission. Therefore, the work presented in this dissertation could

help by developing a wider range of reward functions for various flight scenarios,

and exploring viability of updating these reward functions in real-time. Utilizing

the real-time IRL methods developed in this dissertation to update the pilot models

in real-time would facilitate a more realistic modeling approach and allow for more

broad flight conditions.

8.2.3 Preliminary Results

Preliminary results on the pilot modeling project were achieved by analyzing UAV

control from a kinematic (as opposed to dynamic) point of view. Traditional control

designs for quadcopter flight utilize inputs such thrust and torques. However, the

hypothesis is that pilots instead interpret UAV flight utilizing inputs such as linear

velocities and yaw rate. Therefore, the preliminary work is performed from this

perspective.

The quadcopter kinematic model is developed by designing a velocity tracking

controller for the quadcopter’s dynamics. A block diagram of this is shown in Fig.

36a. In Fig. 36a, velocity and attitude controllers are designed and the closed-

loop dynamics are then transformed into Fig. 36b. The states and controls for the

147

(a) Full Quadcopter Block Diagram.

(b) Closed Loop Quadcopter Block Diagram.

Figure 36: Kinematic Control Simulation Block Diagrams.

kinematic control problem are

X : =
[
x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇

]T
,

U : =
[
ẋd, ẏd, żd, ψ̇d

]T
, (233)

where the subscript d on a variable denotes the desired value of that variable.

148

A quadcopter’s translational dynamics can be described by [61]

m


ẍ

ÿ

z̈

 =


0

0

mg

+R


0

0

−U1

− kt

ẋ

ẏ

ż

 , (234)

where U1 is the thrust, kt is an aerodynamic thrust drag coefficient, m is the mass, g

is the gravity, and the rotation matrix is given by

R =


cos θ cosψ cosψ sinφ sin θ − sinψ cosφ cosφ sin θ cosψ + sinψ sinφ

cos θ sinψ sinψ sinφ sin θ + cos θ cosψ cosφ sin θ sinψ − sinφ cosψ

− sin θ sinφ cos θ cosφ cos θ

 .
(235)

Using small angle approximation, the rotation matrix becomes

R =


1 φθ − ψ θ + ψφ

ψ ψφθ + 1 θψ − φ

−θ φ 1

 . (236)

The thrust U1 is designed as a proportional controller

U1 = mg +mkp13 (żd − ż) . (237)

where kp13 is the proportional gain.

The rotational motion of a quadcopter can be described by [24,25]

φ̈ = θ̇ψ̇
Iyy − Izz
Ixx

+
l

Ixx
U2,

θ̈ = φ̇ψ̇
Izz − Ixx
Iyy

+
l

Iyy
U3,

ψ̈ = θ̇φ̇
Ixx − Iyy
Izz

+
1

Izz
U4 (238)

where Ixx, Iyy, Izz are the moments of inertia and U2, U3, U4 are the torques.

149

Figure 37: Quadcopter simulation using linear trajectories and linearized model inside

IRL.

The controls U2, U3, U4 are designed as PD controllers

U2 =kp21 (φd − φ) + kd1

(
φ̇d − φ̇

)
,

U3 =kp22 (θd − θ) + kd2

(
θ̇d − θ̇

)
,

U4 =kp23 (ψd − ψ) + kd3

(
ψ̇d − ψ̇

)
, (239)

where the desired angles φd, θd are given by

θd = arctan

(
mkp12 (ẏd − ẏ) sinψd +mkp11 (ẋd − ẋ) cosψd

mg +mkp13 (żd − ż)

)
,

φd = arctan

(
cos θd

mkp11 (ẋd − ẋ) sinψd −mkp12 (ẏd − ẏ) cosψd
mg +mkp13 (żd − ż)

)
, (240)

and kp11 , kp12 , kp21 , kp22 , kp23 , kd1 , kd2 , kd3 are control gains. Using small angle approxi-

mations and a linear approximation for arctan [123], (240) becomes

θd =
π

4

(
mkp12 (ẏd − ẏ)ψd +mkp11 (ẋd − ẋ)

mg +mkp13 (żd − ż)

)
,

φd =
π

4

(
mkp11 (ẋd − ẋ)ψd −mkp12 (ẏd − ẏ)

mg +mkp13 (żd − ż)

)
. (241)

Linearizing (234) and (238) about the origin, while using (237), (239), and (241),

150

yields the linear system

ẍ = gθ − kt
m
ẋ,

ÿ = −gφ− kt
m
ẏ,

z̈ = −kt
m
ż − kp13 żd + kp13 ż,

φ̈ =
b1πkp21kp12 (ẏ − ẏd)

4g
− b1kd1φ̇− b1kp21φ,

θ̈ =
b2πkp22kp11 (ẋd − ẋ)

4g
− b2kp22θ − b2kd2 θ̇,

ψ̈ = −b3kp23ψ + b3kd3ψ̇d − b3kd3ψ̇, (242)

where b1 = l/Ixx, b2 = l/Iyy, and b3 = 1/Izz, and l is the length of the quadcopter arm.

The controller that the agent implements is a combination of the optimal controller

and an exciting controller which is randomly selected from the set ui ∈ [0, 1].

Fig. 37 shows the preliminary results for the quadcopter simulation. As seen in the

figure, the reward function is able to be estimated using trajectory data from the linear

simulations. The values used in the simulation are: l = 0.23 m, Ixx = Iyy = 7.5×10−3

kg m2, Izz = 1.3×10−2 kg m2, kt = 0.001, g = 9.81 m/s2,m = 1 kg, kp11 = 5.25, kp12 =

6, kp13 = 3, kp21 = 2, kp22 = 1, kp23 = 0.35, kd1 = 0.5, kd2 = 0.4, kd3 = 0.1, and the

matrices to be found are

Q = diag([9.5752, 6.9139, 2.8378, 0, 0, 0, 0, 0, 11.6834, 0, 0, 0]),

and

R = diag([9.572, 3.4773, 14.4034, 0.1707]).

