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Abstract—Online approximation of an infinite horizon opti-
mal path-following strategy for a unicycle-type mobile robot
is considered. An approximate solution to the optimal control
problem is obtained by using an adaptive dynamic program-
ming technique that uses adaptive update laws to estimate the
unknown value function. The developed controller overcomes
challenges with the approximation of the infinite horizon value
function by using an auxiliary function that describes the
motion of a virtual target on the desired path. The developed
controller guarantees uniformly ultimately bounded (UUB)
convergence of the vehicle to a desired path while maintaining a
desired speed profile and UUB convergence of the approximate
policy to the optimal policy without requiring persistence of
excitation.

I. INTRODUCTION

The goal of a mobile robot feedback controller can be
classified into three categories: point regulation, trajectory
tracking, or path-following. Point regulation refers to the
stabilization of a dynamical system about a desired state.
Trajectory tracking requires a dynamical system to track
a time parametrized reference trajectory. Path-following in-
volves convergence of the system state to a given path at
a desired speed profile without temporal constraints. Path-
following heuristically yields smoother convergence to the
desired path and reduces the risk of control saturation [1].
A path-following control structure can also alleviate diffi-
culties in the control of nonholonomic vehicles [2]. Path-
following control is particularly useful for mobile robots with
objectives that emphasize path convergence and maintaining
a desired speed profile (cf. [3]–[9]).

To improve path-following performance, optimal control
techniques have been applied to path-following. The result
in [10] combines line-of-sight guidance and model predictive
control (MPC) to optimally follow straight line segments. In
[11], the MPC structure is used to develop a controller for
an omnidirectional robot with dynamics linearized about the
desired path. Nonlinear MPC is used in [12] to develop an
optimal path-following controller for a general mobile robot
model over a finite time-horizon. The survey in [13] cites ad-
ditional examples of MPC applied to path-following as well
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as the linear quadratic regulator and dynamic programming
control schemes. However, none of these techniques provide
online optimal feedback control for path-following while
utilizing the system’s nonlinear dynamics and guaranteeing
stability.

Adaptive dynamic programming-based (ADP-based) tech-
niques have been used to approximate optimal control poli-
cies for regulation (cf. [14]–[16]) and trajectory tracking (cf.
[17]–[19]). ADP stems from Bellman’s principle of opti-
mality where the solution to the Hamilton-Jacobi-Bellman
(HJB) equation is approximated using parametric function
approximation techniques, and an actor-critic structure is
used to estimate the unknown parameters. Various methods
have been proposed in [14]–[23] to approximate the solution
to the HJB equation. For an infinite horizon regulation
problem, function approximation techniques, such as neural
networks (NNs), are used to approximate the value function
and the optimal policy.

Motivated by the desire to develop an optimal feed-
back path-following controller, an ADP-based path-following
method is developed in this paper for a unicycle-type mobile
robot. The path-following technique in this paper generates
a virtual target that is tracked by the vehicle. The motion
of the virtual target along the given path is described by
a predefined state-dependent ordinary differential equation
motivated by [1].

For an infinite horizon control problem, the state as-
sociated with the virtual target progression is unbounded,
which presents several challenges. According to the universal
function approximation theorem, a NN is a universal ap-
proximator for continuous functions on a compact domain.
Since the value function and optimal policy depend on the
unbounded path parameter, the domain of the approximation
is not compact; hence, to approximate the value function
using a NN, an alternate description of the virtual target pro-
gression that results in a compact domain for the associated
state needs to be developed. In addition, the vehicle requires
constant control effort to remain on the path; therefore, any
control policy that results in path-following also results in
infinite cost, rendering the associated control problem ill-
defined.

In this paper, the motion of the virtual target is redefined to
remain on a compact domain, and a modified control input
is developed. The cost function is formulated in terms of
the modified control and redefined virtual target motion, a
unique challenge not addressed in previous ADP literature.
This formulation admits an admissible control policy, and



autonomous value function that can be approximated on a
compact domain, facilitating the development of an online
approximation to the optimal controller using the ADP
framework. A Lyapunov-based stability analysis is presented
to establish uniformly ultimately bounded (UUB) conver-
gence of the vehicle to the path while maintaining a desired
speed profile and UUB convergence of the approximate
policy to the optimal policy.

