
Nonuniqueness andConvergence toEquivalent Solutions in

Observer-based InverseReinforcementLearning ⋆

Jared Town a, Zachary Morrison a, Rushikesh Kamalapurkar a

aSchool of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK, 74078, USA

Abstract

A key challenge in solving the deterministic inverse reinforcement learning (IRL) problem online and in real-time is the
existence of multiple solutions. Nonuniqueness necessitates the study of the notion of equivalent solutions, i.e., solutions that
result in a different cost functional but same feedback matrix, and convergence to such solutions. While offline algorithms
that result in convergence to equivalent solutions have been developed in the literature, online, real-time techniques that
address nonuniqueness are not available. In this paper, a regularized history stack observer that converges to approximately
equivalent solutions of the IRL problem is developed. Novel data-richness conditions are developed to facilitate the analysis
and simulation results are provided to demonstrate the effectiveness of the developed technique.
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1 Introduction

This paper concerns recovery of the cost functional be-
ing optimized by an expert through observation of their
input-output behavior. The expert is assumed to be
controlling a deterministic dynamical system. The con-
troller being implemented by the expert is assumed to be
optimal with respect to an unknown cost functional. The
objective of the learner is to estimate the cost functional
using measurements of the experts inputs and outputs.
Cost functional estimation techniques are studied in the
literature under the umbrella of inverse reinforcement
learning [16]. While IRL typically includes utilization of
the estimated cost functionals for behavior imitation us-
ing (forward) reinforcement learning, the scope of this
paper is limited to cost functional estimation.

IRL methods are often utilized to teach an autonomous
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system a specific task in an offline environment by ob-
serving repeated performance of the same task by the
expert [1, 3, 6, 7, 14, 16, 17, 19, 27]. While effective, IRL
techniques are generally offline, computationally com-
plex, require multiple trajectories or several iterations
over one trajectory, and require a greater amount of data
than is readily available in real-time (online) applica-
tions. The aforementioned limitations are addressed in
results such as [2, 4, 20] where online IRL methods that
utilize a single iteration over one continuous trajectory
are developed to learn the cost functional of the expert.
New techniques to solve the IRL problem up to a scaling
factor through non-cooperative linear quadratic differ-
ential games are also developed in [7] and [8].

Results such as [2, 4, 8, 20] (implicitly or explicitly) as-
sume that the IRL problem admits a unique solution.
Since IRL problems generally admit multiple linearly
independent solutions [9, 10], the uniqueness assump-
tion is restrictive. Non-uniqueness is studied in results
such as [9], where procedures to determine equivalent
cost functionals are developed. It is also shown that IRL
problems with multiple solutions arise naturally in state
space models that have a product structure (see [10]).
Many real-world systems have a product structure, ei-
ther in the original model or in the linearized model.
For example, linearized dynamics of aerospace vehicles
have a product structure due to separation of longitudi-
nal and lateral dynamics [10]. The study of IRL prob-
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lems that admit multiple solutions is thus indispensable
in real-world applications.

The IRL methods recently developed in results such
as [3, 15, 26] study nonuniqueness of solutions to IRL
problems and guarantee convergence to the set of equiv-
alent solutions. In [3, 26] the IRL problem is solved in
an offline setting as opposed to the online and real-time
problem under consideration in this paper. In results
such as [3, 15] equivalent solutions for the state penalty
matrix are identified, using measurements of only the
control input of the expert. However, these results do
not estimate the control penalty of the expert. The tech-
nique developed in this paper requires more information
than [3, 15] (measurements of the control input and the
output of the expert), but in contrast with [3, 15], the
entire cost functional of the expert, including state and
control penalties, is estimated.

Motivated by [20], the method developed in this paper
identifies an equivalent cost functional for the expert
given measurements of the control input and the out-
put of the expert in an observer framework. Specifically,
the History Stack Observer (HSO) from [20], originally
designed under the uniqueness assumption, is extended
to IRL problems that admit multiple solutions. The re-
designed HSO is a true extension of the HSO from [20]
in the sense that it identifies the true cost functional of
the expert, up to a scaling factor, if the IRL problem
has a unique solution. While nonuniqueness is studied in
the observer context in [25], the definition of equivalence
used in this paper is stronger than the one in [25]. As a
result, the analysis that proves convergence to equiva-
lent solutions is more involved than the analysis in [25].
In addition, the practically relevant case of convergence
to approximately equivalent solutions is studied in this
paper.

This article extends the IRL HSO in [20] to problems
where the observed trajectories can be optimal with re-
spect to multiple cost functionals. A learner with access
to the state space model, controller input, and measure-
ment data reconstructs an equivalent cost functional of
an expert. Since recovery of the true cost functional can-
not be expected in such problems, analysis of the error
between the estimated cost functional and the true cost
functional, as done in [20], is no longer useful. In this
paper, a novel analysis approach that guarantees con-
vergence of the learned solution to a neighborhood of an
equivalent solution is developed. Under sufficient data
informativity conditions, a new equivalence metric is de-
signed such that convergence of the equivalence metric
to zero implies convergence to an equivalent solution.
The developed modification to the HSO is inspired by
ridge regression, but has a surprising convergence prop-
erty. Under ideal conditions (no noise and persistently
exciting regressor), the convergence is exact, as opposed
to ridge regression, where the solutions are off by a fac-
tor proportional to the regularization coefficient.

2 Problem Formulation

The system being controlled by the expert is assumed
to be a linear system of the form

ẋ(t) = Ax+Bu, (1)

with output
y = Cx(t), (2)

where the state is x ∈ Rn and the control input is u ∈
Rm. The system matrices are given as A ∈ Rn×n and
B ∈ Rn×m, and the output and output matrix are given
as y ∈ RL and C ∈ RL×n respectively.

The expert is assumed to implement an optimal con-
troller that optimizes the cost functional

J(x0, u(·)) =
∫ ∞

0

(
x(t)⊤Qx(t) + u(t)⊤Ru(t)

)
dt, (3)

where x(·) is the system trajectory under the optimal
control signal u(·) and starting from the initial condi-
tion x0, Q ∈ Rn×n is an unknown positive semi-definite
matrix, and R ∈ Rm×m is an unknown positive definite
matrix. The following assumption ensures that the IRL
problem is well-posed.

Assumption 1 The pair (A,B) is stabilizable and the
pairs (A,C) and (A,

√
Q) are detectable.

Stabilizability of (A,B) and detectability of (A,
√
Q) is

needed for the optimal controller to exist and detectabil-
ity of (A,C) guarantees the existence of a matrix L such
thatA−LC is Hurwitz [5, Lemma 21.1]. Under Assump-
tion 1, the policy of the expert is given by u = KEpx,
where KEp ∈ Rm×n is obtained by solving the algebraic
Riccati equation (ARE) corresponding to the optimal
control problem described by the system in (1) and the
cost functional in (3).

The learning objective is to estimate, online and in real-
time, the unknown matrices in the cost functional using
knowledge of the system matrices, A, B, and C, and
input-output data. Generally, for a system (A,B,C), a
given set of input-output trajectories is optimal with
respect to multiple cost functionals. As a result, the true
cost functional cannot generally be estimated from data.
Instead, an equivalent solution to the IRL problem is
sought (see Definition 2 and [26]).

While the HSO in [20] is an effective technique to solve
the IRL problem online and in real-time, the analysis
focuses on the error between the true cost functional
matrices and their estimates, and as such, implicitly
assumes uniqueness of solutions. As such, the method
in [20] cannot be applied to a large class of IRL problems
that admit multiple solutions. In this paper, the HSO is
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extended to be applicable to IRL problems that admit
multiple solutions. While the extension is similar to the
regularization used in ridge regression, the fact that the
error between the true cost functional matrices and the
obtained estimates can no longer be used as a metric to
gauge quality of the estimates necessitates the develop-
ment of a novel analysis approach.

3 Nonuniqueness and the History Stack Ob-
server

To facilitate the discussion, this section provides a brief
summary of the HSO developed in [20] and highlights
the key problem that is resolved in this paper.

3.1 Equivalent Solutions and Equivalence Metric

If the state and control trajectories of the system are
optimal with respect to the cost functional in (3) and
Assumption 1 is met, then there exists a matrix S such
that for all t ≥ 0, the matrices Q, R, A, and B, and the
optimal trajectories x(·) and u(·) satisfy the Hamilton-
Jacobi-Bellman (HJB) equation

x(t)⊤
(
A⊤S + SA− SBR−1B⊤S +Q

)
x(t) = 0, (4)

and the optimal control equation

u(t) = u∗(x(t)) := −R−1B⊤Sx(t). (5)

The feedback matrix of the expert is then given by
KEp = R−1B⊤S. The HJB equation and the optimal
control equation facilitate the definition of an equivalent
solution.