The preliminary results that are established utilize a linearized dynamic model

of a quadrotor since it has a known optimal value function. Future work of this

section is to utilize the full nonlinear dynamics and estimate Q and R matrices.

Utilizing the estimated Q and R matrices, an numerical optimization program, such

as GPOPS [125], can be utilized to generate optimal trajectories for the nonlinear

151

system. Once the trajectories are generated, a metric that may evaluate the quality of

the reward function estimate would be to compare the trajectories from the measured

data that generated the reward function to the trajectories that are generated from

GPOPS.

8.3 Learning (IRL) and Control (RL) in Real-Time

The last application is a learning and control architecture where the work in this

dissertation would be to perform RL and IRL in real-time. The situation under con-

sideration could be a team of two agents working together on a task. Utilizing the

assumption that one of the two agents is designed to properly complete the task, or

controlled by a human, and the other agent is trying to learn the reward function

to copy the task. The proposed application is to analyze the stability of using a

combination of RL/IRL in real-time, in which the assisting agent is simultaneously

attempting to learn the reward function and use the updated reward function for

real-time control to complete the task. This would involve situations where an au-

tonomous system and a human controlled robot are working together on a task, and

the autonomous system is simultaneously learning what the task is, while learning

how to complete the task.

Utilizing the methods discussed in this dissertation, and pursuing additional IRL

formulations for double filter ideas which align with recent real-time RL results in

[62,63], could be explored.

152

Chapter IX

CONCLUSION AND FUTURE WORK

In this dissertation, model-based inverse reinforcement learning methods are devel-

oped. The work herein provides foundational methods for reward function estima-

tion in real-time and under non-ideal situations. Chapter IV develops a data-driven

model-based inverse reinforcement learning technique that is less data intensive than

its model-free counterparts, which help facilitate reward function estimation in real-

time. Chapter V addresses IRL for scenarios that the observed trajectories of an

agent under observation are inconsistent with its internal reward function. Chapter

VI attempts to further address the issue of sparsity of available data by formulating a

method to artificially create additional data to help drive reward function estimation

if trajectories are not sufficiently information rich. Chapter VII formulates the IRL

problem in an observer framework to solve the IRL problem in the presence of noisy

or imperfect measurements, and Chapter VIII discusses applications relevant to the

methods developed in this dissertation.

This dissertation focuses on addressing the five key challenges in real-time IRL: (a)

sparsity of available data, (b) nonuniqueness of solutions, (c) partial measurements,

(d) noisy/imperfect measurements, and (e) inconsistent observations. In the subse-

quent chapters, this dissertation addressed: (a) sparsity of available data, (c) partial

measurements, (d) noisy/imperfect measurements, and (e) inconsistent observations.

Future work of this dissertation will be revolved around developing methods to

solve the non-uniqueness concern that is an important topic in the field of IRL. In

addition, a large majority of the effort will be spent developing on the preliminary

153

discussions on the applications relevant to the methods presented in this disserta-

tion.

154

Bibliography

[1] Pieter Abbeel. Apprenticeship learning and reinforcement learning with appli-

cation to robotic control. Stanford University, 2008.

[2] Pieter Abbeel, Adam Coates, and Andrew Ng. Autonomous helicopter aero-

batics through apprenticeship learning. Int. J. Robot. Res., 29(13):1608–1639,

2010.

[3] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse rein-

forcement learning. In Proc. Int. Conf. Mach. Learn., 2004.

[4] Pieter Abbeel and Andrew Y. Ng. Inverse reinforcement learning. In Claude

Sammut and Geoffrey I. Webb, editors, Encyclopedia of Machine Learning,

pages 554–558. Springer, Boston, MA, 2010.

[5] Pieter Abbeel and Y. Ng, Andrew. Exploration and apprenticeship learning in

reinforcement learning. In Proc. Int. Conf. Mach. Learn., 2005.

[6] Berat Mert Albaba and Yildiray Yildiz. Modeling cyber-physical human sys-

tems via an interplay between reinforcement learning and game theory. Annu.

Rev. Control, 2019.

[7] B. Anderson. Exponential stability of linear equations arising in adaptive iden-

tification. IEEE Trans. Autom. Control, 22(1):83–88, February 1977.

[8] Saurabh Arora, Prashant Doshi, and Bikramjit Banerjee. A framework and

method for online inverse reinforcement learning. arXiv:1805.07871, 2018.

155

[9] Saurabh Arora, Prashant Doshi, and Bikramjit Banerjee. Online inverse rein-

forcement learning under occlusion. In Proc. Conf. Auton. Agents MultiAgent

Syst., pages 1170–1178. International Foundation for Autonomous Agents and

Multiagent Systems, 2019.

[10] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration.

In Proc. Int. Conf. Mach. Learn., volume 97, pages 12–20, 1997.

[11] J. A. Bagnell, Joel Chestnutt, David M. Bradley, and Nathan D. Ratliff. Boost-

ing structured prediction for imitation learning. In Advances in Neural Infor-

mation Processing Systems, pages 1153–1160, 2007.

[12] Paul Bakker and Yasuo Kuniyoshi. Robot see, robot do: an overview of robot

imitation. In AISB96 Workshop on Learning in Robots and Animals, pages

3–11, 1996.

