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Online Approximate Optimal Station Keeping of a
Marine Craft in the Presence of a Current

Patrick Walters, Rushikesh Kamalapurkar, Forrest Voight, Eric M.
Schwartz, and Warren E. Dixon

Abstract—Online approximation of the optimal station keeping strategy
for a fully actuated six degrees-of-freedom marine craft subject to an
irrotational ocean current is considered. An approximate solution to the
optimal control problem is obtained using an adaptive dynamic pro-
gramming technique. The hydrodynamic drift dynamics of the dynamic
model are assumed to be unknown; therefore, a concurrent learning-
based system identifier is developed to identify the unknown model
parameters. The identified model is used to implement an adaptive
model-based reinforcement learning technique to estimate the unknown
value function. The developed policy guarantees uniformly ultimately
bounded convergence of the vehicle to the desired station and uniformly
ultimately bounded convergence of the approximated policies to the
optimal polices without the requirement of persistence of excitation. The
developed strategy is validated using an autonomous underwater vehicle,
where the three degrees-of-freedom in the horizontal plane are regulated.
The experiments are conducted in a second-magnitude spring located in
central Florida.

Index Terms—Adaptive dynamic programming, marine craft, nonlin-
ear control, station keeping.

I. INTRODUCTION

Marine craft, which include ships, floating platforms, autonomous
underwater vehicles (AUV), etc, play a vital role in commercial,
military and recreational objectives. Marine craft are often required
to remain on a station for an extended period of time, e.g., floating
oil platforms, support vessels, and AUVs acting as a communication
link for multiple vehicles or persistent environmental monitors. The
success of the vehicle often relies on the vehicle’s ability to hold
a precise station (e.g., station keeping near structures or underwater
features). The cost of holding that station is correlated to the energy
expended for propulsion through consumption of fuel and wear on
mechanical systems, especially when station keeping in environments
with a persistent current. Therefore, by reducing the energy expended
for station keeping objectives, the cost of holding a station can be
reduced.

Precise station keeping of a marine craft is challenging because
of nonlinearities in the dynamics of the vehicle. A survey of station
keeping for surface vessels can be found in [1]. Common approaches
employed to control a marine craft include robust and adaptive control
methods [2]–[5]. These methods provide robustness to disturbances
and/or model uncertainty; however, they do not explicitly account
for the cost of the control effort. Motivated by the desire to bal-
ance energy expenditure and the accuracy of the vehicle’s station,
approximate optimal control methods are examined in this paper
to minimize a user defined cost function of the total control effort
(energy expended) and state error (station accuracy). Because of the
difficulties associated with finding closedform analytical solutions
to optimal control problems for marine craft, efforts such as [6]
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numerically approximate the solution to the Hamilton-Jacobi-Bellman
(HJB) equation using an iterative application of Galerkin’s method.

Various methods have been proposed to find an approximate
solution to the HJB equation. Adaptive dynamic programming (ADP)
is one such method where a solution to the HJB equation is
approximated using parametric function approximation techniques.
ADP-based techniques have been used to approximate optimal control
policies for regulation (e.g., [7]–[11]) of general nonlinear sys-
tems. Efforts in [12] and [13] present ADP-based solutions to the
Hamilton-Jacobi-Isaacs equation that yield an approximate optimal
policy accounting for state-dependent disturbances. However, these
methods do not consider explicit time-varying disturbances such as
the dynamics that are introduced due to the presence of current.

In this result, an optimal station keeping policy that captures
the desire to balance the need to accurately hold a station and
the cost of holding that station through a quadratic performance
criterion is generated for a fully actuated marine craft. The developed
controller differs from results such as [7] and [8] in that it tackles
the challenges associated with the introduction of a time-varying
irrotational current. Since the hydrodynamic parameters of a marine
craft are often difficult to determine, a concurrent learning system
identifier is developed. As outlined in [14], concurrent learning uses
additional information from recorded data to remove the persistence
of excitation requirement associated with traditional system identi-
fiers. The proposed model-based ADP method generates the optimal
station keeping policy using a combination of on-policy and off-
policy data, eliminating the need for physical exploration of the
state space. A Lyapunov-based stability analysis is presented which
guarantees uniformly ultimately bounded (UUB) convergence of the
marine craft to its station and UUB convergence of the approximated
policy to the optimal policy.

To illustrate the performance of the developed controller, an AUV
is used to collect experimental data. Specifically, the developed
strategy is implemented for planar regulation of an AUV near the
vent of a second-magnitude spring located in central Florida. The
experimental results demonstrate the developed method’s ability to
simultaneously identify the unknown hydrodynamic parameters and
generate an approximate optimal policy using the identified model in
the presence of a current.