Definition 2 A solution (Q̂, Ŝ, R̂) is called an equiva-
lent solution of the IRL problem if it satisfies the ARE
A⊤Ŝ + ŜA− ŜBR̂−1B⊤Ŝ + Q̂ = 0 and optimization of
the performance index J , with Q = Q̂ and R = R̂, re-
sults in the same feedback matrix as the one utilized by
the expert, that is, K̂P := R̂−1B⊤Ŝ = KEp.

Given an estimate x̂ of the state x, a measurement of the
control signal, u, and estimates Q̂, R̂, and Ŝ ofQ, R, and
S, respectively, (4) and (5) can be evaluated to develop
an observation error that evaluates to zero if the state
estimates are correct and (Q̂, R̂, Ŝ) is an equivalent so-
lution. The observation error is then used to improve the
estimates by framing the IRL problem as a state esti-
mation problem. The rest of this subsection is borrowed
from [20] and is included here for completeness.

To facilitate the observer design, equations (4) and (5)

are linearly parameterized as

0 = 2σR2(u)W
∗
R +B⊤ (∇xσS(x))

⊤
W ∗

S , (6)

0 = ∇x

(
(W ∗

S)
⊤σS(x)

)
(Ax+Bu)

+ (W ∗
Q)

⊤σQ(x) + (W ∗
R)

⊤σR1(u), (7)

where x⊤Sx = (W ∗
S)

⊤σS(x), x
⊤Qx = (W ∗

Q)
⊤σQ(x),

u⊤Ru = (W ∗
R)

⊤σR1(u), and Ru = σR2(u)W
∗
R, where[

W ∗⊤
S ,W ∗⊤

Q ,W ∗⊤
R

]⊤ ∈ RPS × RPQ × RM are the ideal
weights with PS , PQ, and M being the number of basis
functions in the respective linear parameterization. For
a complete characterization of the weights and the basis
functions, see [18].

Using the estimates ŴS , ŴQ, and ŴR for W ∗
S , W

∗
Q, and

W ∗
R, respectively, in (6) and (7), a control residual error

and an inverse Bellman error are defined as

∆′
u := 2σR2(u)ŴR +B⊤ (∇xσS(x))

⊤
ŴS and (8)

δ′ := ∇x

(
(ŴS)

⊤σS(x)
)
(Ax+Bu)

+ (ŴQ)
⊤σQ(x) + (ŴR)

⊤σR1(u). (9)

The scaling ambiguity inherent in linear quadratic op-
timal control, which is apparent in the fact that Ŵ ′ =
[Ŵ⊤

S , Ŵ⊤
Q , Ŵ⊤

R ]⊤ = 0 is a solution of (6) and (7), is re-
solved, without loss of generality, by assigning an arbi-
trary value to one element of Ŵ ′. Selecting the first com-
ponent of ŴR to be equal to r1 > 0 and removing it from
the weight vector Ŵ ′ in (6) and (7) yields scale-aware
definitions of the control residual error and the inverse
Bellman error, given by


 δ
(
x, u, Ŵ

)

∆u

(
x, u, Ŵ

)

=
[
σδ(x, u)

σ∆u
(x, u)

]



ŴS

ŴQ

Ŵ−
R


+




u2
1r1

2u1r1

0m−1×1


 , (10)

where Ŵ−
R is a copy of ŴR with the first element

removed, σδ is a copy of
[
(Ax + Bu)⊤(∇xσS(x))

⊤,

σQ(x)
⊤, σR1(u)

⊤], with the (PS + PQ + 1)−th ele-

ment removed, and σ∆u is a copy of
[
B⊤(∇xσS(x))

⊤,

0m×PQ
, 2σR2(u)

]
, with the (PS+PQ+1)−th column re-

moved. In this paper, the error system in (10) is used as
an equivalence metric to develop an observer-based IRL
method. The following section provides a brief overview
of the observer developed in [20].

3.2 The History Stack Observer

Pairing the innovation y − Cx̂ with the inverse bell-
man error and control residual error from (10) yields
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the observation error ω =

[
Cx

Σu

]
−
[
Cx̂

Σ̂Ŵ

]
, where Ŵ =

[Ŵ⊤
S , Ŵ⊤

Q , (Ŵ−
R )⊤]⊤,

Σ̂ :=




σδ (x̂(t1), u(t1))

σ∆u
(x̂(t1), u(t1))

...

σδ (x̂(tN ), u(tN ))

σ∆u (x̂(tN ), u(tN ))




, and Σu :=




−u2
1(t1)r1

−2u1(t1)r1

0m−1×1

...

−u2
1(tN )r1

−2u1(tN )r1

0m−1×1




,

Using the observation error, the history stack observer
is designed in [20] as

[
˙̂x
˙̂
W

]
=

[
Ax̂+Bu

0PS+PQ+M−1

]
+K

([
Cx

Σu

]
−
[
Cx̂

Σ̂Ŵ

])
, (11)

where the gain K is selected as

K :=

[
K3 0n×N+Nm

0PS+PQ+M−1×L K4(Σ̂
⊤Σ̂)−1Σ̂⊤

]
, (12)

whereK3 is selected so thatA−K3C is Hurwitz, andK4

is scalar multiple of an identity matrix of size PS +PQ+

M − 1. To facilitate the analysis, let Σ be a copy of Σ̂
where the state estimates are replaced by their true val-
ues and let W ∗ := (r1/W

∗
R(1))[W

∗⊤
S ,W ∗⊤

Q , (W−∗
R )⊤]⊤,

where W−∗
R denotes W ∗

R with the first element, W ∗
R(1),

removed.

The matrices Σ̂ ∈ RN(m+1)×PS+PQ+M−1 and
Σu ∈ RN(m+1) are constructed using the dataset
{(x̂(ti), u(ti))}Ni=1, recorded at time instances
{t1, . . . tN}, with N ≥ PS + PQ + M − 1. The dataset
is referred to hereafter as a history stack. To ensure
convergence of the weights, updated using (11), to an
equivalent solution (see Theorem 7 below), the history
stack is recorded using a condition number minimization
algorithm. At any time, two separate history stacks, H1

and H2 are maintained. The history stack H1 is used to
compute the matrices Σ̂ and Σu in (11) and H2 is pop-
ulated with current state estimates and control inputs.

Both history stacks are initialized as zero matrices of the
appropriate size. As state estimates become available,
they are added, along with the corresponding control in-
put, to H2, at a predetermined time interval until H2

is full. After H2 is full, any newly available state esti-
mates are selected to replace existing state estimates in

H2 if the condition number of Σ̂⊤Σ̂, calculated using the
post-replacement history stack, is smaller than the con-
dition number of Σ̂⊤Σ̂ before the replacement. Once the
data in H2 are such that the condition number of Σ̂⊤Σ̂
is lower than a user-selected threshold, and a predeter-
mined amount of time has passed since the last update
of H1, we set H1 = H2 and purge H2 by setting it back
to a zero matrix. Due to the purging algorithm, the time
instances ti corresponding to the data stored in the his-
tory stack H1 are piecewise constant functions of time.

The IRL method developed in this paper requires that
the behavior of the expert is optimal, which implies
that u(t) = KEpx(t) for all t. Since the true values of
the state are not accessible, KEpx̂(ti(t))− u(ti(t)) can-
not be expected to be equal to 0 for the data points
stored in the history stack H1. This discrepancy be-
tween KEpx̂(ti(t)) and u(ti(t)) results in inaccurate es-
timates of equivalent solutions. Since the state estimates
converge to the true state exponentially, the purging
process described above ensures that the discrepancy
maxi=1,··· ,N ∥KEpx̂(ti(t))− u(ti(t))∥ is bounded by an
exponentially decaying envelope, and so is the resulting
inaccuracy in the estimation of an equivalent solution.

4 Regularized History Stack Observer for IRL
Problems with Multiple Solutions

Due to purging and improved state estimates, Σ̂ being
full rank implies that Σ is eventually full rank, and as a
result, ΣW = Σu has a unique solution. As such, the ex-
plicit assumption that Σ̂ is full rank implies an implicit
assumption that the IRL problem admits a unique so-
lution. Lack of uniqueness thus necessitates algorithms
that can incorporate a rank-deficient Σ̂. To that end,
a regularized HSO (RHSO) is developed in this paper

where the termK4(Σ̂
⊤Σ̂)−1 is replaced by a generic pos-

itive definite matrix to yield

K :=

[
K3 0n×N+Nm

0PS+PQ+M−1×L K4Σ̂
⊤

]
, (13)

where K4 is a positive definite matrix of dimension
PS+PQ+M−1. In the following lemmas and theorems,
it is shown that under a novel informativity condition on
the recorded data, the modification above leads to con-
vergence to an equivalent solution when the IRL problem
admits multiple solutions and convergence to the true
cost functional of the expert, up to a scaling factor, when
the IRL problem admits a unique solution. While the
modification itself is relatively minor, the above some-
what surprising results are the key contributions of this
work. The analysis requires a data informativity condi-
tion summarized in Definition 3 below.

