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Abstract This paper presents approaches based on native space theory and
Koopman operators to characterize the dynamics of nonlinear, discrete-time
dynamical models employing measured data only. Given approximation schemes
of the plant dynamics based on Koopman operators contained in vector-valued
reproducing kernel Hilbert spaces (vRKHSs), we deduce rates of convergence
for these schemes. In particular, we present a necessary and sufficient condi-
tion for Koopman invariance of observables in vRKHSs that are defined via
generic non-diagonal operator-valued kernels, and develop sufficient conditions
to guarantee the Koopman invariance for vRKHSs defined in terms of a class
of diagonal operator-valued kernels. Principles of inverse problems are lever-
aged to derive error bounds for approximations of the Koopman operator that
include both a deterministic sampling error and an approximation error term.
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The deterministic sampling error arises since imprecisely measured samples
are used to approximate the Koopman operator. This work is the first to
present overall bounds in the deterministic setting that explicitly account for
the sampling error, which, in general, increases with the reduced dimension.
Numerical examples illustrate the proposed results.

Keywords Koopman theory · inverse problems · Koopman invariance ·
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1 Introduction and Motivation

This paper studies the now-classical setting in which Koopman operators arise
in the analysis of deterministic discrete-time nonlinear systems. Consider the
deterministic discrete-time system

xi+1 = f(xi), (1)

yi+1 = g(xi+1) ≜ (Ufg)(xi), (2)

where i ∈ N denotes the index of the time series, xi ∈ X ≜ Rn denotes the
system’s state at the step i, yi ∈ Y ≜ Rm denotes the observation value,
f : X → X denotes the propagation function, g : X → Y denotes the observable
function, Uf : H → P denotes a Koopman operator, and H and P are suitably
chosen spaces of functions. The spaceH is referred to as the space of observable
functions, or just the space of observables. We typically analyze this system
in terms of a bounded set Ω ⊂ X that is positively invariant for (1), that is,
f(Ω) ⊆ Ω ⊂ X. In the proposed analysis, the set Ω is quite generic. However,
worthy of mention are the proposed numerical examples in which Ω ≜ M ⊂ X
and M is a compact, connected, smooth submanifold regularly embedded in
Rn.

Assuming that that the propagation function f : Ω → Ω is unknown and
that only imprecisely measured output samples {(xi, yδi )}Mi=1 that approximate
the exact samples {(xi, yi)}Mi=1 ≜ (xi, g(xi))}Mi=1 along the trajectories of (1)
are available, we seek to construct approximations of the Koopman operator
Uf to build estimates ŷm+1 of the future output from the current state xm
at any index m ∈ N. In this paper, we exploit vector-valued reproducing
kernel Hilbert spaces (vRKHSs) and assume that H = H, where H denotes
a vRKHS, to construct approximations of the Koopman operator Uf . We
study how ŷm+1 can be a good approximation of the true outputs ym+1 for
any choice of the observable function g ∈ H. Assuming that the vRKHS H
is approximated by the vRKHS HN defined in terms of N kernel centers,
we build forecasts ŷm+1 that depend on the number of samples M in the
training set and the number of centers N used to construct the approximating
subspace HN ⊆ H. Key results of this paper are deterministic, finite sample,
error bounds that depend on both N and M , which can be used to gauge the
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accuracy of these forecasts. The dependency on N is expressed explicitly in
terms of the fill distance or minimal separation of the centers.

The error analysis of the Koopman approximations in this paper is based
on principles of inverse problems and, hence, is entirely deterministic. The
noisy samples in this paper should be interpreted as the true sample values
with some perturbation or error. We do not imply that the noisy samples
are generated by some stochastic measurement process. However, the finite-
sample bounds derived in this paper still hold if the samples are generated
by a discrete stochastic process. In particular, if the samples are randomly
generated consistent with the assumption that g ◦ f is a Gaussian process,
then the final finite sample error bounds in this paper are still applicable.

2 Novelty of the Proposed Results

Methods to approximate the Koopman operator Uf have been examined in
many references, such as, for instance, [2–4, 7, 9, 10, 16–18, 25, 27, 31, 32, 34, 36,
38, 43, 46, 47, 50, 56], to name a few, under a variety of hypotheses. When for-
mulating these approximation problems, the choice of the space of observables
H and the range P = R(Uf ) can be crucial. Common choices for the space
of observables H include the spaces of Lebesgue square integrable functions
L2(Ω,R), continuous functions C(Ω,R), or scalar-valued RKHSs H(Ω,R). For
these choices, it is perhaps most common to study the approximation problem
with P = L2(Ω,R).

This paper differs from previous works for a variety of reasons. To the au-
thors’ knowledge, the most recent existing work that studies approximation
of Koopman operators acting on vRKHS generated by operator-valued ker-
nels is stochastic in nature. That is, the Koopman operators are defined for a
generally nonlinear stochastic system. For example, the authors in [37, 39, 44]
derive error bounds via approximations of the kernel mean embedding (KME)
technique, which is inherently a stochastic formulation. In practice, these tech-
niques require the collection {(Xi, Yi)}Mi=1 of independently and identically dis-
tributed (IID) observations of the stationary process determining the stochas-
tic dynamics. The resulting final error estimates yield stochastic error bounds
that hold “in high probability.” Errors are expressed in terms of the norm of
an abstract interpolation space derived from the eigenfunctions of a covari-
ance operator, and are rather abstract. The approach in this paper is purely
deterministic, as stated in the definition of nonlinear recursion that defines the
dynamics in Equations 1 and 2. Samples to be used in calculations can be gen-
erated along the path of the deterministic evolution law; they are dependent
rather than IID samples. This means that it is easy to keep or delete samples
collected along a deterministic trajectory when convenient, without regard
to the fact that such deletions in KME would violate the requirement above
for IID samples. By extending the doubling trick to the setting of vRKHS
generated by general, non-diagonal operator-valued kernels, the resulting er-
ror bounds based on the power function hold without regard to whether the
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samples originate from IID samples of a random process or from dependent
iterates of a deterministic recursion. Moreover, the error bounds hold in the
original norm of the vRKHS, for all functions that satisfy a common regularity
condition popularized in approximation methods in scalar-valued RKHSs. Fi-
nally, the bounds derived in this paper are strict, deterministic, upper bounds
on the worst-case error. In contrast, the bounds generated by KME only hold
with high probability, and, although improbably, for some realizations of mea-
surements, the KME approximation errors will be large.

Additional elements of novelty of the proposed results are the following.
The proposed analysis explicitly uses certain pullback vRKHSs to derive rates
of convergence. Only the recent efforts by the authors in [47,49] make system-
atic use of pullback spaces in deriving error bounds. However, in [47, 49], the
analysis is limited to scalar-valued RKHS, and not vRKHS as in this paper.
The analysis via pullback spaces in this paper also includes a derivation of nec-
essary and sufficient conditions for Koopman invariance in vRKHSs defined
by operator-valued kernels and a description of a standard constructive proce-
dure for generating Koopman-invariant spaces based on infinite direct sums of
pullback spaces. Lastly, this paper derives rates of convergence using principles
of inverse methods. These results enable the derivation of error bounds that
are explicit in the contributions of the sampling error and the approximation
error. The sampling error only arises because the sample values are assumed
to be noisy in this paper. The contribution of the sampling error, which we
show can play a vital role when using noisy measurements to make forecasts,
was unaccounted for in the cited references on deterministic approximations
of Koopman operators.

The work in this paper can be understood as a concrete means of deriving
error bounds in data-driven frameworks that build on the classical approaches
on inverse problems, such as those described in Section 3.4.1 of [33] or Sec-
tions 17.3 and 17.4 of [26], by introducing recently derived techniques [57, 58]
based on power functions for vRKHS. The approaches introduced in this paper
also provide practical generalizations of the results in [40–42], which routinely
focus on the applications in a scalar-valued RKHS, ordinarily over intervals.
The approaches introduced in [57, 58] provide for a more general theory and
associated development of algorithms in a vRKHS setting.

It is also noteworthy that this paper extends to vRKHSs the very recent
analysis in [29], which establishes sufficient conditions for Koopman invari-
ance of certain scalar-valued RKHSs equivalent to Sobolev spaces that are
generated by scalar-valued Wendland kernels. In this paper, we show that the
general procedure outlined in [29] can be extended to a broader class of scalar-
valued RKHSs and vRKHSs defined by operator-valued kernels. For example,
we show that the sufficient conditions in [29] also guarantee that diagonal
operator-valued kernels defined in terms of scalar-valued Wendland, Sobolev-
Matérn, Poisson, or Abel kernels are Koopman-invariant. Notably, if applied
to diagonal operator-valued kernels, the proposed results are a relatively direct
extension of the results in [29]. However, in the general context of non-diagonal
operator-valued kernels, the proposed results have no counterpart in [29]. Ad-
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ditional key differences with [29] are the following. Theorems 5.1 and 5.2 and
Corollary 5.4 of [29] rely on problem data that consists of exact sample values
of the function at various centers. These results can serve as starting points to
address the question of how the approximation of Koopman operators depends
on perturbations to the problem data, which is addressed in this paper. The
description of the sensitivity to noise of approximations of the Koopman oper-
ator is one of the central concepts driving the analysis in this paper. We show
how the contributions of the sample error and approximation error affect each
other. This result is attained by resorting to the theory of inverse methods. In
essence, the bounds derived in Theorems 5.1 and 5.2 and Corollary 5.4 of [29]
only correspond, or only could be used, to assess the approximation error.
In [29], however, there is no discussion on the sample error due to imprecision
in the problem data, which is addressed in this paper.