[13] Yaakov Bar-Shalom. Optimal simultaneous state estimation and parameter

identification in linear discrete-time systems. IEEE Trans. Autom. Control,

17(3):308–319, 1972.

[14] Sheldon Baron, D. Kleinman, and W. Levison. An optimal control model of

human response part II: Prediction of human performance in a complex task.

Automatica, 6(3):371–383, 1970.

[15] G. Bastin and M. R. Gevers. Stable adaptive observers for nonlinear time-

varying systems. IEEE Trans. Autom. Control, 33(7):650–658, 1988.

[16] G. Besançon, J. de León-Morales, and O. Huerta-Guevara. On adaptive ob-

servers for state affine systems. Int. J. Control, 79(06):581–591, 2006.

[17] Gildas Besançon. Remarks on nonlinear adaptive observer design. Syst. Control

Lett., 41(4):271–280, 2000.

156

[18] Gildas Besançon and A Ţiclea. On adaptive observers for systems with state

and parameter nonlinearities, 2017.

[19] Tao Bian, Yu Jiang, and Zhong-Ping Jiang. Adaptive dynamic programming

and optimal control of nonlinear nonaffine systems. Automatica, 50(10):2624–

2632, 2014.

[20] Tao Bian and Zhong-Ping Jiang. Value iteration and adaptive dynamic pro-

gramming for data-driven adaptive optimal control design. Automatica, 71:348–

360, 2016.

[21] Aude Billard, Sylvain Calinon, Rüdiger Dillmann, and Stefan Schaal. Robot

programming by demonstration. In Bruno Siciliano and Oussama Khatib, ed-

itors, Springer Handbook of Robotics, chapter 59, pages 1371–1394. Springer

Berlin Heidelberg, Berlin, Heidelberg, 2008.

[22] Kenneth Bogert and Prashant Doshi. Multi-robot inverse reinforcement learning

under occlusion with interactions. In Proc. Conf. Auton. Agents MultiAgent

Syst., pages 173–180. International Foundation for Autonomous Agents and

Multiagent Systems, 2014.

[23] Kenneth Bogert and Prashant Doshi. Multi-robot inverse reinforcement learning

under occlusion with state transition estimation. In Proc. Conf. Auton. Agents

MultiAgent Syst., pages 1837–1838. International Foundation for Autonomous

Agents and Multiagent Systems, 2015.

[24] Samir Bouabdallah, Andre Noth, and Roland Siegwart. PID vs LQ control

techniques applied to an indoor micro quadrotor. In Proc. Intell. Robot. Syst.,

volume 3, pages 2451–2456. IEEE, 2004.

[25] Samir Bouabdallah and Roland Siegwart. Full control of a quadrotor. In Proc.

Intell. Robot. Syst., pages 153–158, 2007.

157

[26] Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse re-

inforcement learning. In Geoffrey Gordon, David Dunson, and Miroslav Dud́ık,

editors, Proc. Int. Conf. Artif. Intell. Stat., volume 15, 2011.

[27] Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrap-

olating beyond suboptimal demonstrations via inverse reinforcement learning

from observations. arXiv:1904.06387, 2019.

[28] Daniel Brown and Scott Niekum. Machine teaching for inverse reinforcement

learning: algorithms and applications. arXiv:1805.07687, 2018.

[29] P. Brunovskỳ. A classification of linear controllable systems. Kybernetika,

6(3):173–188, 1970.

[30] Y. Uny Cao, Alex S. Fukunaga, and Andrew Kahng. Cooperative mobile

robotics: antecedents and directions. Auton. Robot., 4(1):7–27, 1997.

[31] Mou Chen, Shu-Yi Shao, and Bin Jiang. Adaptive neural control of un-

certain nonlinear systems using disturbance observer. IEEE Trans. Cybern.,

47(10):3110–3123, 2017.

[32] Mou Chen and Jing Yu. Adaptive dynamic surface control of nsvs with input

saturation using a disturbance observer. Chin. J. Aeronaut., 28(3):853–864,

2015.

[33] Tao Chen, Julian Morris, and Elaine Martin. Particle filters for state and

parameter estimation in batch processes. J. Process Control, 15(6):665–673,

2005.

[34] Wen-Hua Chen. Disturbance observer based control for nonlinear systems.

IEEE/ASME Trans. Mechatron., 9(4):706–710, 2004.

158

[35] Jaedeug Choi and Kee-Eung Kim. Map inference for Bayesian inverse reinforce-

ment learning. In Advances in Neural Information Processing Systems, pages

1989–1997, 2011.

[36] Jaedeug Choi and Kee-Eung Kim. Nonparametric Bayesian inverse reinforce-

ment learning for multiple reward functions. In Advances in Neural Information

Processing Systems, pages 305–313, 2012.

[37] Jaedeug Choi and Kee-Eung Kim. Bayesian nonparametric feature construction

for inverse reinforcement learning. In IJCAI, pages 1287–1293, 2013.

[38] Sungjoon Choi, Kyungjae Lee, and Songhwai Oh. Robust learning from demon-

strations with mixed qualities using leveraged gaussian processes. IEEE Trans.

Robot, 35(3):564–576, 2019.

[39] Michelle S. Chong, Dragan Nešić, Romain Postoyan, and Levin Kuhlmann.

State and parameter estimation of nonlinear systems: a multi-observer ap-

proach. In IEEE Conf. Decis. Control, pages 1067–1072. IEEE, 2014.

[40] G. Chowdhary and E. Johnson. A singular value maximizing data recording

algorithm for concurrent learning. In Proc. Am. Control Conf., pages 3547–

3552, 2011.