Definition 3 The signal (x̂, u) is called finitely infor-
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mative (FI) if there exists a time instance T > 0 such
that for some {t1, t2, . . . , tN} ⊂ [0, T ],

Span {x̂(ti)}Ni=1 = Rn, Σu ∈ Range(Σ̂), and

Span
{
x̂(ti)x̂(ti)

⊤}N
i=1

= {Z ∈ Rn×n|Z = Z⊤}. (14)

In addition, for a given ϵ > 0, if min{eig(XX⊤)} > ϵ
and min{eig(ZZ⊤)} > ϵ, where X := [x̂(t1), . . . , x̂(tN )],
Z := [uvec(x̂(t1)x̂(t1)

⊤), . . . ,uvec(x̂(tN )x̂(tN )⊤)] ∈
R

n(n+1)
2 ×N , and uvec(x̂(ti)x̂(ti)

⊤) ∈ R
n(n+1)

2 denotes
vectorization of the upper triangular elements of the sym-
metric matrix x̂(ti)x̂(ti)

⊤ ∈ Rn×n, then (x̂, u) is called
ϵ−finitely informative (ϵ−FI).

Remark 4 The three FI conditions in Definition 3 are
utilized in the subsequent analysis to show that as the
equivalence metric converges to zero, the corresponding
weight estimates converge to an equivalent solution.

(1) The condition Span {x̂(ti)}Ni=1 = Rn is an
excitation-like condition that requires the state es-
timates stored in the history stack to be linearly in-
dependent. This condition is not restrictive in gen-
eral, however it can fail if the system has trajecto-
ries that are confined to a subspace of dimension less
than n. This condition can be monitored online by
ensuring that the minimum eigenvalue of XX⊤ is
strictly positive, and as shown in Fig. 5, it is met in
the simulation study.

(2) The condition Span
{
x̂(ti)x̂(ti)

⊤}N
i=1

= {Z ∈
Rn×n|Z = Z⊤} is a sufficient condition for
x̂(ti)

⊤Mx̂(ti) = 0,∀i = 1, · · · , N to imply M = 0.
It is not clear how restrictive this condition is, but
it can be verified online by ensuring that the mini-
mum eigenvalue of the matrix ZZ⊤ defined above is
strictly positive. As shown in Fig. 6 this condition
is met in the simulation study.

(3) The condition Σu ∈ Range(Σ̂) is met provided at

least one set of weights Ŵ satisfies Σu = Σ̂Ŵ , and
as such, is not restrictive. If the IRL problem has
a unique solution, then this condition is trivially
met whenever N ≥ PS + PQ + M − 1 and Σ̂ is
full rank. Furthermore, this condition can be veri-
fied online using the fact that Σu ∈ Range(Σ̂) ⇐⇒
Rank

([
Σu Σ̂

])
= Rank(Σ̂). Since the expert is as-

sumed to be optimal, Σu = ΣW ∗, and as a result,
Σu ∈ Range(Σ). Due to improving state estimates

and the purging algorithm, Σ̂ converges to Σ, and as
a result, there exists T > 0 such thatΣu ∈ Range(Σ̂)
for all t ≥ T . As shown in Fig. 7 this condition is
met in the simulation study.

If the optimal trajectories of the expert do not meet the
excitation conditions, an excitation signal can be added
to the control input of the expert. As long as the excitation

signal is known to the learner, the learner can infer the
optimal control input of the expert needed to implement
the developed RHSO.

Remark 5 In the case of noisy measurements, the feed-
back gains K3 and K4Σ̂

⊤ in (13) can be replaced by
Kalman gains.While empirical evidence suggests that the
use of the Kalman gain results in improved performance
(see [24, Section 2.3.3]), the stability guarantees in this
paper are for deterministic systems with K selected ac-
cording to (12). Extension of the developed stability guar-
antees to the case where the measurements are noisy and
K is the Kalman gain is out of the scope of this paper.

The following technical lemma is needed to prove con-
vergence of the equivalence metric to zero.

Lemma 6 If Σ̂ and Σu satisfy (14), then Ω∆ ∩
Null(Σ̂⊤) = {0}, where Ω∆ :=

{
∆ ∈ RN(m+1) | ∆ =

Σu − Σ̂Ŵ , for some Ŵ ∈ RPS+PQ+M−1
}
.

PROOF. If ∆ ∈ Null(Σ̂⊤), then Σ̂⊤∆ = 0. In

addition, if ∆ ∈ Ω∆, then exists a Ŵ such that

Σ̂⊤
(
Σu − Σ̂Ŵ

)
= 0. The FI condition in (14) implies

the existence of some W ′ such that Σu = Σ̂W ′. There-

fore, Σ̂⊤
(
Σ̂W ′ − Σ̂Ŵ

)
= 0. As a result, Σ̂W ′ − Σ̂Ŵ ∈

Null(Σ̂⊤). By definition of the range space, Σ̂W ′−Σ̂Ŵ ∈
Range(Σ̂). Since Range(Σ̂) = (Null(Σ̂⊤))⊥ [22, Section

4.1], Σ̂W ′ − Σ̂Ŵ ∈ (Null(Σ̂⊤))⊥ ∩Null(Σ̂⊤). Therefore,

Σ̂W ′ − Σ̂Ŵ = 0, which implies that ∆ = 0. 2

Theorem 7 below shows that for given fixed matrices Σ̂
and Σu that satisfy (14), if the weights Ŵ are updated
using the update law in (11), then the equivalence metric
∆ converges to the origin.

Theorem 7 Let ∆ := Σu − ΣŴ . If Σu ∈ Null(Σ̂⊤)⊥,
the gain K is selected according to (13), and the weights

Ŵ are updated using the update law in (11), then
limt→∞ ∆(t) = 0. In addition if full state information is

available (i.e., x̂ = x and as a result, Σ̂ = Σ), ∆ = 0,
Span{x(ti)}Ni=1 = Rn, Span{x(ti)x(ti)⊤}Ni=1 = {Z ∈
Rn×n|Z = Z⊤}, and if the matrix R̂, extracted from Ŵ , is

invertible, then the matrices Q̂, Ŝ, and R̂, extracted from
Ŵ , constitute an equivalent solution of the IRL problem.

PROOF. Using the update law in (11), the time-
derivative of ∆ can be expressed as

∆̇ = −Σ̂K4Σ̂
⊤∆. (15)
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Consider the positive definite and radially unbounded
candidate Lyapunov function V : RN(m+1) → R defined
as

V (∆) =
1

2
∆⊤∆. (16)

The orbital derivative of V along the solutions of (15) is
given by

V̇ (∆) = −∆⊤Σ̂K4Σ̂
⊤∆. (17)

Note that all points in null space of Σ⊤ are equilibrium
points of (15). Since Σ⊤ is not assumed to be full rank,
Null(Σ⊤) ̸= {0}. As a result, if Σ⊤ is not full rank, then
the origin cannot be an asymptotically stable equilib-
rium point of (15). The analysis thus requires the invari-
ance principle.

Since Ω∆ = {Σu} ⊖ Range(Σ̂), where ⊖ denotes the
Minkowski difference, it is easy to see that provided (14)
holds, Ω∆ is a subspace of RN(m+1). Indeed, given α, β ∈
R and ∆1,∆2 ∈ Ω∆, with ∆i = Σu − Σ̂Ŵi for i = 1, 2,
we have α∆1 + β∆2 = Σ̂u + (α+ β − 1)Σu − Σ̂(αŴ1 +

βŴ2). If (14) holds, then Σu ∈ Range Σ̂, and as a result,
α∆1 + β∆2 ∈ Ω∆. Since Ω∆ is a subspace of a finite
dimensional topological space, it is also closed.

If ∆0 ∈ Ω∆ then there exists Ŵ0 such that ∆0 =
Σu − Σ̂Ŵ0. Let t 7→ Ŵ∆0

(t) be a solution of (11) start-

ing from Ŵ0 with the interval of existence I. For almost

all t ∈ I, we have
˙̂
W∆0

= K4Σ̂
⊤(Σu − Σ̂Ŵ∆0

), which

implies d
dt (Σu − Ŵ∆0

) = −K4Σ̂
⊤(Σu − Σ̂Ŵ∆0

). Letting

∆∆0 = Σu − Σ̂Ŵ∆0 , it can be concluded that for almost

all t ∈ I, ∆̇∆0
(t) = −K4Σ̂

⊤∆∆0
(t). That is, t 7→ ∆∆0

(t)
is a solution of (15) on ∈ I, starting from ∆0. Unique-
ness of solutions then implies that t 7→ ∆∆0

(t) is the
only solution of (15) on ∈ I starting from ∆0. Using
continuity of t 7→ ∆∆0

(t) along with the facts that Ω∆

is closed and ∆∆0
(t) ∈ Ω∆ for almost all t ∈ I, it can be

concluded that ∆∆0(t) ∈ Ω∆ for all t ∈ I. As a result,
Ω∆ is positively invariant with respect to (15).