II. VEHICLE MODEL

Consider the nonlinear equations of motion for a marine craft
including the effects of irrotational ocean current given in Section
7.5 of [15] as

η̇ = JE (η) ν, (1)

MRB ν̇ + CRB (ν) ν +MAν̇r + CA (νr) νr

+DA (νr) νr +G (η) = τb (2)

where ν ∈ Rn is the body-fixed translational and angular velocity
vector, νc ∈ Rn is the body-fixed irrotational current velocity vector,
νr = ν − νc is the relative body-fixed translational and angular fluid
velocity vector, η ∈ Rn is the earth-fixed position and orientation
vector, JE : Rn → Rn×n is the coordinate transformation between
the body-fixed and earth-fixed coordinates1, MRB ∈ Rn×n is the
constant rigid body inertia matrix, CRB : Rn → Rn×n is the rigid
body centripetal and Coriolis matrix, MA ∈ Rn×n is the constant
hydrodynamic added mass matrix, CA : Rn → Rn×n is the unknown
hydrodynamic centripetal and Coriolis matrix, DA : Rn → Rn×n is

1The orientation of the vehicle may be represented as Euler angles,
quaternions, or angular rates. In this development, the use of Euler angles
is assumed, see Section 7.5 in [15] for details regarding other representations.
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the unknown hydrodynamic damping and friction matrix, G : Rn →
Rn is the gravitational and buoyancy force and moment vector, and
τb ∈ Rn is the body-fixed force and moment control input.

In the case of a three degree-of-freedom (DOF) planar model with
orientation represented as Euler angles, the state vectors in (1) and
(2) are further defined as

η ,
[
x y ψ

]T
,

ν ,
[
u v r

]T
,

where x, y ∈ R, are the earth-fixed position vector components of
the center of mass, ψ ∈ R represents the yaw angle, u, v ∈ R are
the body-fixed translational velocities, and r ∈ R is the body-fixed
angular velocity. The irrotational current vector is defined as

νc ,
[
uc vc 0

]T
,

where uc, vc ∈ R are the body-fixed current translational velocities.
The coordinate transformation JE (η) is given as

JE (η) =

 cos (ψ) − sin (ψ) 0
sin (ψ) cos (ψ) 0

0 0 1

 .
Assumption 1. The marine craft is neutrally buoyant if submerged
and the center of gravity is located vertically below the center of
buoyancy on the z axis if the vehicle model includes roll and pitch2.

III. SYSTEM IDENTIFIER

Since the hydrodynamic effects pertaining to a specific marine craft
may be unknown, an online system identifier is developed for the
vehicle drift dynamics. Consider the control affine form of the vehicle
model,

ζ̇ = Y (ζ, νc) θ + f0 (ζ, ν̇c) + gτb, (3)

where ζ ,
[
η ν

]T ∈ R2n is the state vector. The unknown hy-
drodynamics are linear-in-the-parameters with p unknown parameters
where Y : R2n ×Rn → R2n×p is the regression matrix and θ ∈ Rp
is the vector of unknown parameters. The unknown hydrodynamic
effects are modeled as

Y (ζ, νc) θ =

[
0

−M−1CA (νr) νr −M−1DA (νr) νr

]
,

and known rigid body drift dynamics f0 : R2n × Rn → R2n are
modeled as

f0 (ζ, ν̇c) =[
JE (η) ν

M−1MAν̇c −M−1CRB (ν) ν −M−1G (η)

]
,

where M ,MRB+MA, and the body-fixed current velocity νc, and
acceleration ν̇c are assumed to be measurable3. The known constant
control effectiveness matrix g ∈ R2n×n is defined as

g ,

[
0

M−1

]
.

An identifier is designed as

˙̂
ζ = Y (ζ, νc) θ̂ + f0 (ζ, ν̇c) + gτb + kζ ζ̃, (4)

2This assumption simplifies the subsequent analysis and can often be met
by trimming the vehicle. For marine craft where this assumption cannot be
met, an additional term may be added to the controller, similar to how terms
dependent on the irrotational current are handled.

3The body-fixed current velocity νc may be trivially measured using sensors
commonly found on marine craft, such as a Doppler velocity log, while the
current acceleration ν̇c may be determined using numerical differentiation and
smoothing.

where ζ̃ , ζ − ζ̂ is the measurable state estimation error, and
kζ ∈ R2n×2n is a constant positive definite, diagonal gain matrix.
Subtracting (4) from (3), yields

˙̃
ζ = Y (ζ, νc) θ̃ − kζ ζ̃,

where θ̃ , θ − θ̂ is the parameter identification error.

A. Parameter Update

Traditional adaptive control techniques require persistence of ex-
citation to ensure the parameter estimates θ̂ converge to their true
values θ (cf. [16] and [17]). Persistence of excitation often requires
an excitation signal to be applied to the vehicle’s input resulting
in unwanted deviations in the vehicle state. These deviations are
often in opposition to the vehicle’s control objectives. Alternatively, a
concurrent learning-based system identifier can be developed (cf. [14]
and [18]). The concurrent learning-based system identifier relaxes the
persistence of excitation requirement through the use of a prerecorded
history stack of state-action pairs4.

Assumption 2. There exists a prerecorded data set of sampled data
points {ζj , νcj , ν̇cj , τbj ∈ χ|j = 1, 2, . . . ,M} with a numerically
calculated state derivatives ˙̄ζj at each recorded state-action pair such
that ∀t ∈ [0,∞),

rank

(
M∑
j=1

Y Tj Yj

)
= p, (5)

∥∥∥ ˙̄ζj − ζ̇j
∥∥∥ < d̄,∀j,

where Yj , Y (ζj , νcj), f0j , f0 (ζj), ζ̇j = Yjθ + f0j + gτbj , and
d̄ ∈ [0,∞) is a constant.

