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Abstract—In this paper, we consider a team of robots that
cooperatively transport a payload with an unknown mass in
the presence of unknown drag forces. We develop a concurrent
learning based adaptive control algorithm that estimates the
drag forces and the unknown mass and drives the agents and
the payload to a common desired velocity. The algorithm also
regulates the contact forces on the payload. We prove that
the estimated parameters, including the mass of the payload,
converge to their true values. We validate the effectiveness of the
proposed algorithm using two simulation examples.

Index Terms—Cooperative manipulation, adaptive control,
concurrent learning, multi-robot coordination

I. INTRODUCTION

COOPERATIVE manipulation has been an active area
of research for decades due to the complexity of the

problem involved (see e.g., [1]–[4]). Multiple robots can be
employed together to increase the capability of each individual
robot, which enables better manipulation and control of heav-
ier payloads for various applications. Possible applications of
such multi-robot systems include disaster response, transport,
manufacturing, search and rescue operations, and construction,
among others.

Literature on cooperative manipulation is extensive, rang-
ing from cooperative assembly robots in manufacturing [2],
[5], ground manipulation with mobile robots [6], multi-rotor
based aerial manipulation [1], and marine applications using
autonomous tugboats [7]. Recently, the authors in [8] develop a
framework for control and estimation of an unknown payload
and obstacle avoidance for cooperative aerial manipulation.
The authors in [3] develop a decentralized model reference
adaptive controller to transport a rigid payload in R2 or R3 by
controlling the spatial velocity of the payload. Reference [9]
develop a decentralized passive force control strategy for
collaborative manipulation using micro-aerial vehicles based
on master-slave methodology. The authors in [6] propose a
distributed approach to estimate the internal properties of the
payload (possibly large) using noisy measurements of velocity
and contact forces applied to the payload. Reference [7]
develop an adaptive force/torque control strategy that allows
a swarm of autonomous tugboats to cooperatively move a
heavier object on water to compensate for model uncertainties
associated with the drag coefficient. Cooperative manipulation
can also be formulated using the concept of virtual structure,
where a fixed geometric relationship between the agents and
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the payload is devised to accomplish different maneuvers (see
e.g., [10]).

In this paper, we extend our previous work [11] to address
the problem of force control in cooperative manipulation in
the presence of unknown drag forces and unknown payload
mass in either R2 or R3. Our control objective is that all
the agents and the payload converge to a constant velocity
and the contact force is regulated to a desired set-point.
Since there are multiple unknown parameters, such as the
mass and the drag coefficients, and the desired velocity does
not possess the property of persistency of excitation (PE),
we employ the recently developed concurrent learning (CL)
technique [12], [13] to address the parameter estimation prob-
lem. CL-based algorithms leverage transient data to estimate
unknown parameters with a relaxed excitation condition in
the regressor. Specifically, we develop an adaptive control law
that consists of a CL update law and a stabilizing update
law. The proposed algorithm simultaneously estimates the
coefficients of the drag forces acting on the robots and the
payload and the unknown mass of the payload online. We
establish stability of the closed-loop system using Lyapunov
theory. Using two numerical simulation, we demonstrate that
the developed algorithm achieves the control objective and
parameter convergence without PE.

The contribution of this paper is the development, ap-
plication, stability analysis of a CL based controller for
cooperative manipulation and demonstrating its benefit, i.e.,
parameter convergence without requiring a PE velocity profile.
Parameter convergence typically leads to improved transient
performance [14] and once the parameters are estimated, the
estimates can be used as initial guesses in future executions
of the control task, resulting in further improvements in
transient performance. We consider only translational motion
to illustrate the CL based control design process in its basic
form. Extension to simultaneous attitude and position control,
e.g., [15], will be pursued.

The rest of this paper is organized as follows. We formulate
the cooperative payload transport problem in Section II. In
Section III, we develop a CL based adaptive control law
to achieve the force regulation of the payload and velocity
convergence of the agents. In Section IV, we analyze the
stability of the system using Lyapunov theory. Two numerical
examples are presented in Section V to demonstrate the
performance of our control law. Conclusions and future work
are discussed in Section VI.