For any c > 0, the sublevel set Ωc := {∆ ∈
RN(m+1)|V (∆) ≤ c} is compact. From (17), we conclude
that Ωc is positively invariant with respect to (15). As
a result, Ω := Ωc ∩ Ω∆ is also positively invariant with
respect to (15). Since Ωc is compact and Ω∆ is closed, Ω
is also compact. The invariance principle [12, Theorem
4.4] can thus be invoked to conclude that all trajectories
starting in Ω converge to the largest invariant subset of
{∆ ∈ Ω | V̇ (∆) = 0}.

The set {∆ ∈ Ω|V̇ (∆) = 0}, is equal to Null(Σ̂⊤)∩Ω as

Σ̂⊤∆ = 0 only when ∆ ∈ Null(Σ̂⊤). Furthermore, from

Lemma 6, provided Σu ∈ (Null(Σ̂⊤))⊥, the only ∆ that

can be a member of Null(Σ̂⊤) ∩ Ω∆ is ∆ = 0. Since the
set {0} is positively invariant with respect to (15), it is

also the largest invariant subset of {∆ ∈ Ω|V̇ (∆) = 0}.

As a result, by the invariance principle, all trajectories
that start in Ω converge to the origin. Since V is radi-
ally unbounded, Ωc can be selected to be large enough to
include any initial condition in Ω∆. Thus, all solutions
of (15) that start in Ω∆ converge to the origin. In par-
ticular, ∆ converges to zero along the solutions of the
update law in (11).

To prove equivalence when ∆ = 0, the equality
R̂−1B⊤Ŝ = KEp must be established. Indeed, if
{x(ti)}Ni=1 spans Rn there is a unique matrix K that
satisfies u(ti) = Kx(ti) for all i = 1, . . . , N . Letting
U = [u(t1), . . . , u(tN )] and X = [x(t1), . . . , x(tN )], this
unique matrix is given byK = UX⊤(XX⊤)−1. It is also
known that because the behavior of the expert is opti-
mal, the observed data satisfy u(ti) = −KEpx(ti) for all
i = 1, . . . , N . Since ∆ = 0, the observed data points sat-
isfy u(ti) = −R̂−1B⊤Ŝx(ti) for all i = 1, . . . , N . Since
there is only one matrixK that satisfies u(ti) = −Kx(ti)
for all i = 1, . . . , N , all three of the matrices above must
be equal, i.e., K = KEp = R̂−1B⊤Ŝ.

The fact that if ∆ = 0 then

x(ti)
⊤
(
A⊤Ŝ + ŜA− ŜBR̂−1B⊤Ŝ + Q̂

)
x(ti) = 0

holds for all points inH1 is immediate from the construc-
tion of ∆. Furthermore, with a slight modification of the
proof from [21], (Q̂, Ŝ, R̂) can be proven to satisfy the
ARE if ∆ = 0 and {x(ti)x(ti)⊤}Ni=1 spans all symmetric
matrices. To that end, let ei be the basis vector of zeros
with a one in the ith position such that eje

⊤
k + eke

⊤
j =∑N

i=1 αix(ti)x(ti)
⊤ for some α1 · · ·αN ∈ R. Rewrit-

ing (4) with M̂ =
(
A⊤Ŝ + ŜA− ŜBR̂−1B⊤Ŝ + Q̂

)
,

∑N
i=1αix(ti)

⊤M̂x(ti)=
∑N

i=1

∑n
p=1

∑n
q=1αixi,pM̂p,qxi,q =∑N

i=1

∑n
p=1 M̂p,q

∑n
q=1 αixi,pxi,q. Now, for

any fixed j, k, select {αi}Ni=1 such that∑N
i=1 αix(ti)x(ti)

⊤ = eje
⊤
k + eke

⊤
j , where

∑N
i=1 αix(ti)x(ti)

⊤ =





1 if p = j, q = k,

1 if p = k, q = j,

0 otherwise.

As a result,

∑N
i=1

∑n
p=1 M̂p,q

∑n
q=1 αixi,pxi,q = e⊤k M̂ej + e⊤j M̂ek =

M̂j,k + M̂k,j = 2M̂j,k = 0. Since j and k were arbi-

trary, M̂ = 0. That is, the tuple (Q̂, Ŝ, R̂) satisfies the
ARE and constitutes an equivalent solution of the IRL
problem. 2

Remark 8 The invertibility of R̂ is needed for K̂P to
be well-defined. While this is difficult to ensure a pri-
ori in general, it can be guaranteed in the specific case
where R is diagonal by using a projection operator to
ensure that all diagonal elements of R̂ remain positive.
In this case, the weights are updated using the update

law
˙̂
W = Proj

(
K4Σ̂

⊤∆
)
, where Proj(·) denotes smooth

projection (see Appendix E of [13]) onto the convex set
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RPS × RPQ × Rm−1
≥κ , where Rm−1

≥κ denotes the set of

(m−1)−dimensional vectors that are element-wise larger
than κ and κ > 0 is a lower bound for the diagonal en-
tries of R. The resulting Lyapunov derivative is V̇ (∆) =

−∆⊤Σ̂ Proj
(
K4Σ̂

⊤∆
)
. Invoking Lemma E.1 from [13],

it can be concluded that V̇ (∆) ≤ −∆⊤Σ̂K4Σ̂
⊤∆. The

rest of the analysis then remains unchanged.

Theorem 7 can be used to obtain the final result sum-
marized in the definition and the theorem below.

Definition 9 Given ϖ ≥ 0 A solution (Q̂, Ŝ, R̂) to the
IRL problem is called an ϖ−equivalent solution of the

IRL problem if
∥∥∥M̂

∥∥∥ ≤ ϖ, where M̂ = A⊤Ŝ + ŜA −
ŜBR̂−1B⊤Ŝ + Q̂, and optimization of the performance
index J , with Q = Q̂ and R = R̂, results in a feedback

matrix, K̂p := R̂−1B⊤Ŝ, that satisfies
∥∥∥K̂p −KEp

∥∥∥ ≤
ϖ.

Due to the purging algorithm described in Section 3.2,
the time instances ti corresponding to the data stored in
the history stack H1 are piecewise constant functions of
time, where t1(t) denotes the time instance when the old-
est datum in the history stack was recorded. The corol-
lary below requires lim inft→∞t1(t) to be large enough,
which translates into the requirement that the excita-
tion in the trajectories of the expert lasts long enough
to allow sufficiently many purging events.

The exact lower bound on lim inft→∞t1(t) needed for
convergence to aϖ−equivalent solution is characterized
in the proof of Theorem 10 below. The lower bound de-
pends on the value of ϖ, the norm of the feedback gain
KEp of the expert, the user-selected poles ofA−K3C, the
user-selected gain matrix K4, the condition numbers of
the data matricesX and Z introduced in Definition 3. If
(x̂, u) is ϵ-FI, the lower bounds min{eig(X(t)X(t)⊤)} >
ϵ and min{eig(Z(t)Z(t)⊤)} > ϵ, for some ϵ > 0 and all
t ≥ T , can be easily ensured using a modified history
stack management algorithm that maximizes the mini-
mum eigenvalues of X(t)X(t)⊤ and Z(t)Z(t)⊤.

Theorem 10 Let T ≥ 0 denote the first time instant
when H1 is updated. Given ϖ > 0 if lim inft→∞t1(t)

is large enough, Σu(t) ∈ Null(Σ̂⊤(t))⊥ for all t ≥
T , K3 is selected so that A − K3C is Hurwitz,
min{eig(X(t)X(t)⊤)} > ϵ and min{eig(Z(t)Z(t)⊤)} >
ϵ, for some ϵ > 0 and all t ≥ T , with X and Z as in-
troduced in Definition 3, and if there exist a constant
0 ≤ R < ∞ such that the matrix R̂(t), extracted from

Ŵ (t) is invertible with ∥R̂−1(t)∥ ≤ R for all t ≥ T , then

the matrices Q̂, Ŝ, and R̂, extracted from Ŵ , converge to
a ϖ−equivalent solution of the IRL problem.

PROOF. The dynamics in (15) ensure that

∆(t) is bounded for all t. The control resid-
ual error established in (8) can be manipulated

into the form σ∆′
u
(x̂(ti(t)), u(ti(t))) Ŵ

′(t) =

R̂(t)
(
K̃P (t)x̂(ti(t)) +KEpx̃(ti(t))

)
, where K̃P (t) :=

R̂−1(t)B⊤Ŝ(t)−KEp and x̃(ti(t)) := x(ti(t))− x̂(ti(t)).

Using the triangle inequality
∥∥∥K̃P (t)x̂(ti(t))

∥∥∥ ≤∥∥∥R̂−1(t)σ∆′
u
(x̂(ti(t)), u(ti(t))) Ŵ

′(t)
∥∥∥+ ∥KEpx̃(ti(t))∥.