The parameter estimate update law is given as

˙̂
θ = ΓθY (ζ, νc)

T ζ̃ + Γθkθ

M∑
j=1

Y Tj

(
˙̄ζj − f0j − gτbj − Yj θ̂

)
, (6)

where Γθ is a positive definite, diagonal gain matrix, and kθ is a
positive, scalar gain matrix. To facilitate the stability analysis, the
parameter estimate update law is expressed in the advantageous form

˙̂
θ = ΓθY (ζ, νc)

T ζ̃ + Γθkθ

M∑
j=1

Y Tj

(
Yj θ̃ + dj

)
,

where dj = ˙̄ζj − ζ̇j .
Remark 1. The update law in (6) does not require instantaneous
measurement of acceleration. Acceleration only needs to be computed
at the past time instances when the data points (ζj , νcj , ν̇cj , τbj) were
recorded. Acceleration at a past time instance t∗ can be accurately
computed by recording position and velocity signals over a time
interval that contains t∗ in its interior and using noncausal estimation
methods such as optimal fixed-point smoothing [20, p. 170].

4In this development, it is assumed that a data set of state-action pairs is
available a priori. Experiments to collect state-action pairs do not necessarily
need to be conducted in the presence of a current (e.g. the data may be
collected in a pool). Since the current affects the dynamics only through the
νr terms, data that is sufficiently rich and satisfies Assumption 2 may be
collected by merely exploring the ζ state space. Note, this is the reason the
body-fixed current νc and acceleration ν̇c are not considered a part of the state.
If state-action data is not available for the given system then it is possible to
build the history stack in real-time and the details of that development can be
found in Appendix A of [19].
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B. Convergence Analysis

Consider the candidate Lyapunov function VP : R2n+p × [0,∞)
given as

VP (ZP ) =
1

2
ζ̃T ζ̃ +

1

2
θ̃TΓ−1

θ θ̃, (7)

where ZP ,
[
ζ̃T θ̃T

]
. The candidate Lyapunov function can be

bounded as
1

2
min

{
1, γθ

}
‖ZP ‖2 ≤ VP (ZP ) ≤ 1

2
max {1, γθ} ‖ZP ‖2 (8)

where γθ, γθ are the minimum and maximum eigenvalues of Γθ ,
respectively.

The time derivative of the candidate Lyapunov function in (7) is

V̇P = −ζ̃T kζ ζ̃ − kθ θ̃T
M∑
j=1

Y Tj Yj θ̃ − kθ θ̃T
M∑
j=1

Y Tj dj .

The time derivative may be upper bounded by

V̇P ≤ −kζ
∥∥∥ζ̃∥∥∥2

− kθy
∥∥∥θ̃∥∥∥2

+ kθdθ

∥∥∥θ̃∥∥∥ , (9)

where kζ , y are the minimum eigenvalues of kζ and
∑M
j=1 Y

T
j Yj ,

respectively, and dθ = d̄
∑M
j=1 ‖Yj‖. Completing the squares, (9)

may be upper bounded by

V̇P ≤ −kζ
∥∥∥ζ̃∥∥∥2

−
kθy

2

∥∥∥θ̃∥∥∥2

+
kθd

2
θ

2y
,

which may be further upper bounded by

V̇P ≤ −αP ‖ZP ‖2 , ∀ ‖ZP ‖ ≥ KP > 0, (10)

where αP , 1
2

min
{

2kζ , kθy
}

and KP ,

√
kθd

2
θ

2αP y
. Using (8) and

(10), ζ̃ and θ̃ can be shown to exponentially decay to a ultimate
bound as t→∞. The ultimate bound may be made arbitrarily small
depending on the selection of the gains kζ and kθ .

IV. PROBLEM FORMULATION

A. Residual Model

The presence of a time-varying irrotational current yields unique
challenges in the formulation of the optimal regulation problem. Since
the current renders the system non-autonomous, a residual model that
does not include the effects of the irrotational current is introduced.
The residual model is used in the development of the optimal control
problem in place of the original model. A disadvantage of this
approach is that the optimal policy is developed for the current-free
model5. In the case where the earth-fixed current is constant, the
effects of the current may be included in the development of the
optimal control problem as detailed in Appendix A.

The residual model can be written in a control affine form as

ζ̇ = Yres (ζ) θ + f0res (ζ) + gu, (11)

where the unknown hydrodynamics are linear-in-the-parameters with
p unknown parameters where Yres : R2n → R2n×p is a regression
matrix, the function f0res : R2n → R2n is the known portion of
the dynamics, and u ∈ Rn is the control vector. The drift dynamics,
defined as fres (ζ) = Yres (ζ) θ+ f0res (ζ), can be shown to satisfy
fres (0) = 0 when Assumption 1 is satisfied.

The drift dynamics in (11) are modeled as

Yres (ζ) θ =

[
0

−M−1CA (ν) ν −M−1D (ν) ν

]
,

5To the author’s knowledge, there is no method to generate a policy with
time-varying inputs (e.g., time-varying irrotational current) that guarantees
optimally and stability.

f0res (ζ) =

[
JEν

−M−1CRB (ν) ν −M−1G (η)

]
, (12)

and the virtual control vector u is defined as

u = τb − τc (ζ, νc, ν̇c) , (13)

where τc : R2n×Rn×Rn → Rn is a feedforward term to compensate
for the effect of the variable current, which includes cross-terms
generated by the introduction of the residual dynamics and is given
as

τc (ζ, νc, ν̇c) = CA (νr) νr +D (νr) νr −MAν̇c

− CA (ν) ν −D (ν) ν.

