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Abstract— A key challenge in solving the deterministic in-
verse reinforcement learning problem online and in real-
time is the existence of non-unique solutions. Nonuniqueness
necessitates the study of the notion of equivalent solutions
and convergence to such solutions. While offline algorithms
that result in convergence to equivalent solutions have been
developed in the literature, online, real-time techniques that
address nonuniqueness are not available. In this paper, a
regularized history stack observer is developed to generate
solutions that are approximately equivalent. Novel data-richness
conditions are developed to facilitate the analysis and simulation
results are provided to demonstrate the effectiveness of the
developed technique.

I. INTRODUCTION

Inverse reinforcement learning (IRL) is the process of
recovering a cost function of an optimal “expert” whose
trajectories are consistent with a given dynamic model [1].
This “expert” is assumed to be behaving optimally with
respect to some unknown cost function. IRL methods [1]–
[14] are often utilized in teaching an autonomous system
a specific task in an offline environment. While effective,
these implementations are generally offline, computationally
complex, require multiple trajectories or several iterations
over one trajectory, and require a greater amount of data than
is readily available in real-time (online) applications. These
issues are addressed in results such as [15]–[20] where an
online model-based IRL method using a single iteration over
one continuous trajectory is used to learn the cost function
of an expert.

This paper derives inspiration from the history stack
observer (HSO) for IRL developed in [15] under the implicit
assumption that the IRL problem admits a unique solution up
to a scaling factor. Since IRL problems generally admit mul-
tiple linearly independent solutions [21], [22], the uniqueness
assumption is restrictive. Nonuniqueness is studied in results
such as [21], where procedures to determine equivalent
performance index are developed. In [22], methods to create
and identify inverse optimal control problems that admit
multiple solutions are detailed.

The methods recently developed in [23] and [24] guarantee
convergence to the set of possible solutions. However, the
problem is solved in an offline setting as opposed to the
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online and real-time problem under consideration in this
paper. Furthermore, the result in [23] requires knowledge
of the demonstrator’s control penalty and a diagonal state
penalty matrix.

In this paper, the HSO formulation from [15] is extended
to address nonuniqueness of solutions. While the modifica-
tion made to the observer design resembles ridge regres-
sion, the resulting convergence guarantees are surprising and
require novel analysis tools and data richness conditions.
The analysis shows that if the IRL problem has non-unique
solutions, then the developed observer finds an equivalent
solution.

The contributions are as follows:
• This article extends the IRL HSO in [15] to problems

where the observed trajectories are optimal with respect
to multiple cost functions. A learner with access to the
state space model, controller input, and measurement
data reconstructs an equivalent cost function of an
expert.

• A novel data informativity condition is derived for
convergence of the observer.

• A novel analysis approach that utilizes the invariance
principle is used to provide convergence guarantees.

The paper is structured as follows: Section II contains the
problem formulation. Section III contains the modified HSO
and stability analysis. Section IV contains simulation Section
V concludes the paper.

II. PROBLEM FORMULATION

Following [15], the system being controlled by the expert
is assumed to be a linear system of the form

ẋ(t) = Ax+Bu, (1)

with output
y′ = Cx, (2)

where the state is x ∈ Rn and the control input is u ∈ Rm.
The system matrices are given as A ∈ Rn×n and B ∈ Rn×m,
and the output and output matrix are given as y′ ∈ RL

and C ∈ RL×n respectively. The pair (A,B) is assumed
stabilizable and the pairs (A,C) and (A,

√
Q) are assumed

detectable. Stabilizability of (A,B) and detectability of
(A,

√
Q) is needed for the optimal controller to exist and

detectability of (A,C) guarantees the existence of a matrix
L such that A-LC is Hurwitz.

The expert is assumed to be an optimal controller that
optimizes the cost functional

J(x0, u(·)) =
∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (3)



where x(·) is the system trajectory under the control signal
u(·) and starting from the initial condition x0, and Q ∈
Rn×n and R ∈ Rm×m are unknown positive semi-definite
matrices. That is, the policy of the expert is given by
u = KEpx, where KEp ∈ Rm×n is obtained by solving
the algebraic Riccati equation corresponding to the optimal
control problem described by the system in (1) and the cost
functional in (3).