Note that if Span{x̂(ti(t))Ni=1} = Rn, and in particular, if
min{eig(X(t)X(t)⊤)} > ϵ then ∃c > 0, independent of t,

such that
∥∥∥K̃P (t)x̂(ti(t))

∥∥∥ ≤ ϖ
c ,∀i, implies

∥∥∥K̃P (t)
∥∥∥ ≤

ϖ. Select T 1 large enough such that the equivalence met-

ric ∆(t) satisfies
∥∥∥σ∆′

u
(x̂(ti(t)), u(ti(t))) Ŵ

′(t)
∥∥∥ ≤ ϖ

2cR ,

for all i and for all t ≥ T 1. Such a T 1 exists since by The-
orem 7, limt→∞ ∆(t) = 0. Select T 2 large enough so that
the state estimation error x̃(ti(t)) satisfies ∥x̃(ti(t))∥ ≤

ϖ
2c∥KEp∥ for all t ≥ T 2. Since limt→∞ x̃(t) = 0, existence

of of such a T 2 follows if t1(T 2) is large enough. Letting
T = max{T1, T 2}, it can be concluded that for all t ≥ T ,∥∥∥K̃P (t)x̂(ti(t))

∥∥∥ ≤ ϖ
c , which implies

∥∥∥K̃P (t)
∥∥∥ ≤ ϖ.

The inverse Bellman error estab-
lished in (9) can be manipulated into

σδ′ (x̂(ti(t)), u(ti(t))) Ŵ
′(t) = x̂(ti(t))

⊤M̂x̂(ti(t)) +

g
(
K̂P (t), x̂(ti(t)),KEp, x(ti(t))

)
, where the func-

tion g satisfies 1 g = O
(∥∥∥K̃P (t)

∥∥∥+ ∥x̃(ti(t))∥
)
.

Using the triangle inequality,∣∣∣x̂(ti(t))⊤M̂(t)x̂(ti(t))
∣∣∣ ≤

∣∣∣σδ′ (x̂(ti(t)), u(ti(t))) Ŵ
′
∣∣∣ +∣∣∣g

(
K̂P (t), x̂(ti(t)),KEp, x(ti(t))

)∣∣∣, where M̂(t) =

A⊤Ŝ(t) + Ŝ(t)A− Ŝ(t)BR̂−1(t)B⊤Ŝ(t) + Q̂(t)

Since g = O
(∥∥∥K̃P (t)

∥∥∥+ ∥x̃(ti(t))∥
)

and∣∣∣σδ′ (x̂(ti(t)), u(ti(t))) Ŵ
′
∣∣∣ ≤ ∥∆(t)∥, a construction

similar to the one in the previous paragraph can be
used to show that given any ε > 0, that there exists
a T such that for all t ≥ T and for all i = 1, . . . , N ,∣∣∣x̂(ti(t))⊤M̂(t)x̂(ti(t))

∣∣∣ ≤ ε.

Equivalence of matrix norms implies that there exists

c > 0, independent of t, such that if
∣∣∣M̂j,k(t)

∣∣∣ ≤ ϖ/c

for all j, k = 1, · · · , n, then
∥∥∥M̂(t)

∥∥∥ ≤ ϖ. As a result, to

complete the proof of the theorem, it suffices to construct
a T such that for all t ≥ T and for all j, k = 1, · · · , n,

1 For a positive function g, f = O(g) if there exists a con-
stant M such that ∥f(x)∥ ≤ Mg(x),∀x

7



∣∣∣M̂j,k(t)
∣∣∣ ≤ ϖ

c . To construct such a T , an ε is constructed

such that
∣∣∣x̂(ti(t))⊤M̂(t)x̂(ti(t))

∣∣∣ ≤ ε, i = 1, . . . , N im-

plies
∣∣∣M̂j,k(t)

∣∣∣ ≤ ϖ
c ,∀j, k = 1, · · · , n. Existence of the

required T then follows from the discussion in the pre-
vious paragraph.

Let ei be the basis vector of zeros with a one
in the ith position. For a fixed j and k, select-
ing constants α1,j,k · · ·αN,j,k ∈ R and rewriting

(4), we have
∑N

i=1 αi,j,kx̂(ti(t))
⊤M̂(t)x(ti(t)) =∑N

i=1

∑n
p=1

∑n
q=1 αi,j,kx̂p(ti(t))M̂p,q(t)x̂q(ti(t)) =∑N

i=1

∑n
p=1 M̂p,q(t)

∑n
q=1 αi,j,kx̂p(ti(t))x̂q(ti(t)). If

Span{x̂(ti(t))x̂(ti(t))⊤}Ni=1 = {Z ∈ Rn×n|Z = Z⊤},
then for any fixed j, k, we can select {αi,j,k(t)}Ni=1 such

that
∑N

i=1 αi,j,k(t)x̂(ti(t))x̂(ti(t))
⊤ = eje

⊤
k + eke

⊤
j , that

is, the (p, q) element of
∑N

i=1 αi,j,k(t)x̂(ti(t))x̂(ti(t))
⊤

is 1 if p = j and q = k, it is also 1 if p = k
and q = j, and it is zero otherwise. As a result,∑N

i=1

∑n
p=1 M̂p,q(t)

∑n
q=1 αi,j,k(t)x̂p(ti(t))x̂q(ti(t)) =

e⊤k M̂(t)ej + e⊤j M̂(t)ek = M̂j,k(t) + M̂k,j =

2M̂j,k(t). If min{eig(Z(t)Z(t)⊤)} > ϵ then
the coefficients αi,j,k are bounded such that

supt≥T maxi,j,k({|αi,j,k(t)|}N,n,n
i,j,k=1) ≤ α < ∞ for some

α > 0.

Select ε = 2ϖ
cαN and note that

∥∥∥x̂(ti(t))⊤M̂(t)x̂(ti(t))
∥∥∥ ≤

2ϖ
cαN ,∀i = 1, · · · , N implies that for all j, k = 1, . . . , n,∣∣∣2M̂j,k(t)

∣∣∣ =
∣∣∣
∑N

i=1 αi,j,k(t)x̂(ti(t))
⊤M̂(t)x̂(ti(t))

∣∣∣ ≤

αN maxi

({∥∥∥x̂(ti(t))⊤M̂(t)x̂(ti(t))
∥∥∥
}N

i=1

)
≤ 2ϖ

c ,

which implies that for all j, k = 1, . . . , n,
∣∣∣M̂j,k(t)

∣∣∣ ≤ ϖ
c ,

which completes the proof of the theorem. 2

5 Simulations

5.1 Methods and Results

To demonstrate the ability of the developed method to
obtain equivalent solutions to IRL problems that admit
multiple solutions, an IRL problem that has a product
structure is constructed and linearly transformed. The
results in [10] ensure that the resulting transformed IRL
problem admits multiple solutions.

The state space model is given by

A=


−0.2 0.4 1.6

3.7 1.6 −3.1

−3.2 0.4 4.6

, B=


1 2 −1

−1 3 4

1 2 −3

, C=


1.7 −0.4 −1.1

−0.1 0.2 0.3

0.5 0 −0.5

 .

0 50 100 150 200 250 300
10−12

10−4

104

t [s]

∥∆
(t
)∥

Fig. 1. A log-scale plot of the 2-norm of ∆ as a function of
time.
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10−10
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t [s]

∥ ∥ ∥K̂
p
(t
)
−

K
E

p

∥ ∥ ∥

Fig. 2. A log-scale plot of the induced 2-norm of the error
between the estimated feedback gain and the feedback gain
of the expert as a function of time.

50 100 150 200 250 300
10−13

10−7

10−1

t [s]

Ridge regression
RHSO

Fig. 3. A log-scale plot of the 2-norm of the error between the
state trajectory of the expert and the state trajectory of the
learner under the learned feedback gain for a problem that
admits multiple solutions. The red trajectory corresponds
to the feedback gain learned using the RHSO and the blue
trajectory corresponds to the feedback gain computed using
offline ridge regression.

The expert implements a feedback policy that mini-
mizes the cost functional in (3) with 2

Q =


12.32 −2.74 −8.26

−2.74 0.68 1.82

−8.26 1.82 5.68

 , R =


1 0 0

0 4 0

0 0 7

 . (18)

To ensure that the history stack satisfies the sufficient
condition in (14), an excitation signal comprised of a sum
of 20 sinusoidal signals is added to the input of the expert
in (1). The magnitudes are set to 0.5 and the frequen-
cies and phases are randomly selected from the ranges
0.001Hz to 1Hz and 0 rad to π rad, respectively. Since
the regressor Σ̂ is a nonlinear function of x̂, a precise
characterization of the excitation signal needed to sat-
isfy the finite informativity conditions in Definition 3 is
difficult to obtain. Drawing inspiration from persistence

2 The notation diag(v) represents a diagonal matrix with
the elements of the vector v along the diagonal.
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∥∥∥Q̂(t)−Q
∥∥∥∥∥∥R̂(t)−R
∥∥∥

Fig. 4. A plot of the induced 2-norm of the error between

the estimated Q̂ (red) and R̂ (blue) matrices and the Q and
R matrices of the expert as a function of time.

of excitation results for linear regressors, the number of
frequencies is selected to be higher than the number of
unknown parameters, which in this example is 14. The
excitation signal is assumed to be known to the learner,
so it can be subtracted from the total input of the expert
to infer the optimal input of the expert.