The current feedforward term is represented in the advantageous form

τc (ζ, νc, ν̇c) = −MAν̇c + Yc (ζ, νc) θ,

where Yc : R2n × Rn → R2n×p is the regression matrix and

Ycθ (ζ, νc) = CA (νr) νr +D (νr) νr − CA (ν) ν −D (ν) ν.

Since the parameters are unknown, an approximation of the compen-
sation term τc given by

τ̂c
(
ζ, νc, ν̇c, θ̂

)
= −MAν̇c + Ycθ̂ (14)

is implemented, and the approximation error is defined by

τ̃c , τc − τ̂c.

B. Nonlinear Optimal Regulation Problem

The performance index for the optimal regulation problem is
selected as

J (ζ, u) =

∞̂

0

r (ζ (τ) , u (τ)) dτ, (15)

where r : R2n → [0,∞) is the local cost defined as

r (ζ, u) , ζTQζ + uTRu. (16)

In (16), Q ∈ R2n×2n , R ∈ Rn×n are symmetric positive definite
weighting matrices, and u is the virtual control vector. The matrix Q
has the property q ‖ξq‖2 ≤ ξTq Qξq ≤ q ‖ξq‖2 , ∀ξq ∈ R2n where q
and q are positive constants. The infinite-time scalar value function
V : R2n → [0,∞) for the optimal solution is written as

V (ζ) = min
u

∞̂

0

r (ζ (τ) , u (τ)) dτ. (17)

The objective of the optimal control problem is to find the optimal
policy u∗ : R2n → Rn that minimizes the performance index
(15) subject to the dynamic constraints in (11). Assuming that a
minimizing policy exists and the value function is continuously
differentiable, the Hamiltonian H : R2n → R is defined as

H (ζ) , r (ζ, u∗ (ζ))

+
∂V (ζ)

∂ζ
(Yres (ζ) θ + f0res (ζ) + gu∗ (ζ)) . (18)

The HJB equation is given as [21]

0 =
∂V (ζ)

∂t
+H (ζ) , (19)

where ∂V (ζ)
∂t

= 0 since the value function is not an explicit function
of time. After substituting (16) into (19) , the optimal policy is given
by [21]

u∗ (ζ) = −1

2
R−1gT

(
∂V (ζ)

∂ζ

)T
, (20)
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The analytical expression for the optimal controller in (20) requires
knowledge of the value function which is the solution to the HJB
equation in (19). The HJB equation is a partial differential equation
which is generally infeasible to solve; hence, an approximate solution
is sought.

V. APPROXIMATE POLICY

The subsequent development is based on a neural network (NN)
approximation of the value function and optimal policy. Differing
from previous ADP literature with model uncertainty (e.g., [8], [10],
[11]) that seeks a NN approximation using the integral form of the
HJB, the following development seeks a NN approximation using
the differential form. The differential form of the HJB coupled with
the identified model allows off-policy learning, which relaxes the
persistence of excitation condition previously required.

Over any compact domain χ ⊂ R2n, the value function V : R2n →
[0,∞) can be represented by a single-layer NN with l neurons as

V (ζ) = WTσ (ζ) + ε (ζ) , (21)

where W ∈ Rl is the ideal weight vector bounded above by a
known positive constant, σ : R2n → Rl is a bounded, continuously
differentiable activation function, and ε : R2n → R is the bounded,
continuously differential function reconstruction error. Using (20) and
(21), the optimal policy can be represented by

u∗ (ζ) = −1

2
R−1gT

(
σ′ (ζ) TW + ε′ (ζ) T

)
, (22)

where σ′ : R2n → Rl×2n and ε′ : R2n → R2n are derivatives with
respect to the state. Based on (21) and (22), NN approximations of
the value function and the optimal policy are defined as

V̂
(
ζ, Ŵc

)
= ŴT

c σ (ζ) , (23)

û
(
ζ, Ŵa

)
= −1

2
R−1gTσ′ (ζ)T Ŵa, (24)

where Ŵc, Ŵa ∈ Rl are estimates of the constant ideal weight vector
W . The weight estimation errors are defined as W̃c ,W − Ŵc and
W̃a ,W − Ŵa.

Substituting (11), (23), and (24) into (18), the approximate Hamil-
tonian Ĥ : R2n × Rp × Rl × Rl → R is given as

Ĥ
(
ζ, θ̂, Ŵc, Ŵa

)
= r

(
ζ, û

(
ζ, Ŵa

))
+
∂V̂
(
ζ, Ŵc

)
∂ζ

(
Yres (ζ) θ̂ + f0res (ζ) + gû

(
ζ, Ŵa

))
. (25)

The error between the optimal and approximate Hamiltonian is called
the Bellman error δ : R2n × Rp × Rl × Rl → R, given as

δ
(
ζ, θ̂, Ŵc, Ŵa

)
= Ĥ

(
ζ, θ̂, Ŵc, Ŵa

)
−H (ζ) , (26)

where H (ζ) = 0 ∀ζ ∈ R2n. Therefore, the Bellman error can be
written in a measurable form as

δ
(
ζ, θ̂, Ŵc, Ŵa

)
= r

(
ζ, û

(
ζ, Ŵa

))
+ ŴT

c ω
(
ζ, θ̂, Ŵa

)
,

where ω : R2n → Rl is given by

ω
(
ζ, θ̂, Ŵa

)
= σ′

(
Yres (ζ) θ̂ + f0res (ζ) + gû

(
ζ, Ŵa

))
.

