
1

Pilot Performance modeling via observer-based
inverse reinforcement learning

Jared Town, Zachary Morrison, and Rushikesh Kamalapurkar

Abstract—The focus of this paper is behavior modeling for
pilots of unmanned aerial systems. The pilot is assumed to make
decisions that optimize an unknown cost functional. The cost
functional is estimated from observed trajectories using a novel
inverse reinforcement learning (IRL) framework. The resulting
IRL problem often admits multiple solutions. In this paper, a
recently developed novel IRL observer is adapted to the pilot
behavior modeling problem. The observer is shown to converge to
one of the equivalent solutions of the corresponding IRL problem.
The developed technique is implemented on a quadcopter where
the pilot is a surrogate linear quadratic controller that generates
velocity commands for set-point regulation of the quadcopter.
Experimental results demonstrate the ability of the developed
method to learn equivalent cost functionals.

Index Terms—Inverse Reinforcement Learning, Inverse Opti-
mal Control, Pilot Behavior Modeling

I. INTRODUCTION

Given the widespread use of small unmanned aerial sys-
tems (sUAS), quadcopters in particular, the need to manage
flights efficiently at low altitudes arises as that airspace is
cluttered and turbulent. Cooperative piloting is necessary for
the guidance of these quadcopters to prevent air-to-air and air-
to-obstacle collisions. Piloting a small quadcopter in a windy
and obstacle-laden environment is a difficult task for pilots to
manage without assistance. We envision a pilot-assist system
that recommends paths to the pilots that are personalized
to suit their preferences and skill levels. To develop such
a system, pilot performance is modeled in terms of a cost
functional that is learned by analyzing the control inputs of
the pilot. The learned cost functional can then be paired with
existing optimal control techniques to generate personalized
path/trajectory recommendations. Such optimization is not
discussed in this paper, this study exclusively focuses on
the cost functional estimation component of the envisoned
recommendation system.

Taking inspiration from [1]–[3], we hypothesize that the
skill level and the preferences of a quadcopter pilot are
encoded in a cost functional. We then model the pilot-aircraft
system as an optimal control problem and aim to recover the
said cost functional using flight logs that record the commands
of the pilot and the resulting trajectories of the quadcopter.

The authors are with the School of Mechanical and Aerospace Engineering,
Oklahoma State University, Stillwater, OK, USA. {jared.town,
zachmor, rushikesh.kamalapurkar}@okstate.edu.
This research was supported, in part, by the National Science Foundation
(NSF) under award numbers 1925147 and 2027999 and the Air Force
Office of Scientific Research under award number FA9550-20-1-0127. Any
opinions, findings, conclusions, or recommendations detailed in this article
are those of the author(s), and do not necessarily reflect the views of the
sponsoring agencies.

Inverse reinforcement learning (IRL) is a popular tool for
obtaining the cost functional of an expert by measuring their
input commands and the resulting behavior of the controlled
system. IRL methods such as [4]–[17] are developed under the
assumption that the decisions of the said expert are optimal
or near-optimal with respect to the unknown cost functional.
A general characteristic of such methods is that they require
multiple trajectories and are computationally complex, making
them unsuitable for online, real-time implementation. To ad-
dress the IRL problem in a real-time and online setting, meth-
ods such as [18]–[21] have been developed. These methods are
typically model-based and use a single continuous trajectory
to learn the cost functional of an expert. A notable result is
obtained in [22], where an online and model-free approach
is developed that utilizes a neural network to solve the IRL
problem in the presence of adversarial . However, this method
only identifies the state penalty matrix and is unable to identify
the control penalty matrix.

This paper is focused on the development of an IRL formu-
lation of the pilot modeling problem and an adaptation of the
of the regularized history stack observer (RHSO) developed
in [23] to solve the resulting IRL problem. It is shown in [24]
that IRL problems that have a product structure have multiple
linearly independent solutions. Since the linearized model of
a quadcopter decouples lateral and longitudinal dynamics, it
has a product structure. As a result, implementation of IRL to
estimate cost functionals of quadcopter pilots requires methods
such as [23] that are suited for IRL problems with multiple
linearly independent solutions.

The method developed in [23] is an online IRL method that
is capable of identifying the true cost functional of the pilot,
up to a scaling factor, if the IRL problem has a unique (up
to a scaling factor) solution, and an equivalent solution (that
is, a cost functional that results in the same feedback matrix
as the expert), if the IRL problem admits multiple linearly
independent solutions. The key contribution of this paper is a
reformulation of the pilot behavior modeling problem in the
framework of IRL, where the control inputs of the pilot are
velocity commands that are executed by an onboard autopilot.
The reformulation allows for the use of the IRL method
developed in [23], with minimal modification, to estimate a
cost functional that models the performance of the pilot.

II. INVERSE REINFORCEMENT LEARNING

This section describes the IRL algorithm used to estimate
a cost functional that is equivalent to the cost functional of
the pilot. The algorithm is similar to [23], with minor modifi-
cations to account for availability of full state measurements.



2

The pilot-controlled system is assumed to be a linear time-
invariant system of the form

Ẋ(t) = AX +BU, (1)

where X ∈ R12 is the state, U ∈ R4 is the control input,
A ∈ R12×12 is the system matrix and B ∈ R12×4 is the
control effectiveness matrix. Motivated by [1]–[3], the pilot is
assumed to employ an optimal controller that minimizes the
cost functional

J(X0, U(·)) =
∫ ∞

0

(
X(t)⊤QX(t) + U(t)⊤RU(t)

)
dt, (2)

where X(·) denotes the system trajectory under the control
signal U(·), starting from the initial condition X0, Q ∈ R12×12

is an unknown positive semidefinite matrix, and R ∈ R4×4 is
an unknown positive definite matrix.