II. PROBLEM FORMULATION

This section formulates the path-following problem for
a unicycle-type mobile robot. Path-following refers to the
problem of converging to a desired path while maintaining
a desired speed profile. The desired path is not necessarily
parametrized by time, but by some convenient parameter
(e.g. path length). The path-following method in this paper
utilizes a virtual target that moves along the desired path.
The error dynamics are defined kinematically between the
virtual target and vehicle. The geometry of the problem is
outlined in Figure 1.

Let I denote an inertial frame. Consider the coordinate
system i in I with its origin and basis vectors i1 ∈ R3 and
i2 ∈ R3 in the plane of vehicle motion. The basis vector i3
is defined as coming out of the plane. The point P ∈ R3 on
the desired path represents the location of the virtual target.
The location of the virtual target is determined by the path
parameter sp ∈ R. It is convenient to select the arc length as
the path parameter for the wheeled mobile robot, since the
desired speed can be defined as unit length over unit time.
Let F denote a frame fixed to the virtual target with the
origin of the coordinate system f fixed in F at point P . The
basis vector f1 ∈ R3 is the unit tangent vector of the path
at P , f3 ∈ R3 is defined as coming out of the plane, and
f2 = f3×f1.1 Let B denote a frame fixed to the vehicle with
the origin of its coordinate system b at the center of mass
Q ∈ R3. The basis vector b1 ∈ R3 is the unit velocity vector
of the vehicle, b3 ∈ R3 is defined as coming out of the plane,
and b2 = b3 × b1. For the subsequent development, assume
{i1, i2, i3} , {f1, f2, f3} , and {b1, b2, b3} are standard bases.

Consider the following vector equation from Figure 1,

rQ/P = rQ − rP ,

where rQ ∈ R3 and rP ∈ R3 are the position vectors of
points Q and P from the origin of the inertial coordinate
system, respectively. The rate of change of rQ/P as viewed
by an observer in I and expressed in the coordinate system
f is given as

vfQ/P = vfQ − v
f
P . (1)

The velocity of point P as viewed by an observer in I and
expressed in f is given as

vfP =
[
ṡp 0 0

]
,T (2)

1This description of F is similar to the Frenet-Serret frame and parallel
transport frame for this two dimensional problem.

Figure 1. Description of reference frames

where ṡp ∈ R is the velocity of the virtual target along the
path. The velocity of point Q as viewed by an observer in
I and expressed in f may be written as

vfQ = Rfb v
b
Q, (3)

where Rfb : R → R3×3 is a transformation from b to f .
The velocity of the vehicle as viewed by an observer in I
expressed in b is vbQ =

[
v 0 0

]T
where v ∈ R is the

velocity of the vehicle. The transformation Rfb is given as

Rfb =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,
where θ ∈ R is the angle between f1 and b1. The velocity
between points P and Q as viewed by an observer in I and
expressed in f is given as

vfQ/P = d
dt

F
rfQ/P + ωI F × rfQ/P . (4)

The angular velocity of F as viewed by an observer in I
expressed in f is given as ωI F =

[
0 0 κṡp

]T
where

κ ∈ R is the path curvature, and the relative position of the
vehicle with respect to the virtual target expressed in f is
given as rfQ/P =

[
x y 0

]T
. Substituting (2), (3), and

(4) into (1) the planar positional error dynamics are given as

ẋ = (κy − 1) ṡp + v cos θ

ẏ = −κxṡp + v sin θ.

The angular velocity of B as viewed by an observer in F is
given as

ωF B = ωF I + ωI B. (5)



From (5), the planar rotational error dynamic expressed in f
is given as

θ̇ = −κṡp + w,

where w ∈ R is the angular velocity of the vehicle. The full
vehicle error dynamics are given by

ẋ = ṡp (κy − 1) + v cos θ (6)
ẏ = −xκṡp + v sin θ

θ̇ = w − κṡp.