II. PROBLEM FORMULATION

A. Dynamic Model

Consider N agents holding a common load as shown in Fig.
1 (N = 3). Each agent is a robot with a rigid link extension.
Agent i is attached to the load at the point ai. Let xi ∈ R2

or R3 be the position of the end-effector of agent i in the
inertial frame and ri ∈ R3 be a fixed vector in the body
frame of the load. Initially, xi(0) = ai(0) = xc(0) + ri, where
xc ∈ R2 or R3 is the position of the center of mass of the
load in the inertial frame. Fig. 1 also shows the coordinate
system defined to derive the kinematics of the system. ΣI is
the world fixed inertial frame and Oc,i is the body-fixed frame
attached to each agent i.

Fig. 1: Three robots transport a common load. Note that ai is
the initial position of agent i in the inertial frame. As the agents
move, the payload is deformed, the new position of the agent
is xi and the deformation is approximated by zi = xi − ai.

We assume that the payload is a rigid object surrounded by
elastic or deformable materials, such as bumpers and springs.
Successful experimental results using manipulators in [2] have
validated this assumption for payloads like a soccer ball. When
there is relative motion between an agent and the payload,
the surrounding material will be deformed. We use a mass
spring model to model the contact force generated due to the
deformation. Specifically, we define ai as

ai(t) := xc(t) + ri, (1)

which is the position of the ith agent if there is no deformation.
Note that ai satisfies

ȧi = ẋc. (2)

We approximate the deformation as

zi = xi − ai, ∀i = 1, · · · , N, (3)

and assume that the contact force fi between agent i and the
payload is given by the gradient of a positive-definite and
strictly convex potential function Pi : R3 → R≥0, i.e.,

fi(zi) = ∇Pi(zi). (4)

We further assume that Pi satisfies the following constraints:

Pi(zi) = 0 ⇐⇒ zi = 0, (5)
∇Pi(zi) = 0 ⇐⇒ zi = 0. (6)

The strict convexity assumption is satisfied by the linear spring
potential model Pi(zi) = bi‖zi‖2, bi > 0, and certain classes
of nonlinear models, such as Pi(zi) = bi‖zi‖4.

The dynamics of the load is given by

Mcẍc =

N∑
i=1

fi(zi)−Mcge3 − Fd, (7)

where Mc is the mass of the load, g is the gravitational
constant, e3 is the unit vector

[
0 0 1

]T
, and Fd is a constant

disturbance acting on the payload. In (7), we approximate the
payload dynamics as a rigid body. This is valid when the
deformations are small. The translational dynamics of the N
agents are given by

miẍi = Fi−fi(zi)−mige3−Ci‖ẋi‖ẋi, ∀i = 1, ..., N, (8)

where mi is the mass of the ith agent, Fi is the force applied
to agent i, fi is the contact force to agent i and Ci ∈ R3×3

is the drag coefficient matrix for agent i. The Ci‖ẋi‖ẋi term
is a standard drag force model [16], where Ci is a diagonal
matrix (see e.g., [16]) given by

diag{Cxi , C
y
i , C

z
i } =

Cxi 0 0
0 Cyi 0
0 0 Czi

 .
B. Control Objective

In our previous work [11] and [17], the disturbances Fd
and Ci||ẋi||ẋi were neglected. In this paper, we assume
that the load has an unknown mass Mc and that unknown
disturbances Fd and Ci‖ẋi‖ẋi act on the payload and agent i,
∀i = 1, . . . , N , respectively. Our control objective is to design
Fi in (8) such that all the agents and the payload converge to
a constant velocity vd and the contact force fi is regulated to
a set-point fdi . Motivated by results in [12], [13], [18]–[20], a
concurrent learning adaptive controller is developed to achieve
the stated objective.

III. CONTROL DESIGN

If the velocity of the payload converges to vd, the sum of
the contact forces fi would satisfy

N∑
i=1

fi = Mcge3 + Fd︸ ︷︷ ︸
Fc

. (9)

Assuming each agent experiences an equal contact force, we
choose the set-points for the individual contact forces as

fdi =
Fc
N
. (10)

Using the estimates M̂c and F̂d for the mass and the constant
drag, respectively, the set-points can be estimated as

f̂di =
1

N
Yf θ̂c, (11)

where θ̂c =
[
F̂ xd , F̂ yd , F̂ zd , M̂c

]T
and Yf =[

I3, ge3
]
, where In denotes the n× n identity matrix.