3 Notation

In this paper, N denotes the set of positive integers, N0 denotes the set of
nonnegative integers, R denotes the set of real numbers, Rn denotes the set
of n-valued real vectors, and Rm×n denotes the set of m-by-n-valued matrices.
We write ∥ · ∥2 and ∥ · ∥∞ for the classical norms on the normed vector spaces
(Rn, ∥·∥ℓ2) and (Rn, ∥·∥ℓ∞), respectively. The inner product over Rn is denoted
by ⟨·, ·⟩Rn and is such that ⟨v, v⟩Rn = ∥v∥22 for any v ∈ Rn. For 1 ≤ p, q ≤ ∞,
the (p,q)-induced norm on Rm×n is denoted by ∥ · ∥p,q. In general, blackboard
bold fonts, such as X or Y, represent generic vector spaces equipped with some
consistent norm. The generic inner product on the vector space Y is denoted
by ⟨·, ·, ⟩Y.

We denote the fact that two norms ∥ · ∥a, ∥ · ∥b on the vector space V are
equivalent by writing ∥ · ∥a ≈ ∥ · ∥b, which means that there are two constants
C1, C2 > 0 such that C1∥v∥a ≤ ∥v∥b ≤ C2∥v∥a for all v ∈ V. Also, this
paper often must carefully distinguish between function spaces that contain
functions that take values in R and those that take values in Rm for some
m > 1. We refer to the former as scalar-valued function spaces and the latter
as vector-valued function spaces.

For two Banach spaces U, V , we denote by L(U, V ) the Banach space of
bounded linear operators T equipped with the usual induced operator norm
∥T∥ ≜ supu∈U\{0} ∥Tu∥V /∥u∥U . If U = V , then we write L(U) for L(U, V ).
The range space and nullspace of T are denoted by R(T ) and N (T ), respec-
tively. For normed vector spaces U, V , we say that U is continuously embedded

in V , that is, U
I
↪→ V , if U ⊆ V and the canonical injection I : U → V that

satisfies I : u ∈ U 7→ I(u) = u ∈ V is bounded and linear.

We recall that if U, V are normed vector spaces, the mapping T : U → V
is an isometry if ∥Tu∥V = ∥u∥U for all u ∈ U . The mapping T is a partial
isometry if there is a closed subspace UI ⊂ U such that T |UI

: UI → V is an
isometry and T |U⊥

I
= 0. The space UI is called the initial space, and the range
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T (UI) = VF ⊆ V is called the final space of the partial isometry; see [54, Sec.
4.6] for a discussion on the properties of partial isometries.

Several standard function spaces are used in this paper. The symbol Cb ≜
Cb(Ω,Rm) denotes the collection of bounded continuous functions over the
subset Ω ⊆ X that take values in Rm, which is equipped with the usual
uniform norm

∥f∥Cb
≜ sup

x∈Ω
∥f(x)∥2 ≈ sup

x∈Ω
∥f(x)∥∞. (3)

For each integer multi-index α ≜ [α1, . . . , αn]
T ∈ Nn

0 and each function f :
Ω → Rm with f = [f1, . . . , fm]T, we define the partial derivative Dαf ≜
{Dαf1, . . . , D

αfm} entry-wise as

(Dαf)i ≜ Dαfi ≜
∂|α|fi

∂xα1 · · ·xαn
, (4)

where |α| =
∑n

i=1 αi denotes the length of the integer multi-index. For any k ∈
N0, we denote by C

k
b ≜ Ck

b (Ω,Y) the set of k-times continuously differentiable
functions from Ω ⊆ Rn to Rm with norm

∥f∥Ck
b
≜ max

0≤|α|≤m
∥Dαf∥Cb

. (5)

The Lebesgue space L2(Ω,Rm) is the collection of square integrable func-
tions with norm

∥f∥L2(Ω,Rm) ≜

√∫
Ω

∥f(x)∥22dx. (6)

We denote the Rm-valued Sobolev spaces over Rn with smoothness index s > 0
by Ws(Rn) ≜ Ws(Rn,Rm). This space consist of those functions in f ∈
L2(Rn,Rm) with bounded norm, that is, such that ∥f∥Ws(Rn,Rm) <∞, where
the norm is defined in terms of the inner product

⟨f, g⟩Ws(Rn,Rm) ≜
1

(2π)n/2

∫
Rn

(
1 + ∥ω∥22

)s
f̂(ω) · ĝ(ω)dω (7)

for any f , g ∈ Ws(Rn,Rm), and (̂·) denotes the Fourier transform of its
argument. With this norm, note thatWs(Rn,Rm) = (Ws(Rn))m ≜ Ws(Rn)×
· · · × Ws(Rn), where Ws(Rn) ≜ W(Rn,R) denotes the scalar-valued Sobolev
space with positive smoothness indexes s > 0.

We also use the Sobolev spaces Ws(Ω,R) and Ws(Ω,Rm) defined over
a bounded domain Ω ⊂ Rn that has a Lipschitz boundary. These spaces are
defined either by restricting the integral in (7) to Ω or by restricting functions
in Ws(Rn,Rm). Both approaches yield equivalent definitions when Ω is an
open connected set having a Lipschitz boundary; see [1]. Finally, we use the
Sobolev spaces Ws(M,R) and Ws(M,Rm), which are defined, for example,
in [14,53].
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4 Elements of Native Space Theory

This paper makes use of several basic properties of vRKHSs found in [35, Ch.
3] and [5, 45] that are defined in terms of generally non-diagonal operator-
valued kernels over a bounded subset Ω ⊂ X. In particular, the notions of
symmetric, positive, strictly positive, and admissible operator-valued kernels
K : Ω ×Ω → L(Y) can be found in Definitions 3.15–3.17 of [35], respectively.
It is worthwhile recalling the generalized Grammian matrix

KN ≜

K(ξ1, ξ1) · · · K(ξ1, ξN )
...

. . .
...

K(ξN , ξ1) · · · K(ξN , ξN )

 ∈ RmN×mN (8)

generated by the set of centers ΞN ≜ {ξi}Ni=1 ⊂ Ω. The operator-valued kernel
K is of strictly positive kind if the associated generalized Grammian matrix
KN is positive-definite for any set of distinct centers ΞN . For brevity, in this
paper, we assume that the operator-valued kernel K is of strictly positive kind.
Results under weaker assumptions can be produced by proceeding similarly.

These positivity conditions on the Grammian matrix can be used to define
a partial ordering on operator kernels. For two symmetric positive semidefinite
matrices A,B ∈ Rn×n, B ≤ A, per definition, means that ⟨(A−B)x, x⟩Rn ≥ 0
for all x ∈ Rn. Similarly, if K and P are two admissible operator kernels that
map Ω × Ω into L(Y), per definition, P ⪯ K means that the underlying
Grammian matrices, PN and KN , respectively, are such that PN ≤ KN for
every collection of N centers {ξi}Ni=1 ⊂ Ω.

Given the set of centers ΞN ⊂ Ω, we define the minimal separation radius

rΞN
≜

1

2
min

ξi,ξj∈ΞN ,i̸=j
∥ξi − ξj∥X (9)

and the fill distance

hΞN ,Ω ≜ sup
x∈Ω

min
ξi∈ΞN

∥x− ξi∥X (10)

of the centers ΞN in the set Ω. The fill distance is a better measure of the
uniformity of separation among the centers. If there exist C1, C2 > 0 such that

C1rΞN
≤ hΞN ,Ω ≤ C2rΞN

for all N ∈ N, (11)

then, per definition, the sample distribution is quasi-uniform in Ω. If (11)
is verified for all N > 0 sufficiently large, then, per definition, the minimal
separation distance is asymptotically equivalent to the fill distance hΞN ,Ω .

As shown in [35, Th. 3.18], an admissible operator kernel K : Ω×Ω → L(Y)
can be employed to construct a vRKHS H(Ω,Y) of functions over Ω that take
values in Y; if clear from the context, in the following, we omit the domain and
the codomain underlying a vRKHS and write, for instance, H for H(Ω,Y).
Given K, we define Kx ≜ K(·, x) for all x ∈ Ω and the finite span H̊ ≜
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span {Kxy : x ∈ Ω, y ∈ Y}, which consists of the finite linear combinations of
terms in the form Kxy for some x ∈ Ω and some y ∈ Y. By definition, the
norm of gN ≜

∑N
i=1 αN,iKxN,i

yN,i ∈ H̊, where {xN,i}Ni=1 ⊂ Ω, {yN,i}Ni=1 ⊂ Y,
and {αN,i}Ni=1 ⊂ R, is defined as

∥gN∥H ≜

√√√√ N∑
i,j=1

αN,iαN,j ⟨K(xN,i, xN,j)yN,j , yN,i⟩Y. (12)

Thus, we define the vRKHS

H(Ω,Y) ≜ H̊(Ω,Y) = span {Kxy : x ∈ Ω, y ∈ Y}, (13)

where the closure is taken with respect to the norm ∥ · ∥H. Hence, g ∈ H
if and only if there exist a sequence of centers {xN,i}Ni=1 ⊂ X, directions
{yN,i}Ni=1 ∈ Y, and real coefficients {αN,i}Ni=1 ∈ R such that

lim
N→∞

∥∥∥∥∥g −
N∑
i=1

αN,iKxN,i
yN,i

∥∥∥∥∥
H

= 0. (14)

This construction ensures that the vRKHSH satisfies the reproducing property
[35, Def. 3.13]

⟨g(x), y⟩Y = ⟨Exg, y⟩Y = ⟨g,Kxy⟩H for all (x, y) ∈ Ω × Y, (15)

where, for any g ∈ H, the mapping Ex : g 7→ g(x) denotes the evaluation
operator at x ∈ Ω [35, Def. 3.13]. The reproducing property implies that
E∗

x = (Ex)
∗ = Kx for all x ∈ Ω.