The learning objective is to estimate, online, and in real-
time, the unknown matrices in the cost functional using
knowledge of the system matrices, A, B, and C, the inputs
u(·) and the outputs y(·). Generally, there are multiple cost
functionals that are compatible with any set of input-output
trajectories and system matrices, A, B, and C. As a result,
the true cost functional cannot generally be estimated from
data. Instead, an equivalent solution to the IRL problem is
sought (see Definition 1).

While the HSO in [15] is an effective technique to solve
the IRL problem online and in real-time, the update laws
rely on inversion of a data matrix which can be invertible
only if the IRL problem has a unique solution up to a scaling
factor. As such, the method in [15] cannot be applied to a
large class of IRL problems that admit multiple solutions.
In this paper, the HSO is extended to be applicable to IRL
problems that admit multiple solutions.

III. HISTORY STACK OBSERVER FOR PROBLEMS WITH
NONUNIQUE SOLUTIONS

To facilitate the discussion, this section provides a brief
summary of the HSO developed in [15] and highlights the
key problem that is resolved in this paper.

A. History Stack Observer (HSO)

If the state and control trajectories of the system are
optimal with respect to the cost functional in (3) and the
assumptions in Section II are met, then there exists a matrix
S such that the matrices Q, R, A, and B and the optimal tra-
jectories x(·) and u(·) satisfy the Hamilton-Jacobi-Bellman
(HJB) equation

xT
(
ATS + SA− SBR−1BTS +Q

)
x = 0 (4)

for all x ∈ Rn and the optimal control equation

u(t) = u∗(x(t)) := −R−1BTSx(t) (5)

∀t ∈ R≥0. The expert’s feedback matrix is then given by
KEp = R−1BTS. The HJB equation and the optimal control
equation facilitate the definition of an equivalent solution.

Definition 1. A solution (Q̂, Ŝ, R̂) is called an equivalent
solution of the IRL problem, corresponding to the set of
points {(xi, ui)}Ni=1 ⊂ Rn × Rm, if for all i = 1, · · · , N ,

xT
i

(
ATŜ + ŜA− ŜBR̂−1BTŜ + Q̂

)
xi = 0

and
K̂p := R̂−1BTŜ = KEP .

Remark 1. Note that the idea of an equivalent solution, as
defined above, is slightly weaker than equivalent solutions

defined in results such as [23] and [18]. In results such as [23]
and [18], (Q̂, Ŝ, R̂) is called an equivalent solution if ATŜ+
ŜA − ŜBR̂−1BTŜ + Q̂ = 0. Here, we only require that
xT
i

(
ATŜ + ŜA− ŜBR̂−1BTŜ + Q̂

)
xi = 0 for all points

xi in our dataset, which renders a larger class of solutions
equivalent. We concede that obtaining equivalent solutions
as defined in results such as [23] and [18] is perhaps more
useful in applications. However, when the IRL problem is
solved in a model-free setting, we postulate that equivalent
solutions in the sense of Definition 1 above (rather, a model-
free equivalent thereof, derived using the integral, rather than
the differential form of the HJB equation) is the best that
can be achieved. Proof and/or further examination of this
postulate and extension of the method developed in this paper
to the model-free setting are a part of ongoing work.

Given an estimate x̂ of the state x, a measurement of the
control signal, u, and estimates Q, R, and S of Q̂, R̂, and
Ŝ, respectively, (4) and (5) can be evaluated to develop an
observation error that evaluates to zero if the state estimates
and estimates of the matrices Q, R, and S are correct. In
the following, the observation error is used to improve the
estimates by framing the IRL problem as a state estimation
problem. To facilitate the observer design, equations (4) and
(5) are linearly parameterized as

0 = 2σR2(u
∗(x))W ∗

R +BT (∇xσS(x))
T
W ∗

S , (6)

0 = ∇x

(
(W ∗

S)
TσS(x)

)
(Ax+Bu∗(x))

+ (W ∗
Q)

TσQ(x) + (W ∗
R)

TσR1(u
∗(x)),

(7)

where xTSx = (W ∗
S)

TσS(x), xTQx = (W ∗
Q)

TσQ(x),
uTRu = (W ∗

R)
TσR1(u), and Ru = σR2(u)W

∗
R, and W ∗

S ∈
RPS , W ∗

Q ∈ RPQ , W ∗
R ∈ RM are the ideal weights with

PS , PQ, and M being the number of basis functions in the
respective linear parameterizations.