[41] Girish Chowdhary. Concurrent learning for convergence in adaptive control

without persistency of excitation. PhD thesis, Georgia Institute of Technology,

December 2010.

[42] Girish Chowdhary, Hassan A. Kingravi, Jonathan P. How, and Patricio A.

Vela. Bayesian nonparametric adaptive control using Gaussian processes. IEEE

Trans. Neural Netw. Learn. Syst., 26(3):537–550, 2015.

159

[43] Girish Chowdhary, Maximilian Mühlegg, JonathanP. How, and Florian

Holzapfel. Concurrent learning adaptive model predictive control. In Qiping

Chu, Bob Mulder, Daniel Choukroun, Erik-Jan van Kampen, Coen de Visser,

and Gertjan Looye, editors, Advances in Aerospace Guidance, Navigation and

Control, pages 29–47. Springer Berlin Heidelberg, 2013.

[44] Girish Chowdhary, Tansel Yucelen, Maximillian Mühlegg, and Eric N. John-

son. Concurrent learning adaptive control of linear systems with exponentially

convergent bounds. Int. J. Adapt. Control Signal Process., 27(4):280–301, 2013.

[45] Adam Coates, Pieter Abbeel, and Andrew Y. Ng. Apprenticeship learning for

helicopter control. Commun. ACM, 52(7):97–105, 2009.

[46] Daniel R. Creveling, Philip E. Gill, and Henry D. I. Abarbanel. State and

parameter estimation in nonlinear systems as an optimal tracking problem.

Phys. Lett. A, 372(15):2640–2644, 2008.

[47] Huyen T. Dinh, Rushikesh Kamalapurkar, Shubhendu Bhasin, and Warren E.

Dixon. Dynamic neural network-based robust observers for uncertain nonlinear

systems. Neural Netw., 60:44–52, December 2014.

[48] Manuel A. Duarte and K. S. Narendra. Combined direct and indirect approach

to adaptive control. IEEE Trans. Autom. Control, 34(10):1071–1075, October

1989.

[49] Gregory Dudek, Michael R. M. Jenkin, Evangelos Milios, and David Wilkes. A

taxonomy for multi-agent robotics. Auton. Robot., 3(4):375–397, 1996.

[50] Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: deep

inverse optimal control via policy optimization. In International Conference on

Machine Learning, pages 49–58, 2016.

160

[51] S. T. Glad and L. Ljung. Model structure identifiability and persistence of

excitation. In Proc. IEEE Conf. Decis. Control, pages 3236–3240, 1990.

[52] Michael Green and John B Moore. Persistence of excitation in linear systems.

Syst. Control Lett., 7(5):351–360, 1986.

[53] Daniel Grollman and Aude Billard. Robot learning from failed demonstrations.

Int. J. Soc. Robot., 4(4):331–342, 2012.

[54] Jack K. Hale. Ordinary differential equations. Robert E. Krieger Publishing

Company, Inc., second edition, 1980.

[55] Keita Hara, Masaki Inoue, and José Maŕıa Maestre. Data-driven human model-

ing: Quantifying personal tendency toward laziness. IEEE Control Syst. Lett.,

5(4):1219–1224, 2020.

[56] Ronald A Hess. Simplified approach for modelling pilot pursuit control be-

haviour in multi-loop flight control tasks. Proc. Inst. Mech. Eng., Part G: J.

Aero. Eng., 220(2):85–102, 2006.

[57] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge University

Press., Cambridge, 1993.

[58] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neu-

ral Netw., 4:251–257, 1991.

[59] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward networks

are universal approximators. Neural Netw., 2:359–366, 1985.

[60] P. Ioannou and J. Sun. Robust adaptive control. Prentice Hall, 1996.

[61] Maidul Islam, Mohamed Okasha, and Moumen Mohammad Idres. Trajectory

tracking in quadrotor platform by using PD controller and LQR control ap-

proach. In IOP Conf. Mater. Sci. Eng., volume 260, pages 2451–2456, 2017.

161

[62] Sumit Kumar Jha, Sayan Basu Roy, and Shubhendu Bhasin. Memory-efficient

filter based novel policy iteration technique for adaptive lqr. In Proc. Am.

Control Conf., pages 4963–4968, 2018.

[63] Sumit Kumar Jha, Sayan Basu Roy, and Shubhendu Bhasin. Initial excitation-

based iterative algorithm for approximate optimal control of completely un-

known lti systems. IEEE Trans. Autom. Control, 64(12):5230–5237, 2019.

[64] Z. Jin, H. Qian, S. Chen, and M. Zhu. Convergence analysis of an incremental

approach to online inverse reinforcement learning. J. Zhejiang Univ. - Sci. C,

12(1):17–24, 2011.

[65] R. E. Kalman. When is a linear control system optimal? J. Basic Eng.,

86(1):51–60, 1964.

[66] Rushikesh Kamalapurkar. Online output-feedback parameter and state esti-

mation for second order linear systems. In Proc. Am. Control Conf., pages

5672–5677, Seattle, WA, USA, May 2017.

[67] Rushikesh Kamalapurkar. Simultaneous state and parameter estimation for

second-order nonlinear systems. In Proc. IEEE Conf. Decis. Control, pages

2164–2169, Melbourne, VIC, Australia, December 2017.

[68] Rushikesh Kamalapurkar. Linear inverse reinforcement learning in continuous

time and space. In Proc. Am. Control Conf., pages 1683–1688, Milwaukee, WI,

USA, June 2018.

[69] Rushikesh Kamalapurkar, Lindsey Andrews, Patrick Walters, and Warren E.

Dixon. Model-based reinforcement learning for infinite-horizon approximate

optimal tracking. IEEE Trans. Neural Netw. Learn. Syst., 28(3):753–758, March

2017.