Assumption 1. The pair (A,B) is stabilizable and (A,
√
Q)

is detectable.

Stabilizability of (A,B) and detectability of (A,
√
Q) is

needed for the optimal controller to exist. Linearized models
of quadrotors, including the one used in the experiments
presented in Section IV, are stabilizable. In particular, the
Popov–Belevitch–Hautus (PBH) test in Theorem 14.3 of [25],
can be used to show that the pilot model developed in Section
III satisfies the stabilizability condition in Assumption 1. In
the experiments, the pilot is assumed to penalize translational
position errors and heading errors, and the resulting pair
(A,
√
Q) is shown to satisfy the detectability condition.

The algebraic Riccati equation (ARE),

A⊤S + SA− SBR−1B⊤S +Q = 0, (3)

of the optimal control problem described by (1) and (2) can
be solved to yield the optimal policy of the pilot, given by
u = −KEPx, where KEP = R−1B⊤S. The objective is to
estimate the unknown matrices Q and R online and in real-
time using the known system matrices, A and B, and measure-
ments of X and U . The IRL problem, as formulated above, is
ill-posed in general. That is, given A, B, and measurements of
X and U , there can be infinitely many linearly independent
triplets (Q,R, S), with respect to which the measured state
and control signals are optimal. In particular, the linear system
in the pilot modeling problem (see (24)) is comprised of two
decoupled systems. If the penalty matrices Q and R are also
decoupled, for example, diagonal, then the corresponding IRL
problem can be shown to admit multiple linearly independent
solutions [24].

To formulate a well-posed problem, an equivalent solution
is sought according to the following definition.

Definition 1. ([23]) Given ϖ ≥ 0, a triplet (Q̂, Ŝ, R̂) is called
an ϖ−equivalent solution of the IRL problem if∥∥∥A⊤Ŝ + ŜA− ŜBR̂−1B⊤Ŝ + Q̂

∥∥∥ ≤ ϖ,
and optimization of the performance index J , with Q = Q̂
and R = R̂, results in a feedback matrix, K̂p := R̂−1B⊤Ŝ,
that satisfies ∥∥∥K̂p −KEP

∥∥∥ ≤ ϖ.

A. The Regularized History Stack Observer

The following development is a special case of the RHSO
developed in [23], where the system state is measurable. In the
experiment, state estimates generated by an onboard Kalman
filter are utilized.

If Assumption 1 is met and if the state and control trajecto-
ries, X(·) and U(·) respectively, of the quadcopter, are optimal
with respect to the cost functional in (2), then there exists a
matrix S such that the matrices Q, R, A, B, and S satisfy the
Hamilton-Jacobi-Bellman (HJB) equation

X⊤(t)
(
A⊤S + SA− SBR−1B⊤S +Q

)
X(t) = 0, (4)

and the optimal control equation

U(t) = −R−1B⊤SX(t), (5)

for all t ∈ R≥0.
Given measurements of the the state, X , and control signal,

U , and estimates Q̂, R̂, and Ŝ of Q, R, and S, respectively,
(4) and (5) can be used to develop an equivalence metric that
evaluates to zero if the estimates constitute an equivalent so-
lution. Furthermore, if a collection of measurements of X and
U meet the data-sufficiency conditions outlined in Definition
2, then satisfaction of (4) and (5) for all measurements can be
shown to result in a ϖ−equivalent solution with ϖ = 0 (see
the proof of Corollary 1).

Since scaling of a cost functional results in another equiv-
alent cost functional, equivalent cost functionals can only be
identified up to a scaling factor. To fix the scale, the (1,1)
element of R̂, denoted by r1, is selected to be equal to
one. In particular, the RHSO generates an equivalent solution
(Q̂, R̂, Ŝ) of the IRL problem using

˙̂
W = KWΣ⊤

(
Σu − ΣŴ

)
, (6)

where KW is a symmetric positive definite learning gain
matrix. To facilitate a comparison with the HSO in [18], we
select KW = (Σ⊤Σ+ ϵI)−1. When ϵ = 0, the RHSO reduces

to the HSO. In (6), Ŵ =
[
Ŵ⊤
S , Ŵ⊤

Q , (Ŵ−
R )⊤

]⊤
, where

ŴS ∈ R78, ŴQ ∈ R78, and ŴR ∈ R10 are weights that
satisfy (ŴS)

⊤σS(X) = X⊤ŜX , (ŴQ)
⊤σQ(X) = X⊤Q̂X ,

(ŴR)
⊤σR1(U) = U⊤R̂U , and σR2(U)ŴR = R̂U , respec-

tively, and the vector Ŵ−
R is a copy of ŴR with the first

element, r1, removed. The basis functions are given by

σS(X) = σQ(X) := [X2
1 , 2X1X2, 2X1X3, . . . , 2X1X12,

X2
2 , 2X2X3, 2X2X4, . . . , X

2
11, . . . , 2X11X12, X

2
12]

⊤, (7)

σR1(U) := [U2
1 , 2U1U2, 2U1U3, 2U1U4, U

2
2 , 2U2U3,

2U2U4, U
2
3 , 2U3U4, U

2
4 ]

⊤, (8)

and

σR2(U) =


U⊤ 01×3 01×2 0

U1e2,4
(
U⊤)(−1)

01×2 0

U1e3,4 U2e2,3
(
U⊤)(−2)

0
U1e4,4 U2e3,3 U3e2,2 U4

 , (9)



3

where U (−j) denotes the vector U with the first j elements
removed, and ei,j denotes a row vector of size j, with a one
in the i−th position and zeros everywhere else. The matrices
Σ ∈ R165N×165 and Σu ∈ R165N , referred to collectively as
the history stack, are constructed as

Σ :=


σδ (X(t1), U(t1))
σ∆u

(X(t1), U(t1))
...