To facilitate comparison with ridge regression, the ma-
trix K4 is selected as K4 = (Σ̂⊤Σ̂ + ϵI)−1. Data are
added to the history stack every 0.05 seconds and the
history stack is purged if it is full and either the condi-
tion number of Σ̂⊤Σ̂ + ϵI is smaller than 1 × 105, or 2
seconds have elapsed since the last purge. 3 The weights
are Ŵ are randomly sampled from a standard normal
distribution.

A Luenberger observer is utilized for state estimation by
selecting the gain K3 to place the poles of (A−K3C) at
p1 = −0.1, p2 = −1.5 and p3 = −2 using the MATLAB
“place” command. These values are selected by trial and
error to achieve a sufficiently fast convergence rate for
the Luenberger observer. The parameters of the RHSO
are held constant for all simulations in this paper unless
otherwise stated.

Fig. 1 demonstrates the convergence of ∆ to the origin
as per Theorem 7 and Fig. 2 demonstrates the conver-
gence of the estimated feedback gain to a neighborhood
of the feedback matrix of the expert, as per Theorem
10. Finally, Fig. 4 indicates that the cost functional con-
verges to a functional that is different from that of the
expert, confirming that the IRL problem under consid-
eration admits multiple equivalent solutions.

Like most excitation conditions in reinforcement learn-
ing, this excitation condition cannot be guaranteed a
priori. The best practice is to monitor whether it is met
online. To examine whether the sufficient conditions de-
tailed in Definition 3 hold, stem plots are generated that
equal 1 when the conditions hold and 0 when they do
not (see Figs. 5, 6, and 7).

3 See [11] for further details on condition number minimiza-
tion.

0 50 100 150 200 250 300
0

0.5

1

t [s]

Fig. 5. This plot is equal to 1 if Span{x̂(ti(t))}Ni=1 = Rn and
0 otherwise.

0 50 100 150 200 250 300
0

0.5

1

t [s]

Fig. 6. This plot is equal to 1 if
Span{x̂(ti)x̂(ti)⊤}Ni=1 = {Z ∈ Rn×n | Z = Z⊤} and 0
otherwise.

0 50 100 150 200 250 300
0

0.5

1

t [s]

Fig. 7. This plot is equal to 1 if Σu(t) ∈ Range(Σ̂(t)) and 0
otherwise.

5.2 Discussion

Each simulation shows the convergence of ∆ to zero and
the convergence of the estimated feedback matrix, K̂P ,
to the feedback matrix KEp of the expert. In all simula-
tions, the RHSO converges to either an equivalent solu-
tion or the true cost functional of the expert. Therefore,
the RHSO is a complete extension to the HSO [20] as it
solves IRL problems with unique and non-unique solu-
tions. The particular equivalent solution that the RHSO
converges to depends on the initial estimates of the un-
known weights Ŵ .

As demonstrated by Fig. 4, convergence to an approxi-
mate equivalent solution is achieved in spite of failure to
meet the FI condition throughout the simulation. The
condition is met, however, at the end of the simula-
tion. Fig. 4 thus indicates that the FI condition is suffi-
cient but not necessary for the RHSO to converge to ap-
proximate equivalent solutions. When K4 is selected as
(Σ̂⊤Σ̂ + ϵI)−1, ∆ converges to zero and either a unique
or an equivalent solution is obtained, regardless of the
magnitude of ϵ. This result is at odds with regulariza-
tion used in ridge regression, where convergence with an
ϵ−dependent bound is obtained. Especially interesting
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is the fact that offline ridge regression [23] using matri-

ces Σu and Σ̂ that contain all of the available data fail
at finding a Ŵ that constitutes an equivalent solution
to the IRL problem.

6 Conclusion

In this paper, a novel framework for the estimation of a
cost functional is developed for IRL problems with mul-
tiple solutions. The developed technique is a modifica-
tion of the HSO in [20]. This modification, while simple,
requires a novel analysis approach. The analysis reveals
new data-informativity conditions required for conver-
gence of the update laws to an equivalent solution when
multiple solutions are present. It is further shown that
the RHSO is a proper extension of the HSO, in the sense
that it converges to the true cost functional of the expert
when the IRL problem has a unique solution.

Simulations demonstrate that the developed adaptive
update laws are able to converge to equivalent solutions
in IRL problems where offline ridge-regression fails to
generate useful solutions. Future research will include
applications of the developedmethod to real-world prob-
lems such as learning the cost function of pilots flying un-
manned air vehicles using input-output measurements.
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Detailed Explanation

A preliminary version of the approach developed in this article is published in the proceedings of the 2023 American
Control Conference [25]. The definition of equivalence used in this paper is stronger than the one in [25], and as
a result, the analysis that proves convergence to equivalent solutions is more involved than the analysis in [25]. In
particular, Lemma 6 is new, the data informativity condition in Definition 3 and the proof of Theorem 7 are different,
and the analysis of convergence to approximately equivalent solutions (Definition 9 and Theorem 10) is entirely new.



Response to ReviewComments

Response to the comments by the associate editor

(1) The extension from paper [20] ([19] in the original manuscript) seems incremental. The paper [23] is not available,

so the reviewers, the AE and the senior editor cannot check the extend of the contributions.

Response: The extension from [20] ([19] in the original manuscript) require an entirely new analysis approach.

Analysis of weight estimation errors, as done in [20] ([19] in the original manuscript) is no longer appropriate in

problems studied here, where the ideal weights do not exist, and as a result, there is no weight estimation error to

be analyzed. We therefore respectfully disagree with the assessment that the extension is incremental. We now

highlight this contribution in the introduction of the revised manuscript.

We apologize for the mix-up related to the conference version [23]. We intended to cite the conference paper

that was uploaded to arXiv, but cited the submitted paper instead. The conference paper is now published and

is duly cited in the revised manuscript.

(2) The proof of Theorem 7 can be referred as an application of LaSalle’s principle. This can save one page in

manuscript if removed. Same for Corollary 10 (Theorem 10 of the revised manuscript).

Response: We cannot use Corollary 4.2 fromKhalil’s textbook to prove Theorem 7 as suggested by the reviewer.

In fact, the system in (15) does not have a globally (or even locally) asymptotically stable equilibrium point at

the origin. Any perturbations outside of the subspace Ω∆ are not guaranteed to return to the origin. As such,

that corollary is not applicable, and we are forced to resort to the more general invariance principle. However,

in responding to this comment, we realized that uniqueness of solutions to differential equations can be used to

conclude that Ω∆ is forward invariant, which makes the invariance principle applicable to this problem, and we

do not need to replicate the proof of the invariance principle. The revised manuscript takes this approach, which

simplifies the proof of Theorem 7.

Theorem 10 analyzes asymptotic behavior in the case where ∆ is not equal to, but only approaches the origin.

We do not see how that corollary can be proved using the invariance principle.

(3) Subsections 3.3, 5.2 and 5.3 can be removed since they do not have theoretical back up especially for 5.3.

Response: In response to this comment, we have removed the mentioned sections from the revised manuscript

(4) As a conclusion, there are several issues in the paper. If the authors decide to resubmit, they have to reduce the

paper to brief by following the guidelines above as well as edit the manuscript to respond to the reviewers.

Response: We have edited the manuscript to address the reviewer comments. The revised manuscript is 10

pages, which is 2 pages longer than the typical brief. We respectfully request permission to pay for the two

additional pages in the event the manuscript is accepted for publication.
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Response to the comments by Reviewer 1

Review 1: This manuscript presents a modified method to determine a quadratic cost function for which the behavior

of a given expert system is optimal. Different from a previous work by one of the authors, this method is applicable

also when the desired cost function is not unique. The paper is not clearly written and the description of the method

is not self-contained. I also have some reserves about the strength of the results. In the following, these issues are

discussed in detail.

(1) The authors modified the method published in [20] ([19] in the original manuscript) to make it work for the

case in which more than one cost function explains the behavior of the expert. However, in this manuscript the

authors only made a superficial review of the results in [20] ([19] in the original manuscript). The consequence

is that Section 3 is rather incoherent. For example, the presentation of (7) and (8) is confusing because they do

not follow directly from (4) and (5) as claimed. Moreover, the sets of basis functions σ are not defined. This is

very important, because (14) makes no sense except for a very specific selection of basis functions.

Response: Since we were asked to resubmit this paper as a brief paper, we were unable to add more details

regarding the basis functions used in [20] ([19] in the original manuscript). Instead, we decided to keep the bare

minimum detail necessary in Section 3 and we cite the arXiv paper [18], where the basis functions are presented,

in detail, and some typographical errors in [20] ([19] in the original manuscript) are also rectified.

