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CHAPTER I

INTRODUCTION

1.1 Motivation

Given the widespread use of small unmanned aerial systems (sUAS), quadcopters in par-

ticular, the need to manage flights efficiently in low altitude settings arises as that airspace

is cluttered and turbulent. Cooperative piloting will be necessary for the guidance of these

quadcopters to prevent air-to-air and air-to-obstacle collisions. Since piloting a small quad-

copter in a windy obstacle-laden environment is a difficult task for pilots to do without

assistance, modeling pilot performance for cooperative piloting is imperative. We envision

a pilot-assist system that recommends paths to the pilots that are personalized to suit their

preferences and skill levels. This study focuses on the learning component of the recommen-

dation system that continually learns the pilot’s performance by analyzing their behavior.

Taking inspiration from [1,37], we hypothesize that the pilot’s skill level and preferences

can be encoded in a cost functional. We then model the pilot-aircraft system as an optimal

control problem where the natural tendencies and skill level [26] of the pilot are encoded

into a cost functional that the pilot is assumed to optimize. We aim to recover the said cost

function using flight data.

Inverse reinforcement learning (IRL) is the process of recovering the cost function of an

expert whose trajectories are consistent with a given dynamic model [25]. In this thesis, the

expert is assumed to be deterministic, behaving optimally with respect to some unknown

cost functional. The objective is to estimate the cost functional from observations of the

expert’s performance. While the estimated cost functionals are typically utilized for behavior
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imitation via (forward) reinforcement learning, the scope of this thesis is limited to the cost

functional estimation.

A key goal for this thesis is the development of an IRL formulation of the pilot modeling

problem [36] and application of an IRL method to solve the resulting IRL problem. The pilot

is assumed to be flying a quadcopter by minimizing a quadratic cost functional. This cost

functional has multiple equivalent solutions. As the quadcopter model later developed in

Section 3.1 and similar linearized systems follow a product structure, at is known from [15],

they will admit non-unique solutions to the corresponding IRL problem. A method for

obtaining an equivalent cost function is necessary.

The IRL method of choice in this thesis is the history stack observer (HSO) for IRL

developed in [33]. However, it was derived under the implicit assumption that the IRL

problem admits a unique solution. Since IRL problems, and the pilot modeling problem,

generally admit multiple linearly independent solutions [14,15], the uniqueness assumption is

restrictive. Non-uniqueness is studied in results such as [14], where procedures to determine

equivalent cost functionals are developed. It is also shown that IRL problems with non-

unique solutions arise naturally in state space models that have a product structure (see [15]).

Many real-world systems have a product structure, either in the original model or in the

linearized model. For example, linearized dynamics of aerospace vehicles [15] have a product

structure due to separation of longitudinal and lateral dynamics. The study of IRL problems

that admit nonunique solutions is thus indispensable in real-world applications.

Motivated by [38], a novel online implementation for learning non-unique reward weights

using the HSO formulation, called the Non-unique History Stack Observer (NHSO), is de-

veloped in this thesis. While the modification made to the HSO resembles ridge regression,

the resulting convergence guarantees are surprising and require novel analysis tools and data

richness conditions. The analysis shows that if the IRL problem has non-unique solutions,

then Q and R converges to an equivalent solution. The developed method is assessed using

numerical experiments that utilize an academic example whose corresponding IRL problem
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admits non-unique solutions. To provide a comprehensive extension of the study reported

in [33], we conduct additional testing on a problem that has a unique solution. As the original

HSO methodology was developed to be used with a Kalman gain, we have therefore included

simulations that incorporate noise. In application to the pilot modeling problem, the NHSO

is modified for identification of the weight estimates without state estimates. Additionally,

a linearized quadcopter model that assumes a pilot’s control inputs as velocity commands is

developed. Finally, a cost function that recognizes a pilot’s preferred performance penalties

is produced.

1.2 Literature Review

Inverse reinforcement learning (IRL) is the process of measuring an “experts”’ inputs and

subsequent behavior over time and obtaining their cost function where said “expert” gen-

erates trajectories that are consistent with a given dynamic model [25]. This “expert” is

assumed to be behaving optimally with respect to some unknown cost function. IRL meth-

ods such as [2,3,19–21,23–25,28,30,32,34,39,40] are utilized to uncover the true cost function.

A general characteristic of such methods is that they require multiple trajectories and are

computationally complex, making them unsuitable for online, real time implementation. To

address the IRL problem in a real-time, online setting, methods such as [4,8,29,31,33] have

been developed. These methods are typically model-based and use a single continuous tra-

jectory to learn the cost function of an expert. A notable result is obtained in [22] where

an online and model-free approach that utilizes a neural network to solve the IRL problem

in the presence of adversarial attacks is developed. However, this method only identifies the

state penalty matrix, Q, and is unable to identify the control penalty matrix, R.

The IRL methods recently developed in [7,22] and [38] study nonuniqueness of solutions

and guarantee convergence to the set of equivalent solutions. In [7,38] the problem is solved

in an offline setting as opposed to the online and real-time problem under consideration in

this thesis and demonstrated in [22]. [7, 22] only identify equivalent solutions of the state

3



penalty matrix, Q, by knowing the expert’s control input, u. These methods can further

identify a unique solution of Q if the expert’s control penalty matrix, R, is known.

The method developed in this article identifies equivalent Q and R matrices given u

and measurements of the state, x, are obtainable. Unique solutions of the corresponding

IRL problem can be obtained, up to a scaling factor, provided they exist. Similarly, a new

method to solve the unique IRL problem up to a scaling factor through non-cooperative

linear quadratic differential games is developed in [11], it is then expanded to an online IRL

method using differential games in [12] and compared to, and converges faster than, the

method in [16], which this article draws inspiration from. However, [12] does not address

non-unique solutions.

1.3 Contributions

The key contributions of this thesis are as follows:

1. This thesis extends the IRL HSO in [33] to problems where the observed trajectories

can be optimal with respect to multiple cost functions. A learner with access to the

state space model, controller input, and measurement data reconstructs an equivalent

cost function of an expert.

2. The proposed modification to the HSO is inspired by ridge regression, but has a surpris-

ing convergence property. Under ideal conditions (no noise and persistently exciting

regressor), the convergence is exact, as opposed to ridge regression, where the solutions

are off by a factor proportional to the regularization coefficient. As demonstrated by

the simulation results in this thesis, offline implementations of ridge regression tech-

niques on the same dataset do not converge, but the developed HSO does.

3. A novel analysis approach that guarantees convergence of the learned solution to a

neighborhood of an equivalent solution is developed. The analysis makes use of the

invariance principle and a novel data informativity condition.
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4. The utility of the developed model-based IRL algorithm is demonstrated in simula-

tion by applying it to different academic examples that admit unique and nonunique

solutions.

5. The pilot performance modeling problem utilizing a surrogate LQR pilot is formulated

in an IRL framework and solved using real-world experimental data.
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CHAPTER II

NONUNIQUENESS AND CONVERGENCE TO EQUIVALENT SOLUTIONS

IN OBSERVER-BASED INVERSE REINFORCEMENT LEARNING

A key challenge in solving the deterministic inverse reinforcement learning (IRL) problem

online and in real-time is the existence of multiple solutions. Nonuniqueness necessitates the

study of the notion of equivalent solutions, i.e., solutions that result in a different cost

function but the same feedback matrix, and convergence to such solutions. While offline

algorithms that result in convergence to equivalent solutions have been developed in the

literature, online, real-time techniques that address nonuniqueness are not available. In this

chapter, a regularized history stack observer that converges to approximately equivalent

solutions of the IRL problem is developed. Novel data-richness conditions are developed to

facilitate the analysis and simulation results are provided to demonstrate the effectiveness

of the developed technique.

2.1 Problem Formulation

The system being controlled by the expert is assumed to be a linear system of the form

ẋ(t) = Ax+Bu, (2.1.1)

with output

y′ = Cx(t), (2.1.2)

where the state is x ∈ R
n and the control input is u ∈ R

m. The system matrices are given

as A ∈ R
n×n and B ∈ R

n×m, and the output and output matrix are given as y′ ∈ R
L and

C ∈ R
L×n respectively.
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The expert is assumed to be an optimal controller that optimizes the cost functional

J(x0, u(·)) =
∫ ∞

0

(
x(t)TQx(t) + u(t)TRu(t)

)
dt, (2.1.3)

where x(·) is the system trajectory under the optimal control signal u(·) and starting from

the initial condition x0, and Q ∈ R
n×n and R ∈ R

m×m are unknown positive semi-definite

and positive definite matrices, respectfully. That is, the policy of the expert is given by

u = KEpx, where KEp ∈ R
m×n is obtained by solving the algebraic Riccati equation (ARE)

corresponding to the optimal control problem described by the system in (2.1.1) and the cost

functional in (2.1.3). The following assumption ensures that the IRL problem is well-posed.