Motivated by (6), and using the estimates ŴS , ŴQ, and
ŴR for W ∗

S , W ∗
Q, and W ∗

R respectively, a control residual
error is defined as

∆′
u

(
x, u, Ŵ ′

)
:= 2σR2(u)ŴR+BT (∇xσS(x))

T
ŴS . (8)

Similarly, from (7), the inverse Bellman error is defined as

δ′
(
x, u, Ŵ ′

)
:= ∇x

(
(ŴS)

TσS(x)
)
(Ax+Bu)

+ (ŴQ)
TσQ(x) + (ŴR)

TσR1(u).
(9)

Separating out Ŵ ′ =
[
ŴS , ŴQ, ŴR

]T
yields δ′

(
x, u, Ŵ ′

)
∆′

u

(
x, u, Ŵ ′

) =

[
σδ′ (x, u)
σ∆′

u
(x, u)

]ŴS

ŴQ

ŴR

 , (10)

where
σδ′ (x, u) :=[
(Ax+Bu)T(∇xσS(x))

T σQ(x)
T σR1(u)

T
] (11)

and
σ∆′

u
(x, u) :=[

BT(∇xσS(x))
T 0m×PS+PQ

2σR2(u)
]
.

(12)



The scaling ambiguity inherent in linear quadratic optimal
control, which is apparent in the fact that Ŵ ′ = 0 is a
solution of (6) and (7), is resolved, without loss of generality,
by assigning an arbitrary value to one element of Ŵ ′.
Selecting r1 arbitrarily and removing it from (10) yields
scale-aware definitions of the control residual error and the
inverse Bellman error given by δ

(
x, u, Ŵ

)
∆u

(
x, u, Ŵ

):=[ σδ(x, u)
σ∆u

(x, u)

]ŴS

ŴQ

Ŵ−
R

+
 u2

1r1
2u1r1
0m−1×1

 , (13)

where Ŵ−
R denotes ŴR with the first element removed.

Pairing the innovation y − Cx̂ with the inverse bellman
error and control residual error from (13) yields the obser-
vation error 1

Using the observation error, the history stack observer is
designed to be of the form[

˙̂x
˙̂
W

]
=

[
Ax̂+Bu

0PS+PQ+M−1

]
︸ ︷︷ ︸

prediction

+K

([
Cx
Σu

]
−
[
Cx̂

Σ̂Ŵ

])
︸ ︷︷ ︸

innovation

(14)

where the gain K is selected to be

K :=

[
K3 0n×N+Nm

0PS+PQ+M−1×L K4(Σ̂
TΣ̂)−1Σ̂T

]
, (15)

and where Ŵ = [ŴS , ŴQ, Ŵ
−
R ] and

Σ̂ :=


σδ (x̂(t1), u(t1))
σ∆u

(x̂(t1), u(t1))
...

σδ (x̂(tN ), u(tN ))
σ∆u

(x̂(tN ), u(tN ))

 , Σu :=



−u2
1(t1)r1

−2u1(t1)r1
0m−1×1

...
−u2

1(tN )r1
−2u1(tN )r1
0m−1×1


.

Remark 2. Motivated similarly to [15], the feedback gain K
in (15) can be selected as a Luenberger observer or a Kalman
gain.

The matrices Σ̂ ∈ RN(m+1)×PS+PQ+M−1 and
Σu ∈ RN(m+1) are constructed using the dataset
{(x̂(ti), u(ti))}Ni=1, recorded at time instances {t1, . . . tN},
with N ≥ PS + PQ + M − 1. The dataset is referred to
hereafter as a history stack. To ensure convergence of the
weights, updated using (14), to an equivalent solution (see
Theorem 1 below), the history stack is recorded using a
minimum singular value maximization algorithm. At any
time, two separate history stacks, H1 and H2 are maintained.
The history stack H1 is used to compute the matrices Σ̂ and
Σu in (14) and H2 is populated with current state estimates
and control inputs. Both history stacks are initialized as
zero matrices of the appropriate size. As state estimates
become available, they are selectively added, along with the
corresponding control input, to H2. A new state estimate
is selected to replace an existing state estimate in H2 if

1See [15] for further details.

the replacement decreases the condition number of (Σ̂TΣ̂).
Once the data in H2 are such that the condition number
of (Σ̂TΣ̂) is lower than a user-selected threshold, and a
predetermined amount of time has passed since the last
update of H1, we set H1 = H2 and purge H2 by setting it
back to a zero matrix. The purging process ensures that old
and possibly erroneous state estimates are removed from
H1.