The Bellman error may be extrapolated to unexplored regions of
the state space since it depends solely on the approximated system
model and current NN weight estimates. In Section VI, Bellman error
extrapolation is employed to establish UUB convergence of the ap-
proximate policy to the optimal policy without requiring persistence
of excitation provided the following assumption is satisfied.

Assumption 3. [22] There exists a positive constant c and set of
states {ζk ∈ χ|k = 1, 2, . . . , N} such that

inf
t∈[0,∞)

[
λmin

(
N∑
k=1

ωkω
T
k

ρk

)]
= c, (27)

where ωk , ω
(
ζk, θ̂, Ŵa

)
and ρk , 1 + kρωk

TΓωk.

The value function least squares update law based on minimization
of the Bellman error is given by

˙̂
Wc = −Γ

kc1ω
(
ζ, θ̂, Ŵa

)
ρ

δ
(
ζ, θ̂, Ŵc, Ŵa

)

+
kc2
N

N∑
k=1

ωk
ρk
δk

)
, (28)

Γ̇ =

βΓ− kc1Γ
ω(ζ,θ̂,Ŵa)ω(ζ,θ̂,Ŵa)

T

ρ
Γ, ‖Γ‖ ≤ Γ

0 otherwise
, (29)

where kc1, kc2 ∈ R are a positive adaptation gains, δk ,
δ
(
ζk, θ̂, Ŵc, Ŵa

)
is the extrapolated Bellman error, ‖Γ (t0)‖ =

‖Γ0‖ ≤ Γ̄ is the initial adaptation gain, Γ̄ ∈ R is a positive saturation
gain, β ∈ R is a positive forgetting factor, and

ρ , 1 + kρω
(
ζ, θ̂, Ŵa

)T
Γω
(
ζ, θ̂, Ŵa

)
is a normalization constant, where kρ ∈ R is a positive gain. The
update law in (28) and (29) ensures that

Γ ≤ ‖Γ‖ ≤ Γ, ∀t ∈ [0,∞) .

The policy NN update law is given by

˙̂
Wa = proj

{
−ka

(
Ŵa − Ŵc

)}
, (30)

where ka ∈ R is an positive gain, and proj {·} is a smooth projection
operator6 used to bound the weight estimates. Using properties of
the projection operator, the policy NN weight estimation error can
be bounded above by positive constant.

Using the definition in (13), the force and moment applied to
the vehicle, described in (3), is given in terms of the approximated
optimal virtual control (24) and the compensation term approximation
in (14) as

τ̂b = û
(
ζ, Ŵa

)
+ τ̂c

(
ζ, θ̂, νc, ν̇c

)
. (31)

VI. STABILITY ANALYSIS

For notational brevity, all function dependencies from previous
sections will be henceforth suppressed. An unmeasurable form of
the Bellman error can be written using (18), (25) and (26), as

δ = −W̃T
c ω −WTσ′Yresθ̃ − ε′ (Yresθ + f0res)

+
1

4
W̃T
a GσW̃a +

1

2
ε′Gσ′TW +

1

4
ε′Gε′T , (32)

where G , gR−1gT ∈ R2n×2n and Gσ , σ′Gσ′T ∈ Rl×l are
symmetric, positive semi-definite matrices. Similarly, the Bellman
error at the sampled data points can be written as

δk = −W̃T
c ωk −WTσ′k

(
Yresk θ̃

)
+

1

4
W̃T
a GσkW̃a + Ek, (33)

where

Ek ,
1

2
ε′kGσ

′
k
TW +

1

4
ε′kGε

′T
k − ε′k

(
Yreskθ + f0resk

)
∈ R

6See Section 4.4 in [17] or Remark 3.6 in [23] for details of the projection
operator.
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is a constant at each data point, and the notation Fk denotes the func-
tion F (ζ, ·) evaluated at the sampled state, i.e., Fk (·) = F (ζk, ·).
The functions Yres and f0res on the compact set χ are Lipschitz
continuous and can be bounded by

‖Yres‖ ≤ LYres ‖ζ‖ , ∀ζ ∈ χ,

‖f0res‖ ≤ Lf0res ‖ζ‖ , ∀ζ ∈ χ,

respectively, where LYres and Lf0res are positive constants.
To facilitate the subsequent stability analysis, consider the candi-

date Lyapunov function VL : R2n × Rl × Rl × Rp → [0,∞) given
as

VL (Z) = V (ζ) +
1

2
W̃c

T
Γ−1W̃c +

1

2
W̃T
a W̃a + VP (ZP ) ,

where Z ,
[
ζT W̃T

c W̃T
a ZTP

]T ∈ χ∪Rl×Rl×Rp. Since
the value function V in (17) is positive definite, VL can be bounded
by

υL (‖Z‖) ≤ VL (Z) ≤ υL (‖Z‖) (34)

using Lemma 4.3 of [24] and (8), where υL, υL : [0,∞)→ [0,∞)
are class K functions. Let β ⊂ χ ∪Rl ×Rl ×Rp be a compact set,
and