Assumption 2.1.1 The pair (A,B) is stabilizable and the pairs (A,C) and (A,
√
Q) are

detectable.

Stabilizability of (A,B) and detectability of (A,
√
Q) is needed for the optimal controller to

exist and detectability of (A,C) guarantees the existence of a matrix L such that A−LC is

Hurwitz [9, Lemma 21.1].

The learning objective is to estimate, online and in real-time, the unknown matrices in the

cost functional using knowledge of the system matrices, A, B, and C, and input-output data.

Generally, for a system (A,B,C), a given set of input-output trajectories is optimal with

respect to multiple cost functionals. As a result, the true cost functional cannot generally

be estimated from data. Instead, an equivalent solution to the IRL problem is sought (see

Definition 2.2.1 and [38]).

While the HSO in [33] is an effective technique to solve the IRL problem online and in

real-time, the analysis focuses on the error between the true cost functional matrices and

their estimates, and as such, implicitly assumes uniqueness of solutions. As such, the method

in [33] cannot be applied to a large class of IRL problems that admit multiple solutions. In

this chapter, the HSO is extended to be applicable to IRL problems that admit multiple

solutions.
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2.2 Nonuniqueness and the History Stack Observer

To facilitate the discussion, this section provides a brief summary of the HSO developed

in [33] and highlights the key problem that is resolved in this chapter.

2.2.1 Equivalent Solutions and Equivalence Metric

If the state and control trajectories of the system are optimal with respect to the cost

functional in (2.1.3) and the assumptions in Section 2.1 are met, then there exists a matrix

S such that Q, R, A, B, and the optimal trajectories x(·) and u(·) satisfy the Hamilton-

Jacobi-Bellman (HJB) equation

x(t)T
(
ATS + SA− SBR−1BTS +Q

)
x(t) = 0 (2.2.1)

and the optimal control equation

u(t) = u∗(x(t)) := −R−1BTSx(t) (2.2.2)

∀t ∈ R≥0. The expert’s feedback matrix is then given by KEp = −R−1BTS. The HJB

equation and the optimal control equation facilitate the definition of an equivalent solution.

Definition 2.2.1 A solution (Q̂, Ŝ, R̂) is called an equivalent solution of the IRL problem

if it satisfies the ARE

ATŜ + ŜA− ŜBR̂−1BTŜ + Q̂ = 0 (2.2.3)

and optimization of the performance index J , with Q = Q̂ and R = R̂, results in the same

feedback matrix as the one utilized by the expert, that is,

K̂P := R̂−1BTŜ = KEP .

Given an estimate x̂ of the state x, a measurement of the control signal, u, and estimates

Q̂, R̂, and Ŝ of Q, R, and S, respectively, (2.2.1) and (2.2.2) can be evaluated to develop an

observation error that evaluates to zero if the state estimates and estimates of the matrices Q,
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R, and S are correct. In the following, the observation error is used to improve the estimates

by framing the IRL problem as a state estimation problem. To facilitate the observer design,

equations (2.2.1) and (2.2.2) are linearly parameterized as

0 = 2σR2(u)W
∗
R +BT (∇xσS(x))

T W ∗
S , (2.2.4)

0 = ∇x

(
(W ∗

S)
TσS(x)

)
(Ax(t) + Bu(t)) + (W ∗

Q)
TσQ(x) + (W ∗

R)
TσR1(u), (2.2.5)

where xTSx = (W ∗
S)

TσS(x), xTQx = (W ∗
Q)

TσQ(x), uTRu = (W ∗
R)

TσR1(u), and Ru =

σR2(u)W
∗
R, and W ∗

S ∈ R
PS , W ∗

Q ∈ R
PQ , W ∗

R ∈ R
M are the ideal weights with PS, PQ,

and M being the number of basis functions in the respective linear parameterizations.

Motivated by (2.2.4), and using the estimates ŴS, ŴQ, and ŴR for W ∗
S , W

∗
Q, and W ∗

R

respectively, (2.2.4) a control residual error is defined as

Δ′
u := 2σR2(u)ŴR +BT (∇xσS(x))

T ŴS. (2.2.6)

Similarly, from (2.2.5), the inverse Bellman error is defined as

δ′ := ∇x

(
(ŴS)

TσS(x)
)
(Ax(t) + Bu(t)) + (ŴQ)

TσQ(x) + (ŴR)
TσR1(u). (2.2.7)

Separating out Ŵ ′ =
[
ŴS, ŴQ, ŴR

]T
yields

⎡
⎢⎣ δ′

(
x, u, Ŵ ′

)

Δ′
u

(
x, u, Ŵ ′

)
⎤
⎥⎦ =

⎡
⎢⎣ σδ′ (x, u)

σΔ′
u
(x, u)

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣
ŴS

ŴQ

ŴR

⎤
⎥⎥⎥⎥⎦ , (2.2.8)

where

σδ′ (x, u) =

[
(Ax+Bu)T(∇xσS(x))

T σQ(x)
T σR1(u)

T

]
(2.2.9)

and

σΔ′
u
(x, u) =

[
BT(∇xσS(x))

T 0m×PS+PQ
2σR2(u)

]
. (2.2.10)

The scaling ambiguity inherent in linear quadratic optimal control, which is apparent in the

fact that Ŵ ′ = 0 is a solution of (2.2.4) and (2.2.5), is resolved, without loss of generality,
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by assigning an arbitrary value to one element of Ŵ ′. Selecting r1 arbitrarily and removing

it from (2.2.8) yields scale-aware definitions of the control residual error and the inverse

Bellman error given by

⎡
⎢⎣ δ
(
x, u, Ŵ

)

Δu

(
x, u, Ŵ

)
⎤
⎥⎦ =

⎡
⎢⎣ σδ(x, u)

σΔu(x, u)

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣
ŴS

ŴQ

Ŵ−
R

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

u2
1r1

2u1r1

0m−1×1

⎤
⎥⎥⎥⎥⎦ , (2.2.11)

where Ŵ−
R denotes ŴR with the first element removed. In this chapter, the error system in

(2.2.11) is used as an equivalence metric to develop an observer-based IRL method.

2.2.2 The Original History Stack Observer

Pairing the innovation y−Cx̂ with the inverse bellman error and control residual error from

(2.2.11) yields the observation error 1

ω =

⎛
⎜⎝
⎡
⎢⎣Cx

Σu

⎤
⎥⎦−

⎡
⎢⎣ Cx̂

Σ̂Ŵ

⎤
⎥⎦
⎞
⎟⎠ . (2.2.12)

Using the observation error, the history stack observer is designed to be of the form⎡
⎢⎣

˙̂x

˙̂
W

⎤
⎥⎦ =

⎡
⎢⎣ Ax̂+Bu

0PS+PQ+M−1

⎤
⎥⎦+K

⎛
⎜⎝
⎡
⎢⎣Cx

Σu

⎤
⎥⎦−

⎡
⎢⎣ Cx̂

Σ̂Ŵ

⎤
⎥⎦
⎞
⎟⎠ (2.2.13)

where Ŵ = [ŴS, ŴQ, Ŵ
−
R ],

Σ̂ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σδ (x̂(t1), u(t1))

σΔu (x̂(t1), u(t1))

...

σδ (x̂(tN), u(tN))

σΔu (x̂(tN), u(tN))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,Σu :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−u2
1(t1)r1

−2u1(t1)r1

0m−1×1

...

−u2
1(tN)r1

−2u1(tN)r1

0m−1×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

1See [33] for the detailed process
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and the gain K is selected to be

K :=

⎡
⎢⎣ K3 0n×N+Nm

0PS+PQ+M−1×L K4(Σ̂
TΣ̂)−1Σ̂T

⎤
⎥⎦ . (2.2.14)

Remark 2.2.1 In the case of noisy measurements, the feedback gain K in (2.2.14) can

be replaced by the Kalman gain. While the use of the Kalman gain results in improved

performance (see Section 2.3.3), extending the stability guarantees of the HNSO to the case

where the measurements are noisy and K is the Kalman gain is out of the scope of this thesis.

The matrices Σ̂ ∈ R
N(m+1)×PS+PQ+M−1 and Σu ∈ R

N(m+1) are constructed using the dataset

{(x̂(ti), u(ti))}Ni=1, recorded at time instances {t1, . . . tN}, with N ≥ PS + PQ +M − 1. The

dataset is referred to hereafter as a history stack. To ensure convergence of the weights,

updated using (2.2.13), to an equivalent solution (see Theorem 2.2.1 below), the history

stack is recorded using a minimum singular value maximization algorithm. At any time, two

separate history stacks, H1 and H2 are maintained. The history stack H1 is used to compute

the matrices Σ̂ and Σu in (2.2.13) and H2 is populated with current state estimates and

control inputs. Both history stacks are initialized as zero matrices of the appropriate size.