σδ (X(tN ), U(tN ))
σ∆u (X(tN ), U(tN ))

 , Σu :=



−U2
1 (t1)r1

−2U1(t1)r1
0m−1×1

...
−U2

1 (tN )r1
−2U1(tN )r1
0m−1×1


,

where N is the number of time instances selected for storage
and the functions σδ and σ∆u

are given by

σδ (X,U) =[
(AX +BU)⊤(∇XσS(X))⊤ (σQ(X))⊤ (σ−

R1(U))⊤
]
(10)

and

σ∆u
(X,U) =

[
B⊤(∇xσS(X))⊤ 04×78 2σ−

R2(U)
]
,
(11)

where σ−
R2 is a copy of σR2 with the first column removed

and σ−
R1 is a copy of σR1 with the first element removed.

Corollary 1 below, which guarantees convergence of (6) to
an equivalent solution, relies on the error metric ∆ := Σu −
ΣŴ and its time derivative

∆̇ = −ΣKWΣ⊤∆, (12)

along with the following data informativity condition adopted
from [23].

Definition 2. The signal (X,U) is called finitely informative
(FI) if there exists a time instance T > 0 such that for some
{t1, t2, . . . , tN} ⊂ [0, T ],

Span {X(ti)}Ni=1 = Rn,

Span
{
X(ti)X(ti)

⊤}N
i=1

= {Z ∈ Rn×n|Z = Z⊤}, and

Σu ∈ Range(Σ). (13)

In addition, for a given ϵ > 0, if min{eig(χχ⊤)} > ϵ
and min{eig(ZZ⊤)} > ϵ, where χ := [X(t1), . . . , X(tN )],
Z := [uvec(X(t1)X

⊤(t1)), . . . ,uvec(X(tN )X⊤(tN ))] ∈
R

n(n+1)
2 ×N , and uvec(X(ti)X

⊤(ti)) ∈ R
n(n+1)

2 denotes vec-
torization of the upper triangular elements of the symmetric
matrix X(ti)X

⊤(ti) ∈ Rn×n, then (X,U) is called ϵ−finitely
informative (FI).

To implement the developed observer, a method to select the
time instances t1, . . . , tN is needed. The convergence result
summarized in Corollary 1 relies on the existence of a time
instance T ≥ 0 such that the three conditions in Definition 2
are met. As such, any data selection algorithm that ensures the
satisfaction of those three conditions can be used to implement
the developed observer. In this paper, a data selection method
that minimizes the condition number of KW = Σ⊤Σ + ϵI is

utilized. Minimization of the condition number of Σ⊤Σ + ϵI
improves the accuracy of matrix inversion in the update law
(6) and improves the convergence rate of ∆ in (12).

The matrices Σu and Σ contained in the history stack are
recorded at specific time instances according to the following
procedure. Both matrices are initialized as zero matrices. Data
are then added to the matrices at a user-selected sampling
interval until they are filled. Then, a condition number mini-
mization algorithm similar to [26] is used to replace old data
with new data, where replacement is carried out only if the
post-replacement condition number of Σ⊤Σ+ϵI is lower than
its pre-replacement condition number. Due to the replacement
procedure, the time instances ti corresponding to data stored
in the history stack are piecewise constant functions of time.

Corollary 1. If the state and control signals X(·) and U(·)
are ϵ−finitely informative, for some ϵ > 0 and if there exist
a constant 0 ≤ R < ∞ such that the matrix R̂(t), extracted
from Ŵ (t), is invertible with ∥R̂−1(t)∥ ≤ R for all t ≥ T ,
where T is the time instance introduced in Definition 2, then
the matrices Q̂, Ŝ, and R̂, extracted from Ŵ , converge to a
0−equivalent solution of the IRL problem.

Proof. The proof, included here for completeness, is a slight
modification of the proof of Theorem 7 and Theorem 10 of
[23]. Applying Theorem 7 in [23] with K4 = I it can be
concluded that along the solutions of (6), limt→∞ ∆(t) = 0.
Note that the error metric ∆ can be expressed using the basis
functions in (9), (10), and (11) as

∆ =


σ′
δ (X(t1(t)), U(t1(t)))

σ′
∆u

(X(t1(t)), U(t1(t)))
...

σ′
δ (X(tN (t)), U(tN (t)))

σ′
∆u

(X(tN (t)), U(tN (t)))

 Ŵ ′,

where Ŵ ′ :=
[
Ŵ⊤
S Ŵ⊤

Q Ŵ⊤
R

]⊤
,

σ′
∆u

(X,U) =
[
B⊤ (∇xσS (X))

⊤
04×78 2σR2(U)

]
,

and

σ′
δ(X,U) =[

(AX +BU)⊤ (∇XσS (X))
⊤

(σQ (X))
⊤

(σR1 (U))
⊤
]
.

Using the fact that σ′
∆u

(X(ti(t)), U(ti(t))) Ŵ
′(t) =

R̂(t)K̃P (t)X(ti(t)), where K̃P (t) := K̂p(t) − KEP , it can
be concluded that∥∥∥K̃P (t)X(ti(t))

∥∥∥ ≤∥∥∥R̂−1(t)σ′
∆u

(X(ti(t)), U(ti(t))) Ŵ
′(t)

∥∥∥ . (14)

Given any ϖ > 0, if min{eig(χ(t)χ(t)⊤)} > ϵ then there
exists c > 0, independent of t, such that