ϕζ = q −
kc1 supZ∈β ‖ε′‖

(
LYres ‖θ‖+ Lf0res

)
2

−
LYc ‖g‖

(
‖W‖ supZ∈β ‖σ′‖+ supZ∈β ‖ε′‖

)
2

,

ϕc =
kc2
N
c− ka

2
−
kc1 supZ∈β ‖ε′‖

(
LYres ‖θ‖+ Lf0res

)
2

−
kc1LY supZ∈β ‖ζ‖ supZ∈β ‖σ′‖ ‖W‖

2

−
kc2
N

∑n
j=1

(∥∥Yresjσ′j∥∥) ‖W‖
2

,

ϕa =
ka
2
,

ϕθ = kθy −
kc2
N

∑N
k=1 (‖Yreskσ

′
k‖) ‖W‖

2

−
LYc ‖g‖

(
‖W‖ supZ∈β ‖σ′‖+ supZ∈β ‖ε′‖

)
2

−
kc1LYres ‖W‖ supZ∈β ‖ζ‖ supZ∈β ‖σ′‖

2
,

κc = sup
Z∈β

∥∥∥∥∥ kc24N

N∑
j=1

W̃T
a GσjW̃a +

kc1
4
W̃T
a GσW̃a

+kc1ε
′Gσ′TW +

kc1
4
ε′Gε′T +

kc2
N

N∑
k=1

Ek

∥∥∥∥∥ ,
κa = sup

Z∈β

∥∥∥∥1

2
WTGσ +

1

2
ε′Gσ′T

∥∥∥∥ ,
κθ = kθdθ,

κ = sup
Z∈β

∥∥∥∥1

4
ε′Gε′T

∥∥∥∥ .
When Assumption 2 and 3, and the sufficient gain conditions

q >
kc1 supZ∈β ‖ε′‖

(
LYres ‖θ‖+ Lf0res

)
2

,

+
LYc ‖g‖

(
‖W‖ supZ∈β ‖σ′‖+ supZ∈β ‖ε′‖

)
2

, (35)

c >
N

kc2

(
kc1 supZ∈β ‖ε′‖

(
LYres ‖θ‖+ Lf0res

)
2

+
ka
2

+
kc1LY supZ∈β ‖ζ‖ supZ∈β ‖σ′‖ ‖W‖

2

+
kc2
N

∑N
k=1 (‖Yreskσ

′
k‖) ‖W‖

2

)
, (36)

y >
1

kθ

(
kc2
N

∑N
k=1 (‖Yreskσ

′
k‖) ‖W‖

2

+
LYc ‖g‖

(
‖W‖ supZ∈β ‖σ′‖+ supZ∈β ‖ε′‖

)
2

+
kc1LYres ‖W‖ supZ∈β ‖ζ‖ supZ∈β ‖σ′‖

2

)
, (37)

are satisfied, the constant K ∈ R defined as

K ,

√
κ2
c

2αϕc
+

κ2
a

2αϕa
+

κ2
θ

2αϕθ
+
κ

α

is positive, where α , 1
2

min
{
ϕζ , ϕc, ϕa, ϕθ, 2kζ

}
.

Theorem 1. Provided Assumptions 1-3, the sufficient conditions (35)-
(37), and

K < υL
−1 (υL (r)) (38)

are satisfied, where r ∈ R is the radius of the compact set β, then the
policy in (24) with the NN update laws in (28)-(30) guarantee UUB
regulation of the state ζ and UUB convergence of the approximated
policies û to the optimal policy u∗.

Proof: The time derivative of the candidate Lyapunov function
is

V̇L =
∂V

∂ζ
(Y θ + f0) +

∂V

∂ζ
g (û+ τ̂c)− W̃T

c Γ−1 ˙̂
Wc

− 1

2
W̃T
c Γ−1Γ̇Γ−1W̃c − W̃T

a
˙̂
Wa + V̇P . (39)

Using (19), ∂V
∂ζ

(Y θ + f0) = − ∂V
∂ζ
g (u∗ + τc)− r (ζ, u∗). Then,

V̇L =
∂V

∂ζ
g (û+ τ̂c)−

∂V

∂ζ
g (u∗ + τc)− r (ζ, u∗)

− W̃T
c Γ−1 ˙̂

Wc −
1

2
W̃T
c Γ−1Γ̇Γ−1W̃c − W̃T

a
˙̂
Wa + V̇P .

Substituting (28) and (30) for ˙̂
Wc and ˙̂

Wa, respectively, yields

V̇L = −ζTQζ − u∗TRu∗ +
∂V

∂ζ
gτ̃c +

∂V

∂ζ
gû− ∂V

∂ζ
gu∗

+ W̃T
c

[
kc1

ω

ρ
δ +

kc2
N

N∑
j=1

ωk
ρk
δk

]
+ W̃T

a ka
(
Ŵa − Ŵc

)
− 1

2
W̃T
c Γ−1

[(
βΓ− kc1Γ

ωωT

ρ
Γ

)
1‖Γ‖≤Γ

]
Γ−1W̃c + V̇P .

Using Young’s inequality, (21), (22), (24), (32), and (33) the Lya-
punov derivative can be upper bounded as

V̇L ≤ −ϕζ ‖ζ‖2 − ϕc
∥∥∥W̃c

∥∥∥2

− ϕa
∥∥∥W̃a

∥∥∥2

− ϕθ
∥∥∥θ̃∥∥∥2

− kζ
∥∥∥ζ̃∥∥∥2

+ κa

∥∥∥W̃a

∥∥∥+ κc

∥∥∥W̃c

∥∥∥+ κθ

∥∥∥θ̃∥∥∥+ κ.