This paper makes use of a few important spaces that are defined in terms
of a subset S ⊂ Ω, using the kernel K : Ω × Ω → L(Y) that is defined on all
of Ω. We define the closed subspace HS ⊂ H that is generated by the subset
S ⊂ Ω as

HS(Ω,Y) ≜ span {Kxy : x ∈ S, y ∈ Y}, (16)

where the closure is taken with respect to the norm that HS inherits as a
subset of H; for details, see [35, Sec. 3.6.2]. We also define the vector space

ZS ≜ {g ∈ H : g(x) = 0 for all x ∈ S}. (17)

We emphasize that both HS and ZS contain functions defined on all of Ω,
which are not functions restricted to S ⊆ Ω.

In this paper, we assume that any operator-valued kernel K is bounded on
the diagonal [35, Def. 3.18], that is,

∥K(x, x)∥L(Y) ≤ K̄ for all x ∈ Ω (18)

and for some K̄ > 0. Lastly, we assume that the mapping (x, y) 7→ ∥K(x, y)∥L(Y)
is continuous.



Characterizing Discrete-Time Dynamical Systems via Koopman Operators 9

5 Koopman-Invariant Spaces

5.1 Some Properties of Pullback vRKHSs

In this paper, we choose the space of observables H as the vRKHS H(Ω,Y)
generated by the symmetric admissible operator-valued kernel K : Ω × Ω →
L(Y). Then, we consider the pullback kernel

P(x1, x2) ≜ K(f(x1), f(x2)) for all x1, x2 ∈ Ω, (19)

and define the pullback space as the vRKHS

P ≜ P̊ = span{Pxy : x ∈ Ω, y ∈ Y}, (20)

where Px ≜ P(·, x) and the norm ∥ · ∥P over P̊ is defined by proceeding as in
(12)-(14) for the generic RKHS H.

Since K is a symmetric admissible operator kernel, P : Ω×Ω → L(Y) is a
symmetric admissible operator kernel. The generalized Grammian matrix PN

underlying P is positive semidefinite for all choices of centers in ΞN .

Remark 1 Although K is of strictly positive type, and, hence, KN is symmetric
positive definite for any set of distinct centers ΞN , in general, the kernel P
induces a generalized Grammian PN that is only positive semidefinite.

The properties of pullback spaces associated with scalar-valued RKHS have
been studied systematically in numerous standard references, such as, for in-
stance, [45, Sec. 5.4.1] or [51, Sec. 2.2.2]. The next theorem extends the analysis
in [5, Prop. 7] to the vector-valued case. This result is obtained by introduc-
ing the mapping Γf : Pxy 7→ Kf(x)y and showing that Γf = U∗

f . This result
generalizes the approach used in the proof of Theorem 5.7 of [45] for the scalar-
valued case. The following theorem plays an essential role in the analysis of the
noise-free and noisy Koopman operator equations studied later in the paper.

Theorem 1 Suppose that f : Ω → Ω is continuous. Let K(·, ·) : Ω × Ω →
L(Y) be a continuous admissible operator kernel that generates the vRKHS
H(Ω,Y), and let P : Ω × Ω → L(Y) be the associated pullback kernel that
defines the pullback RKHS P(Ω,Y). Then,

1. It holds that

P = R(Uf ) ≜ {Ufg : g ∈ H}, (21)

and

∥p∥P = inf {∥g∥H : p = Ufg} for all p ∈ P . (22)

2. The Koopman operator Uf ∈ L(H,P) is bounded with ∥Uf∥L(H,P) = 1,
and N (Uf ) = Zf(Ω). Furthermore, H = Hf(Ω) ⊕Zf(Ω), where ⊕ denotes
the direct sum and

Hf(Ω) ≜ span{Kf(x)y : x ∈ Ω, y ∈ Y}. (23)
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3. The Koopman operator Uf : H → P is a partial isometry with initial
space Hf(Ω) and final space P. The adjoint U∗

f : P → H of Uf is a partial
isometry with initial space P and final space Hf(Ω).

Proof : For brevity, we only outline the proof of the main steps here. The
proofs of points 1) and 2) follow from using [5, Prop. 1, 7] in light of the
separability of H. Indeed, Y ≜ Rm is finite-dimensional, and, hence, separable,
and continuously reproducing kernels over compact sets generate RKHSs that
are separable. The fact that Uf : H → P is a partial isometry also follows
from [5, Prop. 1, 7]. In the following we prove the remainder of Point 3), which
can be interpreted as the extension of the approach for scalar-valued kernels
in Theorem 5.7 of [45] to the vRKHS setting. let P and ∥ · ∥P be given as in
(21) and (22), respectively, and consider the finite linear spans

H̊ ≜ span {Kxy : x ∈ Ω, y ∈ Y} , (24)

P̊ ≜ span {Pxy : x ∈ Ω, y ∈ Y} . (25)

For any f ∈ H̊ and for any pN =
∑N

k=1 αkPxk
yk, where {xk}Nk=1 ⊂ Ω,

{yk}Nk=1 ⊂ Y, and {αk}Nk=1 ⊂ R, define the operator Γf : P̊ → H̊ such
that

Γf

(
N∑

k=1

αiPxk
yk

)
≜

N∑
k=1

αkKf(xk)yk; (26)

note that Γf : Pxy 7→ Kf(x)y. The linear operator Γf is an isometry since

∥ΓfpN∥2H =

〈
Γf

N∑
k=1

αkPxk
yk, Γf

N∑
ℓ=1

αkPxℓ
yℓ

〉
H

=

〈
N∑

k=1

αkKf(xk)yk,

N∑
ℓ=1

αℓKf(xℓ)yℓ

〉
P

= ∥pN∥2P , for any pN ∈ P̊ . (27)

Thus, Γf ∈ L(P̊ , H̊) and ∥Γf∥L(P̊,H̊) = 1. We employ the classical construc-

tion of an extension by continuity, such as those discussed in [35, p. 32] and [11],
to obtain Γf : P → H that is a bounded linear operator with ∥Γf∥L(P,H) = 1.

Now, let pN =
∑N

k=1 αkPxk
yk ∈ P̊ and gM =

∑M
i=1 βiKf(xi)yi ∈ H̊, where

{αk}Nk=1 ⊂ R, {βk}Mk=1 ⊂ R, {xk}max{N,M}
k=1 ⊂ Ω, and {yk}max{N,M}

k=1 ⊂ Y. It
holds that ⟨ΓfpN , gM ⟩H = ⟨pN , UfgM ⟩P . Taking the limits for N,M → ∞,
we observe that the extension by continuity Γf : P → H is the adjoint of the
Koopman operator Uf , that is, Γf ≡ U∗

f , which concludes the proof. ■
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5.2 A Necessary and Sufficient Condition for Koopman Invariance of the
Pullback Space

In the approximation of the Koopman operator Uf , it is often critical to ensure
that the RKHS H is Koopman-invariant. We are interested in spaces H such
that if g ∈ H, then Ufg ∈ H for all g ∈ H. One way to guarantee Koopman
invariance is to show that

P = Uf (H)
I
↪→ H, (28)

where I denotes a canonical injection such that I : g 7→ Ig = g for all g ∈ H.

Theorem 2 Let f : Ω → Ω, let the vRKHS H(Ω,Y) denote the space of
observables, and let P(Ω,Y) denote the pullback space of H under the mapping
f . The Koopman invariance property (28) is verified if and only if there exists a
constant c > 0 such that P ⪯ c2K. In this case, ∥I∥ ≤ c and ∥Ig∥H ≤ c∥g∥P .

Proof : The result follows from [45, Th. 6.25]. Let K1,K2 : Ω ×Ω → Y be
admissible operator kernels that define the vRKHSs H1 and H2, respectively.

The vRKHS H1 is continuously embedded into H2, that is, H1
I
↪→ H2 if and

only if there exists a constant c > 0 such that K1 ⪯ c2K2 [45, Th. 6.25]. In
the case at hand, we choose K1 ≜ P and K2 ≜ K. Per the definition of the
induced norm, it holds that ∥I∥ ≤ c, which concludes the proof. ■

To the authors’ knowledge, the necessary and sufficient condition in The-
orem 2 is the first of its kind in the literature on approximations of Koopman
operators in vRKHSs. It follows from this result that Koopman invariance
necessitates the semidefinite (Loewner) order on kernels. Theorem 2 corrects
the pointwise order incorrectly applied by some of the authors in [49]. The
following example provides a relatively simple application of Theorem 2.

Example 1 Let H be the Bargmann-Fock space H ≜ F 2(C) = {f(z) =∑∞
m=0 amz

m :
∑∞

m=0 |am|2m! < ∞}, where K(z, w) ≜ ezw̄, and, for g ∈
F 2(C), ∥g∥2F 2(C) ≜

∑∞
m=0 |am|2. In [6], it is proven that the only Koopman

operators satisfying the Koopman invariance property are those that corre-
spond to f(z) = az + b with a, b ∈ C and |a| ≤ 1. For this example, let b = 0
and |a| = 1.

For g ∈ F 2(C), it holds that Ufg(z) = g(az) and

∥Ufg∥2F 2(C) =

∞∑
m=0

|a|2m|am|2 = ∥g∥F 2(C).