∥∥∥K̃P (t)X(ti(t))
∥∥∥ ≤

ϖ
c , for all i = 1, . . . , N , implies

∥∥∥K̃P (t)
∥∥∥ ≤ ϖ. Select T large

enough such that for all t ≥ T , ∥∆(t)∥ ≤ ϖ
2cR . Then, for all

i = 1, . . . , N ,
∥∥∥σ′

∆u
(X(ti(t)), U(ti(t))) Ŵ

′(t)
∥∥∥ ≤ ϖ

cR , which



4

Pilot

xref , yref ,
zref , ψref

Velocity
Control

Attitude
Control

Dynamics IRL
RHSO

U

ϕd,θd,ψ̇d

F

τ1,τ2,τ3

X

Fig. 1. A block diagram that summarizes the developed RHSO framework
for pilot behavior modeling.

implies
∥∥∥R̂−1(t)σ′

∆u
(X(ti(t)), U(ti(t))) Ŵ

′(t)
∥∥∥ ≤ ϖ

2c . From

(14), it follows that
∥∥∥K̃P (t)X(ti(t))

∥∥∥ ≤ ϖ
c , and as a result,∥∥∥K̃P (t)

∥∥∥ ≤ ϖ. Since ϖ was arbitrary, limt→∞ K̂p(t) =

KEP .
The function σ′

δ can be expressed as

σ′
δ (X(ti(t)), U(ti(t))) Ŵ

′(t) =

X⊤(ti(t))M̂X(ti(t)) + g
(
K̂p(t),KEP

)
, (15)

where the function g satisfies1 g = O
(∥∥∥K̃P (t)

∥∥∥) and

M̂(t)=
(
A⊤Ŝ(t) + Ŝ(t)A− Ŝ(t)BR̂−1(t)B⊤Ŝ(t) + Q̂(t)

)
.

Using the triangle inequality,∣∣∣X⊤(ti(t))M̂(t)X(ti(t))
∣∣∣ ≤∣∣∣σ′

δ (X(ti(t)), U(ti(t))) Ŵ
′
∣∣∣+ ∣∣∣g (K̂p(t),KEP

)∣∣∣ (16)

Since limt→∞ K̂p(t) = KEP , limt→∞ ∆(t) = 0, and∣∣∣σ′
δ (X(ti(t)), U(ti(t))) Ŵ

′
∣∣∣ ≤ ∥∆(t)∥, given any ε > 0, the

bound in (16) implies that there exists T ≥ 0 such that for all
t ≥ T and for all i = 1, · · · , N ,

∣∣∣X⊤(ti(t))M̂(t)X(ti(t))
∣∣∣ ≤

ε.
Similar to the proof of Corollary 10 in [23], if

min{eig(Z(t)(Z(t))⊤)} > ϵ,∀t ≥ T , then given ϖ > 0, one
can construct a ε > 0 such that

∣∣∣X⊤(ti(t))M̂(t)X(ti(t))
∣∣∣ ≤ ε,

for all i = 1, · · · , N , implies that
∥∥∥M̂(t)

∥∥∥ ≤ ϖ. Therefore,

limt→∞

∥∥∥M̂(t)
∥∥∥ = 0, which completes the proof of the

corollary.

III. FORMULATION OF THE PILOT PERFORMANCE
MODELING PROBLEM IN AN IRL FRAMEWORK

A. Problem Statement

This study concerns a quadcopter sUAS with an onboard
autopilot being flown by a human pilot via desired velocity
commands. That is, from the perspective of the human pi-
lot, the control input is the desired linear velocities of the

1For a positive function g, f = O(g) if there exists a constant M such
that ∥f(x)∥ ≤ Mg(x), ∀x.

quadcopter and the desired yaw rate. The human pilot is
asked to regulate the aircraft to the origin, starting from a
non-zero initial condition. The objective is to find a best-
fit cost functional such that a controller that optimizes the
cost functional results in trajectories that are similar to those
observed under human control.

In this proof-of-concept study, we assume that the human
pilot can observe the full state of the quadcopter and the
experimental study utilizes supervisory LQR controllers as
surrogates in lieu of human pilots. The control commands sent
to the aircraft by the LQR surrogates, along with the full state
of the quadcopter, are used to learn the cost functional of
the surrogate pilot using the RHSO. Since the IRL problem
formulated in this section admits multiple solutions, we seek
an equivalent cost functional, according to Definition 1.

B. Quadcopter Model

To implement the developed model-based IRL method, a
linearized quadcopter model, with velocity commands as the
input, and the actual position, velocity, orientation, and angular
velocity as the output needs to be developed. Such a model
depends on the autopilot being used to stabilize the aircraft,
and as such, knowledge of the autopilot algorithm is required
to complete the model. Note that identification of the autopilot
is not the focus of this study. We assume that the autopilot
is able to track the commanded velocities and aim to model
the cost functional of the surrogate LQR pilot that generates
velocity commands.

The model used in this study closely follows the develop-
ment in [27]–[29]. The state variables of the model are

X :=
[
x, y, z, ẋ, ẏ, ż, ϕ, θ, ψ, ϕ̇, θ̇, ψ̇

]⊤
,

where x, y, and z are the translational positions, ẋ, ẏ, and ż
are the translational velocities, ϕ, θ, and ψ are the roll, pitch,
and yaw angular positions, respectively, and ϕ̇, θ̇, and ψ̇ are
the roll, pitch, and yaw rates, respectively. The control input
is given by

U :=
[
ẋd, ẏd, żd, ψ̇d

]⊤
,

where ẋd, ẏd, and żd are the desired translational velocities
and ψ̇d as the desired yaw rate. The translational dynamics of
a quadcopter are described in the North, East, Down (NED)
coordinate frame by [27]

m

ẍÿ
z̈

 =

 0
0
mg

+RM

 0
0
−F

− kt
ẋẏ
ż

 , (17)

where kt is the aerodynamic drag, m is the mass, g is the
acceleration due to gravity, and RM is the rotational matrix
where small angle approximations result in