We propose to design the controller Fi as

Fi = −Ki(ẋi − vd) + f̂di +mige3 + diag{Ĉi}‖ẋi‖ẋi, (12)

where Ki = KT
i > 0. The first term in (12) is the feedback

term to ensure ẋi → vd, and the second term is the feed-
forward term that regulates fi → f̂di . The last two terms are
introduced to cancel the gravity and drag force acting on the
agents. We next design a drag force estimation law for each
agent to drive Ĉi → Ci.

A. Drag Coefficient Estimation for the Agents

We rewrite the dynamics for each agent as:

ẍi =
1

mi
(Fi − fi(zi)) − Yiθi, (13)

where

Yi =

[
diag

{
1

mi
‖ẋi‖ẋi

}]
and θi := [Cxi , C

y
i , C

z
i ]
T
.

We propose the following update law to learn the drag force
coefficient θi

˙̂
θi = −µiΓiΦi +

˙̂
θcli , (14)

where µi > 0, Γi ∈ R3×3 is the learning gain computed using
(20), ˙̂

θcli is based on the concurrent learning update law in
(19) and

Φi = ‖ẋi‖
[
ξ1i ẋ

1
i ξ2i ẋ

2
i ξ3i ẋ

3
i

]T
, (15)

where ξji is the jth element of ξi and ξi := ẋi − vd.
We next briefly explain the construction of the concurrent

learning update law ˙̂
θcli . Interested readers are referred to [21]

for more details.Integrating (13) over the interval [t− τ, t] for
some constant τ ∈ R>0,

xi (t)− xi (t− τ)︸ ︷︷ ︸
Pi(t)

=

∫ t

t−τ
fo (Fi(γ), zi(γ)) dγ︸ ︷︷ ︸

Hi(t)

+

∫ t

t−τ
Yi (γ) dγ︸ ︷︷ ︸
Gi(t)

θi, (16)

where fo(Fi, zi) = 1
mi

(Fi − fi(zi)) .
For ease of exposition, it is assumed that a history stack,

i.e., a set of ordered pairs {(Pk,i, Hk,i, Gk,i)}Mk=1 such that

Pk,i = Hk,i + θTi Gk,i, ∀k ∈ {1, · · · ,M} , (17)

is available a priori. A history stack {(Pk,i, Hk,i, Gk,i)}Mk=1 is
called full rank if there exists a constant ci ∈ R such that

0 < ci < λmin {Gi} , (18)

where the matrix Gi ∈ R3×3 is defined as Gi :=∑M
k=1Gk,iG

T
k,i. To select the data points in Gi, a singu-

lar value maximization algorithm can be used [21]. If the
condition in (18) is not satisfied, i.e., the matrix Gi is not
full rank, then data is added to the history stack Gi until
ci > 0. Once (18) is satisfied, then a data point is added
to Gi only if a predefined amount of time has passed since the

last change and if it increases the minimum singular value of
Gi. Therefore, although Gi can be discontinuous, it is always
piecewise continuous with a lower-bounded dwell time.

The concurrent learning update law is then given by

˙̂
θcli = kiΓi

M∑
k=1

Gk,i

(
Pk,i −Hk,i − θ̂Ti Gk,i

)T
, (19)

where ki ∈ R>0 is a constant adaptation gain, and Γi ∈ R3×3

is the least-squares gain updated using the update law

Γ̇i = βiΓi − kiΓi
1

1 + αi‖Gi‖
GiΓi. (20)

in which αi, βi ∈ R>0. Using arguments similar to [22, Corol-
lary 4.3.2], it can be shown that provided λmin

{
Γ−1
i (0)

}
> 0,

the least squares gain matrix satisfies ΓiI3 ≤ Γi (t) ≤ ΓiI3,
where Γi and Γi are positive constants.

B. Mass and Disturbance Estimation for the Payload

We rewrite the payload dynamics (7) as:
∑N
i=1 f

x
i∑N

i=1 f
y
i∑N

i=1 f
z
i

 =

1 0 0 ẍc,x
0 1 0 ẍc,y
0 0 1 ẍc,z + g


︸ ︷︷ ︸

YC


F xd
F yd
F zd
Mc


︸ ︷︷ ︸
θc

. (21)

We propose the following update for the payload parameters
θ̂c

˙̂
θc = −µcΓc

(
1

N
Y Tf

N∑
i=1

ξi

)
+

˙̂
θclc (22)

where µc > 0, Γc ∈ R4×4 is the learning gain computed using
(25), and ˙̂

θclc is based on the concurrent learning update law
developed in (24). Integrating (21) over the interval [t− τ, t]
for some constant τ ∈ R>0 yields∫ t

t−τ

N∑
i=1

fi(γ) dγ︸ ︷︷ ︸
Pc(t)