In particular, Uf is invertible. Thus, if g ∈ P , then ∥g∥P = inf{∥g̃∥F 2(C) :

Uf g̃ = g} = ∥U−1
f g∥F 2(C) = ∥g∥F 2(C). Therefore, the inclusion map I :

P → F 2(C) is bounded with norm 1. In this setting, P(z, w) = K(az, aw) =
e(az)aw = ezw̄.
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5.3 Constructing a Koopman-Invariant vRKHS

In the following, we introduce a general strategy, based on countable Hilbert
sums of vRKHSs, to generate a Koopman-invariant vRKHS. This result is
based on the new necessary and sufficient condition in Theorem 2.

We begin by noting that we can apply the analysis summarized in Theo-
rem 1 recursively by setting

P0 ≜ H, (29a)

Pi ≜ Uf (Pi−1) for all i ∈ N. (29b)

With this convention, it holds that Uf : Pi−1 → Pi, Uf ∈ L(Pi−1,Pi), and
∥Uf∥L(Pi−1,Pi) ≤ 1. Furthermore, the reproducing kernel Pi of Pi is given by
the recursion

P0(x1, x2) ≜ K(x1, x2), (30a)

P1(x1, x2) ≜ P0(f(x1), f(x2))

≜ K(f(x1), f(x2)), (30b)

Pi(x1, x2) ≜ K(f i(x1), f
i(x2)), for any i ∈ N. (30c)

In general, the spaces Pi are neither nested nor ordered in any easily dis-
cernible way for a general function f . However, the Koopman operator Uf

maps Pi−1 to Pi. In the following, we construct a vRKHS Pw such that

Pi ⊂ Pw for all i ∈ N0. (31)

For any i ∈ N0, let the weight wi ≥ 0 be such that
∑∞

i=0 w
2
i < ∞, and

define the weighted pullback space Pwi
as the vRKHS generated by

Pwi
(x1, x2) ≜ w2

iPi(x1, x2), for any i ∈ N0. (32)

Thus, the countable family of vRKHSs {Pwi}∞i=0 can be employed to con-
struct the container vRKHS Pw as the countably infinite direct sum Pw ≜⊕∞

i=0 Pwi
, where w ≜ {wi}∞i=0. By proceeding as in [19], we define

◦
Pw ≜ span

{
g =

N∑
i=1

pwi
: pwi

∈ Pwi
, for 1 ≤ i ≤ N

}
, (33)

the candidate norm over
◦
Pw as

∥g∥Pw ≜ inf

{√√√√ N∑
i=0

∥pwi
∥2Pwi

: g =

N∑
i=0

pwi
, pwi

∈ Pwi

}
, (34)

and, as shown in (13), Pw as

Pw =
◦
Pw, (35)

where the closure of the finite span
◦
Pw is taken with respect to the norm in

(34).
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Theorem 3 Suppose that the operator kernel K(x1, x2) ∈ L(Y) is bounded on
the diagonal as in (18) by a constant K̄ > 0. The normed vector space (35) is
a vRKHS with operator-valued kernel

Pw(x1, x2) ≜
∞∑
i=0

Pwi
(x1, x2) =

∞∑
i=0

w2
iPi(x1, x2). (36)

The series in (36) converges in the strong operator topology. If we set wi ≜
2−αi for some α > 0, then the space Pw is Koopman invariant with

Uf (Pw) ↪→ Pw. (37)

Proof : First, we show that

∞∑
i=0

⟨Pwi(x, x)y, y⟩Y <∞ for all x ∈ Ω and y ∈ Y. (38)

Since K(x1, x2) is bounded on the diagonal by the constant K̄, the kernel Pi

of pullback space Pi, for each i ∈ N0, is bounded on the diagonal, that is,

∥Pi(x, x)∥ = ∥K(f i(x), f i(x))∥ ≤ K̄, for all x ∈ Ω (39)

and each i ≥ 0. Thus, (38) is verified since

∞∑
i=0

w2
i ⟨Pi(x, x)y, y⟩Y ≤

∞∑
i=0

w2
i ∥Pi(x, x)∥∥y∥2Y ≤

( ∞∑
i=0

w2
i

)
K̄∥y∥2Y, (40)

and
∑∞

i=0 w
2
i is convergent by assumption. Now Proposition 5 of [5] guarantees

that

Pw(x1, x2) ≜
∞∑
i=0

w2
iPi(x1, x2) (41)

is the operator kernel for Pw, where the series in (41) converges in the strong
operator topology.

We now prove the Koopman invariance property. Since Pw is the admissible
operator kernel that defines Pw, we can apply the same arguments as in
the first part of this proof to argue that Qw ≜ Uf (Pw) is a vRKHS with
reproducing operator kernel

Qw(x1, x2) ≜ Pw(f(x1), f(x2))

=

∞∑
i=0

w2
iK(f i+1(x1), f

i+1(x2))

=

∞∑
j=1

(
wj−1

wj

)2

w2
jK(f j(x1), f

j(x2))
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=

(
1

2

)−α ∞∑
j=1

w2
jK(f j(x1), f

j(x2))

=

(
1

2

)−α

(Pw(x1, x2)−K(x1, x2)) (42)

for all x1, x2 ∈ Ω. If follows from (42) that(
1

2

)−α

K(x1, x2) =

(
1

2

)−α

Pw(x1, x2)−Qw(x1, x2) (43)

for all x1, x2 ∈ Ω. For any set of distinct centers {xi}Ni=1 ⊂ Ω, coefficients
{αi}Ni=1 ⊂ R, and directions {yi}Ni=1 ⊂ Y, it holds that(

1

2

)−α∑
i,j

αiαj ⟨K(xi, xj)yj , yi⟩Y =

(
1

2

)−α∑
i,j

αiαj ⟨Pw(xi, xj)yj , yi⟩Y

−
∑
i,j

αiαj ⟨Qw(xi, xj)yj , yi⟩Y . (44)

For any choice of centers, the left-hand side of (44) is nonnegative since, by
assumption, the generalized Grammian matrix KN is positive definite. Hence,
the partial ordering on the operator kernels

Qw ≤
(
1

2

)−α

Pw. (45)

is proven. Applying Theorem 6.25 of [45], we deduce that

Uf (Pw) = Qw ↪→ Pw, (46)

and, hence, Pw is Koopman-invariant. ■

5.4 Alternative Sufficient Condition for Koopman Invariance

Section 5.2 established necessary and sufficient conditions for the Koopman in-
variance condition (28) and Section 5.3 outlined the construction of a vRKHS
and the associated operator kernel that are invariant according to this char-
acterization. However, the hypotheses of Theorem 2 may be difficult to verify
in problems of practical interest, especially if we employ classical kernel func-
tions such as the Wendland, Sobolev-Matérn, Poisson, and Abel kernels. In
this section, we describe sufficient conditions to ensure a different Koopman
invariance condition, namely

Uf ∈ L(Ws(Ω,Y)) (47)

that holds if the vRKHS is a type of vector-valued Sobolev space, that is, H =
Ws(Ω,Y). The proposed analysis relies on Theorem 4.2 of [29], which gives
sufficient conditions for Koopman invariance of certain scalar-valued Sobolev
spaces Ws(Ω) and extends the recent work in [29] for scalar-valued native
spaces H = H(Ω,R) generated by the Wendland scalar-valued kernel [55].
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Theorem 4 Consider the dynamic equation (1) and assume that

1. f ∈ Ck
b (Rn,Rn) for some integer k > n/2;

2. f is a C1-diffeomorphism whose Jacobian matrix J(x) ≜ [∂fi/∂xj(x)] ∈
Rn×n is bounded below in the sense that

inf
x∈Ω

|det(J(x))| > 0, for all x ∈ Ω. (48)

Then, (47) is verified for all positive real smoothness indices 0 < s ≤ k.

Proof : This result is a transcription to vector-valued Sobolev spaces
Ws(Rn,Rm) of the same result for scalar-valued Sobolev spaces Ws(Rn,R)
presented in [29, Th. 4.2], noting that Ws(Rn,Rm) = (Ws(Rn,R))m. ■

In the following, we apply Theorem 4 to vRKHSs defined in terms of
Wendland, Sobolev-Matérn, Poisson, or Abel diagonal kernels, for instance.
We begin by reviewing some properties of popular scalar-valued native spaces
that are generated by radial kernels. To this goal, recall that the kernel K :
Rn × Rn → R is radial if it can be written as

K(x, y) ≜ Φ(x− y) for all x, y ∈ Ω (49)

for some real-valued positive definite function Φ ∈ C(Rn)
⋂
L1(Rn,R); see [55,

Th. 10.12] for a discussion. The Fourier transform Φ̂(·) of Φ(·) satisfies an
algebraic decay condition with smoothness index s > 0 whenever there are
two positive constants C1, C2 > 0 such that

C1(1 + ∥ω∥22)−s ≤ Φ̂(ω) ≤ C2(1 + ∥w∥22)−s, for all ω ∈ Rn. (50)

Finally, we recall two theorems from [55] that hold for scalar-valued kernels.
The first of these theorems gives sufficient conditions for the scalar-valued
RKHS H(Rn) of functions defined on all of Rn to be a scalar-valued Sobolev
space Ws(Rn). The second of these results shows how the restriction of these
functions to a sufficiently regular domain Ω ⊂ Rn generates a scalar-valued
native space H(Ω) ≡ Ws(Ω).

Theorem 5 ([55, Cor. 10.13]) Let K(x, y) ≜ Φ(x − y) be a radial kernel
defined in terms of the radial function Φ ∈ C(Rn)

⋂
L1(Rn,R), whose Fourier

transform verifies the algebraic decay condition (50) for some smoothness index
s > n/2. Then, the scalar-valued native space H(Rn,R) defined by K coincides
with the scalar-valued Sobolev space Ws(Rn,R).