RM =

 1 ϕθ − ψ θ + ϕψ
ψ ϕθψ + 1 θψ − ϕ
−θ ϕ 1

 . (18)

The thrust, F , applied by the autopilot is a proportional
controller

F = mg +mkp13(ż − żd). (19)



5

The rotational motion of the quadcopter is described by [28],
[29]

ϕ̈Ixx = θ̇ψ̇(Iyy − Izz) + lτ1,

θ̈Iyy = ϕ̇ψ̇(Izz − Ixx) + lτ2,

ψ̈Izz = θ̇ϕ̇(Ixx − Iyy) + τ3,

(20)

where Ixx, Iyy , and Izz are moments of inertia and τ1, τ2,
and τ3 are torques designed as

τ1 = kp21(ϕd − ϕ)− kd1 ϕ̇,
τ2 = kp22(θd − θ)− kd2 θ̇,
τ3 = kd3(ψ̇d − ψ̇).

(21)

The desired angles ϕd and θd commanded by the autopilot are
given by[

θd
ϕd

]
=

 arctan
(
kp12 (ẏd−ẏ)sinψ+kp11 (ẋd−ẋ)cosψ

g+kp13 (żd−ż)

)
arctan

(
cosθd

kp11 (ẋd−ẋ)sinψ−kp12 (ẏd−ẏ)cosψ
g+kp13 (żd−ż)

) ,
(22)

where kp11 , kp12 , kp13 , kp21 , kp22 , kd1 , kd2 , kd3 are control
gains of the autopilot. The desired angles are simplified using
the small angle approximation and a linear approximation of
the inverse tangent function [30] to yield

θd =
π

4

(
kp12(ẏd − ẏ)ψ + kp11(ẋd − ẋ)

g + kp13(żd − ż)

)
,

ϕd =
π

4

(
kp11(ẋd − ẋ)ψ − kp12(ẏd − ẏ)

g + kp13(żd − ż)

)
.

(23)

Linearizing (17) and (20) about the origin, while using (19),
(21), and (23), yields the linear system

ẍ = −gθ − kt
m
ẋ,

ÿ = gϕ− kt
m
ẏ,

z̈ = kp13(żd − ż)−
kt
m
ż,

ϕ̈ =
b1πkp21kp12(ẏ − ẏd)

4g
− b1kd1 ϕ̇− b1kp21ϕ,

θ̈ =
b2πkp22kp11(ẋd − ẋ)

4g
− b2kd2 θ̇ − b2kp22θ,

ψ̈, = b3kd3(ψ̇d − ψ̇),

(24)

where b1 = l
Ixx

, b2 = l
Iyy

, and b3 = 1
Izz

, and l is the length
of the quadcopter arm.

As shown in Figure 1, given measurements of the state
variables, i.e., translational positions [x, y, z], translational ve-
locities [ẋ, ẏ, ż], angular positions [ϕ, θ, ψ], angular velocities
[ϕ̇, θ̇, ψ̇], and the control variables, i.e., the desired velocities
[ẋd, ẏd, żd] and yaw rate [ψ̇d] commanded by the surrogate
LQR pilot, we aim to find an equivalent solution (Q̂, Ŝ, R̂)
of the IRL problem according to Definition 1. The developed
RHSO algorithm for IRL is summarized in Algorithm 1.

IV. EXPERIMENTS

Experimental results obtained using the developed RHSO,
implemented on a quadcopter, are presented in this section.
The pilot is assumed to be a surrogate LQR controller that

Algorithm 1 One time step of the regularized history stack
observer algorithm. In the algorithm, Σi and Σiu denote the
i−th block of 165 rows of Σ and Σu, respectively, s(t) =[
σδ (X(t), U(t))
σ∆u

(X(t), U(t))

]
, and su(t) =

−U2
1 (t)r1

−2U1(t)r1
0m−1×1


Input: State and input measurements X(t) and U(t) at time

t, system matrices A and B, estimate Ŵ of the weights
and history stacks Σ and Σu from the previous time t−

Output: Updated history stacks Σ and Σu and updated weight
estimate Ŵ

1: i← 1
2: j ← 0
3: σ ← min eig(ΣΣ⊤ + ϵI)
4: while i ≤ N do
5: Σ′ = Σ⊤Σ− (Σi)⊤Σi + s(t)⊤s(t) + ϵI
6: if min eig(Σ′) > σ then
7: σ ← min eig(Σ′)
8: j ← i
9: end if

10: end while
11: if j ̸= 0 then
12: Σj ← s(t)
13: Σju ← su(t)
14: end if
15:

˙̂
W ← (Σ⊤Σ+ ϵI)−1Σ⊤

(
Σu − ΣŴ (t−)

)
16: Ŵ ← Ŵ + (t− t−) ˙̂

W

mimics velocity commands sent by a remote controller to
a quadcopter. The velocity commands are treated as desired
velocities that are executed by the onboard autopilot. The
pilot behavior modeling problem is reformulated as an IRL
problem and the ability of the developed IRL method to learn
an equivalent solution of the IRL problem using measurements
of the quadcopter state and the velocity commands sent by the
surrogate LQR controller is demonstrated.

A. Hardware

A custom-built quadcopter using the PX4 flight stack is
utilized for the experiments. The drone frame is built using
a XILO Phreakstyle Freestyle frame kit, the flight control
unit is a Holybro Kakute H7 that is connected to a ground
control station through WiFi. The position and the orientation
of the quadcopter is captured through a motion capture system
(OptiTrack) and the angular velocity and the acceleration are
measured from an onboard inertial measurement unit (IMU).
Data from both sensors are fused using a Kalman filter to
generate estimates of the state of the qudcopter. The model
parameters for this setup are l = 0.107642 m, Ixx = 0.002261
kg m2, Iyy = 0.002824 kg m2, Izz = 0.002097 kg m2,
kt = 0.01, g = 9.81 m/s2, m = 0.579902 kg, kp11 = −5.25,
kp12 = −5.25, kp13 = 3, kp21 = 3.5, kp22 = 3.5, kp23 = 0.35,
kd1 = 0.4, kd2 = 0.4, and kd3 = 0.1.