(2) Regarding (14), how the authors obtain this expression is incomprehensible unless the reader goes to [20] ([19] in

the original manuscript). It is worth mentioning as well that, following the procedure in [20] ([19] in the original

manuscript), I did not get exactly the same expression (14). I request the authors to provide the complete, step-

by-step procedure to get (14).

Response: An error was found in [20] ([19] in the original manuscript) and has since been rectified, see [18].

Due to page limitations of a brief paper, we are unable to add a derivation in the revised manuscript, but we

have included it here for the reviewer’s benefit.

Using the assumption of an optimal expert, x(·) and u(·) satisify the HJB equation,

H
(
x(t),∇x(V (x(t)))⊤, u(t)

)
= 0,∀t ∈ R≥0

with the optimal control equation being

u∗(x(t)) = −1

2
R−1B⊤∇x(V (x(t)))⊤

2



and the Hamiltonian defined as

H(x, p, u) := p⊤(Ax+Bu) + x⊤Qx+ u⊤Ru.

We know that the optimal cost is given by

V (x) = x⊤Sx

where S is a solution to the algebraic Riccati equation

A⊤S + SA− SBR−1B⊤S +Q = 0.

To aid in the estimation, we do the following linear parameterizations x⊤Sx = W ∗⊤
S σS(x), x

⊤Qx = W ∗⊤
Q σQ(x),

x⊤Rx = W ∗⊤
R σR1

(x), and Ru = σR2
(u)W ∗

R, where the ideal weights are given by

W ∗
S =

[
S11, S

(−1)
1 , S22, S

(−2)
2 , . . . , S

−(n−1)
n−1 , Snn

]⊤
,

W ∗
Q =

[
Q11, Q

(−1)
1 , Q22, Q

(−2)
2 , . . . , Q

−(n−1)
n−1 , Qnn

]⊤
, and

W ∗
R =

[
R11, R

(−1)
1 , R22, R

(−2)
2 , . . . , R

−(m−1)
m−1 , Rnn

]⊤
,

and the basis functions are given by

σS(x) = σQ(x) := [x2
1, 2x1x2, 2x1x3, . . . , 2x1xn, x

2
2, 2x2x3, 2x2x4, . . . , x

2
n−1, . . . , 2xn−1xn, x

2
n]

⊤,

σR1(u) := [u2
1, 2u1u2, 2u1u3, . . . , 2u1um, u2

2, 2u2u3, 2u2u4, . . . , u
2
m−1, . . . , 2um−1um, u2

m]⊤,

and

σR2(u) =




u⊤ 01×m−1 01×m−2 . . . 0

u(1)e
m
2

(
u⊤)(−1)

01×m−2 . . . 0

u(1)e
m
3 u(2)e

m−1
2

(
u⊤)(−2)

. . . 0

...
...

...
. . .

...

u(1)e
m
m u(2)e

m−1
m−1 u(3)e

m−2
m−2 · · ·

(
u⊤)−(m−1)




. (19)
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In (19), u(−j) denotes the vector u with the first j elements removed, eji denotes a row vector of size j, with a

one in the i−th position and zeros everywhere else, and u(i) denotes the i−th element of u.

The optimal control equation and HJB are then linearly parameterized as

0 = 2σR2(u)W
∗
R +B⊤ (∇xσS(x))

⊤
W ∗

S ,

0 = ∇x

(
(W ∗

S)
⊤σS(x)

)
(Ax+Bu) + (W ∗

Q)
⊤σQ(x) + (W ∗

R)
⊤σR1(u).

Using estimates of the ideal weights, a control residual error and an inverse Bellman error are defined as

∆′
u := 2σR2(u)ŴR +B⊤ (∇xσS(x))

⊤
ŴS , and

δ′ := ∇x

(
(ŴS)

⊤σS(x)
)
(Ax+Bu) + (ŴQ)

⊤σQ(x) + (ŴR)
⊤σR1(u).

Separating out the estimated weights Ŵ ′ =
[
Ŵ⊤

S , Ŵ⊤
Q , Ŵ⊤

R

]⊤
yields




δ′
(
x, u, Ŵ ′

)

∆′
u

(
x, u, Ŵ ′

)



=




σδ′ (x, u)

σ∆′
u
(x, u)



Ŵ ′,where

σδ′ (x, u) =
[
(Ax+Bu)⊤(∇xσS(x))

⊤, σQ(x)
⊤, σR1(u)

⊤], and

σ∆′
u
(x, u) =

[
B⊤(∇xσS(x))

⊤, 0m×PQ
, 2σR2(u)

]
.

Selecting r1 = 1 and removing it from the weight vector Ŵ ′ in (6) and (7) yields scale-aware definitions of the

control residual error and the inverse Bellman error, given by




δ
(
x, u, Ŵ

)

∆u

(
x, u, Ŵ

)



=




σδ(x, u)

σ∆u
(x, u)







ŴS

ŴQ

Ŵ−
R




+




u2
1r1

2u1r1

0m−1×1




, (20)

where Ŵ−
R is a copy of ŴR with the first element removed, σδ is defined as σδ′ , with the (PS + PQ + 1)−th

element removed, and σ∆u
is defined as σ∆′

u
, with the (PS + PQ + 1)−th column removed.

(3) The description of the ‘purging’ procedure (last paragraph of page 4) is also unclear. The authors write that a

new state estimate replaces an existing one in H2 if the replacement decreases a condition number. However,

4



they also state that H2 is set to a zero matrix every several time instances. Thus, there is no state to replace.

This procedure must be clarified.

Response: When H2 is set to a zero matrix, all data vectors in it are zero. In that case, we replace zero data

vectors with data vectors computed using a new state estimates. The condition number minimization algorithm

takes over once all zero vectors have been replaced. This description has been re-worded in the revised manuscript

to clarify the history stack construction process.

(4) Apart from these clarifying issues, there is the problem of the large number of conditions required to make the

theoretical results hold. In particular, the conditions required in Theorem 7 and Corollary 10 (Theorem 10 of

the revised manuscript) look overwhelming. The authors acknowledge that some of those conditions may be

restrictive (e.g. at the end of page 5). Overall, the stated conditions for the proposed method are very technical

and make the method look impractical. Could the authors comment, for example, on what could the user do to

satisfy the conditions in 3?

Response: The conditions in 3 cannot be enforced a priori due to nonlinear dependence of Σ̂ on the state

estimate x̂. However, as shown in Figures 5, 6, and 7, given a history stack, it is relatively straightforward to

check whether the conditions are met. 3 in the revised manuscript provides explicit eigenvalue tests for the first

and the third condition. The second condition, Σu ∈ Range Σ̂, can be checked using the ranks of Σ̂ and [Σ̂,Σu].

If the rank of the former is equal to the rank of the latter, then Σu ∈ Range Σ̂. The revised manuscript spells

this out in Part (3) of Remark 4.

(5) Moreover, Theorem 7 only states that the desired cost function will be obtained if the state estimates are equal

to the real states, and if the metric ∆ is exactly equal to zero. However, both of those variables only present

asymptotic convergence. There is no analysis of the behavior of the approximated parameters in Ŵ as x̂ tends

to x, and as ∆ tends to zero.

Response: Corollary 10 of the original manuscript (Theorem 10 of the revised manuscript) is where we analyzed

exactly what the reviewer is asking for in this comment. To highlight this fact better, we have made Corollary

10 of the original manuscript into a theorem in the revised manuscript.

(6) There is something else I don’t understand in Theorem 7. Why is matrix K selected as in (18)? In particular,

where does the term (Σ̂⊤Σ̂+ ϵI)−1 come from? Either I am missing something, or this is never used in the proof.

If the intention is simply to say that the right-hand side of (24) is negative semidefinite, then it would be enough

to select the lower block entry of (18) as Pσ̂⊤, where P is any positive definite matrix. Then, no matrix inverse

is required. The authors should properly justify the design of their method.

Response: The reviewer is correct in saying that instead of (Σ̂⊤Σ̂ + ϵI)−1, one can select any positive definite

symmetric matrix P . We have updated the revised manuscript where we have removed that matrix. Our selection

of (Σ̂⊤Σ̂ + ϵI)−1 was inspired by ridge regression for underdetermined systems, and we say so in the simulation

5



section of the revised manuscript where we select (Σ̂⊤Σ̂ + ϵI)−1.

(7) Corollary 10 (Theorem 10 of the revised manuscript) has the same problem as Theorem 7 of requiring a large

amount of conditions to hold. At the end, this corollary only shows that the obtained cost function will approxi-

mate the real one.

Response: The fact that the obtained cost function will only be an approximation of the real one is a conse-

quence of the excitation only being available on a finite interval. If the excitation is persistent, then asymptotic

convergence can be established. Due to the page limits of a brief paper, and since finite excitation is the more

common scenario, we analyzed only the finite excitation case.