162

[70] Rushikesh Kamalapurkar, Huyen T. Dinh, Shubhendu Bhasin, and Warren E.

Dixon. Approximate optimal trajectory tracking for continuous-time nonlinear

systems. Automatica, 51:40–48, January 2015.

[71] Rushikesh Kamalapurkar, Justin R. Klotz, and Warren E. Dixon. Concurrent

learning-based online approximate feedback Nash equilibrium solution of N -

player nonzero-sum differential games. IEEE/CAA J. Autom. Sin., 1(3):239–

247, July 2014. Special Issue on Extensions of Reinforcement Learning and

Adaptive Control.

[72] Rushikesh Kamalapurkar, Ben Reish, Girish Chowdhary, and Warren E. Dixon.

Concurrent learning for parameter estimation using dynamic state-derivative

estimators. IEEE Trans. Autom. Control, 62(7):3594–3601, July 2017.

[73] Rushikesh Kamalapurkar, Joel A. Rosenfeld, and Warren E. Dixon. Efficient

model-based reinforcement learning for approximate online optimal control. Au-

tomatica, 74:247–258, December 2016.

[74] Rushikesh Kamalapurkar, Patrick Walters, and Warren E. Dixon. Model-based

reinforcement learning for approximate optimal regulation. Automatica, 64:94–

104, February 2016.

[75] Rushikesh Kamalapurkar, Patrick Walters, Joel A. Rosenfeld, and Warren E.

Dixon. Reinforcement learning for optimal feedback control: A Lyapunov-based

approach. Communications and Control Engineering. Springer International

Publishing, 2018.

[76] Tosio Kato. Quasi-linear equations of evolution, with applications to partial

differential equations. Springer, 1975.

[77] Richard Kelley, Christopher King, Alireza Tavakkoli, Mircea Nicolescu, Monica

Nicolescu, and George Bebis. An architecture for understanding intent using

163

a novel hidden Markov formulation. Int. J. Humanoid Robot., 5(02):203–224,

2008.

[78] Richard Kelley, Alireza Tavakkoli, Christopher King, Amol Ambardekar, Mon-

ica Nicolescu, and Mircea Nicolescu. Context-based Bayesian intent recognition.

IEEE Trans. Auton. Ment. Dev., 4(3):215–225, 2012.

[79] S. Kersting and M. Buss. Concurrent learning adaptive identification of piece-

wise affine systems. In Proc. IEEE Conf. Decis. Control, pages 3930–3935,

December 2014.

[80] Hassan K. Khalil. Nonlinear systems. Prentice Hall, Upper Saddle River, NJ,

third edition, 2002.

[81] S. Kitazaki and M. Griffin. A modal analysis of whole-body vertical vibration,

using a finite element model of the human body. J. Sound Vib., 200(1):83–103,

1997.

[82] D. Kleinman, S. Baron, and W. Levison. An optimal control model of human

response part I: Theory and validation. Automatica, 6:357–369, 1970.

[83] J. Zico Kolter, Pieter Abbeel, and Andrew Y. Ng. Hierarchical apprenticeship

learning with application to quadruped locomotion. In Advances in Neural

Information Processing Systems, pages 769–776, 2008.

[84] Gerhard Kreisselmeier. Adaptive observers with exponential rate of conver-

gence. IEEE Trans. Autom. Control, 22(1):2–8, 1977.

[85] Miroslav Krstic, Ioannis Kanellakopoulos, and Peter V. Kokotovic. Nonlinear

and adaptive control design. John Wiley & Sons, New York, NY, USA, 1995.

164

[86] Miroslav Krstić, Petar V. Kokotović, and Ioannis Kanellakopoulos. Transient-

performance improvement with a new class of adaptive controllers. Syst. Control

Lett., 21(6):451–461, 1993.

[87] Peter Kühl, Moritz Diehl, Tom Kraus, Johannes P. Schlöder, and Hans Georg

Bock. A real-time algorithm for moving horizon state and parameter estimation.

Comput. Chem. Eng., 35(1):71–83, 2011.

[88] Adam Laud and Gerald DeJong. Reinforcement learning and shaping: encour-

aging intended behaviors. In ICML, pages 355–362, 2002.

[89] Adam Daniel Laud. Theory and application of reward shaping in reinforcement

learning. PhD thesis, University of Illinois at Urbana-Champaign, 2004.

[90] H. I. Lee, H. S. Shin, and A. Tsourdos. Concurrent learning adaptive control

with directional forgetting. IEEE Trans. Autom. Control, 2019.

[91] Ritchie Lee and David Wolpert. Game theoretic modeling of pilot behavior

during mid-air encounters. Springer, 2012.

[92] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Feature construction for

inverse reinforcement learning. In J. D. Lafferty, C. K. I. Williams, J. Shawe-

Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural Information

Processing Systems 23, pages 1342–1350. Curran Associates, Inc., 2010.

[93] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse rein-

forcement learning with Gaussian processes. In J. Shawe-Taylor, R. S. Zemel,

P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances in Neural

Information Processing Systems 24, pages 19–27. Curran Associates, Inc., 2011.

[94] Kun Li and Joel Burdick. Online inverse reinforcement learning via bellman

gradient iteration. arXiv:1707.09393, 2017.

165

[95] Daniel Liberzon. Calculus of variations and optimal control theory: a concise

introduction. Princeton University Press, 2012.

[96] Mudassir Lone and Alastair Cooke. Review of pilot models used in aircraft

flight dynamics. Aerospace Sci. and Tech., 34:55–74, 2014.