As state estimates become available, they are selectively added, along with the corresponding

control input, to H2. A new state estimate is selected to replace an existing state estimate

in H2 if the replacement decreases the condition number of (Σ̂TΣ̂). Once the data in H2

are such that the condition number of (Σ̂TΣ̂) is lower than a user-selected threshold, and

a predetermined amount of time has passed since the last update of H1, we set H1 = H2

and purge H2 by setting it back to a zero matrix. The purging process ensures that old and

possibly erroneous state estimates are removed from H1.

The IRL method developed in this chapter requires that the expert’s behavior is optimal,

which implies that u(t) = KEPx(t) for all t. Since the true values of the state are not

accessible, in general, for the data points stored in the history stack H1, KEP x̂(ti)−u(ti) �= 0,

which results in inaccuracy in the estimation of an equivalent solution. Since the state

11



estimates converge to the true state exponentially, the purging process described above

ensures that the discrepancy maxi=1,··· ,N ‖KEP x̂(ti)− u(ti)‖ is monotonically decreasing in

time, and so is the resulting inaccuracy in the estimation of an equivalent solution.

Generally, given a system model with output (or state) and control trajectories, there are

multiple sets of Q, R, and S matrices that all solve the IRL problem [14, 15]. As such, the

IRL problem, as posed in [33], is not well-defined. In fact, the stability theorem in [33] relies

on the assumption that Σ̂ is full rank. Due to purging and improved state estimates, Σ being

full rank implies Σ̂ is eventually full rank, and as a result, ΣW = Σu has a unique solution.

Since uniqueness does not generally hold [15], the HSO must be modified to address the

non-unique case. In this chapter, the full rank condition, and subsequently, the uniqueness

assumption is relaxed using an update rule motivated by ridge [10] and lasso [35] regression.

Furthermore, unlike [33], since convergence to a specific set of parameters can no longer

be guaranteed, direct analysis of the parameter estimation error is no longer viable. As

such, an analysis framework is developed where convergence of the equivalence metric is

analyzed using Lyapunov methods. Data richness conditions are then derived to ensure that

convergence of the equivalence metric implies convergence to equivalent solutions.

2.2.3 Regularized History Stack Observer for Non-Unique Solutions (NHSO)

To avoid the uniqueness assumption, and subsequently, to allow for a rank-deficient Σ̂, the

gain matrix of the HSO is modified in this chapter to include a regularization term to yield

K :=

⎡
⎢⎣ K3 0n×N+Nm

0PS+PQ+M−1×L K4(Σ̂
TΣ̂ + εI)−1Σ̂T

⎤
⎥⎦ , (2.2.15)

where ε ≥ 0 is a small constant selected by the user to ensure invertibility of Σ̂TΣ̂ + εI.

Instead of using the condition number of (Σ̂TΣ̂) to select data points for storage in the

history stack, the condition number of (Σ̂TΣ̂ + εI) is used. In addition, since Σ̂ cannot

be full rank, we need a different way to detect whether the recorded data are sufficient for

estimation of an equivalent solution.

12



The following theorems establish that under a novel informativity condition on the

recorded data, the modification above leads to an equivalent solution when the IRL problem

admits multiple solutions, and the correct solution when the IRL problem admits a unique

solution up to a scaling factor. While the modification itself is relatively minor, the above

somewhat surprising results are the key contributions of this work.

To facilitate the analysis, let Δ(t) := Σu− Σ̂Ŵ (t) where Σu and Σ̂ are piecewise constant

through the purging process of the history stacks. Using the update law in (2.2.13), the

time-derivative of Δ can be expressed as

Δ̇ = −Σ̂K4(Σ̂
TΣ̂ + εI)−1Σ̂TΔ (2.2.16)

The analysis requires a data informativity condition summarized in Definition 2.2.2 below.

Definition 2.2.2 The signal (x̂, u) is finitely informative (FI) if there exists a time instance

T > 0 such that for some {t1, t2, . . . , tN} ⊂ [0, T ],

span {x̂(ti)}Ni=1 = R
n

span
{
x̂(ti)x̂(ti)

T
}N
i=1

= {Z ∈ R
n×n|Z = Z

T} and

Σu ∈ (Null(Σ̂T))⊥. (2.2.17)

Remark 2.2.2 The three FI conditions in Definition 2.2.2 are utilized in the subsequent

analysis to show that as the equivalence metric converges to zero, the corresponding weight

estimates converge to an equivalent solution. These conditions are not restrictive as long as

a sufficient excitation signal is used to fulfill the conditions. In practice, at least as many

unique signals as weights are needed to learn an equivalent solution.

1. The condition Σu ∈ (Null(Σ̂T))⊥ is equivalent to Σu ∈ Range(Σ̂). It is met provided

at least one set of weights Ŵ satisfies Σu = Σ̂Ŵ . Since the expert is assumed to be

optimal, we know that Σu ∈ Range(Σ). Due to improving state estimates and the

purging algorithm, Σ̂ converges to Σ, and as a result, there exists T > 0 such that

Σu ∈ Range(Σ̂) for all t ≥ T .
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2. The condition span {x̂(ti)}Ni=1 = R
n is an excitation-like condition that requires the

state estimates to be linearly independent. This condition is not overly restrictive, but

can fail if the system trajectories evolve on a subspace of dimension less than n.

3. The condition span
{
x̂(ti)x̂(ti)

T
}N
i=1

= {Z ∈ R
n×n|Z = Z

T} a sufficient condition for

x̂T
i M̂x̂i = 0, ∀i = 1, · · · , N to imply M̂ = 0. This condition is needed for satisfaction

of the HJB equation at a finite number of data points to also imply satisfaction of the

ARE.

Lemma 2.2.1 If Σ̂ and Σu satisfy (2.2.17), then

ΩΔ ∩ Null(Σ̂T) = {0}, (2.2.18)

where

ΩΔ :=
{
Δ ∈ R

N(m+1) | Δ = Σu − Σ̂y, for some y ∈ R
PS+PQ+M−1

}
.

Proof. If Δ ∈ Null (Σ̂T), then Δ is given by some linear combination of the basis for the null

space of Σ̂T. Let ΣNull be a matrix whose columns are the basis vectors of the null space of

Σ̂T. Then, Δ ∈ Null (Σ̂T) implies that Δ = ΣNullWNull for some vector WNull whose elements

are the coefficients in the linear combination of the basis of the null space of Σ̂T that makes

up Δ. This Δ has to also be equal to Σu−Σ̂Ŵ for some Ŵ . So, there exist weights WNull and

Ŵ such that ΣNullWNull = Σu − Σ̂Ŵ . Rearranging the terms, there exist weights WNull and

Ŵ such that

[
ΣNull Σ̂

]⎡⎢⎣WNull

Ŵ

⎤
⎥⎦ = Σu. That is, Σu can be written as a linear combination

of the columns of Σ̂ and the columns of ΣNull . However, since Rank(Σ̂) = Null (Σ̂T)
⊥
,

every linear combination of columns of Σ̂ is orthogonal to every linear combination of the

columns of ΣNull , we know that Σu has two orthogonal components, one that lives in the

range space of Σ̂ and another that is contained in the null space of Σ̂T. If our data are such

that Σu ∈ Null (Σ̂T )
⊥
, then the component that is contained in the null space of Σ̂T is zero.

That is, WNull = 0, which implies that Δ = 0.
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Remark 2.2.3 Note that if the IRL problem has a unique solution, then the condition,

Σu ∈ (Null(Σ̂T))⊥ in Definition 2.2.2, is trivially met whenever N ≥ PS + PQ +M − 1 and

Σ̂ is full rank.

Theorem 2.2.1 below shows that provided the weights Ŵ are updated using the update law

in (2.2.13), and the trajectories are finitely informative as per Definition 2.2.2, then the

equivalence metric Δ converges to the origin for a given fixed Σ̂ and Σu.

Theorem 2.2.1 If Σu ∈ Null(Σ̂T)⊥, ε ≥ 0 is selected to ensure invertibility of Σ̂TΣ̂+εI, and

R̂ is invertible then the solutions of (2.2.16) with the gain K in (2.2.15) satisfy limt→∞ Δ(t) =

0.

In addition if full state information is available (i.e., x̂ = x and as a result, Σ̂ = Σ),

Δ = Σu − ΣŴ = 0, span{xi}Ni=1 = R
n, and if span{xix

T
i }Ni=1 = {Z ∈ R

n×n|Z = Z
T}, then

the matrices Q̂, Ŝ, and R̂, extracted from Ŵ , constitute an equivalent solution of the IRL

problem per Definition 2.2.1.

Remark 2.2.4 The invertibility of R̂ is needed for KP to be well-defined. While this is

difficult to ensure apriori in general, it can be guaranteed in the specific case where R is

diagonal by using a projection operator to ensure that all diagonal elements of R̂ remain

positive.