To demonstrate the applicability of the developed frame-
work to typical quadcopter deployment scenarios where the
autopilot is proprietary and unknown, this experiment utilizes



6

the default PX4 autopilot, which is different from the autopilot
employed in the model (i.e., (22)). While the PX4 autopilot
is able to track the velocity inputs sent by the surrogate pilot,
the performance of the real quadcopter employing the PX4
autopilot is substantially different from the performance of a
simulated quadcopter employing the autopilot in (22).

To ensure that the closed-loop model presented in Section
III fits the closed loop model of real quadcopter, the propor-
tional and derivative gains in (22) are manually adjusted so
that the trajectories of the model in Section III, employing
the autopilot in (22), and the real quadcopter, employing the
default PX4 autopilot, under velocity commands sent by the
surrogate LQR pilot are as close to each other as possible.

B. Controller Implementation
The quadcopter is controlled via an off-board ground control

station that implements the surrogate LQR pilot. The objective
of the pilot is to return the quadrotor to the origin starting from
a given known initial condition using velocity and yaw rate
commands. The surrogate pilot implements the control policy
that optimizes the cost functional in (2), assuming the linear
closed-loop quadrotor model given in (24), with2

Q = diag([9.57, 6.91, 2.84, 0, 0, 0, 0, 0, 11.68, 0, 0, 0]) and
R = diag([9.57, 3.48, 14.40, 0.17]). (25)

The pairs (A,B) and (A,
√
Q) are confirmed to satisfy the sta-

bilizability and detectability conditions in Assumption 1 using
PBH tests in Theorems 14.3 and 16.6 in [25], respectively.

The cost functional is designed under the assumption that
the surrogate LQR pilot only penalizes the state variables
corresponding to the translational position and the heading.
To reduce the number of unknown parameters, the sparsity
structure of Q and R is assumed to be known and only the
nonzero elements of Q and R are estimated. As a result, the
number of unknown parameters in Q is reduced from 78 to 4
and the number of unknown parameters in R is reduced from
9 to 3, resulting in a total of 85 unknown parameters.

To satisfy the FI condition in Definition 2, the ground
control station adds an excitation signal onto the velocity
commands generated by the surrogate pilot before they are
sent to the autopilot. As a result, the final commanded velocity
is

Ucmd = Uexc + U, (26)

where U = −KEPX is the command generated by the
surrogate pilot and Uexc is the excitation signal. It is assumed
that the excitation signal is known, and as a result, the true
velocity commands generated by the surrogate pilot are also
known to the learner. The fact that such excitation signals are
commonly utilized in popular drone software packages during
an auto-tune process for PID controllers [31] motivates their
use in this work.

C. Methods
A total of 13 repeated trials are performed to gauge the

performance of the developed IRL technique. In each of the 13

2The notation diag(v) represents a diagonal matrix with the elements of
the vector v along the diagonal.

0 20 40 60 80 100

−1

0

1

t [s]

x(t)

y(t)

z(t)

ψ(t)

Fig. 2. Position and heading of the quadcopter in one of the 13 experiments.

experiments, the quadcopter is started at a randomly generated
hover point contained within the operating area. The surrogate
LQR pilot then commands the quadcopter to fly to the origin
with a z-offset equal to the desired flight height. To ensure that
the measured costs are representative of the infinite horizon
cost, the controller is run for a time horizon of 200 s, which is
more than 4 times the observed time constant of the surrogate
LQR controller. The excitation signal Uexc is composed of
4 sets of 75 sinusoidal signals. Each set spans a frequency
range from 0.001 Hz to 10 Hz, with a varying frequency and
a magnitude of 0.03.

Since the regressor Σ is a nonlinear function of the states,
relationships between persistence of excitation, number of
frequencies in the excitation signal, and number of unknown
parameters, well-established in linear systems theory, do not
apply to this problem. Using the sufficient conditions devel-
oped for linear regressors as a heuristic guideline, the number
of frequencies in the excitation signal is initially selected to
be roughly equal to the number of unknown parameters, and
tuned using trial and error. The magnitude of the excitation
signal is also selected using trial and error in simulation.
A larger magnitude excitation signal typically results in a
smaller condition number of Σ⊤Σ + ϵI . However, larger
excitation magnitudes result in longer quadcopter trajectories,
which require a larger flight arena. The excitation signal
selected above was tuned using a quadcopter simulator to
ensure a sufficiently small condition number for Σ⊤Σ + ϵI
while keeping the quadcopter confined within the flight arena
available in the laboratory.

The RHSO is implemented with regularization parameter
ϵ = 0.002, and data are collected at a sampling rate of 0.08
seconds using the condition number minimization algorithm
described in Section III. The initial guesses for the unknown
weights are randomly generated to be normally distributed in
the interval [−5, 5].

D. Results and Discussion

The experimental results obtained from one of the 13 flight
tests are shown in Figs. 2-6. The position of the quadcopter as
a function of time is shown in Fig. 2, and the linear velocity
of the quadcopter as a function of time is shown in Fig. 3.



7

0 20 40 60 80 100

0

5

t [s]

ẋ(t)

ẏ(t)

ż(t)

ψ̇(t)

0 2 4

0

5

Fig. 3. Linear velocity and yaw rate of the quadcopter in one of the 13
experiments.