Assumption 1. The path curvature κ is assumed to be
bounded, i.e. the desired path is C2 continuous.

Motivated by the development in [1] the location of the
virtual target is determined by

ṡp , vdes cos θ + k1x, (7)

where vdes ∈ R is a desired positive, bounded and time-
invariant speed profile, and k1 ∈ R is an adjustable positive
gain.

To facilitate the subsequent control development, we de-
fine an auxiliary function φ : R→ (−1, 1) as

φ , tanh (k2sp) , (8)

where k2 ∈ R is a positive gain. From (7) and (8), the time
derivative of φ is

φ̇ = k2
(
1− φ2

)
(vdes cos θ + k1x) . (9)

Note that the path curvature and desired speed profile can be
written as a function of φ.

Based on (6) and (7), auxiliary control inputs ve, we ∈ R
are designed as

ve , v − vss, (10)
we , w − wss,

where wss , κvdes and vss , vdes based on the control
input required to remain on the path.

Substituting (7) and (10) into (6), and augmenting the
system state with (9), the closed-loop system is

ẋ = κyvdes cos θ + k1κxy − k1x+ ve cos θ (11)
ẏ = vdes sin θ − κxvdes cos θ − k1κx2 + ve sin θ

θ̇ = κvdes − κ (vdes cos θ + k1x) + we

φ̇ = k2
(
1− φ2

)
(vdes cos θ + k1x) .

The closed-loop system in (11) can be rewritten in the
following control affine form

ζ̇ = f (ζ) + g (ζ)u, (12)

where ζ =
[
x y θ φ

]T ∈ R4 is the state vector, u =[
ve we

]T ∈ R2 is the control vector, and the locally

Lipschitz functions f : R4 → R4 and g : R4 → R4×2 are
given by

f (ζ) =


κyvdes cos θ + k1κxy − k1x

vdes sin θ − κxvdes cos θ − k1κx2
κvdes − κ (vdes cos θ + k1x)
k2
(
1− φ2

)
(vdes cos θ + k1x)

 , (13)

g (ζ) =


cos (θ) 0
sin (θ) 0

0 1
0 0

 .
To facilitate the subsequent stability analysis, a subset of the
state denoted by e ∈ R3 is defined as e ,

[
x y θ

]T ∈
R3.

III. FORMULATION OF OPTIMAL CONTROL PROBLEM

The cost functional for the optimal control problem is
defined as

J (ζ, u) ,

∞̂

t

r (ζ (τ) , u (τ)) dτ, (14)

where r : R4 → [0,∞) is the local cost defined as

r (ζ, u) , ζT Q̄ζ + uTRu.

In (14), R ∈ R2×2 is a symmetric positive definite matrix,
and Q̄ ∈ R4×4 is defined as

Q̄ ,

[
Q 03×1

01×3 0

]
,

where Q ∈ R3×3 is a positive definite matrix such that
q ‖ξq‖2 ≤ ξTq Qξq ≤ q ‖ξq‖2 ,∀ξq ∈ R3 where q and q
are positive constants. The infinite-time scalar value function
V : R4 → [0,∞) is written as

V (ζ0) = min
u∈U

∞̂

t

r (ζ (τ) , u (τ)) dτ, (15)

where U is the set of admissible control policies and ζ0 =
ζ (t).

The objective of the optimal control problem is to de-
termine the optimal policy u∗ : R4 → R2 such that the
controller u = u∗ (ζ) minimizes the cost functional in (14)
subject to the constraints in (12). Assuming a minimizing
policy exists and the value function is continuously differen-
tiable, the Hamiltonian is defined as

H , r (ζ, u∗) +
∂V

∂ζ
(f + gu∗) . (16)

The Hamilton-Jacobi-Bellman (HJB) equation is given as
[24]

∂V

∂t
+H = 0, (17)

where ∂V
∂t = 0, since there exists no explicit dependence on

time.