Proof. Let D = R
N(m+1) and consider the positive definite and radially unbounded candidate

Lyapunov function

V (Δ) =
1

2
ΔTΔ. (2.2.19)

The orbital derivative of V along the solutions of (2.2.16) is given by

V̇ (Δ) = −ΔTΣ̂K4(Σ̂
TΣ̂ + εI)−1Σ̂TΔ. (2.2.20)

For any c > 0, the sublevel set Ωc := {Δ ∈ D|V (Δ) ≤ c} is compact and positively invariant

and the set ΩΔ in (2.2.1) can be shown to be closed and positively invariant. As such, the
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intersection Ω = Ωc∩ΩΔ is compact and positively invariant. By the invariance principle [17,

Th 4.4], all trajectories of Δ in (2.2.16) starting in Ω converge to the largest invariant subset of

{Δ ∈ Ω | V̇ (Δ) = 0}. The set {Δ ∈ Ω|V̇ (Δ) = 0}, is equal to Null(Σ̂T)∩Ω as Σ̂TΔ = 0 only

when Δ ∈ Null(Σ̂T). Furthermore, from Lemma 2.2.1, provided Σu ∈ (Null(Σ̂T))⊥, the only

Δ that can be in Σ̂T∩ΩΔ is Δ = 0. Since the singleton {0} is positively invariant with respect

to the dynamics in (2.2.16), it is also the largest invariant subset of {Δ ∈ Ω|V̇ (Δ) = 0}.
As a result, by the invariance principle, all trajectories starting in Ω converge to the origin.

Since V is radially unbounded, Ωc can be selected to be large enough to include any initial

condition in ΩΔ. Thus, all trajectories starting in ΩΔ converge to the origin.

To prove equivalence, the equality R̂−1BTŜ = KEP must be established. Indeed, if

{xi}Ni=1 spans R
n there is a unique matrix K that satisfies ui = Kxi for all i = 1, . . . , N . Let-

ting U = [u1, . . . , uN ] and X = [x1, . . . , xN ], this unique matrix is given byK = UX
T(XXT)−1.

It is also known that because the expert’s behavior is optimal, the observed data sat-

isfy ui = −KEPxi for all i = 1, . . . , N . Since Δ = 0, the observed data points satisfy

ui = −R̂−1BTŜxi for all i = 1, . . . , N . Since there is only one matrix K that satis-

fies ui = −Kxi for all i = 1, . . . , N , all three of the matrices above must be equal, i.e.,

K = KEP = R̂−1BTŜ.

The fact that if Δ = 0 then xT
i

(
ATŜ + ŜA− ŜBR̂−1BTŜ + Q̂

)
xi = 0 holds for

all points in H1 is immediate from the construction of Δ. Furthermore, with a slight

modification of the proof from [18], (Q̂, Ŝ, R̂) can be proven to satisfy the ARE if

Δ = 0 and {xix
T
i }Ni=1 spans all symmetric matrices. To that end, let ei be the ba-

sis vector of zeros with a one in the ith position such that eje
T
k + eke

T
j =

∑N
i=1 αixix

T
i

for some α1 · · ·αN ∈ R. Rewriting (2.2.1) with M̂ =
(
ATŜ + ŜA− ŜBR̂−1BTŜ + Q̂

)
,

∑N
i=1 αix

T
i M̂xi =

∑N
i=1

∑n
p=1

∑n
q=1 αixi,pM̂p,qxi,q =

∑N
i=1

∑n
p=1 M̂p,q

∑n
q=1 αixi,pxi,q. Now,
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for any fixed j, k, select {αi}Ni=1 such that
∑N

i=1 αixix
T
i = eje

T
k + eke

T
j , where

N∑
i=1

αixix
T
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if p = j, q = k

1 if p = k, q = j

0 otherwise

(2.2.21)

As a result,
∑N

i=1

∑n
p=1 M̂p,q

∑n
q=1 αixi,pxi,q = eTk M̂ej + eTj M̂ek = M̂j,k + M̂k,j = 2M̂j,k = 0.

Since j and k were arbitrary, M̂ = 0. That is, the tuple (Q̂, Ŝ, R̂) satisfies the ARE and

constitutes an equivalent solution of the IRL problem.

Theorem 2.2.1 can be used to obtain the final result summarized in the definition and

the corollary below.

Definition 2.2.3 Given � ≥ 0 A solution (Q̂, Ŝ, R̂) to the IRL problem is called an

�−equivalent solution of the IRL problem if

∥∥∥M̂∥∥∥ ≤ �,

where M̂ = ATŜ + ŜA − ŜBR̂−1BTŜ + Q̂, and optimization of the performance index J ,

with Q = Q̂ and R = R̂, results in a feedback matrix, K̂p, that satisfies

∥∥∥R̂−1BTŜ −KEP

∥∥∥ ≤ �.

Corollary 2.2.1 Given � ≥ 0 if t1 is large enough, Σu ∈ Null(Σ̂T)⊥, ε ≥ 0 is selected to

ensure invertibility of Σ̂TΣ̂+ εI, K3 is selected so that A−K3C is Hurwitz, span{x̂(ti)}Ni=1 =

R
n, and span{x̂(ti)(x̂(ti))T}Ni=1 = {Z ∈ R

n×n|Z = Z
T}, and if the matrix R̂, extracted from

Ŵ is invertible such that ‖R̂−1(t)‖ ≤ R for some 0 ≤ R < ∞, then the matrices Q̂, Ŝ, and

R̂, extracted from Ŵ , converge to a �−equivalent solution of the IRL problem.

Proof. The control residual error established in (2.2.6) can be manipulated into

σΔ′
u
(x̂(ti), ui) Ŵ

′(t) = R̂(t)
(
K̃P (t)x̂(ti) +KEP x̃(ti)

)
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where K̃P (t) := R̂−1(t)BTŜ(t)−KEP and x̃(ti) := x(ti)− x̂(ti). Using the triangle inequality∥∥∥K̃P x̂(ti)
∥∥∥ ≤ ∥∥∥R̂−1(t)σΔ′

u
(x̂(ti), ui) Ŵ

′(t)
∥∥∥+ ‖KEP x̃(ti)‖.

Note that if span{x̂(ti)Ni=1} = R
n then ∃ c such that

∥∥∥K̃P x̂(ti)
∥∥∥ ≤ �

c
, ∀i implies

∥∥∥K̃P

∥∥∥ ≤
�. For this c > 0, if t and ti are large enough such that the state estimation error x̃(ti)

and equivalence metric Δ(t) satisfy ‖x̃(ti)‖ ≤ �
2c‖KEP ‖ and

∥∥∥σΔ′
u
(x̂(ti), ui) Ŵ

′(t)
∥∥∥ ≤ �

2cR
,

respectively, then
∥∥∥K̃P x̂(ti)

∥∥∥ ≤ �
c
, which implies

∥∥∥K̃P

∥∥∥ ≤ �.

The inverse Bellman error established in (2.2.7) can be manipulated into

σδ′ (x̂(ti), ui) Ŵ
′(t) = x̂T(ti)M̂(t)x̂(ti) + g

(
K̂P (t), x̂i, KEP , xi

)
,

where g satisfies g = O
(∥∥∥K̃P

∥∥∥+ ‖x̃i‖
)
.2. Using the triangle inequality

∥∥∥x̂T(ti)M̂(t)x̂(ti)
∥∥∥ ≤∥∥∥σδ′ (x̂(ti), ui) Ŵ

′(t)
∥∥∥+ ∥∥∥g (K̃P (t), x̃(ti)

)∥∥∥.
Equivalence of matrix norms implies that there exists c > 0 such that if

∣∣∣M̂j,k

∣∣∣ ≤
�/c for all j, k = 1, · · · , n then

∥∥∥M̂∥∥∥ ≤ �. If t and ti are large enough, then an

argument similar to the proof of Theorem 2.2.1 can be used to show that
∣∣∣M̂j,k

∣∣∣ ≤
�/c, ∀j, k = 1, · · · , n. Indeed let ei be the basis vector of zeros with a one in the

ith position. For a fixed j ane k, selecting constants α1,j,k · · ·αN,j,k ∈ R and rewriting

(2.2.1) with M̂ =
(
ATŜ + ŜA− ŜBR̂−1BTŜ + Q̂

)
, we have

∑N
i=1 αi,j,kx̂

T(ti)M̂x(ti) =

∑N
i=1

∑n
p=1

∑n
q=1 αi,j,kx̂p(ti)M̂p,qx̂q(ti) =

∑N
i=1

∑n
p=1 M̂p,q

∑n
q=1 αi,j,kx̂p(ti)x̂q(ti).