The IRL method developed in this paper requires that
the expert’s behavior is optimal, which implies that u(t) =
KEPx(t) for all t. Since true values of the state are not
accessible, in general, for the data points stored in the
history stack H1, KEP x̂(ti) − u(ti) ̸= 0, which results in
inaccuracy in the estimation of an equivalent solution. Since
the state estimates converge to the true state exponentially,
the purging process described above ensures that the discrep-
ancy maxi=1,··· ,N ∥KEP x̂(ti)− u(ti)∥ is monotonically de-
creasing in time, and so is the resulting inaccuracy in the
estimation of an equivalent solution.

Generally, given a system model with output (or state) and
control trajectories, there are multiple sets of Q, R, and S
matrices that all solve the IRL problem [21], [22]. As such,
the IRL problem, as posed in [15], is not well-defined. In fact,
the stability theorem in [15] relies on the assumption that Σ̂
is full rank. Due to purging and improved state estimates, Σ
being full rank implies Σ̂ is eventually full rank, and as a
result, ΣW = Σu has a unique solution. Since uniqueness
does not generally hold [22], the HSO must be modified
to address the non-unique case. In this paper, the full rank
condition, and subsequently, the uniqueness assumption is
relaxed using an update rule motivated by ridge [25] and
lasso [26] regression.

B. Regularized History Stack Observer for Non-Unique So-
lutions

To avoid the uniqueness assumption, and subsequently, to
allow for a rank-deficient Σ̂, the gain matrix of the HSO
is modified in this paper to include a regularization term to
yield

K :=

[
K3 0n×N+Nm

0PS+PQ+M−1×L K4(Σ̂
TΣ̂ + ϵI)−1Σ̂T

]
, (16)

where ϵ ≥ 0 is a small constant selected by the user to ensure
invertibility of Σ̂TΣ̂ + ϵI . Instead of using the condition
number of (Σ̂TΣ̂) to select data points for storage in the
history stack, the condition number of (Σ̂TΣ̂ + ϵI) is used.
In addition, since Σ̂ cannot be full rank, we need a different
way to detect whether the recorded data are sufficient for
estimation of an equivalent solution.

The following theorems establish that under a novel in-
formativity condition on the recorded data, the modification
above leads to an equivalent solution when the IRL problem
admits multiple solutions, and the correct solution when the
IRL problem admits a unique solution up to a scaling factor.
While the modification itself is relatively minor, the above
somewhat surprising results are the key contributions of this
work.



To facilitate the analysis, let ∆(t) := Σu − Σ̂Ŵ (t). Using
the update law in (14), the time-derivative of ∆ can be
expressed as

∆̇ = −Σ̂K4(Σ̂
TΣ̂ + ϵI)−1Σ̂T∆ (17)

The analysis requires a data informativity condition summa-
rized in Definition 2 below.

Definition 2. The signal (x̂, u) is finitely informative (FI)
if there exists a time instance T > 0 such that for some
{t1, t2, . . . , tN} ⊂ [0, T ],

span
(
x̂(ti)

N
i=1

)
= Rn, and Σu ∈ (Null(Σ̂T))⊥. (18)

The above informativity condition results in a useful
relationship between the range space of Σ̂ and the set of
all feasible ∆.

Lemma 1. If Σ̂ and Σu satisfy (17), then

Ω∆ ∩Null(Σ̂T) = {0}, (19)

where

Ω∆ :=
{
∆ ∈ RN(m+1) | ∆ = Σu − Σ̂y,

for some y ∈ RPS+PQ+M−1
}
. (20)

Proof. If ∆ ∈ Null (Σ̂T). then ∆ is given by some linear
combination of the basis for the null space of Σ̂T. Let
ΣNull be a matrix whose columns are the basis vectors of
the null space of Σ̂T. Then, ∆ ∈ Null (Σ̂T) implies that
∆ = ΣNullWNull for some vector WNull whose elements
are the coefficients in the linear combination of the basis
of the null space of Σ̂T that makes up ∆. This ∆ has to
also be equal to Σu − Σ̂Ŵ for some Ŵ . So, there exist
weights WNull and Ŵ such that ΣNullWNull = Σu − Σ̂Ŵ .
Rearranging the terms, there exist weights WNull and Ŵ

such that
[
ΣNull Σ̂

] [WNull

Ŵ

]
= Σu. That is, Σu can be

written as a linear combination of the columns of Σ̂ and the
columns of ΣNull . However, since Rank(Σ̂) = Null (Σ̂T)

⊥
,

every linear combination of columns of Σ̂ is orthogonal to
every linear combination of the columns of ΣNull , we know
that Σu has two orthogonal components, one that is contained
in the range space of Σ̂ and another that is contained in the
null space of Σ̂T. If our data are such that Σu ∈ Null (Σ̂T )

⊥
,

then the component that is contained in the null space of Σ̂T

is zero. That is, WNull = 0, which implies that ∆ = 0.