A closed form solution for the optimal policy is obtained
by satisfying a necessary condition of the minimum principal

∂H

∂u∗
= 0

and the corresponding sufficient condition

∂2H

∂u∗2
> 0.

The policy is given as

u∗ = −1

2
R−1gT

(
∂V

∂ζ

)T
. (18)

The analytical expression for the optimal policy in (18)
requires knowledge of the value function, which is the
solution to the HJB. Given the kinematics in (13), it is
unclear how to determine an analytical solution to (17), as
is generally the case, since (17) is a nonlinear differential
equation; hence, the subsequent development focuses on the
development of an approximate solution.

IV. APPROXIMATE SOLUTION

The subsequent development is based on a neural network
(NN) approximation of the value function and optimal policy,
and follows a similar structure to [16]. The development is
included here for completeness. Over any compact domain
χ ⊂ R4, the value function V : R4 → [0,∞) can be
represented by a single-layer NN with L neurons as

V (ζ) = WTσ (ζ) + ε (ζ) , (19)

where W ∈ RL is the ideal weight vector bounded above
by a known positive constant, σ : R4 → RL is a
bounded, continuously differentiable activation function, and
ε : R4 → R is the bounded, continuously differentiable
function reconstruction error.

From (18) and (19), the optimal policy can be represented
as

u∗ = −1

2
R−1gT

(
σ′TW + ε′T

)
(20)

where σ′ : R4 → RL×4 and ε′ : R4 → R4 are derivatives
with respect to the state. Based on (19) and (20), the value
function and optimal policy NN approximations are defined
as

V̂ = ŴT
c σ, (21)

û = −1

2
R−1gTσ′T Ŵa, (22)

where Ŵc, Ŵa ∈ RL are estimates of the ideal weight vector
W . The weight estimation errors are defined as W̃c ,W −
Ŵc and W̃a , W − Ŵa. The NN approximation of the
Hamiltonian is given as

Ĥ = r (ζ, û) +
∂V̂

∂ζ
(f + gû) (23)

by substituting (21) and (22) into (16). The Bellman error
δ ∈ R is defined as the error between the optimal and
approximate Hamiltonian and is given as

δ , Ĥ −H, (24)

where H = 0. Therefore, the Bellman error can be written
in a measurable form as

δ = r (ζ, û) + Ŵc
T
ω,

where ω , σ′ (f + gû) ∈ RL.

Assumption 2. There exists a set of sampled data points
{ζj ∈ χ|j = 1, 2, . . . , N} such that ∀t ∈ [0,∞),

rank

 N∑
j=1

ωjω
T
j

pj

 = L, (25)

where pj ,
√

1 + ωTj ωj denotes the normalization constant,
and ωj is evaluated at the specified data point ζj .

In general, the rank condition in (25) cannot be guaranteed
to hold a priori. However, heuristically, the condition can be
met by sampling redundant data, i.e., N � L. Based on
Assumption 2, it can be shown that

∑N
j=1

ωjω
T
j

pj
> 0 such

that

c ‖ξc‖2 ≤ ξTc

 n∑
j=1

ωjω
T
j

pj

 ξc ≤ c ‖ξc‖2 , ∀ξc ∈ R4

even in the absence of persistent excitation [25], [26].
The adaptive update law for Ŵc in (21) is given by

˙̂
W c = −Γ

ηc1 ∂δ

∂Ŵc

δ

p
+
ηc2
N

N∑
j=1

∂δj

∂Ŵc

δj
pj

 , (26)

where ηc1, ηc2 ∈ RL×L are positive adaptation gains,
Γ ∈ RL×L is a constant positive diagonal weighting matrix,
∂δ
∂Ŵc

= ω is the regressor matrix, and p ,
√

1 + ωTω is

a normalization constant. The update law for Ŵa in (22) is
given by

˙̂
W a = proj

{
−ηa

(
Ŵa − Ŵc

)}
, (27)

where ηa ∈ R is a positive gain, and proj {·} is a smooth
projection operator (see Remark 3.7 in [27]). Using the
properties of the projection operator, the policy NN weight
estimation errors are bounded above by positive constants.