If span{x̂(ti)x̂T(ti)}Ni=1 = {Z ∈ R
n×n|Z = Z

T} holds then for any fixed j, k, we can select

{αi,j,k}Ni=1 such that
∑N

i=1 αi,j,kx̂(ti)x̂
T(ti) = eje

T
k + eke

T
j , that is,

N∑
i=1

αi,j,kx̂(ti)x̂
T(ti) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if p = j, q = k

1 if p = k, q = j

0 otherwise

(2.2.22)

As a result,
∑N

i=1

∑n
p=1 M̂p,q

∑n
q=1 αi,j,kx̂p(ti)x̂q(ti) = eTk M̂ej+eTj M̂ek = M̂j,k+M̂k,j = 2M̂j,k.

If t is large enough and as a result Δ(t) is small enough so that
∥∥∥x̂T(ti)M̂(t)x̂(ti)

∥∥∥ ≤
2For a positive function g, f = O(g) if there exists a constant M such that ‖f(x)‖ ≤ Mg(x), ∀x
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‖Δ(t)‖ ≤ 2�
cmaxi,j,k({|αi,j,k|}Ni=1)N

for all i = 1, · · · , N , then
∥∥∥∑N

i=1 αi,j,kx̂
T(ti)M̂x̂(ti)

∥∥∥ ≤

maxi,j,k({|αi,j,k|}Ni=1)N maxi

({∥∥∥x̂T(ti)M̂(t)x̂(ti)
∥∥∥}N

i=1

)
≤ 2�

c
. As a result,

∣∣∣M̂j,k

∣∣∣ ≤ �
c
,

and therefore
∥∥∥M̂∥∥∥ ≤ �, and the corollary is established.

2.3 Simulations

In this section, the efficacy of the developed method is demonstrated using a linearly trans-

formed separable state space model that admits non-unique solutions. That model is then

modified to admit a unique solution per [15]. A noisy simulation for the non-unique model

is then evaluated. Finally, the transferability of equivalent solutions of the IRL problem to

different dynamical systems is examined.

2.3.1 A linear IRL poblem with nonunique solutions

In this section, we construct an academic example that ensures non-uniqueness of IRL solu-

tions using the procedure developed in [15].

The state space model is given by

A =

⎡
⎢⎢⎢⎢⎣
−0.2 0.4 1.6

3.7 1.6 −3.1

−3.2 0.4 4.6

⎤
⎥⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎢⎣

1 2 −1

−1 3 4

1 2 −3

⎤
⎥⎥⎥⎥⎦

C =

⎡
⎢⎢⎢⎢⎣

1.7 −0.4 −1.1

−0.1 0.2 0.3

0.5 0 −0.5

⎤
⎥⎥⎥⎥⎦ .

The expert implements a feedback policy that minimizes the cost function in (2.1.3) with3

3The notation diag(v) represents a diagonal matrix with the elements of the vector v along the diagonal.
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Figure 1: A logscale plot of the norm of Δ as a function of time for the example that admits

non-unique solutions.
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Figure 2: A logscale plot of the induced 2-norm of the error between the estimated feedback

gain and the expert’s feedback gain as a function of time for the example that admits non-

unique solutions.
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Q =

⎡
⎢⎢⎢⎢⎣
12.32 −2.74 −8.26

−2.74 0.68 1.82

−8.26 1.82 5.68

⎤
⎥⎥⎥⎥⎦ and R = diag([1, 4, 7]). (2.3.1)

To ensure that the history stack satisfies the sufficient condition in (2.2.17), we construct

an excitation signal comprised of a sum of 20 sinusoids with 0.5 magnitude and randomly

selected frequencies and phases ranging from 0.001Hz to 1Hz and 0rad to πrad, respectively.

This excitation signal is added into the learner system’s input (2.2.13) and into the expert

system’s input (2.1.1). Data are added to the history stack every 0.05 seconds and is purged

when full if the condition number of Σ̂TΣ̂ + εI < 1 × 105, or 2 seconds have elapsed since

the last purge, see [16] for a similar condition number minimization process. A Luenberger

observer is utilized for state estimation by selecting the gain K3 to place the poles of (A −
K3C) at p1 = −0.1, p2 = −1.5 and p3 = −2 using the MATLAB “place” command. The

parameters of the NHSO are held constant for all simulations in this chapter unless otherwise

stated.

As predicted by Theorem 2.2.1, Fig. 1 demonstrates Δ converges to zero and thus, the

feedback matrix corresponding to the estimated weights, Ŵ , converges to a neighborhood

of the feedback matrix of the expert, as demonstrated in Fig. 2. Finally, Fig. 3 indicates

that the cost functional converges to a functional that is different from that of the expert,

confirming the existence of multiple equivalent solutions.

To demonstrate the sufficient condition detailed in Definition 2.2.2, a stem plot is gener-

ated that equals 1 when Σu ∈ Range(Σ̂) and equals zero otherwise. This condition on Σu, as

shown in the stem plot, is obtained through the application of the rank nullity theorem to the

FI condition. The fact that convergence is obtained without the FI condition is indicative

of the FI condition being sufficient and not necessary.
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Figure 3: A plot of the induced 2-norm of the error between the estimated Q (red) and R

(blue) matrices and the expert’s Q and R matrices as a function of time for the example

that admits non-unique solutions
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Figure 4: This stem plot to tracks the FI condition by plotting 1 whenever Σu = Range(Σ̂)

and 0 otherwise.
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Figure 5: A logscale plot of the norm of Δ as a function of time for the example that admits

a unique solution.

2.3.2 A linear IRL problem with a unique solution

If the system matrix for the system in Section 2.3.1 is changed to

A =

⎡
⎢⎢⎢⎢⎣

1 0.4 1.6

3.7 1.6 −3.1

−3.2 0.4 4.6

⎤
⎥⎥⎥⎥⎦

the state space model is no longer separable and thus the corresponding IRL problem admits

a unique solution. Similar to the non-unique example, convergence of Δ to zero per Theorem

2.2.1 is observed in Fig. 5. Exact convergence of the learner’s feedback matrix to the expert’s

is observed in Fig. 6. Fig. 7 indicates that when the IRL problem has a unique solution,

the HSO developed in this chapter also recovers the true cost functional. As such, the HSO

developed here is an extension of the HSO in [33] that applies to IRL problems with unique

and non-unique solutions.
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State Weight

Process Noise Cov Matrix 0.001I 0.001I

Measurement Noise Cov Matrix R1, R2, R3 50I

Table 1: The measurement and process noise matrices used in the continuous time Kalman

filter implementation.

2.3.3 Kalman gain and the effects of measurement noise

This simulation provides insight into the noise robustness of the NHSO and its Kalman

filter implementation (NHSO-KF). This investigation is purely heuristic in nature as the

analysis requires for K4 in (2.2.15) to be some matrix that is a scalar times an identity

matrix. For the simulation with noise, K4(Σ̂
TΣ̂ + εI)−1Σ̂T is replaced with the Kalman

gain, see Table 1, (NHSO-KF) and is then compared to K4 selected as the identity matrix

(NHSO). Zero-mean Gausian noise is added to y′ with three separate noise variances, R1 =

diag([0.012, 0.012, 0.012]), R2 = diag([0.12, 0.12, 0.12]), and R3 = diag([0.52, 0.52, 0.52]). Fifty

Monte-Carlo simulations for each noise level are conducted and compared.

The same model and simulation setup as Section 2.3.1 is used in this section with the

magnitude of the excitation signal modified from 0.5 to 1, when the R3 noise metric is

implemented, for improved convergence.

The recovered optimal trajectory under the learned cost function is compared against

the expert’s optimal trajectory in Fig. 9. The difference in optimal trajectories for each

noise standard deviation is illustrated. This figure shows advantage of the Kalman gain

implementation with noise rejection compared to the Luenberger observer implementation.

Further supporting the noise advantage of the Kalman gain, Fig. 8 shows the difference

between the expert’s feedback gain matrix and the learner’s feedback gain matrix for the

last 30 seconds of the learning process. The calculations for Fig. 9 is ||XExpert −XLearner||
and is similar for Fig. 8. The results are promising and indicate that a Kalman gain can be
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Figure 6: A logscale plot of the induced 2-norm of the error between the estimated feedback

gain and the expert’s feedback gain as a function of time for the example that admits a

unique solution.

applied to reduce the error between the learner’s feedback matrix and the expert’s feedback

matrix in the presence of noise.

2.3.4 Transferable Equivalent Solutions

As it is widely recognized that the most succinct representation of the behavior of an expert

is encoded in its cost function [25]. This sections aims to identify the transferability of

non-unique solutions of the IRL problem.

To further clarify, let there be two systems (A1, B1) and (A2, B2) that have their respective

feedback gain matrices, KEP1 and KEP2 that optimize the expert’s cost function weights

of Q∗, S∗, and R∗. Their respective equivalent solutions are characterized as (Q̂1, Ŝ1, R̂1)

and (Q̂2, Ŝ2, R̂2). Now, a transferred feedback matrix K̂P1,2 can be generated using the

system (A1, B1) with the equivalent solution (Q̂2, Ŝ2, R̂2). Also, a transferred feedback matrix

K̂P2,1 can be generated using (A2, B2) paired with the equivalent solution (Q̂1, Ŝ1, R̂1). The
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Figure 7: A plot of the induced 2-norm of the error between the estimated Q (red) and R

(blue) matrices and the expert’s Q and R matrices as a function of time for the example

that admits a unique solution

transferred matrices K̂P1,2 and K̂P2,1 are then compared against the expert matrices KEP1

and KEP2, respectively.