20 40 60 80 100

10−7

10−1

105

t [s]

∥∆
(t
)∥

Fig. 4. A logscale plot of the norm of ∆ as a function of time in one of the
13 experiments.

The quadcopter holds position at the origin with a z-offset
of 1.5 m and the velocity appears noisy due to the excitation
signal. The convergence of ∆ to zero (Fig. 4)3, combined with
the convergence of K̂p to KEP (Fig. 5) indicates that the
developed technique is able to obtain an equivalent solution
(per Definition 1) to the IRL problem. The experimental results
are thus consistent with Corollary 1.

Figs. 4 and 5 demonstrate that while the feedback policy of
the surrogate LQR pilot is estimated correctly, the estimated
cost functional is substantially different from the cost func-
tional of the surrogate LQR pilot. This behavior is expected
because the underlying IRL problem has multiple equivalent
solutions. As indicated by Fig. 7, the cost functional recovered
from the data in each of the 13 experiments converges to
different equivalent solutions. The particular equivalent solu-
tion recovered in each run depends on the initial guess of the
unknown weights used in that run. From the 13 experiments,
it is evident that the RHSO finds equivalent solutions for the
pilot modeling problem. It is observed in Table I that the
convergence of the estimated solution to an equivalent solution
is much faster in the quadcopter pilot modeling application
than the simulation results presented in [23]. We postulate
that the faster convergence can be attributed to the added
excitation signal increasing the information content of the data.
Furthermore, as evidenced by Table I, the original history stack

3The notation ∥·∥ is used to denote the euclidean norm when applied to a
vector and the Frobenius norm when applied to a matrix.

0 20 40 60 80 100

10−5

100

t [s]

∥ ∥ ∥K̂ p
(t
)
−
K

E
P

∥ ∥ ∥

Fig. 5. A logscale plot of the induced 2−norm of the error between the
estimated feedback gain and the surrogate pilot’s feedback gain as a function
of time in one of the 13 experiments.

RHSO HSO

Mean
(
∥KEP − K̂p∥

)
2.6997e-08 NaN

Cov
(
∥KEP − K̂p∥

)
8.3316e-15 NaN

TABLE I
THE RHSO AND THE HSO [18] ARE EVALUATED BY COMPARING THE

MEAN AND COVARIANCE OF THE INDUCED 2− NORM OF K̂p −KEP FOR
THE 13 TESTS.

observer (HSO) in [18] diverges in this experiment. In contrast,
the RHSO converges to an equivalent solution. The divergence
of the HSO can be attributed to nonuniqueness of solutions of
the underlying IRL problem, which resulte in singularity of
the matrix Σ⊤Σ.

Selection of the interval used to add data to the history
stacks involves important trade-offs. Longer intervals allow
larger changes in two subsequent recorded data points, re-
sulting in a lower condition number of Σ⊤Σ + ϵI; whereas,
shorter intervals allow for faster population of the history
stacks, which results in better utilization of excitation naturally
present during the transient response of the system, especially
for problems where addition of an excitation signal is not
feasible. The tuning of the RHSO also requires selection of an
ϵ to ensure invertibility of Σ⊤Σ+ ϵI . Large values of ϵ were
observed to slow down the convergence rate, a phenomenon
for which the authors presently lack an explanation.

V. CONCLUSION

The experimental results demonstrate the ability of the
RHSO to consistently learn an equivalent solution for the cost
functional of a surrogate LQR pilot. The estimated cost func-
tional reproduces the feedback matrix of the surrogate pilot.
The robustness of the algorithm to changes in initial conditions
is demonstrated through convergence obtained using randomly
generated setpoints and initial guesses for unknown weights.

In solving the pilot modeling problem, the pilot is assumed
to be an optimal controller that has full state information and
transmits velocity commands to the quadcopter. The results
of this paper indicate that this assumption is acceptable for
the case where the pilot is a surrogate LQR controller. Further
experimentation with human pilots will be required to establish
the validity of this assumption in a real-world scenario.

The assumption that excitation signals can be designed so
that they do not interrupt a human pilot from performing



8

0 20 40 60 80 100

14

16

18

20

t [s]

∥∥∥Q̂(t)−Q
∥∥∥∥∥∥R̂(t)−R∥∥∥

Fig. 6. A plot of the induced 2−norm of the error between Q̂ (blue) and Q
and R̂ (red) and R as a function of time in one of the 13 experiments.

2 4 6 8 10 12

10

20

Test number

∥∥∥Q̂(tf )−Q
∥∥∥∥∥∥R̂(tf )−R∥∥∥

Fig. 7. Norm of the error between Q and Q̂ and R and R̂ obtained at
t = 200s in the 13 experiments.

their mission is reasonable but requires careful tuning of the
excitation signal so it does not become a nuisance. Validation
of the assumption that a human pilot behaves like a determinis-
tic LQR controller needs further experimentation with human
pilots. Future research will focus on experimentation involving
human pilots where the developed IRL method will be used
to replicate their performance by learning cost functionals
equivalent to the ones being minimized by them. Future
work will also involve possible extensions of the developed
framework to nonlinear systems and probabilistic models of
pilot behavior.

REFERENCES

[1] A. Phatak, H. Weinert, I. Segall, and C. N. Day, “Identification of a
modified optimal control model for the human operator,” Automatica,
vol. 12, no. 1, pp. 31–41, 1976.

[2] S. Xu, W. Tan, A. V. Efremov, L. Sun, and X. Qu, “Review of control
models for human pilot behavior,” Annual Reviews in Control, vol. 44,
pp. 274–291, 2017.

[3] P. Abbeel, A. Coates, and A. Ng, “Autonomous helicopter aerobatics
through apprenticeship learning,” Int. J. Robot. Res., vol. 29, no. 13, pp.
1608–1639, 2010.

[4] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learn-
ing,” in Proc. Int. Conf. Mach. Learn., 2000.