V. STABILITY ANALYSIS

To facilitate the subsequent stability analysis, an unmea-
surable form of the Bellman error can be written using (16),
(23), and (24), as

δ = −W̃T
c ω− ε′f +

1

2
ε′Gσ′TW +

1

4
W̃T
a GσW̃a +

1

4
ε′Gε′T ,

(28)



where G , gR−1gT ∈ R4×4 and Gσ , σ′Gσ′T ∈ RL×L
are symmetric, positive semi-definite matrices. Similarly, at
the sampled points the Bellman error can be written as

δj = −W̃T
c ωj +

1

4
W̃T
a GσjW̃a + Ej , (29)

where Ej , 1
2ε
′
jGjσ

′T
j W + 1

4ε
′
jGjε

′T
j − ε′jfj ∈ R.

The function f on any compact set χ ⊂ R4 is Lipschitz
continuous, and therefore bounded by

‖f (ζ)‖ ≤ Lf ‖ζ‖ , ∀ζ ∈ χ,

where Lf is the positive Lipschitz constant, and the normal-
ized regressor in (26) is upper bounded by

∥∥∥ωp ∥∥∥ ≤ 1.
The augmented equations of motion in (11) present a

unique challenge with respect to the value function V which
is utilized as a Lyapunov function in the stability analysis.
To prevent penalizing the vehicle progression along the path,
the path parameter φ is removed from the cost function with
the introduction of a positive semi-definite state weighting
matrix Q̄. However, since Q̄ is positive semi-definite, efforts
are required to ensure the value function is positive definite.
To address this challenge, the fact that the value function can
be interpreted as a time-invariant map V : R4 → [0,∞) or
a time-varying map Vt : R3 × [0,∞)→ [0,∞) is exploited.
Lemma 2 in [19] is used to show that the time-varying map
is a positive definite and decrescent function for use as a
Lyapunov function. Hence, on any compact set χ the optimal
value function Vt : R3 × [0,∞)→ R satisfies the following
properties

Vt (0, t) = 0,

υ (‖e‖) ≤ Vt (e, t) ≤ υ (‖e‖) , (30)

∀t ∈ [0,∞) and ∀e ⊂ χ where υ : [0,∞] → [0,∞) and
υ : [0,∞]→ [0,∞) are class K functions.

To facilitate the subsequent stability analysis, consider the
candidate Lyapunov function VL : R3+2L× [0,∞)→ [0,∞)
given as

VL (Z, t) = Vt (e, t) +
1

2
W̃T
c Γ−1W̃c +

1

2
W̃T
a W̃a.

Using (30), the candidate Lyapunov function can be bounded
by

υL (‖Z‖) ≤ VL ≤ υL (‖Z‖) , (31)

where υL, υL : [0,∞) → [0,∞) are class K functions and
Z ,

[
eT W̃T

c W̃T
a

]T ∈ χ ∪ R2L. To facilitate the
subsequent stability analysis, let β ⊂ χ∪R2L be a compact
set, and ϕe, ϕc, ϕa, ιc, ιa, ι ∈ R denote positive constants
defined as

ϕe , q −
ηc1 supZ∈β ‖ε′‖Lf

2
,

ϕc ,
ηc2
N
c− ηa

2
−
ηc1 supZ∈β ‖ε′‖Lf

2
,

ϕa ,
ηa
2
,

ιc , sup
Z∈β

∥∥∥∥∥∥ ηc24N

N∑
j=1

W̃T
a GσjW̃a +

ηc1
4
W̃T
a GσW̃a

+
ηc1
2
ε′Gσ′TW +

ηc1
4
ε′Gε′T

+
ηc2
N

N∑
j=1

Ej + ηc1ε
′Lf

∥∥∥∥∥∥ ,
ιa , sup

Z∈β

∥∥∥∥1

2
GσW +

1

2
σ′Gε′T

∥∥∥∥ ,
ι , sup

Z∈β

∥∥∥∥1

4
ε′Gε′T

∥∥∥∥ .
When Assumption 2 and the sufficient gain conditions

q >
ηc1‖ε′‖Lf

2
, (32)