To gauge transferrability, we run five simulations using the same setup as Section 2.3.1

with randomly generated A and B matrices that non-unique solutions (per [15]) for the

resulting IRL problem. Each system has the same expert using the optimal reward weights

Q∗, S∗ and R∗. After finding an equivalent solution of (Q̂, Ŝ, R̂), each equivalent solution is

paired with every randomly generated A and B matrix to generate 20 transferred feedback

gain matrices. The feedback gain matrices are then compared to the expert’s feedback

gain for the corresponding system. The average over all 20 combinations of the difference

between the transferred feedback gain matrices and the expert’s feedback gain matrices is

2.0866× 10−8.
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2.3.5 Discussion

1. Each simulation shows the convergence of Δ to zero and the convergence of the learner’s

feedback matrix, K̂P , to the expert’s feedback matrix, KEP . The metric to judge an

equivalent solution is then able to be appropriately encoded in Δ to gauge the closeness

of the learned equivalent solution to the expert’s solution, for the corresponding IRL

problem.

2. In all simulations, the NHSO converges to either an equivalent solution or a unique

solution. The solution type is dependent on the structure of the system matrices.

Therefore, the NHSO is a complete extension to the HSO [33] as it works IRL problems

with both unique and non-unique solutions.

3. The transferability of equivalent solutions is briefly tested. This result is is interesting

in that an equivalent solution to the IRL problem for one system, is also equivalent

to the solutions for different systems as long as the same original cost function, or

equivalent cost function, was utilized for each system. The implication is that a set

of equivalent solution may be identifiable. We hypothesize that this transferability of

equivalent solutions can be attributed to the product structure of all five systems being

identical.

4. If ε is selected according to Theorem 2.2.1, then regardless of the size of ε, Δ converges

to zero and a unique or non-unique solution is obtained. This result is surprising as

the NHSO utilizes a regression technique. It is beneficial to understand that using

even the best Σu and Σ̂, an offline ridge regression technique [35] cannot find a Ŵ that

constitutes an equivalent solution to the IRL problem.
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Figure 8: Boxplot of error between expert’s feedback gain and learner’s feedback gain for the

last 30 seconds for three separate standard deviations (SD) of noise added to the measurement

for a Luenberger observer (L) and Kalman gain (K).
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Figure 9: Boxplot of the error between the expert’s trajectory and the learner’s trajectory

for the entire simulation time for three seperate standard deviations (SD) of noise added to

the measurement with both a Luenberger observer (L) and Kalman gain (K).
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CHAPTER III

PILOT PERFORMANCE MODELING VIA OBSERVER-BASED INVERSE

REINFORCEMENT LEARNING

The focus of this chapter is behavior modeling for pilots of unmanned aerial vehicles.

The pilot is assumed to make decisions that optimize an unknown cost functional, which

is estimated from observed trajectories using a novel inverse reinforcement learning (IRL)

framework. The resulting IRL problem often admits multiple solutions. In this chapter,

a recently developed novel IRL observer is adapted to the pilot modeling problem. The

observer is shown to converge to one of the equivalent solutions of the IRL problem. The

developed technique is implemented on a quadcopter where the pilot is modeled as a linear

quadratic regulator. Experimental results demonstrate the robustness of the method and its

ability to learn an equivalent cost functional.

Pilot

xref , yref ,

zref , ψref

Velocity

Control

Attitude

Control

Dynamics
IRL

NHSO

U

φd,θd,ψ̇d

F

τ1,τ2,τ3

X

Figure 10: Pilot and Quadcopter Combined Model
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3.1 Modeling

3.1.1 Problem formulation

This study concerns a quadcopter UAV with an onboard autopilot being flown by a human

pilot via desired velocity commands. That is, from the perspective of the human pilot, the

control input is the desired linear velocities of the quadcopter and the desired yaw rate.

The human pilot is asked to regulate the aircraft to the origin, starting from a non-zero

initial condition. The objective is to find a best-fit cost functional such that a controller that

optimizes the cost functional results trajectories that are similar to those observed under

human control.

In this proof-of-concept study, we assume that the human pilot can observe the full state

of the UAV and the experimental study utilizes supervisory LQR controllers as surrogates

in lieu of human pilots. The control commands sent to the aircraft by the LQR surrogates,

along with the full state of the quadrotor are used to learn the surrogate pilot’s cost func-

tionals using an observer-based inverse reinforcement learning (IRL) algorithm. Since the

IRL problem, as formulated in Section 3.1 admits multiple solutions, we aim to recover an

equivalent cost functional per Definition 3.1.1.

3.1.2 Pilot Model

The pilot controlled system is assumed to be a linear time-invariant system of the form

Ẋ(t) = AX +BU, (3.1.1)

where the state is X ∈ R
12 and the control input is U ∈ R

4. The system matrices are given

as A ∈ R
12×12 and B ∈ R

12×4.

The pilot is assumed to be an optimal controller that optimizes the cost functional

J(X0, U(·)) =
∫ ∞

0

(
X(t)TQX(t) + U(t)TRU(t)

)
dt, (3.1.2)
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where X(·) is the system trajectory under the control signal U(·) and starting from the initial

condition x0, and Q ∈ R
12×12 and R ∈ R

4×4 are unknown positive semi-definite matrices.

Assumption 3.1.1 The pair (A,B) is stabilizable and (A,
√
Q) is detectable. Stabilizability

of (A,B) and detectability of (A,
√
Q) is needed for the optimal controller to exist.

The algebraic Riccati equation (ARE),

ATS + SA− SBR−1BTS +Q = 0, (3.1.3)

with respect to the optimal control problem described by (3.1.1) and (3.1.2) can then be

solved, which yields the policy of the pilot given by u = KEPx.

The pilot’s policy is recovered by estimating, online, and in real-time, the unknown

matrices using the known system matrices, A, B, and C, given X and U .

3.1.3 Quadcopter Model

To implement the developed model-based IRL method, a linearized quadcopter model, with

velocity commands as the input and the actual position, velocity, orientation, and angular

velocity as the output needs to be developed. Such a model depends on the autopilot being

used to stabilize the aircraft, and as such, knowledge of the autopilot algorithm is required to

complete the model. Note that identification of the autopilot is not the focus of this study,

we assume that the autopilot is able to track the commanded inputs, and aim to model the

cost functional of a surrogate LQR pilot that generates velocity commands that are then

implemented by the autopilot.

The model used in this study closely follows the development in [5, 6, 13] The state

variables of the model are

X :=
[
x, y, z, ẋ, ẏ, ż, φ, θ, ψ, φ̇, θ̇, ψ̇

]T
,

where x, y, and z, are the translational positions, ẋ, ẏ, and ż, are the transnational velocities.

Also, φ, θ, and ψ, are the roll pitch and yaw angular positions and φ̇, θ̇, and ψ̇ are their
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respective angular velocities. The control input is given by

U :=
[
ẋd, ẏd, żd, ψ̇d

]T
.

where ẋd, ẏd, and żd, are the desired translational velocities with ψ̇d as the desired heading

angular velocity. The translational dynamics of a quadcopter are described in the North,

East, Down (NED) coordinate frame by [13]

m

⎡
⎢⎢⎢⎢⎣
ẍ

ÿ

z̈

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0

0

mg

⎤
⎥⎥⎥⎥⎦+R

⎡
⎢⎢⎢⎢⎣

0

0

−F

⎤
⎥⎥⎥⎥⎦− kt

⎡
⎢⎢⎢⎢⎣
ẋ

ẏ

ż

⎤
⎥⎥⎥⎥⎦ (3.1.4)

where kt is the aerodynamic drag, m is the mass, and g, is the acceleration due to gravity,

and R is the rotational matrix where small angle approximations result in

R =

⎡
⎢⎢⎢⎢⎣

1 φθ − ψ θ + φψ

ψ φθψ + 1 θψ − φ

−θ φ 1

⎤
⎥⎥⎥⎥⎦ . (3.1.5)

The thrust, F , applied by the autopilot is a proportional controller

F = mg +mkp13(ż − żd). (3.1.6)

The rotational motion of the quadcopter is described by [5, 6]

φ̈Ixx = θ̇ψ̇(Iyy − Izz) + lτ1

θ̈Iyy = φ̇ψ̇(Izz − Ixx) + lτ2

ψ̈Izz = θ̇φ̇(Ixx − Iyy) + τ3

(3.1.7)

with Ixx, Iyy, and Izz being moment of inertia and τ1, τ2, and τ3 being torques designed as

τ1 = kp21(φd − φ)− kd1φ̇,

τ2 = kp22(θd − θ)− kd2 θ̇,

τ3 = kd3(ψ̇d − ψ̇).