6

Completing the squares, the upper bound on the Lyapunov derivative
may be written as

V̇L ≤ −
ϕζ
2
‖ζ‖2 − ϕc

2

∥∥∥W̃c

∥∥∥2

− ϕa
2

∥∥∥W̃a

∥∥∥2

− ϕθ
2

∥∥∥θ̃∥∥∥2

− kζ
∥∥∥ζ̃∥∥∥2

+
κ2
c

2ϕc
+

κ2
a

2ϕa
+

κ2
θ

2ϕθ
+ κ,

which can be further upper bounded as

V̇L ≤ −α ‖Z‖ , ∀ ‖Z‖ ≥ K > 0. (40)

Using (34), (38), and (40), Theorem 4.18 in [24] is invoked to
conclude that Z is uniformly ultimately bounded, in the sense that
lim supt→∞ ‖Z (t)‖ ≤ υL−1 (υL (K)).

Based on the definition of Z and the inequalities in (34) and (40),
ζ, W̃c, W̃a ∈ L∞. Using the fact that W is upper bounded by a
bounded constant and the definition of the NN weight estimation
errors, Ŵc, Ŵa ∈ L∞. Using the policy update laws in (30), ˙̂

Wa ∈
L∞. Since Ŵc, Ŵa, ζ ∈ L∞ and σ,∇σ are continuous functions of
ζ, it follows that V̂ , û ∈ L∞. From the dynamics in (12), ζ̇ ∈ L∞.
By the definition in (26), δ ∈ L∞. By the definition of the normalized
value function update law in (28), ˙̂

Wc ∈ L∞.

VII. EXPERIMENTAL VALIDATION

Validation of the proposed controller is demonstrated with experi-
ments conducted at Ginnie Springs in High Springs, FL, USA. Ginnie
Springs is a second-magnitude spring discharging 142 million liters of
freshwater daily with a spring pool measuring 27.4 m in diameter and
3.7 m deep [25]. Ginnie Springs was selected to validate the proposed
controller because of its relatively high flow rate and clear waters for
vehicle observation. For clarity of exposition7 and to remain within
the vehicle’s depth limitations8, the developed method is implemented
on an AUV, where the surge, sway, and yaw are controlled by the
algorithm represented in (31).

A. Experimental Platform

Experiments were conducted on an AUV, SubjuGator 7, developed
at the University of Florida. The AUV, shown in Figure 1 , is a small
two man portable AUV with a mass of 40.8 kg. The vehicle is over-
actuated with eight bidirectional thrusters.

Designed to be modular, the vehicle has multiple specialized pres-
sure vessels that house computational capabilities, sensors, batteries,
and mission specific payloads. The central pressure vessel houses the
vehicle’s motor controllers, network infrastructure, and core comput-
ing capability. The core computing capability services the vehicles
environmental sensors (e.g. visible light cameras, scanning sonar,
etc.), the vehicles high-level mission planning, and low-level com-
mand and control software. A standard small form factor computer
makes up the computing capability and utilizes a 2.13 GHz server
grade quad-core processor. Located near the front of the vehicle, the
navigation vessel houses the vehicle’s basic navigation sensors. The
suite of navigation sensors include an inertial measurement unit, a
Doppler velocity log (DVL), a depth sensor, and a digital compass.
The navigation vessel also includes an embedded 720 MHz processor

7The number of basis functions and weights required to support a six DOF
model greatly increases from the set required for the three DOF model. The
increased number of parameters and complexity reduces the clarity of this
proof of principal experiment.

8The vehicle’s Doppler velocity log has a minimum height over bottom of
approximately 3 m that is required to measure water velocity. A minimum
depth of approximately 0.5 m is required to remove the vehicle from surface
effects. With the depth of the spring nominally 3.7 m, a narrow window of
about 20 cm is left operate the vehicle in heave.

Figure 1. SubjuGator 7 AUV operating at Ginnie Springs, FL.

for preprocessing and packaging navigation data. Along the sides of
the central pressure vessel, two vessels house 44 Ah of batteries used
for propulsion and electronics.

The vehicle’s software runs within the Robot Operating System
framework in the central pressure vessel. For the experiment, three
main software nodes were used: navigation, control, and thruster
mapping nodes. The navigation node receives packaged navigation
data from the navigation pressure vessel where an extended Kalman
filter estimates the vehicle’s full state at 50Hz. The controller node
contains the developed controller and system identifier. The desired
force and moment produced by the controller are mapped to the eight
thrusters using a least-squares minimization algorithm in the thruster
mapping node.

B. Controller Implementation

The implementation of the developed method involves: system
identification, value function iteration, and control iteration. Imple-
menting the system identifier requires (4), (6), and the data set
described in Assumption 2. The data set in Assumption 2 was
collected in a swimming pool. The vehicle was commanded to
track an exciting trajectory with a robust integral of the sign of
the error (RISE) controller [5] while the state-action pairs were
recorded. The recorded data was trimmed to a subset of 40 sampled
points that were selected to maximize the minimum singular value
of
[
Y1 Y2 . . . Yj

]
as in Algorithm 1 of [14].