Remark 3. Note that if the IRL problem has a unique solution
up to a scaling factor, then the condition in Definition 2 is
trivially met whenever N ≥ PS +PQ+M − 1 and Σ̂ is full
rank.

Theorem 1 below shows that provided the weights Ŵ are
updated using the update law in (14), and the trajectories are
finitely informative as per Definition 2, then ∆ converges to
the origin.

Theorem 1. If Σu ∈ Null(Σ̂T)⊥ and ϵ ≥ 0 is selected to
ensure invertibility of Σ̂TΣ̂ + ϵI , then the solutions of (17)
with the gain K in (16) satisfy limt→∞ ∆(t) = {0}.

Proof. Let D = RN(m+1) and consider the positive definite
and radially unbounded candidate Lyapunov function

V (∆) =
1

2
∆T∆. (21)

The orbital derivative of V along the solutions of (17) is
given by

V̇ (∆) = −∆TΣ̂K4(Σ̂
TΣ̂ + ϵI)−1Σ̂T∆. (22)

For any c > 0, the sublevel set Ωc := {∆ ∈ D|V (∆) ≤ c}
is compact and positively invariant and the set in (20) can
be shown to be closed and positively invariant. As such, the
intersection Ω = Ωc∩Ω∆ is compact and positively invariant.
By the invariance principle [27, Th 4.4], all trajectories of ∆
in (17) starting in Ω converge to the largest invariant subset of
{∆ ∈ Ω | V̇ (∆) = 0}. The set {∆ ∈ Ω|V̇ (∆) = 0}, is equal
to Null(Σ̂T) ∩ Ω as Σ̂T∆ = 0 only when ∆ ∈ Null(Σ̂T).
Furthermore, from Lemma 1, provided Σu ∈ (Null(Σ̂T))⊥,
the only ∆ that can be in Σ̂T ∩ Ω∆ is ∆ = 0. Since
the singleton {0} is positively invariant with respect to the
dynamics in (17), it is also the largest invariant subset of
{∆ ∈ Ω|V̇ (∆) = 0}. As a result, by the invariance principle,
all trajectories starting in Ω converge to the origin. Since V
is radially unbounded, Ωc can be selected to be large enough
to include any initial condition in Ω∆. Thus, all trajectories
starting in Ω∆ converge to the origin.

The theorem above establishes the convergence of ∆ to
the origin for a given fixed Σ̂ and Σu. The following lemma
shows that if the state estimates in Σ̂ are exact, then ∆ = 0
generates an equivalent solution.

Lemma 2. If full state information is available, i.e., x̂ = x
and as a result, Σ̂ = Σ, if ∆ = Σu − ΣŴ = 0, and if
{xi}Ni=1 spans Rn, then the matrices Q̂, Ŝ, and R̂, extracted
from Ŵ , constitute an equivalent solution of the IRL problem
corresponding to to the history stack H1.

Proof. The fact that if ∆ = 0 then
xT
i

(
ATŜ + ŜA− ŜBR̂−1BTŜ + Q̂

)
xi = 0 holds for all

points in H1 is immediate from the construction of ∆. To
prove equivalence, the equality R̂−1BTŜ = KEP must be
established. Indeed, if {xi}Ni=1 spans Rn there is a unique
matrix K that satisfies ui = Kxi for all i = 1, . . . , N .
Now letting U = [u1, . . . , uN ] and X = [x1, . . . , xN ], this
unique matrix K = UXT(XXT)−1. It is also known that the
observed data satisfies ui = KEPxi for all i = 1, . . . , N ,
because the expert is optimal. Since ∆ = 0, the observed
data satisfies ui = R̂−1BTŜxi for all i = 1, . . . , N . Since
there is only one matrix K that satisfies ui = Kxi for
all i = 1, . . . , N , all three of the matrices above must be
equal, i.e., K = KEP = R̂−1BTŜ. Therefore, (Ŝ, R̂,
Q̂) constitutes an equivalent solution of the IRL problem
corresponding to the history stack H1.
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Fig. 1. This plot contains the norm of the error ∆ as it is measured
throughout the simulation.
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Fig. 2. The feedback matrix of the learner is constructed using the estimated
weight trajectories and compared to the expert by the Frobenius norm of
the difference.