c >
Nηa
2ηc2

+
Nηc1‖ε′‖Lf

2ηc2
(33)

are satisfied, the constant K ∈ R is positive and defined as

K ,

√
ι2c

2αϕc
+

ι2a
2αϕa

+
ι

α

where α , 1
2 min

{
ϕe,

ϕc

2 ,
ϕa

2

}
.

Theorem 1. If Assumptions 1 and 2 hold, and the sufficient
conditions (32), (33), and

K < υL
−1 (υL (r)

)
(34)

are satisfied, where r ∈ R is the radius of a selected compact
set β, then the policy in (22) with the update laws in (26)
and (27) guarantee UUB regulation of vehicle to the virtual
target and UUB convergence of the approximate policy to
the optimal policy.2

Proof: The time derivative of the candidate Lyapunov
function is

V̇L =
∂V

∂ζ
f +

∂V

∂ζ
gû− W̃T

c Γ−1
˙̂
W c − W̃T

a
˙̂
W a.

Substituting (17), (26), and (27) yields

V̇L = −eTQe− u∗Ru∗ +
∂V

∂ζ
gû− ∂V

∂ζ
gu∗

+W̃T
c

ηc1ωT
p
δ +

ηc2
N

N∑
j=1

ωj
pj
δj


+W̃T

a ηa

(
Ŵa − Ŵc

)
.

2The sufficient condition in (34) requires the compact set β to be large
enough based on the constant K. The constant K for a given β can
be reduced to satisfy the sufficient condition by reducing the function
approximation error in (19) and (20). The function approximation error can
be decreased by increasing the number of neurons in the neural network.



Using Young’s inequality, (19), (20), (22), (28), and (29)
yields

V̇L ≤ −ϕe ‖e‖2 − ϕc
∥∥∥W̃c

∥∥∥2 − ϕa ∥∥∥W̃a

∥∥∥2 (35)

+ιc

∥∥∥W̃c

∥∥∥+ ιa

∥∥∥W̃a1

∥∥∥+ ι.

By completing the squares, (35) can be upper bounded as

V̇L ≤ −ϕe ‖e‖2 −
ϕc
2

∥∥∥W̃c

∥∥∥2 − ϕa
2

∥∥∥W̃a

∥∥∥2
+
ι2c

2ϕc
+

ι2a
2ϕa

+ ι,

which can be further upper bounded as

V̇L ≤ −α ‖Z‖2 ,∀ ‖Z‖ ≥ K > 0, (36)

for all Z ∈ β.
Using (31), (34), and (36) Theorem 4.18 in [28] is invoked

to conclude that Z is UUB, and that ‖Z (t)‖ will decrease
until ‖Z (t)‖ ≤ υL

−1 (υL (K)) where ‖Z (t)‖ will remain.
Therefore, the system state will remain in the compact set β.
Based on the definition of Z, and the inequalities in (31) and
(36), e, W̃c, W̃a ∈ L∞. Since φ ∈ L∞ by definition in (9),
then ζ ∈ L∞. Ŵc, Ŵa ∈ L∞ follows from the definition of
W . From (21) and (22), V̂ , û ∈ L∞. From (12), ζ̇ ∈ L∞.
By the definition in (24), δ ∈ L∞. From (26) and (27),
˙̂
W a,

˙̂
W c ∈ L∞.

VI. CONCLUSION

An online approximation of an optimal path-following
controller is developed for a mobile robot. Adaptive dynamic
programming is used to approximate the solution to the
HJB equation without the need for persistence of excitation.
A gradient descent adaptive update law approximates the
value function. A Lyapunov-based stability analysis proves
UUB convergence of the vehicle to the desired path while
maintaining the desired speed profile, and UUB convergence
of the approximate policy to the optimal policy.
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