Theorem 6 ([55, Cor. 10.48]) Let the kernel K : Rn × Rn → R define the
scalar-valued RKHS H(Rn) in terms of the radial function Φ as in Theorem 5
and suppose that its Fourier transform satisfies the algebraic decay condition
in (50) for some integer s > n/2. If Ω ⊂ Rn has a Lipschitz boundary, then

H(Ω) ≡ Ws(Ω), (51)

where the scalar-valued RKHS H(Ω) is generated by the reproducing kernel
defined in terms of the restriction of K(·, ·) to Ω ×Ω.
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These two theorems can be ported to the framework of [29] and obtain the
following result.

Theorem 7 Let K ≜ KIm be a diagonal operator-valued kernel that induces
the vRKHS H(Rn,Rm) = Hm(Rn,R)), where the scalar-valued kernel K that
generates H(Rn) satisfies the hypotheses of Theorem 4. If the bounded domain
Ω ⊂ Rn has a Lipschitz boundary, then the vector-valued vRKHS Ws(Ω,Rm)
satisfies the Koopman invariance property (47).

Example 2 (Wendland Kernels) Let Φn,s designate the scalar-valued Wend-
land kernel in [55] for dimension n and integer smoothness s ≥ 1. Then, it
follows from Theorem 4.1 of [29] that, if Ω ⊂ Rn has a Lipschitz boundary,
then the scalar-valued RKHSs HΦn,s

(Ω) generated by the Wendland kernels
Φn,s are equivalent to the Sobolev spaces

HΦn,k
(Ω) ≡ Wσn,k(Ω), (52)

where σn,s ≜ (n + 1)/2 + s. Corollary 4.4 of [29] guarantees that, if we addi-

tionally require that f ∈ C
⌈σn,s⌉
b , then

Uf ∈ L(Wσn,s(Ω)) ≡ L(HΦn,s(Ω)). (53)

Lastly, it follows from Theorem 4 that Koopman invariance holds for the
vector-valued vRKHSHσn,k(Ω,Y) defined in terms of diagonal operator-valued
kernels construct from these scalar-valued kernels, that is,

Uf ∈ L(Wσn,s(Ω,Y)) ≡ L(Hσn,s(Ω,Y)). (54)

Example 3 (Sobolev-Matérn Kernels) Sobolev-Matérn kernels are defined in
terms of a radial function

Φk(r) ≜ cs∥r∥s−n/2
2 Ks−n/2(∥r∥2), (55)

where Kν denotes the modified Bessel function of the second kind of order ν
and cs denotes a normalization constant that varies among different authors.
This kernel has a Fourier transform that satisfies the algebraic decay condition
(50) for the smoothness parameter s. As a consequence, the Sobolev-Matérn
kernel for s > n/2 generates a scalar-valued native space that is equivalent to
the scalar-valued Sobolev space Ws(Rn). Furthermore, it follows from The-
orem 7 that the vRKHS Hs(Ω,Y) induced by a diagonal kernel constructed
from the scalar-valued kernel Φk is Koopman invariant, that is,

Uf ∈ L(Ws(Ω,Y)) ≡ L(Hs(Ω,Y)). (56)

Example 4 (Poisson Kernels) Let Ω ≜ [0, 1]n. The Poisson reproducing kernel
is given by [52]

KP (x, y) ≜ 2n
∞∑

k1,...,kn=1

∏n
i=1 sin(πkixi) sin(πkiyi)

π2(k21 + · · ·+ k2n)
, (57)
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where x = [x1, . . . , xn]
T ∈ Rn and y = [y1, . . . , yn]

T ∈ Rn. The scalar-valued
RKHS generated by this kernel is the Sobolev space W1(Ω,R). This kernel
can be understood as the Greens functions for Poisson’s equation on Ω =
[0, 1]n subject to zero Dirichlet boundary conditions. Theorem 4 gives sufficient
conditions such that the vRKHS HP (Ω,Y) = W1(Ω,Y) defined in terms
of the associated diagonal operator kernel is invariant under the Koopman
operator, that is,

Uf ∈ L(W1(Ω,Y)) ≡ L(HP ). (58)

Example 5 (Abel Kernels) The Abel kernel is defined as

KA(x, y) ≜ CAe
−∥x−y∥/σ for all x, y ∈ Rn, (59)

where the hyperparameters σ > 0 and CA > 0 are normalization constants.
This reproducing kernel defines the scalar-valued native space HA(Rn) that is
equivalent to the Sobolev space [8]

HA(Rn) ≈ W(n+1)/2(Rn) for any n ∈ N. (60)

If the domain Ω is sufficiently regular, then HA(Ω) ≈ W(n+1)/2(Ω), and it
follows from Theorem 4 that

Uf ∈ L(W(n+1)/2(Ω,Y)) ≈ L(HA(Ω,Y)). (61)

6 Using Noise-Free and Noisy Observations

In this section, we extend the error analysis based on principles of inverse
problems, which was introduced in [47, 49] for scalar-valued kernels, to the
setting of vRKHSs. Remarkably, the results discussed in this section and the
remainder of this paper also apply to vRKHSs that can not be generated by
diagonal kernels. The overall philosophy is well known in the study of Galerkin
approximations of inverse problems, and the reader is referred to [12, 26, 33]
for a detailed account of the general strategy.

6.1 Petrov-Galerkin Approximations

In this paper, we are interested in Galerkin approximations of the solution
g ∈ H of the noise-free Koopman operator equation

Ufg = p ∈ P ↪→ W (62)

and of the solution gδ ∈ H of the associated noisy Koopman operator equation

Ufg
δ = pδ ∈ W , (63)

where pδ denotes a perturbation of p in (62) due to uncertainty, and δ denotes a
measure of the uncertainty. In the following, we refer to uncertainties as noise.
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However, uncertainties considered in this paper do not need to be stochastic.
Given the current x, p(·) predicts the next noise-free output so that yi+1 =
p(xi) = (Ufg)(xi). The noisy data pδ is defined similarly so that yδi+1 = pδ(xi).
The introduction of the space W is a standard step in the analysis of Galerkin
approximations arising in inverse problems. This space allows formalizing the
fact that, while the noise-free data p is an element of the (perhaps small)
pullback space P , the noisy data pδ may reside in some larger space W .
Theorem 1 enables the analysis of the noise-free operator equation (62). A
solution of the noise-free equation exists for any p ∈ P . Indeed, if N (Uf ) =
Zf(Ω) = {0}, which is verified if f is a function onto Ω, then the solution of
(62) is unique. Otherwise, we choose the minimum-norm solution g ∈ Hf(Ω)

among all the solutions g ∈ H of (62). If W is chosen such that Uf : H → W
is compact, then the noisy operator equation is ill-posed [12,26,33].

A typical approach to approximating the solution to the inverse problem
introduces two finite-dimensional subspaces HN ⊆ H and WN ⊆ W and
two associated H- and W-orthogonal projection operators ΠHN

: H → HN

and ΠWN
: W → WN , respectively, and subsequently defines the Galerkin

approximation operator

GN ≜ (ΠWN
Uf |HN

)
−1
ΠWN

. (64)

Thus, we define the Galerkin approximation gN of the solution g of the noise-
free operator equation (62), and correspondingly the approximation gδN of
the solution gδ of the noisy operator equation (63) to be gN ≜ GNp and
gδN ≜ GNp

δ, respectively. The Galerkin method defined by GN is convergent
if GNUfg → g in H for any g ∈ H.

Let d(N) ≜ dim(HN ) = dim(WN ), define the bases

HN ≜ span{ϕi}d(N)
i=1 , (65)

WN ≜ span{ψi}d(N)
i=1 , (66)

and define the realizations gN ≜
∑d(N)

i=1 ϕiθi and g
δ
N ≜

∑d(N)
i=1 ϕiθ

δ
i , where, for

all i ∈ {1, . . . , d(N)}, ϕi ∈ H, ψi ∈ W , and θi, θ
δ
i ∈ R. The matrix realizations

for these approximations are

UNΘN = PN , (67)

UNΘ
δ
N = Pδ

N , (68)

where

UN ≜
[
⟨ψi, Ufϕj⟩W

]
(i,j)

∈ Rd(N)×d(N), (69a)

ΘN ≜ [θi](i,1) ∈ Rd(N), (69b)

Θδ
N ≜

[
θδi
]
(i,1)

∈ Rd(N), (69c)

PN ≜ [⟨p, ψi⟩W ]
(i,1)

∈ Rd(N), (69d)

Pδ
N ≜

[〈
pδ, ψi

〉
W

]
(i,1)

∈ Rd(N), (69e)
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and [·](i,j) denotes a matrix by specifying the generic element on its i-th row
and j-th column. The general study of Petrov-Galerkin approximations, such
as the one proposed here, is a vast topic [26, 33], which gave rise to many
variants of individual algorithms generated by different choices of the original

operator equation, the bases {ϕi}d(N)
i=1 and {ψi}d(N)

i=1 , and the container space
W .

The proposed analysis of the vRKHS is based on the following result, which
is one of the simpler variants among the available host [26, 33] on Petrov-
Galerkin approximations.

Theorem 8 ([33, Th. 17.6]) Consider the matrix realizations (67) and (68),
and assume that ∥PN − Pδ

N∥2 ≤ δ for some constant δ > 0. Then, the error
in a convergent Petrov-Galerkin approximation of the noisy operator equation
(63) is such that

∥g − gδN∥H ≤ 1√
smin(UN )smin(ΦN )

δ︸ ︷︷ ︸
sampling error

+C inf
hN∈HN

∥g − hN∥H︸ ︷︷ ︸
approximation error

, (70)

where C > 0 is constant, smin(·) denotes the smallest singular value of its
argument, and ΦN ≜ [⟨ϕi, ϕj⟩H](i,j) denotes a Grammian matrix.