(3.1.8)
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The desired angles φd and θd, commanded by the autopilot, are given by⎡
⎢⎣θd
φd

⎤
⎥⎦ =

⎡
⎢⎣ arctan

(
kp12 (ẏd−ẏ) sinψ+kp11 (ẋd−ẋ) cosψ

g+kp13 (żd−ż)

)

arctan
(
cosθd

kp11 (ẋd−ẋ) sinψ−kp12 (ẏd−ẏ) cosψ

g+kp13 (żd−ż)

)
⎤
⎥⎦ (3.1.9)

where kp11 , kp12 , kp13 , kp21 , kp22 , kd1 , kd2 , kd3 are control gains of the autopilot. The desired

angles are simplified with small angle approximations and a linear approximation for the

inverse tangent function [27] to yield

θd =
π

4

(
kp12(ẏd − ẏ)ψ + kp11(ẋd − ẋ)

g + kp13(żd − ż)

)
,

φd =
π

4

(
kp11(ẋd − ẋ)ψ − kp12(ẏd − ẏ)

g + kp13(żd − ż)

)
.

(3.1.10)

Linearizing (3.1.4) and (3.1.7) about the origin, while using (3.1.6), (3.1.8), and (3.1.10),

yields the linear system

ẍ = −gθ − kt
m
ẋ

ÿ = gφ− kt
m
ẏ

z̈ = kp13(żd − ż)− kt
m
ż

φ̈ =
b1πkp21kp12(ẏ − ẏd)

4g
− b1kd1φ̇− b1kp21φ

θ̈ =
b2πkp22kp11(ẋd − ẋ)

4g
− b2kd2 θ̇ − b2kp22θ

ψ̈ = b3kd3(ψ̇d − ψ̇)

(3.1.11)

where b1 =
l

Ixx
, b2 =

l
Iyy

, and b3 =
1
Izz

, and l is the length of the quadcopter arm.

As pictured in Figure 10, given measurements of the state variables, i.e., translational

position [x, y, z], translational velocities [ẋ, ẏ, ż], angular position [φ, θ, ψ], and angular ve-

locities [φ̇, θ̇, ψ̇], and the control variables, i.e., the desired velocities [ẋd, ẏd, żd] and yaw rate

[ψ̇d] commanded by the LQR surrogate pilot, we aim to find an equivalent solution (Q̂, Ŝ,

R̂) according to the following definition based on [36].

Definition 3.1.1 A solution (Q̂, Ŝ, R̂) is called an equivalent solution of the IRL problem

if it satisfies the ARE

ATŜ + ŜA− ŜBR̂−1BTŜ + Q̂ = 0 (3.1.12)
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and optimization of the performance index J , with Q = Q̂ and R = R̂, results in the same

feedback matrix as the one utilized by the pilot, that is,

K̂P := R̂−1BTŜ = KEP .

3.2 Inverse Reinforcement Learning

This section contains the IRL algorithm used in identifying the pilot’s cost function, see [36]

for further details.

3.2.1 Regularized History Stack Observer for Non-Unique Solutions (NHSO)

The following development is a special case of the NHSO developed in [36], where the system

state is assumed to be measurable. The state estimates generated by the onboard Kalman

filter are used in the experiment to obtain an equivalent solution per Definition 3.1.1, the

NHSO is constructed as follows.

If the pilot model developed in Section 3.1 follows Assumption 3.1.1, and if the pilot’s

states, X, and inputs, U , are optimal with respect to the cost functional in (3.1.2), then

there exists a matrix S such that Q, R, A, B, and S satisfy the Hamilton-Jacobi-Bellman

(HJB) equation

XT
(
ATS + SA− SBR−1BTS +Q

)
X = 0 (3.2.1)

for all x ∈ R
12 and the optimal control equation

U(t) = −R−1BTSX(t) (3.2.2)

∀t ∈ R≥0. However, the linear system in (3.1.11) has a product structure and therefore admits

multiple solutions to the IRL problem [15]. From Definition 3.1.1, the pilot’s feedback matrix

given by KEp = R−1BTS is also be given by KEP = R̂−1BTŜ = K̂P , where R̂ and Ŝ are

part of an equivalent solution to the IRL problem and K̂P is the learned feedback matrix of

the pilot.
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Given measurements of the the state, X, and control signal, U , and estimates Q̂, R̂, and

Ŝ of Q, R, and S, respectively, (3.2.1) and (3.2.2) can be evaluated to develop an observation

error that evaluates to zero if the estimates of the matrices Q, R, and S are correct. The

final form of the NHSO without state estimation is

˙̂
W = (ΣTΣ + εI)−1ΣT

(
Σu − ΣŴ

)
(3.2.3)

where Ŵ = [ŴS, ŴQ, Ŵ
−
R ] are the weights of Q̂, R̂, and Ŝ with the first value of R, r1,

removed for scaling ambiguity. Theorem 3.2.1, which guarantees convergence of (3.2.3) to

an equivalent solution, relies on the formulation of an error metric Δ(t) := Σu −ΣŴ (t) and

its subsequent time derivative,

Δ̇ = −Σ(ΣTΣ + εI)−1ΣTΔ, (3.2.4)

along with the following data informativity condition.

Assumption 3.2.1 The signal (X,U) is finitely informative (FI) if there exists a time in-

stance T > 0 such that for some {t1, t2, . . . , tN} ⊂ [0, T ],

span {X(ti)}Ni=1 = R
n

span
{
X(ti)X(ti)

T
}N
i=1

= {Z ∈ R
n×n|Z = Z

T} and

Σu ∈ (Null(Σ̂T))⊥. (3.2.5)

Theorem 3.2.1 If Σu ∈ Null(ΣT)⊥ and ε ≥ 0 is selected to ensure invertibility of ΣTΣ+εI,

then the solutions of (3.2.4) satisfy limt→∞ Δ(t) = {0}.
In addition Δ = Σu − ΣŴ = 0, span{Xi}Ni=1 = R

n, and if span{XiX
T
i }Ni=1 = {Z ∈

R
n×n|Z = Z

T}, then the matrices Q̂, Ŝ, and R̂, extracted from Ŵ , constitute an equivalent

solution of the IRL problem per Definition 3.1.1.

36



The history stack is constructed as

Σ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σδ (X(t1), U(t1))

σΔu (X(t1), U(t1))

...

σδ (X(tN), U(tN))

σΔu (X(tN), U(tN))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Σu :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−U2
1 (t1)r1

−2U1(t1)r1

0m−1×1

...

−U2
1 (tN)r1

−2U1(tN)r1

0m−1×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

During the learning process, two separate sets of the history stacks are maintained,

H1 and H2, that each contain a pair of Σu and Σ. Both history stacks are initialized as

zero matrices where Σu ∈ R
425 and Σ ∈ R

425×85. Data are then added into H2 at a set

interval until it is filled, then a condition number minimization algorithm, similar to [16],

that replaces old data with new data if the condition number will be lower is utilized until the

condition number of ΣTΣ+ ε I is less than a set value or until a specified period has passed

between purges. The history stack, H2 is then transferred to H1, overwriting the originally

stored values. The matrices in H1 are subsequently used in (3.2.3) with H2 being reset to

zero and the process for filling it begins again. See [36] for additional details regarding the

manipulation of the history stacks.

Within the history stacks, Σu is known from the removed r1 and given associated input

U1. Σ is constructed using data from the state space model such that

σδ (X,U) Ŵ = (AX +BU)T(∇XσS(X))TŴS + σQ(X)TŴQ + σ−
R1(U)TŴ−

R , (3.2.6)

and

σΔu (X,U) Ŵ = BT(∇XσS(X))TŴS + 0m×PS+PQ
ŴQ + 2σ−

R2(U)Ŵ−
R , (3.2.7)

where (ŴS)
TσS(X) = xTŜX, (ŴQ)

TσQ(X) = XTQ̂X, (ŴR)
TσR1(u) = (U−)TR̂−(U−), and

σR2(U)Ŵ−
R = R−U−, and ŴS ∈ R

PS , W ∗
Q ∈ R

PQ , Ŵ−
R ∈ R

M−1 are the ideal weights with

PS = 78, PQ = 4, and M = 4 being the number of basis functions in the respective linear
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parameterizations, see [33] for an exact characterization of the basis functions. The vector

U− represents the vector U with the first element removed and R− represents the matrix R

with the first column removed. These removed values are the data that are stored in Σu.

3.3 Experiments

Experimental results obtained using the developed NHSO on a quadcopter are presented in

this section. The ability of the developed IRL method to learn the non-unique weights of

the quadcopter pilot represented as an LQR controller is demonstrated.