=

∫ t

t−τ
Yc (γ) dγ︸ ︷︷ ︸
Gc(t)

θc. (23)

The concurrent learning update law to estimate the unknown
parameters for the payload is then given by

˙̂
θclc = kcΓc

M∑
k=1

Gk,c

(
Pk,c − θ̂Tc Gk,c

)T
, (24)

where kc ∈ R>0 is a constant adaptation gain, Γc ∈ R4×4 is
the least-squares gain updated using the update law

Γ̇c = βcΓc − kcΓc
1

1 + αc‖Gc‖
GcΓc, (25)

in which αc, βc ∈ R>0, and the matrix Gc ∈ R4×4 is defined
as Gc :=

∑M
k=1Gk,cG

T
k,c.



IV. STABILITY ANALYSIS

The dynamics (8) with the proposed control (12) takes the
following form:

miξ̇i = −Kiξi +
1

N
Yf θ̂c − fi − diag(θ̃i)‖ξi + vd‖(ξi + vd),

(26)
where θ̃i = θi− θ̂i. We let ξc = ẋc−vd and obtain the payload
dynamics as

Mcξ̇c =

N∑
i=1

fi −Mcge3 − Fd. (27)

We further let z̃i = zi − zdi , ∀i = 1, · · · , N and θ̃c = θc − θ̂c.
The desired equilibrium of the closed-loop system (26) and
(27) with the update laws (14) and (22) is given by

E∗ =

{(
{ξi}Ni=1 ,

{
θ̃i

}N
i=1

, θ̃c, {z̃i}Ni=1 , ξc

)∣∣∣ξi = 0,

θ̃i = 0, z̃i = 0, ∀i = 1, · · · , N, θ̃c = 0, ξc = 0

}
.

(28)

Theorem 1 below establishes the asymptotic stability of E∗.
Note that convergence to E∗ means that ξi → 0 and ξc → 0,
which indicate the velocities of the payload and the agents
converge to vd. Similarly θ̃i → 0 and θ̃c → 0 indicate the
estimates of the drag coefficients, the payload mass and the
disturbance converge to the true values. Also z̃i → 0 ensures
that fi → fdi which means that the contact forces are regu-
lated. The proof of Theorem 1 relies on the assumption that Gi
and Gc are both full rank to achieve parameter convergence.

Assumption 1: There exists a T ∗ > τ such that over the
time interval [0, T ∗), the trajectories of the agents and the
payload provide enough information for Gi and Gc to become
full rank.
A nonzero velocity in all three directions is required during
the transient response (over [0, T ∗], T ∗ > τ ) for Gi and
Gc to be full rank. The following Lyapunov analysis shows
that even in the absence of motion in all three directions,
the adaptive controller results in Lyapunov stability of the
desired equilibrium point; however, asymptotic stability is only
guaranteed provided T ∗ in Assumption 1 exists.

Theorem 1: The control law (12), with the update laws
(14) and (22), ensures that the desired equilibrium E∗ in (28)
is globally asymptotically stable.

Proof: Consider the energy-motivated positive
definite candidate Lyapunov function [23, Chap 8](
{ξi}Ni=1 , ξc, {z̃i}

N
i=1

)
7→ V1

(
{ξi}Ni=1 , ξc, {z̃i}

N
i=1

)
:

V1 =

N∑
i=1

[
Pi(zi)− Pi(zdi )− (fdi )

T
(zi − zdi )

]
+

1

2

(
N∑
i=1

ξTi miξi + ξTc Mcξc

)
.

(29)

Note that because of the strict convexity of P (zi), the first part
of V1 is positive definite and proper and has a unique global
minimum at zi = zdi [24, Proposition 2].