Remark 2 It is known from the theory of inverse methods that there are two
distinct contributions to the error bounds on the fidelity of Petrov-Galerkin
approximations. The spaces HN are designed so that the approximation error
decreases as d(N) → ∞. However, the sampling error, in general for a compact
operator in the original equations, grows as d(N) → ∞. The contribution of
the sampling error, which magnifies the noise δ, is not ordinarily discussed
in references on deterministic approximations of Koopman operators. These
terms are analogous to the variance and bias contributions to the error in a
stochastic setting in statistical and machine learning theory, [35, p. 282], or in
the study of distribution-free regression [20].

In this paper, we apply Theorem 8 to two cases of interest. In the first
case, we choose the collections of distinct centers ηN ≜ {η1, . . . , ηN} ⊂ Ω and
ΞN ≜ {ξ1, . . . , ξN} ⊂ Ω, where ξi ≜ f(ηi). These sets of centers generate bases
and subspaces of approximation defined by specializing (65) and (66) as

HN ≜ span{Kξiej : ξi ∈ ΞN , 1 ≤ j ≤ m}, (71)

WN ≜ PN ≜ span{Pηi
ej : ηi ∈ ηN , 1 ≤ j ≤ m}, (72)

respectively, where ei denotes the i-th canonical basis of Rm, that is, the i-th
column of the identity matrix Im ∈ Rm×m. In this case, since the general-
ized Grammian matrix is positive definite for distinct centers, the dimension
d(N) = mN and the matrix realizations become

UN ≜ [K(f(ηi), f(ηj))](i,j) ∈ RmN×mN , (73a)
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PN ≜ [p(ηi)](i,1) ∈ RmN , (73b)

Pδ
N ≜

[
pδ(ηi)

]
(i,1)

∈ RmN . (73c)

Note that the matrices UN and vector Pδ
N can be constructed using (some

subset of) the samples {(xi, yδi )}Mi=1 ≈ {(xi, p(xi))}Mi=1.

Remark 3 This approach can be interpreted as a kind of collocation method
for the Koopman operator. See, for example, [26, Sec. 3.4.1] and [33, Sect 17.3,
17.4], which treat a few cases of using collocation for integral operators of the
first kind when the domain Ω is an interval.

In this paper, we also apply Theorem 8 to the case wherebyW ≜ L2(Ω,Y),
HN is given by (71), and

WN ≜ span{UfKξiej = K(f(·), ξi)ej : ξi ∈ ΞN , 1 ≤ j ≤ m}. (74)

In this case, d(N) = mN and

UN ≜

[∫
Ω

K(ξi, f(s))K(f(s), ξj)ds

]
(i,j)

∈ RmN×mN , (75a)

PN ≜

[∫
Ω

K(ξi, f(s))p(s)ds

]
i,1

∈ RmN , (75b)

Pδ
N ≜

[∫
Ω

K(ξi, f(s))p
δ(s)ds

]
(i,1)

∈ RmN . (75c)

In general, the integrals in (75) can not be computed without explicit
knowledge of the unknown function f . To overcome this limitation, we ap-

proximate these matrices as follows. Let {Ωk}
Mq

k=1 denote a partition on Ω and

let {qk}
Mq

k=1 denote a set of quadrature points with qk ∈ Ωk and k ∈ {1, . . .Mq}.
In this case, we approximate (75) as

UN ≈

Mq∑
k=1

K(ξi, f(qk))K(f(qk), ξj)|Ωk|


(i,j)

, (76a)

PN ≈

Mq∑
k=1

K(ξi, f(qk))p
δ(qk)|Ωk|


(i,1)

, (76b)

Pδ
N ≈

Mq∑
k=1

K(ξi, f(qk))p
δ(qk)|Ωk|


(i,1)

, (76c)

where |Ωk| denotes the Lebesgue measure of the bounded set Ωk. To obtain

data-driven algorithms, the pairs of quadrature points and values {(qi, f(qi))}
Mq

i=1

are approximated by pruning the samples {(xi, yδi )}Mi=1.
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Remark 4 This case should be compared to the analysis in [33, Sec. 17.3],
which treats the approximation of an integral operator that acts on a scalar-
valued RKHS over the interval Ω = [0, 1]. In this paper, we study the case
whereby the operator is the Koopman operator, the domain Ω is a general
bounded domain or manifold M, and the error analysis is based on the dou-
bling trick and matrix-valued power function derived in the next section.

6.2 Power Functions and The Doubling Trick in vRKHS

This section proposes an upper bound on the approximation error term in
(70), which has not appeared yet in the literature on the deterministic ap-
proximation of Koopman operators. This upper bound extends the strategy
used in the proof of [55, Th. 11.23] for scalar-valued kernels to the vRKHS
setting; see Section 11.4 of [55]. This technique, referred to as the “doubling
trick” in the scalar-valued RKHS setting, describes a regularity condition that
enables significant improvement in the convergence rates of approximations
constructed from scalar-valued kernels. In the setting of scalar-valued RKHS,
the doubling trick continues to be the foundation for estimates with high con-
vergence rates [24].

Since ΠHN
: H → HN is the H-orthogonal projection onto the vRKHS

HN ⊂ H, the pointwise bound

∥Ex(I −ΠHN
)f∥2 ≤

√
m∥Ex(I −ΠHN

)f∥∞
≤

√
mP̄HN

(x)∥(I −ΠHN
)f∥H (77)

follows from [35, Th. 3.22] for all f ∈ H(Ω,Y), where

P̄HN
(x) ≜ max

1≤i≤m

√
|Kii(x, x)−KN,ii(x, x)| (78)

denotes the power function [35, Def. 3.19], KN denotes the operator-valued ker-
nel that defines HN [35, p. 103], and Aij denotes the element of the generic
matrix A ∈ Rn×m on the i-th row and j-th column. It should be noted that
alternative forms of the bound in (77) are documented in the proof of [35, Th.
3.22] using the Euclidean equi-induced matrix norm instead of the supremum
norm. We use (77) because it avoids the calculation of eigenvalues required to
compute ∥K(x, x)−KN (x, x)∥2,2 and it allows a straightforward implementa-
tion at the modest expense of introducing the factor

√
m associated with the

norm equivalence of (Y, ∥ · ∥2) and (Y, ∥ · ∥∞). An immediate consequence of
(77) is that

∥(I−ΠHN
)f∥L2(Ω,Y) ≤

√
m|Ω| sup

ξ∈Ω
P̄HN

(ξ)∥(I −ΠHN
)f∥H (79)

for all f ∈ H(Ω,Y).
Next, we study how the pointwise error bounds (77) and (79), expressed in

terms of the power function, can extend the “doubling trick” [55, Th. 11.23]
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in the context of scalar-valued native spaces to vector-valued native spaces.
To this goal, define the integral operator

(Lv)(x) ≜
∫
Ω

K(x, s)v(s)ds. (80)

This operator is bounded and linear from L2(Ω,Y) to H. Indeed, since we
assume that the mapping (x, y) 7→ ∥K(x, y)∥ is continuous and K is uniformly
bounded on the diagonal, it follows from [35, Th. 3.21] that the embedding

H J
↪→ C(Ω,Y) is compact, and, hence, so is the embedding H I

↪→ L2(Ω,Y).

Theorem 9 Consider the integral operator (80). If H I
↪→ L2(Ω,Y), then L =

I∗ and

⟨Lv, h⟩H = ⟨v, Ih⟩L2(Ω,Y) = ⟨v, h⟩L2(Ω,Y) (81)

for all v ∈ L2(Ω,Y) and h ∈ H ⊂ L2(Ω,Y).

Proof : For any v ∈ L2(Ω,Y) and h ∈ H ⊂ L2(Ω,Y), it holds that

⟨Lv, h⟩H =

〈∫
Ω

K(·, s)v(s)ds, h(·)
〉

H

=

∫
Ω

⟨K(·, s)v(s), h(·)⟩H ds

=

∫
Ω

⟨v(s), Esh(·)⟩Y ds

= ⟨v, Ih⟩L2(Ω,Y)

= ⟨v, h⟩L2(Ω,Y) , (82)

which concludes the proof. ■

Remark 5 To apply Theorem 9, the set Ω ⊂ X ≜ Rn underlying (80) must be
Lebesgue measurable. For instance, Ω can be chosen as a bounded domain,
that is, a bounded, open, connected set. Regularity of the boundary of Ω is not
required. Of particular interest is the case whereby Theroem 9 is applied with
Ω being a compact, connected, smooth manifoldM that is regularly embedded
in X ≜ Rn. In this case, we employ the operator kernel K(m1,m2) ∈ L(Y)
defined for all m1,m2 ∈ M, the integral operator (80) is redefined as

(Lv)(x) ≜
∫
M

K(x,m)v(m)µ(dm) for all x ∈ M, (83)

and Theorem 9 proves that H(M,Y) I
↪→ L2

µ(M,Y). This result is essential for
the numerical examples discussed in Section 7 below.