[97] A. Loria, E. Panteley, D. Popovic, and A. R. Teel. δ-persistency of excitation: a

necessary and sufficient condition for uniform attractivity. In Proc. IEEE Conf.

Decis. Control, volume 3, pages 3506–3511, 2002.

[98] A. Loria, E. Panteley, D. Popovic, and A. R. Teel. A nested Matrosov theorem

and persistency of excitation for uniform convergence in stable nonautonomous

systems. IEEE Trans. Autom. Control, 50(2):183–198, 2005.

[99] A. Loŕıa, E. Panteley, and A. Zavala-Ŕıo. Adaptive observers with persistency

of excitation for synchronization of chaotic systems. IEEE Trans. Circuits Syst.,

56(12):2703–2716, 2009.

[100] Biao Luo, Huai-Ning Wu, Tingwen Huang, and Derong Liu. Data-based ap-

proximate policy iteration for affine nonlinear continuous-time optimal control

design. Automatica, 2014.

[101] Sridhar Mahadevan. Average reward reinforcement learning: foundations, al-

gorithms, and empirical results. Mach. Learn., 22(1-3):159–195, 1996.

[102] Neil J Mansfield. Human response to vibration. CRC press, 2004.

[103] R. Marine, G. L. Santosuosso, and P. Tomei. Robust adaptive observers for

nonlinear systems with bounded disturbances. IEEE Trans. Autom. Control,

46(6):967–972, 2001.

[104] Duane T. McRuer and Henry R. Jex. A review of quasi-linear pilot models.

IEEE Trans. Hum. Factors Electronics, (3):231–249, 1967.

166

[105] Duane T. McRuer and Ezra S. Krendel. Mathematical Models of Human Pilot

Behavior. 1974.

[106] Jorge Mendez, Shashank Shivkumar, and Eric Eaton. Lifelong inverse reinforce-

ment learning. In Advances in Neural Information Processing Systems, pages

4502–4513. 2018.

[107] Bernard Michini and Jonathan P. How. Bayesian nonparametric inverse rein-

forcement learning. In Peter A. Flach, Tijl De Bie, and Nello Cristianini, editors,

Machine Learning and Knowledge Discovery in Databases, volume 7524 of Lec-

ture Notes in Computer Science, pages 148–163. Springer Berlin Heidelberg,

2012.

[108] Hamidreza Modares and Frank L. Lewis. Optimal tracking control of nonlin-

ear partially-unknown constrained-input systems using integral reinforcement

learning. Automatica, 50(7):1780–1792, 2014.

[109] Hamidreza Modares, Frank L. Lewis, and Mohammad-Bagher Naghibi-Sistani.

Integral reinforcement learning and experience replay for adaptive optimal con-

trol of partially-unknown constrained-input continuous-time systems. Automat-

ica, 50(1):193–202, 2014.

[110] T. Molloy, J. Ford, and T. Perez. Online inverse optimal control on infinite

horizons. In Proc. IEEE Conf. Decis. Control, pages 1663–1668. IEEE, 2018.

[111] Katja Mombaur, Anh Truong, and Jean-Paul Laumond. From human to

humanoid locomotion—an inverse optimal control approach. Auton. Robot.,

28(3):369–383, 2010.

[112] A. Morgan and K. S. Narendra. On the uniform asymptotic stability of certain

linear nonautonomous differential equations. SIAM J. Control Optim., 15(1):5–

24, 1977.

167

[113] Katharina Muelling, Abdeslam Boularias, Betty Mohler, Bernhard Schölkopf,

and Jan Peters. Inverse reinforcement learning for strategy extraction. In

ECML PKDD 2013 Workshop on Machine Learning and Data Mining for Sports

Analytics (MLSA 2013), pages 1–9, 2013.

[114] Sriraam Natarajan, Gautam Kunapuli, Kshitij Judah, Prasad Tadepalli, Kris-

tian Kersting, and Jude Shavlik. Multi-agent inverse reinforcement learning. In

Int. Conf. Mach. Learn. Appl., pages 395–400, 2010.

[115] Lawrence Nelson and Edwin Stear. The simultaneous on-line estimation of

parameters and states in linear systems. IEEE Trans. Autom. Control, 21(1):94–

98, 1976.

[116] Gergely Neu and Csaba Szepesvari. Apprenticeship learning using inverse re-

inforcement learning and gradient methods. In Proc. Anu. Conf. Uncertain.

Artif. Intell., pages 295–302, Corvallis, Oregon, 2007. AUAI Press.

[117] Andrew Y. Ng, Daishi Harada, and Stuart Russell. Policy invariance under

reward transformations: theory and application to reward shaping. In ICML,

volume 99, pages 278–287, 1999.

[118] Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learn-

ing. In Proc. Int. Conf. Mach. Learn., pages 663–670. Morgan Kaufmann, 2000.

[119] E. Panteley, A. Loria, and A. Teel. Relaxed persistency of excitation for uniform

asymptotic stability. IEEE Trans. Autom. Control, 46(12):1874–1886, 2001.

[120] Anup Parikh, Rushikesh Kamalapurkar, and Warren E. Dixon. Integral con-

current learning: adaptive control with parameter convergence using finite ex-

citation. Int. J. Adapt. Control Signal Process., 33(12):1775–1787, December

2019.

168

[121] Hyunju Park, Byung-Yoon Lee, Min-Jea Tahk, and Dong-Wan Yoo. Differential

game based air combat maneuver generation using scoring function matrix. J.

Aeronautical & Space Sci., 17(2):204–213, 2016.