From (2) and (3), the kinematics of zi is given by

żi = ẋi − ȧi = ẋi − ẋc = ξi − ξc. (30)

The time derivative of V1 yields

V̇1 =

N∑
i=1

(fi − fdi )
T
żi +

N∑
i=1

ξTi miẍi + ξTc Mcẍc. (31)

We rewrite (31) from (7), (8), (9), (30) and (12) as

V̇ =−
N∑
i=1

ξTi Kiξi −
N∑
i=1

ξTi
1

N
Yf θ̃c −

N∑
i=1

ΦTi θ̃i. (32)

Consider another positive definite candidate Lyapunov func-

tion
({

θ̃i

}N
i=1

, θ̃c, t

)
7→ V2

({
θ̃i

}N
i=1

, θ̃c, t

)
:

V2 =
1

2µc
θ̃Tc Γ−1

c θ̃c +

N∑
i=1

1

2µi
θ̃Ti Γ−1

i θ̃i. (33)

Using (14) and (22) together with (19) and (24), we obtain

V̇2 = θ̃Tc

(
1

N
Y Tf

N∑
i=1

ξi

)
− kc

2µc
θ̃Tc Gcθ̃c −

βc
2µc

θ̃Tc Γ−1
c θ̃c

+

N∑
i=1

θ̃Ti Φi −
N∑
i=1

ki
2µi

θ̃Ti Giθ̃i −
N∑
i=1

βi
2µi

θ̃Ti Γ−1
i θ̃i,

(34)
where we have used the identity Γ̇−1 = −Γ−1Γ̇Γ−1 for Γi
and Γc.

Let V̇ = V̇1 + V̇2. Using the bounds for Γi and Γc, we
rewrite V̇ as

V̇ ≤ −
N∑
i=1

ξTi Kiξi −
kc

2µc
θ̃Tc λmin{Gc}θ̃c −

βc
2µc

θ̃Tc Γcθ̃c

−
N∑
i=1

ki
2µi

θ̃Ti λmin{Gi}θ̃i −
N∑
i=1

βi
2µi

θ̃Ti Γiθ̃i ≤ 0.

(35)
During the time interval [0, T ∗), V̇ ≤ −

∑N
i=1 ξ

T
i Kiξi ≤ 0,

which is negative semi-definite. It follows from [25, Theorem
4.8] that ξi, θ̃i, θ̃c, z̃i and ξc are uniformly bounded and the
desired equilibrium E∗ is uniformly stable. Given the states
are bounded, we further conclude that Gi and Gc are bounded.
However, parameter convergence may not be achieved due to
the lack of PE.

During the time interval [T ∗,∞), since Gi and Gc are full
rank, we apply the Barbalat’s Lemma [25, Theorem 8.4] and
conclude that ξi → 0, θ̃i → 0 and θ̃c → 0 as t → ∞, which
further implies that ẋi → vd and θ̂i → θi and θ̂c → θc.

We next prove ξ̇i → 0 using [26, Lemma 1]. From (26),
the time derivative of ξ̇i, whenever it exists, is given by

miξ̈i = −
(
Ki + 2[diag(θ̃i)]‖ξi + vd‖

) 1

mi

(
−Kiξi

+
1

N
Yf θ̂c − fi − diag(θ̃i)‖ξi + vd‖(ξi + vd)

)
+

1

N
Yf

˙̂
θc − ḟi − diag(

˙̃
θi)‖ξi + vd‖(ξi + vd).

(36)

From (36), we note that ξ̈i is bounded. The points of non-
differentiability of ξ̇i coincide with the points of discontinuity
of Gk,i. By introducing a dwell time in the singular value
maximization algorithm, it can be easily ensured that the



points of discontinuity of Gk,i do not accumulate. Direct
application of [26, Lemma 1] then leads to ξ̇i → 0 as t→∞.

Since ξ̇i → 0, (26) indicates that fi → 1
N Yf θ̂c which further

implies that
∑N
i=1 fi → Yfθc = Mcge3 + Fd. Therefore, fi

and zi converge to fdi and zdi , respectively. We can similarly
use [26, Lemma 1] to prove that żi → 0. It then follows from
(30) that ξc → 0 which leads to ẋc → vd.

Remark 1: Without the strict convexity assumption of
P (zi), if ∂2P (zi)

∂z2i

∣∣∣zi=zdi > 0, we can write

P (zi) ≈ P (zdi ) + (fdi )
T

(zi − zdi )

+ (zi − zdi )T
∂2P (zi)

∂z2i

∣∣∣zi=zdi (zi − zdi ),
(37)

which means that Pi(zi)−Pi(zdi )− (fdi )
T

(zi− zdi ) is locally
positive definite. Then the result in Theorem 1 holds locally.