Evaluating the extrapolated Bellman error in (26) with each control
iteration is computational expensive. Due to the limited computational
resources available on-board the AUV, the value function weights
were updated at a slower rate (i.e., 5Hz) than the main control loop
(implemented at 50 Hz). The developed controller was used to control
the surge, sway, and yaw states of the AUV, and a nominal controller
was used to regulate the remaining states.

The vehicle uses water profiling data from the DVL to measure the
relative water velocity near the vehicle in addition to bottom tracking
data for the state estimator. By using the state estimator, water
profiling data, and recorded data, the equations used to implement
the proposed controller, i.e., (4), (6), (24), (26), and (28)-(31), only
contain known or measurable quantities.
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Figure 2. Inertial position error η (top) and body-fixed velocity error ν
(bottom) of the AUV.

C. Results

The vehicle was commanded to hold a station near the
vent of Ginnie Spring. An initial condition of ζ (t0) =[

4 m 4 m π
4

rad 0 m/s 0 m/s 0 rad/s
]T was given to

demonstrate the method’s ability to regulate the state. The op-
timal control weighting matrices were selected to be Q =
diag ([20, 50, 20, 10, 10, 10]) and R = I3×3. The system identifier
adaptation gains were selected to be kζ = 25×I6×6, kθ = 12.5, and
Γθ = diag ([187.5, 937.5, 37.5, 37.5, 37.5, 37.5, 37.5, 37.5]). The
parameter estimate was initialized with θ̂ (t0) = 08×1. The neural
network weights were initialized to match the ideal values for the
linearized optimal control problem, which is obtained by solving the
algebraic Riccati equation with the dynamics linearized about the
station. The policy adaptation gains were chosen to be kc1 = 0.25,
kc2 = 0.5, ka = 1, kp = 0.25, and β = 0.025. The adaptation
matrix was initialized to Γ0 = 400 × I21×21. The Bellman error
was extrapolated to sampled states that were uniformly selected
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Figure 3. Body-fixed total control effort τ̂b commanded about the center of
mass of the vehicle.
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Figure 4. Body-fixed optimal control effort û commanded about the center
of mass of the vehicle.

throughout the state space in the vehicle’s operating domain.
Figure 2 illustrates the ability of the generated policy to regulate

the state in the presence of the spring’s current. Figure 3 illustrates the
total control effort applied to the body of the vehicle, which includes
the estimate of the current compensation term and approximate opti-
mal control. Figure 4 illustrates the output of the approximate optimal
policy for the residual system. Figure 5 illustrates the convergence
of the parameters of the system identifier and Figure 6 illustrates
convergence of the neural network weights representing the value
function.

The anomaly seen at ~70 seconds in the total control effort (Figure
3) is attributed to a series of incorrect current velocity measurements.
The corruption of the current velocity measurements is possibly
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Figure 5. Identified system parameters determined for the vehicle online. The
parameter definitions may be found in Example 6.2 and Equation 6.100 of
[15].

due in part to the extremely low turbidity in the spring and/or
relatively shallow operating depth. Despite presence of unreliable
current velocity measurements the vehicle was able to regulate
the vehicle to its station. The results demonstrate the developed
method’s ability to concurrently identify the unknown hydrodynamic
parameters and generate an approximate optimal policy using the
identified model. The vehicle follows the generated policy to achieve
its station keeping objective using industry standard navigation and
environmental sensors (i.e., IMU, DVL).

VIII. CONCLUSION

The online approximation of an optimal control strategy is de-
veloped to enable station keeping by an AUV. The solution to the
HJB equation is approximated using adaptive dynamic programming.
The hydrodynamic effects are identified online with a concurrent
learning based system identifier. Leveraging the identified model, the
developed strategy simulates exploration of the state space to learn the
optimal policy without the need of a persistently exciting trajectory.
A Lyapunov based stability analysis concludes UUB convergence of
the states and UUB convergence of the approximated policies to the
optimal polices. Experiments in a central Florida second-magnitude
spring demonstrates the ability of the controller to generate and
execute an approximate optimal policy in the presence of a time-
varying irrational current.
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APPENDIX A
EXTENSION TO CONSTANT EARTH-FIXED CURRENT

In the case where the earth-fixed current is constant, the effects of
the current may be included in the development of the optimal control
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Ŵ
a

-500

0

500

1000

1500

Figure 6. Critic Ŵc (top) and actor Ŵa (bottom) neural network weight
estimates online convergence.

problem. The body-relative current velocity νc (ζ) is state dependent
and may be determined from

η̇c =

[
cos (ψ) − sin (ψ)
sin (ψ) cos (ψ)

]
νc,

where η̇c ∈ Rn is the known constant current velocity in the inertial
frame. The functions Yresθ and f0res in (11) can then be redefined
as

Yresθ ,

 0
−M−1CA (−νc) νc −M−1D (−νc) νc . . .
−M−1CA (νr) νr −M−1D (νr) νr

 ,
f0res ,

[
JEν

−M−1CRB (ν) ν −M−1G (η)

]
,

respectively. The control vector u is

u = τb − τc
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where τc (ζ) ∈ Rn is the control effort required to keep the vehicle
on station given the current and is redefined as

τc , −MAν̇c − CA (−νc) νc −D (−νc) νc.
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