The next result provides an upper bound on the error made by projecting
f onto the finite-dimensional RKHS HN .
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Theorem 10 (The “Doubling Trick” in vRKHSs) If f verifies the reg-
ularity condition f = Lv for some v ∈ L2(Ω,Y), then

∥(I −ΠHN
)f∥H ≤

√
m|Ω| sup

ξ∈Ω
P̄HN

(ξ)∥v∥L2(Ω,Y). (84)

Proof : It follows from [55, Lemma 10.24] that

⟨(I −ΠHN
)f, (I −ΠHN

)f⟩H = ⟨(I −ΠHN
)f, f⟩H . (85)

Theorem 9 then implies that

∥(I −ΠHN
)f∥2H = ⟨(I −ΠHN

)f, (I −ΠHN
)f⟩H

= ⟨(I −ΠHN
)f, Lv⟩H

= ⟨(I −ΠHN
)f, v⟩L2(Ω,Y) ,

≤ ∥(I −ΠHN
)f∥L2(Ω,Y)∥v∥L2(Ω,Y), (86)

and the result follows substituting the bound in (79) into (86). ■
Every vRKHS satisfies the pointwise bound in (77). The “doubling trick”

provides sufficient conditions for an improved bound to be verified. In general,
approximations of smoother functions converge faster than approximations of
less smooth functions do. The integral operator L in the regularity condi-
tion maps a function in L2

ν(Ω,Y), which may not even be continuous, into a
smoother function. Thus, since the integral operator underlies a reproducing
kernel, it smoothens functions in L2

ν(Ω,Y) that are contained in the vRKHS
generated by the kernel.

The next result provides an upper bound on approximating the solution of
the noise-free Koopman operator equation (62) with the solution of the noisy
Koopman operator equation (63).

Theorem 11 Assume that the unknown function g ∈ H satisfies the regu-
larity condition in Theorem 10. Then, there exists a constant C > 0 such
that

∥g − gδN∥H ≤ 1√
smin(UN )smin(KN )

δ︸ ︷︷ ︸
sampling error

+C
√
m|Ω| sup

ξ∈Ω
P̄HN

(ξ)∥v∥L2(Ω,Y)︸ ︷︷ ︸
approximation error

,

(87)

where KN denotes the generalized Grammian matrix of HN , and UN is defined
as in (73a) or, alternatively, (75a).

Proof : The result is a direct consequence of Theorem 8 and 10. ■

Remark 6 In general, the sampling error grows as d(N) → ∞. This occurs,
for example, if the Koopman operator Uf : H → W is compact; see, for
example, [26, Th. 2.2]. This qualitative behavior is reflected in the dependence
of (87) on the minimum singular value of the generalized Grammians KN
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and UN . Further intuition can be based on a careful analysis of the scalar-
valued case when m = 1, which has been studied extensively. For a wide
collection of common kernels, it is known that the smallest singular value
of KN is bounded from below by a function of the minimal separation rΞN

between the centers raised to some power s that depends on the smoothness
of the choice of kernel [55, Cor. 12.6–12.8]. Then, it is to be expected that
smin(KN ) ∼ rsΞN

→ 0 as d(N) → ∞.

The error bound (87) is expressed in terms of the operator-valued power
function PHN

. This expression holds for any general, possibly non-diagonal,
operator-valued kernel. However, as discussed in [35, Ch. 3], if the operator-
valued kernel is diagonal, that is, K = KIm, where K(·, ·) denotes a scalar-
valued Mercer kernel and Im denotes the identity matrix in Rm×m, then this
bound can be improved. In this case, the power function in (87) can be bounded
by

PHN
(x) ≤

√
N (hΞN ,Ω) (88)

where N (·) denotes a known function and hΞN ,Ω denotes the fill distance
defined in (10). For details, see [35, Sec. 3.8.2].

6.3 Post-Projection of Galerkin Approximations

The error analysis outlined in Section 6.2 is quite general and can be applied
to the study of Petrov-Galerkin approximations of the noise-free and noisy,
but deterministic, Koopman operator equations in a host of situations. The
Galerkin approximations can be computed using the collection of noisy obser-
vations {(xi, yδi )}Mi=1. The bounds on the Galerkin approximation errors can be
used to infer bounds on the approximations of the Koopman operators since

∥Ufg − Ufg
δ
N∥P ≤ ∥Uf∥∥g − gδN∥H. (89)

Furthermore, the results in Section 6.2 do not rely on any form of Koopman
invariance.

While the computations of gδN can be performed in a “data-dependent way”
using only the observations along a trajectory, if we want to use the expression

ŷN = Ufg
δ
N =

N∑
i=1

K(f(·), ξi)θδi (90)

for creating forecasts, which was the original intent, then explicit knowledge
of f would be needed. To overcome this problem, a “post-projection” step has
been studied in several works by the authors such as [48,49]. If P ↪→ H, that
is, if H is Koopman invariant, then

ŷN ≜ ΠHN
Ufg

δ
N (91)
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can be constructed without explicit knowledge of f . The collection of samples
{(xi, yδi )}Mi=1 is sufficient to calculate the output prediction. In fact, as noted
in [48], the matrix realizations of (91) arise in the popular extended dynamic
model decomposition (EDMD) method [27,28,30].

This post-projection step does not affect the asymptotic behavior of the

error bounds. Indeed, if P I
↪→ H, then

∥Ufg −ΠHN
Ufg

δ
N∥H ≤ ∥Ufg − Ufg

δ
N∥H + ∥(I −ΠHN

)Ufg
δ
N∥H. (92)

The first term on the right-hand side of (92) can be bounded as in Theo-
rem 11 since ∥Ufg − Ufg

δ
N∥H ≤ ∥I∥∥Uf∥∥g − gδN∥H. This term captures the

ability of ŷm+1 = Ufg
δ
N to capture the true value ym+1 = Ufg and it depends

explicitly on the number of centers N used to define the vRKHS HN that
approximates H and the numberM of collected data points. The second term
on the right-hand side of (92) can be bounded as in Theorem 10, assuming
the regularity of Ufg

δ
N . Theorem 2 gives necessary and sufficient conditions

that justify this post-projection step. Section 5.4 provides an alternative set of
results that justify this step for certain diagonal operator-valued kernels that
define Sobolev spaces.

7 Numerical Example

In this section, we apply the proposed results on Petrov-Galerkin methods for
noise-free and noisy Koopman operator equations for a discretized version of
the Lotka-Volterra system. This system has been selected because its Hamil-
tonian function is an integral invariant [21], and, consequently, this system
exhibits closed periodic orbits. We argue that these orbits can be identified
with one-dimensional smooth submanifolds regularly embedded in X ≜ R2.
Hence, we can study the convergence of approximations of the Koopman op-
erator based on samples from a single initial condition that defines a single
one-dimensional submanifold M of X ≜ Rn, which has zero Lebesgue measure
in R2. Alternatively, we can combine initial conditions to study the conver-
gence of approximations of the Koopman operator over a bounded domain in
Ω ⊂ R2.

7.1 The Lotka-Volterra System

The Lotka-Volterra system examined in this paper is given by

ẋ1(t) = x1(t)(x2(t)− α), x1(0) = x1,0, t ≥ 0, (93a)

ẋ2(t) = x2(t)(β − x1(t)), x2(0) = x2,0, (93b)

where x1, x2 : [0,∞) → [0,∞) represent the populations of a predator and a
prey species, respectively. The coefficients α, β > 0 are critical thresholds in the
predator-prey interaction. If the prey population exceeds α, then the predator
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population grows at a rate proportional to its current size. Alternatively, if
the predator population is below β, then the prey population grows at a rate
proportional to its current size.

The Hamiltonian function, from [21] given by

H(x1(t), x2(t)) ≜ β ln (x1(t))− x1(t) + α ln (x2(t))− x2(t), (94)

is evaluated along the trajectories of (93) for all t ≥ 0 and is an integral
invariant for (93). Hence,

H(x1,0, x2,0) = H(x1(t), x2(t)) for all t ≥ 0. (95)

The Jacobian of H(x1, x2) does not vanish over a closed trajectory of (93), and,
by the implicit function theorem, this invariant describes a one-dimensional,
compact, smooth submanifold that is regularly embedded in R2. It can always
be intrepreted, via a suitable definition of an inner product on the tangent
space, as a compact, connected, one-dimensional Riemannian manifoldM that
is regularly embedded in R2. Since we use extrinsic approximations methods
such as those in [15], we do not need to use the closed form coordinate charts
for the Riemannian manifold in our calculations. Figure 1 illustrates multiple
level sets of the Hamiltonian function.

Fig. 1 Phase portrait of the Lotka-Volterra system (93). Each trajectory corresponds to a
solution of the system from a different initial condition. Red circles represent selected initial
conditions used for data generation, and black stars denote the kernel centers used in the
Koopman approximation

To discretize the continuous-time system (93), we apply the symplectic
Euler method, which updates x2 implicitly and x1 explicitly. This geometric
integration method is designed to better preserve geometric features of a flow,
such as integral invariants. The use of this discretization approach has already
been shown in [21] to preserve the closed-orbit behavior of discrete approxi-
mations of the Lotka–Volterra system compared to the exclusively explicit or
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implicit Euler methods. The resulting discrete-time dynamics are in the same
form as (1) with

f(xi) =

x1,i + hx1,i

(
x2,i

1− h(β − x1,i)
− α

)
x2,i

1− h(β − x1,i)

 , (96)

where h > 0 denotes the width of time step, and x1,i and x2,i denote the preda-
tor and prey populations at the i-th time step, respectively. The trajectories
shown in Figure 1 were obtained setting α = 1 and β = 1.