[122] Bilal Piot, Matthieu Geist, and Olivier Pietquin. Bridging the gap between

imitation learning and inverse reinforcement learning. IEEE Trans. Neural

Netw. Learn. Syst., 28(8):1814–1826, 2017.

[123] Sreeraman Rajan, Sichun Wang, Robert Inkol, and Alain Joyal. Efficient

approximations for the arctangent function. IEEE Signal Process. Mag.,

23(3):108–111, 2006.

[124] Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning.

In Proc. Int. Joint Conf. Artif. Intell., pages 2586–2591, San Francisco, CA,

USA, 2007. Morgan Kaufmann Publishers Inc.

[125] A. V. Rao, D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin, and G. T.

Huntington. Algorithm 902: GPOPS, a MATLAB software for solving multiple-

phase optimal control problems using the Gauss pseudospectral method. ACM

Trans. Math. Softw., 37(2):1–39, 2010.

[126] Nathan D. Ratliff, J. Andrew Bagnell, and Martin A. Zinkevich. Maximum

margin planning. In Proc. Int. Conf. Mach. Learn., 2006.

[127] N. Rhinehart and K. Kitani. First-person activity forecasting from video with

online inverse reinforcement learning. IEEE Trans. Pattern Anal. Mach. Intell.,

42(2):304–317, 2018.

[128] N. Rhinehart and K. M. Kitani. Online semantic activity forecasting with darko.

arXiv:1612.07796, 2016.

169

[129] N. Rhinehart and K. M. Kitani. First-person activity forecasting with online

inverse reinforcement learning. In Proc. IEEE Conf. Comput. Vis., pages 3696–

3705, 2017.

[130] Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In

Proceedings of the thirteenth international conference on artificial intelligence

and statistics, pages 661–668, 2010.

[131] Ghananeel Rotithor, Daniel Trombetta, Rushikesh Kamalapurkar, and Ash-

win P. Dani. Reduced order observer for structure from motion using concur-

rent learning. In Proc. IEEE Conf. Decis. Control, pages 6815–6820, December

2019.

[132] Stuart Russell. Learning agents for uncertain environments (extended abstract).

In Proc. Conf. Comput. Learn. Theory, 1998.

[133] Caude Sammut. Behavioral cloning. In Claude Sammut and Geoffrey I. Webb,

editors, Encyclopedia of Machine Learning, pages 93–97. Springer, Boston, MA,

2010.

[134] S. S. Sastry and M. Bodson. Adaptive control: stability, convergence, and ro-

bustness. Prentice-Hall, Upper Saddle River, NJ, 1989.

[135] Stefan Schaal. Learning from demonstration. In M. I. Jordan and T. Petsche,

editors, Advances in Neural Information Processing Systems 9, pages 1040–

1046. MIT Press, Cambridge, MA, 1997.

[136] Stefan Schaal. Is imitation learning the route to humanoid robots? Trends

Cogn. Sci., 3(6):233–242, 1999.

170

[137] Ryan V. Self, Moad Abudia, and Rushikesh Kamalapurkar. Online inverse

reinforcement learning for systems with disturbances. In Proc. Am. Control

Conf., pages 1118–1123, July 2020.

[138] Ryan V. Self, Michael Harlan, and Rushikesh Kamalapurkar. Online inverse

reinforcement learning for nonlinear systems. In Proc. IEEE Conf. Control

Technol. Appl., pages 296–301, Hong Kong, China, August 2019. IEEE.

[139] Ryan V. Self, S. M. Nahid Mahmud, Katrine Hareland, and Rushikesh Kamala-

purkar. Online inverse reinforcement learning with limited data. In Proc. IEEE

Conf. Decis. Control, to appear. See also, arXiv:2008.08972.

[140] Adrian Šošić, Wasiur R. KhudaBukhsh, Abdelhak M. Zoubir, and Heinz

Koeppl. Inverse reinforcement learning in swarm systems. In Proc. Conf. Au-

ton. Agents MultiAgent Syst., pages 1413–1421. International Foundation for

Autonomous Agents and Multiagent Systems, 2017.

[141] R. S. Sutton and A. G. Barto. Reinforcement learning: an introduction. MIT

Press, Cambridge, MA, USA, 1998.

[142] U. Syed, M. Bowling, and R. E. Schapire. Apprenticeship learning using linear

programming. In Proc. Int. Conf. Mach. Learn., pages 1032–1039. ACM, 2008.

[143] Umar Syed and Robert E. Schapire. A game-theoretic approach to apprentice-

ship learning. In J. C. Platt, D. Koller, Y. Singer, and S. T. Roweis, editors,

Advances in Neural Information Processing Systems 20, pages 1449–1456. Cur-

ran Associates, Inc., 2008.

[144] István Szita. Reinforcement learning in games. In Reinforcement Learning,

pages 539–577. Springer, 2012.

171

[145] Alireza Tavakkoli, Richard Kelley, Christopher King, Mircea Nicolescu, Monica

Nicolescu, and George Bebis. A vision-based architecture for intent recognition.

Adv. Vis. Comput., pages 173–182, 2007.

[146] Roberto Togneri and Li Deng. Joint state and parameter estimation for a

target-directed nonlinear dynamic system model. IEEE Trans. Signal Process.,

51(12):3061–3070, 2003.

[147] Gerardo De La Torre, Girish Chowdhary, and Eric N. Johnson. Concurrent

learning adaptive control for linear switched systems. In Proc. Am. Control

Conf., pages 854–859, 2013.

[148] James P. Trevelyan, Sung-Chul Kang, and William R. Hamel. Robotics in

hazardous applications. In Springer handbook of robotics, pages 1101–1126.

Springer, 2008.