V. NUMERICAL SIMULATIONS

We present a simulation of two quadcopters transporting a
load. We choose mi = 0.75 kg, Mc = 1.5 kg and ri = 15
cm. We used fi = kzi, where k = 2.5 × 104 N/m. We set
r1 = [0, 0.15, 0]T and r2 = [0,−0.15, 0]T . We set vd(t) =

(1 − e−t)
[
5.0 2.0 0

]T
, ki = kc = 0.0033, βi = βc = 1,

µi = µc = 10−6, and Ki = diag(150, 150, 150).
The actual drag force coefficients for the

quadcopters and the disturbance for the payload
are given by Ci =

[
0.2061, 0.2061, 0.2061

]T
and

Fd =
[
6.7315 2.6926 0

]T
N, respectively. Note that

we have chosen Fd = Cc‖vd‖vd, where Cc is given in [27].
The gains were selected based on the values used in [11]

and [12], and were further tuned using trial and error. For
example, increasing Ki reduces initial transient response. The
gains µi and µc are kept small to compensate for potentially
large Γi or Γc values to facilitate better convergence of the
signals. Note that due to the very small scaling factors µi and
µc in the stabilizing control, the learning estimates do not vary
significantly during the first one second.

a) Implementation on a quadcopter: Once Fi is designed
from (12), we can compute the desired thrust T desi and desired
attitude angles θdesi , φdesi , ψdesi required for each quadcopter
from equations (17-21) in [11] and low-level attitude and thrust
tracking controllers (e.g., a PD controller) can be implemented
to track these desire commands for the ith quadcopter.

As shown below in the simulation results, the CL algorithm
uses the first second of time to collect data. During that time
period, the CL update is turned off. As discussed in the proof
of Theorem 1, the system remains stable. Once the CL update
is turned on, the parameters quickly converge.

Fig. 2 shows that the velocities of the agents and the payload
converge to vd. Fig. 3 shows the convergence of the drag
coefficients for quadcopter 1. Fig. 4 demonstrates that all
the estimation errors for the drag forces and the mass of
the payload converge to zero. We observe from Fig. 5 that
the contact forces converge to the desired set points. Due
to the desired motion being strictly in the x − y plane, the
z-component of the velocity only has small nonzero values

during the transient response. As a result, the parameters
converge slower in the z direction.

Fig. 2: Linear velocities for both quadcopter 1 and the payload.
The x and y components of the velocity converges to 5.0 and
2.0 m/s respectively and the z component converge to zero.
Quadcopter 2 has similar velocity convergence.

Fig. 3: Estimation errors for drag force coefficient for quad-
copter 1 in all 3 directions. Quadrotor 2 has similar conver-
gence.

Fig. 4: Estimation errors for drag forces acting on the payload
and the mass of the payload.

Fig. 5: Contact force error acting on the payload for quad-
copter 1.

b) Simulation Example with a time-varying desired ve-
locity: We examine the performance of the controller for a
time-varying vd(t) defined as

vd(t) =


[t, 0.4t, 0]T , t ≤ 5 s,
[5, 2, 0]T , 5 < t ≤ 10 s,
[−t+ 15, − 0.4t+ 6, 0]T , 10 < t ≤ 15 s,
[0, 0, 0]T , t ≥ 15 s.

(38)



Fig. 6 shows that the velocities of the agents and the payload
converge to vd. Fig. 7 demonstrates that all the estimation
errors for the drag forces and the mass of the payload converge
to zero. Shown in Fig. 8, the f̃di ’s have small steady state errors
when vd(t) is time-varying.

Fig. 6: Linear velocities for both quadcopter 1 and the payload
for the time-varying vd(t) in (38). The controller is able to
track vd(t).

Fig. 7: Estimation errors for drag forces acting on the payload
and the mass of the payload for vd(t) defined in (38).

Fig. 8: Contact force error acting on the payload for quad-
copter 1 for vd(t) defined in (38).

VI. CONCLUSION AND FUTURE WORK

In this paper, we address the problem of cooperative manip-
ulation of a payload with an unknown mass in the presence
of unknown drag forces. We develop a CL based adaptive
controller and analyze its stability and convergence properties.
We show that the controller guarantees parameter convergence,
velocity convergence of the payload and the agents, and
contact force regulation. We validate the performance of the
controller using two simulation examples. Future work will
involve experimental validation of the control law designed
in this paper with a group of robots. We also plan to design
force control laws coupled with state estimation and address
time-varying drag forces on the payload.
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