(8) As I mentioned above, it is unclear how to satisfy the persistence of excitation conditions (19) in 3. This is even

more problematic given that the expert system (1) is assumed to use an asymptotically stable linear input that

is almost certainly not exciting. Corollary 10 (Theorem 10 of the revised manuscript) even requires that the

excitation in the expert’s trajectories lasts for a potentially long time. I would like to see a justification about

why we should expect that to happen when the trajectories of the expert go to zero in an optimal fashion. In

the simulation section, the authors solve this problem by adding an additional exciting signal to the input of the

expert system. However, this step was never mentioned in the preceding sections of the manuscript. The problem

is that the proofs of the main results in the paper use the fact that the behavior of the expert is optimal, and

therefore the proofs do not hold with the additional excitation signal.

Response: The excitation signal is assumed to be known to the learner, and as such, it can be subtracted off to

infer the expert’s optimal action. As a result, the excitation signal does not affect the analysis. Please note that

the state trajectory of the expert does not need to be optimal for the RHSO to work. As long as the learner, at

time t, can infer the expert’s optimal action in response to a given state x(t), the RHSO can be implemented.

In other words, the learner just needs access to sufficiently many state-action pairs of the form (x,−KEpx), the

trajectory t 7→ x(t) does not need to be optimal (see Remark 4 of the revised manuscript).

(9) As a final important comment, the authors mention in the introduction that there is a conference version of this

manuscript. The citation [23], however, seems to refer to this same manuscript, submitted to Automatica. Since

I cannot see that conference paper, I cannot judge whether the differences between the content of both versions

justifies the publication in Automatica as a regular paper.

Response: We apologize for the mix-up related to the conference version [23]. We intended to cite the conference

paper that was uploaded to arXiv, but cited the submitted paper instead. The conference paper is now published

and is duly cited in the revised manuscript.

(10) There are typos in the equations throughout the manuscript, particularly when defining column vectors and

omitting transposes.

Response: We have made every attempt to ensure that the equations in the revised manuscript are correct.
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Response the comments by to Reviewer 2

This paper proposes an algorithm for inverse reinforcement learning, which does not require a uniqueness assumption

on the Q, R, and S matrices entailed in the underlying Riccati equation. While this problem is interesting, the

presentation needs improvement. In addition, the paper requires quite a few restrictive assumptions, and seems to

rely on technically questionable claims. Specific comments below. Regarding the restrictive assumptions:

(1) It is required that R̂ is invertible at all times, where R̂ is the estimation of the control weighting term in the

Riccati equation. But this is simply not possible to verify a priori. Remark 8 claims that a projection operator

can be used to enforce this assumption, however, it is known that projection operators negatively interfere with

convergence guarantees.

Response: In response to this comment, we have expanded the discussion of the projection operator to show

that in the diagonal case, it does not affect stability. Please see Remark 8 of the revised manuscript.

(2) It is required, in (19), that Σu ∈ Range(Σ̂). How can one enforce this assumption? Especially given the reduced

degrees of freedom by fixing one of the weights in (14), I cannot see why this assumption should be true

Response: Like most excitation conditions in RL and IRL, this excitation condition cannot be enforced. The

best we can do is to monitor whether it is met at each time instant online, which is precisely what is done in

Figures 5, 6 and 7. The condition Σu ∈ Range Σ̂, can be checked using the ranks of Σ̂ and [Σ̂,Σu]. If the rank of

the former is equal to the rank of the latter, then Σu ∈ Range Σ̂.

Regarding the technical quality:

(1) In the proof of Corollary 10 (Theorem 10 of the revised manuscript), it is claimed that if ∥K̃px̂(ti(t))∥ ≤ ω̄
c(t) then

∥K̃p∥ ≤ ω̄. I just cannot see why this would be true. For example, suppose that x̂ goes to zero while pointwise

in time maintaining the full rank status. Then, one might as well have K̃p → ∞, and hence ∥K̃p∥ → ∞, while

∥K̃px̂(ti(t))∥ ≤ ω̄
c(t) still holds. A similar claim is made later.

We found this omission right after submission of the paper and rectified it, but were unable to update the

submission. Please note that in addition to the data matrix being full rank, Theorem 10 in the revised manuscript

requires the minimum eigenvalue of the data matrix to be bounded from below. That lower bound on the smallest

eigenvalue is what makes the existence of c possible.

(2) The authors focus a lot on the technical issue of Σ̂⊤Σ̂ not being invertible, and thus regularize it by using the

matrix Σ̂⊤Σ̂ + ϵI. One would expect that ϵ would have to be very small here for things to work, yet there is no

such condition in the paper. This is because the inverse of Σ̂⊤Σ̂ + ϵI is, in fact, not needed at all. To see this,

remove the inverse of Σ̂⊤Σ̂ + ϵI from (18). Then, (22) will still imply convergence of ∆ to 0. So why complicate

the presentation and the analysis by using this matrix?
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Response: The reviewer is correct in saying that instead of (Σ̂⊤Σ̂ + ϵI)−1, one can select any positive definite

symmetric matrix P . We have updated the revised manuscript where we change that matrix to P . Our selection

of (Σ̂⊤Σ̂ + ϵI)−1 was inspired by ridge regression for underdetermined systems, and we say so in the simulation

section of the revised manuscript where we select P = (Σ̂⊤Σ̂ + ϵI)−1. The discussion on regularization is

motivational, and we think that it is still relevant.

(3) Suppose that the data x indeed span Rn, but their excitation decays to 0 exponentially fast (i.e., x(t) → 0

exponentially fast). In this case, it seems that holding on “old data” can be relieving as excitation starts to

vanish. But why does the requirement limt→∞ t1(t) >> 1 in Corollary 10 (Theorem 10 of the revised manuscript)

suggest otherwise? The authors seem to focus a lot on rank and span properties of matrices pointwise in time,

however, in adaptive control these properties are usually insufficient to guarantee convergence.

That requirement would indeed be unnecessary, as the reviewer suggests, if we had access to the full system

state, x. Since we only measure the output, y, we can only store estimates of the state, x̂. Due to the purging

algorithm, the state estimates stored in the history stack get better over time. For a given desired error bound

ϖ, we need to wait until the error between x̂ and x at points stored in the history stack, becomes sufficiently

small for the update law to converge to a ϖ−equivalent solution.

Regarding the presentation

(1) The proof of Theorem 7 is a straightforward application of LaSalle’s invariance principle. The authors use [13,

Theorem 4.4] for the proof of this theorem, but the proof would have been an one-liner if [13, Corollary 4.2] was

used instead. The discussion regarding positive limit sets seems redundant.

Response: We cannot use Corollary 4.2 from Khalil to prove Theorem 7 as suggested by the reviewer. In fact,

the system in (15) does not have a globally (or even locally) asymptotically stable equilibrium point at the origin.

Any perturbations outside of the subspace Ω∆ are not guaranteed to return to the origin. As such, that corollary is

not applicable, and we are forced to resort to the more general invariance principle. However, in responding to this

comment, we realized that uniqueness of solutions to ODEs can be used to conclude that Ω∆ is forward invariant,

which makes the invariance principle applicable to this problem, and we do not need to replicate the proof of the

invariance principle. The revised manuscript takes this approach, which simplifies the proof of Theorem 7

(2) In (7)-(8), all matrices, such as WS , σQ, etc., should be explicitly defined.

Response: Since we were asked to resubmit as a brief paper, we had to remove detailed descriptions of all basis

functions from the revision. We now direct the reader to the arXiv manuscript [18] for the details.

(3) The definition of Σ should appear immediately after Σ is first used, after (15).

Response: It has been defined in the revised manuscript directly after (12), as the non-state estimate version

of Σ̂.
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(4) In Remark 5 (Remark 4 of the revised manuscript), it is mentioned “Since the expert is assumed to be optimal,

we know that Σu ∈ Range(Σ). Why is this true?

Note that since the optimal trajectory and the optimal controller satisfy the HJB equation and the control

equation, Σu = ΣW ∗ whereW ∗ is a vector comprised of the expert’sW ∗
S ,W

∗
Q, andW ∗

R, so we get Σu ∈ Range(Σ).

We have now added this explanation to the revised manuscript.

(5) One of the weights in (14) is fixed arbitrarily beforehand. Why is this without loss of generality? Meanwhile, the

authors suggest that they impose this to exclude irregular solutions to the IRL problem. However, the assumption

that R̂ is invertible seems to imply that arbitrarily fixing this weight is actually insufficient.

Response: Please note that the controller that minimizes the cost
∫∞
0

(
x(t)⊤Qx(t) + u(t)⊤Ru(t)

)
dt is identical

to the optimal controller that minimizes the cost
∫∞
0

(
x(t)⊤αQx(t) + u(t)⊤αRu(t)

)
dt for any α > 0, and so are

the resulting optimal trajectories. As a result, we can only infer Q and R from measured trajectories up to a

scaling factor. Fixing one element of the weights fixes the scaling factor, and hence, is without loss of generality.
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