3.3.1 Hardware

A custom built quadcopter using the Px4 flight stack is utilized for the experiments. The

drone frame is built using a XILO Phreakstyle Freestyle frame kit, the flight control unit is a

Holybro Kakute H7 that is connected to a ground control station through WIFI. The position

and orientation is captured through a motion capture system (OptiTrack) whereas angular

velocity and acceleration are measured from an onboard inertial measurement unit (IMU).

Both systems have their data fused in a Kalman filter for accurate state estimation. The

model parameters for this setup are l = 0.107642 m, Ixx = 0.002261 kg m2, Iyy = 0.002824

kg m2, Izz = 0.002097 kg m2, S.kt = 0.01, g = 9.81 m/s2, m = 0.579902 kg, kp11 = −5.25,

kp12 = −5.25, kp13 = 3, kp21 = 3.5, kp22 = 3.5, kp23 = 0.35, kd1 = 0.4, kd2 = 0.4, and kd3 = 0.1.

Remark 3.3.1 To demonstrate the applicability of the developed framework to typical quad-

copter deployment scenarios where the autopilot is proprietary and unknown, this experiment

utilizes the default Px4 autopilot, which is different from the controller presented in Section

3.1. The Px4 autopilot, while able to track a velocity input, cannot maneuver the real-life

quadcopter as adeptly as the modeled controller can with the modeled quadcopter. To ensure

that the closed-loop model presented in Section 3.1 fits the real quadcopters, the proportional

and derivative gains in the model are adjusted so that the response of the model and the real

quadcopter to velocity commands is as close as possible.
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3.3.2 Controller Implementation

The quadcopter is controlled through an offboard ground control station that implements

the surrogate LQR pilot with the control policy that optimizes the cost function in (3.1.2)

with1

Q = diag([9.57, 6.91, 2.84, 0, 0, 0, 0, 0, 11.68, 0, 0, 0]) and

R = diag([9.57, 3.48, 14.40, 0.17]). (3.3.1)

The cost function is designed under the assumption that the pilot only penalizes the trans-

lational position and heading with commanded translational velocities and heading angluar

velocities, where the pilot is constructed using the linearized system in (3.1.11). To reduce

the number of weights, the sparsity structure ofQ and R is assumed to be known and only the

nonzero elements of Q and R are estimated. The pairs (A,B) and (A,
√
Q) are confirmed to

satisfy stabilizability and detectability through their respective PBH test [9, Theorem 14.3,

16.6 ].

To satisfy the FI condition in Assumption 3.2.1, the ground control station adds an

excitation signal onto the commanded velocities so the final commanded velocity is

Ucmd = Uexc + U. (3.3.2)

Where U = −KEPx is the command generated by the surrogate pilot, without the excitation,

which is recorded in the history stacks and Uexc is the excitation signal.

3.3.3 Methods

The quadcopter for each of the 13 experiments started at a randomly generated hover point

that is contained in the operating area. The surrogate LQR pilot then commands the

quadcopter to fly to the origin with a z-offset where the pilot attempts to maintain the

quadcopter’s position irrespective of the excitation signals for 200 seconds. The input signal

1The notation diag(v) represents a diagonal matrix with the elements of the vector v along the diagonal.
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in (3.1.1) is subjected to the excitation, Uexc, which is composed of 4 sets of 75 sinusoids.

Each set spans a frequency range from 0.001Hz to 10Hz, with a varying frequency and a

magnitude of 0.03. The NHSO is implemented with regularization parameter ε = 0.002, and

data are stored in the history stacks at a rate of 0.08 seconds. The main history stack is

purged if the auxiliary history stack is full and if 9 seconds have passed or the condition

number minimization algorithm makes the condition number of ΣTΣ + εI < 1 × 109. The

initial guesses for the unknown weights are randomly generated with a normal distribution

between [−5, 5].

3.3.4 Results and Discussion

The experimental results in Figs. 11-15 are obtained from the same flight. The position

of the quadcopter as a function of time is shown in Fig. 11, and the linear velocity of the

quadcopter as a function of time is shown in Fig. 12. The quadcopter holds position at the

origin with a z-offset of 1.5m and the velocity appears noisy due to the excitation signal. The

convergence of Δ to the zero in Fig. 132, combined with the convergence of Q and R in Fig.

15 to some value, indicates that an equivalent solution per Definition 3.1.1 is discovered from

Theorem 3.2.1. As such, the difference between the feedback matrices in Fig. 14 converges

to zero.

Figs. 13 and 14 demonstrate that, while the feedback policy of the surrogate LQR pilot

is estimated correctly, the estimated cost functional is substantially different from the cost

functional of the surrogate LQR pilot. This behavior is expected because the underlying

IRL problem has multiple equivalent solutions. As indicated by Fig 16, the cost functional

recovered from data in each of the 13 experiments converges to one of the equivalent solutions.

The particular equivalent solution recovered in each run depends on the initial guess of the

unknown weights used in that run.

2‖·‖ defines the euclidean norm when applied to a vector and the Frobenius norm when applied to a

matrix.
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NHSO HSO

Mean(‖KEp −Kp‖) 2.7553e-08 NaN

Cov(‖KEp −Kp‖) 2.1605e-15 NaN

Table 2: The NHSO and HSO [33] are evaluated by computing the mean and covariance of

the Frobenius norm of the difference between the final values of the feedback matrices for

the 13 tests.

From the 13 experiments, it is evident that NHSO finds equivalent solutions for the

pilot modeling problem. A sufficiently excited system state is needed to meet the data

sufficiency conditions in Assumption 3.2.1. In this effort, to achieve excitation, an excitation

signal is added to the surrogate LQR pilot’s command. The excitation signal is designed

using trial and error. It is observed in Table 2 that the convergence is much greater for

the quadcopter pilot modeling application than the simulation results in [36], as there is

more information in the signals. Furthermore, as evidenced by Table 2, while the history

stack observer (HSO) [33] diverges in this experiment due to nonuniqueness of solutions of

the underlying IRL problem, the NHSO converges to an equivalent solution. Furthermore,

the linearized quadcopter model does not capture the nonlinear dynamics or disturbances

inherent in a real-world implementation of a quadcopter, however, as mentioned previously,

these modeling differences were mitigated through tuning.

The tuning of the NHSO starts with choosing a large enough ε for invertibility while

maintaining a fast convergence rate. Selection of the interval used to add data to the history

stacks involves important trade-offs. Longer intervals allow larger changes in two subsequent

recorded data points, resulting in a lower condition number of ΣTΣ + εI whereas shorter

intervals allow for faster population and purging of the history stacks, which results in the

convergence not stagnating.
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Figure 11: Position of the quadcopter for one experiment.
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Figure 12: Velocity of the quadcopter for one experiment.
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Figure 13: A logscale plot of the norm of Δ as a function of time throughout one experiment.
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Figure 14: A logscale plot of the induced 2-norm of the error between the estimated feedback

gain and the pilot’s feedback gain as a function of time throughout one experiment.
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Figure 15: A plot of the induced 2-norm of the error between the estimated Q (red) and

R (blue) matrices and the pilot’s Q and R matrices as a function of time throughout one

experiment.
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Figure 16: Recovered final error of the Q and R matrices between the learner and pilot for

all 13 tests.
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CHAPTER IV

CONCLUSION

We develop a novel IRL framework for the estimation of a cost functional, in IRL prob-

lems with multiple solutions, through a modification to the HSO [33]. This modification,

while simple, requires an exhaustive and rigorous proof to demonstrate convergence to an

equivalent solution when multiple solutions are present. We further show that the NHSO is

a complete extension of the HSO through convergence to a unique solution when the system

is not separable. The Monte-Carlo simulations demonstrate the utility of the NHSO when

using a Kalman gain for better noise robustness.

The experimental results demonstrate the ability of the NHSO to consistently learn an

equivalent solution of a surrogate LQR pilot’s cost function. The estimated cost function

reproduces the surrogate pilot’s feedback matrix. The robustness of the algorithm is demon-

strated through convergence obtained using randomly generated setpoints and initial guesses

for unknown weights.

In solving the pilot modeling problem, the pilot is assumed as an optimal controller that

has full state information and that the pilot transmits velocity commands to the quadcopter.

The results of this thesis indicate that this assumption is acceptable for the case where the

pilot is a surrogate LQR controller. Further experimentation with human pilots will be

required to establish the validity of this assumption in a real-world scenario.

Additional assumptions that will need addressed are as follows. The assumption that

excitation signals can be designed that do not interrupt a human pilot from performing their

mission. Also the assumption that a human behaves according to some deterministic model

in addition to assuming said human operates with respect to some LQR basis functions.
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Future work will involve experimentation involving human pilots and attempting to repli-

cate their performance through learning equivalent cost functionals. Future work will also

involve possible extensions of the developed framework for probabilistic models of pilot be-

havior.
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