Theorem 1 and Lemma 2 can be used to obtain the final
result summarized into the corollary below.

Corollary 1. Given ϖ > 0, provided t1 in Defini-
tion 2 is sufficiently large, and the history stack is
recorded using the purging algorithm described in [15], then∥∥∥R̂−1BTŜ −KEp

∥∥∥ ≤ ϖ. 2

Proof. Using similar arguments as the proof of Lemma 2,
if {x̂(ti)}Ni=1 spans Rn then R̂−1BTŜ = UX̂T(X̂X̂T)−1,
where X̂ = [x̂(t1), . . . , x̂(tN )] and if {x(ti)}Ni=1 spans Rn

then KEP = UXT(XXT)−1, where X = [x(t1), . . . , x(tN )].
The purging process, along with exponential convergence of
x̂ to x, ensure that the error between X and X̂ decreases with
increasing t1. As a result, the corollary is established.

IV. SIMULATIONS

In this section, the efficacy of the developed method is
demonstrated using an academic example where the IRL
problem is known to admit multiple solutions. Each simula-
tion shows the convergence of ∆ to zero and of the feedback
matrix Kp to the expert’s feedback matrix.

A. Academic example

In this section, we construct an academic example that
ensures nonuniqueness of IRL solutions using the procedure

2∥·∥ defines the euclidean norm for a vector when applied to a vector
and the Frobenius norm when applied to a matrix.
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Fig. 3. The trajectories of the Q and R weight estimates are compared to
the expert’s Q and R values by taking the norm of the difference.

developed in [22]. The system dynamics are described by

ẋ = diag([3, 5, 7])x+ diag([11, 13, 17])u

y = diag([1, 1, 1])x
(23)

where the expert implements a feedback policy that mini-
mizes the cost function in (3) with

Q = diag(1, 4, 3), and
R = diag(1, 1.75, 4).

(24)

In guaranteeing the invertibility of Σ̂, ϵ = 0.001. To en-
sure that the history stack satisfies the condition in (18),
we generate an excitation signal comprised of a sum of
30 sinusoids with unit magnitude and randomly selected
frequencies and phases ranging from 0.001Hz to 0.1Hz
and 0rad to πrad, respectively. This excitation signal is
added into the learner system’s input (14) and into the
expert system’s input (1). Data are added to the history stack
every 0.08 seconds and is purged when full if the condition
number of Σ̂TΣ̂ + ϵI < 1 × 108, or 2 seconds since the
last purged is reached. A Luenberger observer is utilized for
state estimation by selecting the gain K3 to place the poles
of (A − K3C) at p1 = −0.1, p2 = −1.5 and p3 = −2
using the MATLAB “place” command. As predicted by
Theorem 1, Fig. 1 demonstrates ∆ convergence to zero and
as indicated by Lemma 2, the feedback matrix corresponding
to the estimated weights, Ŵ , converges to a neighborhood of
the feedback matrix of the expert, as demonstrated in Fig. 2.
Finally, Fig. 3 indicates that the cost functional converges to a
functional that is different from that of the expert, confirming
the existence of multiple equivalent solutions.

B. Discussion

The simulation requires some tuning effort, where the
tuning gains and excitation signals are chosen based on best
simulation results. The two primary routes of tuning involve
increasing ϵ in small increments, which can be inversely
proportional to the time between adding data to the history
stack. Increasing time between data allows for more accurate
convergence but increases simulation time. Simulation time
for the academic example is less than 5 seconds.



V. CONCLUSION

In this paper, a a novel IRL framework is developed for
estimation of a cost function, in IRL problems with multiple
solutions, through a modification of the HSO introduced in
[15]. This modification, while simple, requires an exhaus-
tive and rigorous proof to demonstrate convergence to an
equivalent solution when multiple solutions are present. As
mentioned previously, most offline IRL methods have dis-
advantages of being computationally complex and requiring
large amounts of data. These issues are resolved though the
HSO formulation which is designed to be implemented in an
online setting. Future work will involve a deeper theoretical
analysis and experimental validation of the developed meth-
ods in real-world problems such as learning a quadcopter
pilot’s cost function through state and input measurements.
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