[5] S. Russell, “Learning agents for uncertain environments (extended
abstract),” in Proc. Conf. Comput. Learn. Theory, 1998.

[6] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforce-
ment learning,” in Proc. Int. Conf. Mach. Learn., 2004.

[7] P. Abbeel and Y. Ng, Andrew, “Exploration and apprenticeship learning
in reinforcement learning,” in Proc. Int. Conf. Mach. Learn., 2005.

[8] N. D. Ratliff, J. A. Bagnell, and M. A. Zinkevich, “Maximum margin
planning,” in Proc. Int. Conf. Mach. Learn., 2006.

[9] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in Proc. AAAI Conf. Artif. Intel.,
2008, pp. 1433–1438.

[10] Z. Zhou, M. Bloem, and N. Bambos, “Infinite time horizon maximum
causal entropy inverse reinforcement learning,” IEEE Trans. Autom.
Control, vol. 63, no. 9, pp. 2787–2802, 2018.

[11] S. Levine, Z. Popovic, and V. Koltun, “Feature construction for
inverse reinforcement learning,” in Adv. Neural Inf. Process. Syst.,
J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, Eds., vol. 23. Curran Associates, Inc., 2010, pp.
1342–1350.

[12] G. Neu and C. Szepesvari, “Apprenticeship learning using inverse
reinforcement learning and gradient methods,” in Proc. Anu. Conf.
Uncertain. Artif. Intell. Corvallis, Oregon: AUAI Press, 2007, pp. 295–
302.

[13] U. Syed and R. E. Schapire, “A game-theoretic approach to
apprenticeship learning,” in Adv. Neural Inf. Process. Syst., J. C. Platt,
D. Koller, Y. Singer, and S. T. Roweis, Eds. Curran Associates, Inc.,
2008, pp. 1449–1456.

[14] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement
learning with Gaussian processes,” in Adv. Neural Inf. Process. Syst.,
J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, Eds. Curran Associates, Inc., 2011, pp. 19–27.

[15] K. Mombaur, A. Truong, and J.-P. Laumond, “From human to humanoid
locomotion—an inverse optimal control approach,” Auton. Robot.,
vol. 28, no. 3, pp. 369–383, 2010.

[16] B. Lian, V. S. Donge, F. L. Lewis, T. Chai, and A. Davoudi, “Data-driven
inverse reinforcement learning control for linear multiplayer games,”
IEEE Trans. Neural Netw. Learn. Syst., 2022.

[17] R. V. Self, M. Abudia, S. M. N. Mahmud, and R. Kamalapurkar,
“Model-based inverse reinforcement learning for deterministic systems,”
Automatica, vol. 140, no. 110242, pp. 1–13, Jun. 2022.

[18] R. V. Self, K. Coleman, H. Bai, and R. Kamalapurkar, “Online
observer-based inverse reinforcement learning,” IEEE Control Syst.
Lett., vol. 5, no. 6, pp. 1922–1927, Dec. 2021.

[19] N. Rhinehart and K. Kitani, “First-person activity forecasting from video
with online inverse reinforcement learning,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 42, no. 2, pp. 304–317, 2018.

[20] M. Herman, V. Fischer, T. Gindele, and W. Burgard, “Inverse rein-
forcement learning of behavioral models for online-adapting navigation
strategies,” in Proc. IEEE Int. Conf. Robot. Autom., 2015, pp. 3215–
3222.

[21] S. Arora, P. Doshi, and B. Banerjee, “Online inverse reinforcement
learning under occlusion,” in Proc. Conf. Auton. Agents MultiAgent
Syst. International Foundation for Autonomous Agents and Multiagent
Systems, 2019, pp. 1170–1178.

[22] B. Lian, W. Xue, F. L. Lewis, and T. Chai, “Online inverse reinforcement
learning for nonlinear systems with adversarial attacks,” Int. J. Robust
Nonlinear Control, vol. 31, no. 14, pp. 6646–6667, 2021.

[23] J. Town, Z. Morrison, and R. Kamalapurkar, “Nonuniqueness and con-
vergence to equivalent solutions in observer-based inverse reinforcement
learning,” arXiv:2210.16299, submitted to Automatica.

[24] F. Jean and S. Maslovskaya, “Inverse optimal control problem: the linear-
quadratic case,” in Proc. IEEE Conf. Decis. Control, 2018, pp. 888–893.

[25] J. P. Hespanha, Linear systems theory. Princeton University Press,
2009.

[26] R. Kamalapurkar, “Linear inverse reinforcement learning in continuous
time and space,” in Proc. Am. Control Conf., Milwaukee, WI, USA,
Jun. 2018, pp. 1683–1688.

[27] M. Islam, M. Okasha, and M. M. Idres, “Trajectory tracking in quadrotor
platform by using PD controller and LQR control approach,” in IOP
Conf. Mater. Sci. Eng., vol. 260, no. 1, 2017, pp. 2451–2456.

[28] S. Bouabdallah and R. Siegwart, “Full control of a quadrotor,” in Proc.
Intell. Robot. Syst., 2007, pp. 153–158.

[29] S. Bouabdallah, A. Noth, and R. Siegwart, “PID vs LQ control tech-
niques applied to an indoor micro quadrotor,” in Proc. Intell. Robot.
Syst., vol. 3. IEEE, 2004, pp. 2451–2456.

[30] S. Rajan, S. Wang, R. Inkol, and A. Joyal, “Efficient approximations for
the arctangent function,” IEEE Signal Process. Mag., vol. 23, no. 3, pp.
108–111, 2006.

[31] “Auto-tuning — px4 user guide (main),” https://docs.px4.io/main/en/
config/autotune.html#background-detail, accessed: 2024-03-06.