[149] K. G. Vamvoudakis and F. L. Lewis. Online actor-critic algorithm to solve

the continuous-time infinite horizon optimal control problem. Automatica,

46(5):878–888, 2010.

[150] Chunguang Wang, Feng Liao, Junwei Han, and Guixian Li. A revised optimal

control pilot model for computer simulation. In Int. Conf. Bioinform. Biomed.

Eng., pages 844–848. IEEE, 2008.

[151] Ding Wang, Derong Liu, Hongliang Li, Biao Luo, and Hongwen Ma. An approx-

imate optimal control approach for robust stabilization of a class of discrete-time

nonlinear systems with uncertainties. IEEE Trans. Syst. Man Cybern. Syst.,

46(5):713–717, 2016.

[152] Rodney D Wierenga. An evaluation of a pilot model based on kalman filtering

and optimal control. IEEE Trans. Man-Mach. Syst., 10(4):108–117, 1969.

172

[153] C. Wu, X. Huang, B. Niu, and X. Xie. Concurrent learning-based global ex-

ponential tracking control of uncertain switched systems with mode-dependent

average dwell time. IEEE Access, 6:39086–39095, 2018.

[154] Markus Wulfmeier, Peter Ondruska, and Ingmar Posner. Maximum entropy

deep inverse reinforcement learning. arXiv:1507.04888, 2015.

[155] Yildiray Yildiz, Adrian Agogino, and Guillaume Brat. Predicting pilot behavior

in medium-scale scenarios using game theory and reinforcement learning. J.

Guid. Control Dynam., 37(4):1335–1343, 2014.

[156] Jiangchuan Zheng, Siyuan Liu, and Lionel Ni. Robust bayesian inverse rein-

forcement learning with sparse behavior noise. In AAAI Conf. Artif. Intell.,

2014.

[157] Zhengyuan Zhou, Michael Bloem, and Nicholas Bambos. Infinite time horizon

maximum causal entropy inverse reinforcement learning. IEEE Trans. Autom.

Control, 63(9):2787–2802, 2018.

[158] Xiaojin Zhu. Machine teaching: an inverse problem to machine learning and

an approach toward optimal education. In AAAI, pages 4083–4087, 2015.

[159] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. Maxi-

mum entropy inverse reinforcement learning. In Proc. AAAI Conf. Artif. Intel.,

pages 1433–1438, 2008.

[160] Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey.

Human behavior modeling with maximum entropy inverse optimal control. In

AAAI Hum. Behav. Model., page 92, 2009.

173

VITA

Ryan Voyd Self

Candidate for the Degree of

Doctor of Philosophy

Dissertation: ON MODEL-BASED ONLINE INVERSE REINFORCEMENT
LEARNING

Major Field: Mechanical and Aerospace Engineering

Biographical:

Education:

Completed the requirements for the Doctor of Philosophy in Mechanical and
Aerospace Engineering at Oklahoma State University, Stillwater, Oklahoma in
December, 2020.

Completed the requirements for the Master of Science in Mechanical and Aerospace
Engineering at Oklahoma State University, Stillwater, Oklahoma in July, 2016.

Completed the requirements for the Bachelor of Science in Mechanical Engi-
neering at Oklahoma State University, Stillwater, Oklahoma in May, 2014.

	INTRODUCTION
	Motivation
	Review of Literature
	Learning from Demonstration

	NOTATION
	STATE AND PARAMETER ESTIMATION
	Introduction
	Nonlinear Systems
	Problem Formulation
	Error System for Estimation
	State Estimator Design
	Parameter Estimator Design
	Purging
	Analysis

	Linear Systems
	Problem Formulation
	Error System for Estimation
	Parameter Estimator Design
	Analysis

	Simulation
	Linear System
	Nonlinear System

	Conclusion

	INVERSE REINFORCEMENT LEARNING IN REAL TIME
	Introduction
	Problem Formulation
	Inverse Reinforcement Learning Utilizing Trajectory Information
	Analysis of the Developed MBIRL Technique
	Simulation
	Output-Feedback IRL for Linear Systems
	Output-Feedback IRL for Linear Systems with a Change in the Reward Function
	Output-Feedback IRL for Nonlinear Systems

	Conclusion

	INVERSE REINFORCEMENT LEARNING WITH INCONSISTENT OBSERVATIONS
	Introduction
	Problem Formulation
	Disturbance Estimation
	Parameter Estimation
	Design
	Analysis

	Inverse Reinforcement Learning
	Inverse Bellman Error
	Formulation of IRL
	Analysis

	Simulation
	Uncertain Agent Dynamics
	Exact Model Knowledge

	Conclusion

	INVERSE REINFORCEMENT LEARNING WITH LIMITED DATA
	Introduction
	Problem Formulation
	Optimal Policy Estimation
	Analysis of the Optimal Policy Estimator
	Inverse Reinforcement Learning Formulation
	Analysis of Inverse Reinforcement Learning
	Simulation
	Feedback-Driven MBIRL

	Conclusion

	OBSERVER BASED INVERSE REINFORCEMENT LEARNING
	Introduction
	Problem formulation
	Inverse Reinforcement Learning
	A memoryless observer
	Observer Gain Design and Stability Analysis

	Inclusion of memory
	Observer Gain Design and Stability Analysis

	Simulations
	Persistently Excited Signal without Noise - Two State System
	Persistently Excited Signal without Noise - Four State System
	Persistently Excited Signal with Noise

	Conclusion

	APPLICATIONS
	Consistency Checking/Validation
	Pilot Modeling
	Introduction
	Literature Review
	Preliminary Results

	Learning (IRL) and Control (RL) in Real-Time

	CONCLUSION AND FUTURE WORK
	Bibliography