Fig. 2 Log-log plot of the normalized maximum prediction error versus the minimum sepa-
ration distance rΞN

, computed using Method 1 under deterministic sinusoidal measurement
uncertainty with a magnitude of δ = 0.5%. Each marker corresponds to the normalized max-
imum error, and the solid curve represents a fourth-order polynomial fit in the log-log scale.
Results are shown for the Gaussian kernel

Let the output be defined so that, at step i,

yi = g(xi) =

a1 0
0 a2
a1 a2

xi, i ∈ N0, (97)

where a1 and a2 are arbitrary scaling constants representing the contributions
of prey and predator, respectively, to the measured quantities (e.g., food pro-
duction). The proposed numerical simulations are performed by setting a1 = 5
and a2 = 10. To model the measurement uncertainty, we define the observed
output as

yδm+1 = (1 + δm+1) · (Ufg)(xm), m ∈ N0, (98)
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where δm+1 represents measurement noise. The theoretical bounds derived in
this paper are examples of finite error bounds for deterministic systems. How-
ever, the final, finite sample error bounds still hold if the centers and output
observations are generated from stochastic dynamics. Therefore, we present
the results of simulations involving both deterministic and stochastic mea-
surement noises. The finite sample bounds are the same regardless of whether
the samples are generated deterministically or randomly, but only hold for the
one realization of samples if they are generated stochastically.

K

Fig. 3 Log-log plot of the condition number of the Grammian matrix versus the minimum
separation distance rΞN

, corresponding to Method 1 with the Gaussian kernel. Each marker
represents the condition number evaluated at a given rΞN

, and the solid curve represents a
second-order polynomial fit in the log-log scale. High condition numbers produce potential
numerical instabilities in the factorization or inversion of the generalized Grammian matrix

We employ the Galerkin approximations defined in (73), referring to them
as “collocation without quadrature,” and the approximations defined by (76),
which are described as “collocation with quadrature.” Furthermore, we con-
sider two different choices of the initial conditions:

1. Single Initial Condition. In this case, we collect samples ΞN ≜ {ξi}Ni=1

along a single orbit M of (93) for a fixed initial condition. These samples
are progressively more dense in M. However, these samples are not dense
in any open connected subset Ω of R2. The proposed results are applied
to g ∈ H(M,Y) with the approximating subspace

HM,N ≜ span{Kξiy : ξi ∈ ΞN ⊂ M, y ∈ Y}. (99)

The proposed error bounds will be in the norm on H(M,Y) on the errors
in Cb(M,Y).
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2. Multiple Initial Conditions. In this case, we define the sublevel set

Ω = {(x1, x2) ∈ R2 : H(x1, x2) ≤ CΩ} (100)

whose boundary is the level set characterized by CΩ > 0. Samples are col-
lected along multiple trajectories with initial conditions in Ω. The larger
the number of initial conditions and trajectories, the smaller the fill dis-
tance of the samples in Ω. The proposed results are applied to g ∈ H(Ω,Y)
with the approximating subspace

HΩ,N ≜ span{Kξiy : ξi ∈ ΞN ⊂ Ω, y ∈ Y}. (101)

The proposed error bounds will be in the norm on H(Ω,Y) on the errors
in Cb(Ω,Y).

To assess the quality of the approximations of the Koopman operator, we
evaluate the normalized maximum prediction error using the uniform norm.
Given the bounded domain Ω, this norm can be approximated numerically by∥∥Ufg −Ufg

δ
N

∥∥
Cb(Ω,Y)

∥Ufg∥Cb(Ω,Y)
≈ max

i=1,...,M

∥∥(Ufg)(xi)− (Ufg
δ
N )(xi)

∥∥
∞

∥Ufg∥Cb(Ω,Y)
. (102)

Such errors can be computed as functions of either the minimal separation
radius (9) or the fill distance (10); in this section, we assume that the sample
distribution is quasi-uniform. Equation (102) has been stated for the bounded
domain Ω ⊂ X. The same result applies by replacing the bounded domain Ω
with a smooth manifold M regularly embedded in X.

Although this numerical example provides evidence that the error bounds
derived in this paper can be observed in practical situations, several compli-
cating factors are unavoidable in interpreting or numerically verifying the new
bound in Theorem 11. Four of these factors are discussed in the following.
First, the approximation error term includes the constant C that is unknown
in general in closed form. This constant is typical of Galerkin approximations
in general, and its origin can be traced to conditions sufficient to establish that
the Galerkin approximations are convergent. We do not treat such sufficiency
conditions in this paper. It would require substantial additional work to de-
duce explicit forms for C for the Koopman problems at hand. We leave this
problem for future research. Secondly, the supremum of the power function
can in principle be estimated empirically or numerically through an optimiza-
tion problem. However, the estimation of the minimum of the power function
numerically is substantially equivalent to computing K−1

N , since this inverse
appears in the definition of the power function. Hence, invariably, a numerical
estimate of the supremum necessarily suffers from perturbations due to the
ill-conditioning of KN as N grows. Numerical studies of the error bound in
(87) induce numerical perturbations to both the sample and approximation
error terms. Thirdly, we presume to choose δ that bounds the perturbation
to the problem data in (98). In reality, we choose a parameter, say δy, that
differs from δ by numerical inaccuracies in forming the matrix UN . However,
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these perturbations, say δU are unknown, and, hence, δ = δy + δU is unknown.
Lastly, in many cases, the power function can be bounded by a known function
F (hΞN ,Ω) as in Table 11.1 of [55]. For example, both of the classes of Wendland
and Matérn kernels have power functions that are bounded by hsΞN ,Ω for a pos-
itive integer s that depends on the specific kernel and measures smoothness.
However, if Ω ⊂ Rn is a parallelopiped, then collections of N quasiuniform
samples scale like

N(Ω) ∼
(

1

hΞN ,Ω

)n

.

Similarly, for N quasiuniform samples in an ℓ-dimensional, compact, con-
nected, smooth Riemannian submanifold M that is regularly embedded in
Rn, we have

N(M) ∼
(

1

hΞN ,M

)ℓ

.

For this reason, we chose to construct logarithmic plots of the error versus the
logarithm of the fill distance or minimal separation radius, since

log(N) ∼ − log hΞN ,Ω ∼ − log rΞN
.

Thus, while all the plots of the empirical error from numerical solutions are
plotted in terms of the fill distance or minimum separation of the centers, these
plots also can be interpreted, modulo a scaling factor, as the trends of the errors
as functions of log(N), where N denotes the number of samples. In view of
the comments, we note that it is extremely difficult, even in principle, to make
precise assessments using numerical studies of the exact contributions of the
two terms in (87) that correspond to the sampling error and the approximation
error. However, Figures 4 and 5 provide qualitative evidence that supports the
trends implied in the bound given in (87).

7.2 Method 1: Collocation without Quadrature

In this section, we employ the Galerkin approximation defined by (73), the
scalar-valued Gaussian kernel

K(x1, x2) =
1

2πσ2
exp

(
−∥x1 − x2∥22

2σ2

)
, for all (x1, x2) ∈ R× R, (103)

where σ > 0, and the operator kernelK(x1, x2) = K(x1, x2)I3, where I3 denotes
the identity matrix in R3. Noisy samples are collected along a single trajectory,
and approximations are constructed from subspaces defined as in (99). The
centers ΞN used to define the approximating subspaces are subselected from
the collection of all samples {xi}Mi=1 so that they are approximately uniformly
distributed over the manifold M.

Figures 2 and 3 illustrate the results of the numerical simulations with
(x1,0, x2,0) = (1, 1), h = 0.025, M = 1865, and δi = 0.005 sin(40πt). Figure 2
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Fig. 4 Normalized maximum error graph for δ = 0.5%, using the same settings as in
Figure 2

shows the normalized prediction error for the Koopman operator approxima-
tions as a function of the separation distance rΞN

. It appears that the approx-
imations of the Koopman operator exhibit a tradeoff behavior that is well-
known in statistical and machine learning theory [35, Ch. 7] and distribution-
free regression theory [20]. Figure 3 shows the condition number of the Gram-
mian matrix as a function of rΞN

, indicating how numerical stability is affected
by the minimum separation distance. Even for this example, which has a low-
dimensional state space X ≜ R2, the condition number grows considerably as
the minimal separation decreases and the dimension increases. This is a well-
documented phenomenon for many kernels, and especially exponential kernels,
and numerous authors have studied methods to address the ill-conditioning
that accompanies such growth [22, 23]. Fasshauer and McCourt provided an
analytic method for addressing the ill-conditioning issue in [13], which is ef-
fective for small dimensions when using the Gaussian radial basis function
kernel. We only note here that the same qualitative results necessarily arise in
assessing the fidelity of predictions based on approximations of the Koopman
operator.

Figure 4 illustrates the normalized maximum error and reflects the rate
of convergence under the same experimental settings as in Figure 2. Three
overlapping data sets are manually selected, and piecewise linear curve fitting is
performed in the log-log scale. The fitted lines are trimmed at their intersection
points, with the intermediate region constrained to have zero slope. This figure
shows the typical three error regimes. The right-most portion of the plot is
dominated by the approximation error term in (87). The left-most portion is
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Fig. 5 Normalized maximum error graph for δ = 0 and δ = 0.5% with different numerical
precision in computations. The same settings as in Figures 2 and 4 are employed

Fig. 6 Log-log plot of the normalized maximum prediction error versus the minimum sep-
aration distance rΞN

, computed using Method 1 under zero-mean stochastic measurement
uncertainty with a magnitude of 0.2%. For each rΞN

, the corresponding boxplot shows the
distribution of normalized maximum errors over 200 simulations. The solid curve represents
a fourth-order polynomial fit of the average error in the log-log scale. Results are shown for
the Gaussian kernel

dominated by the sample error. The central region, having the lowest error,
occurs when the two error contributions are said to equilibrate.
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Fig. 7 Log-log plot of the normalized maximum prediction error versus the fill distance
hΞN ,Ω , computed along 100 manifolds generated from initial conditions uniformly spaced
along the x2 axis from (1, 1) to approximately (1, 1.99), approaching the singular point at
(1, 2). The simulation was performed using Method 1 under deterministic sinusoidal measure-
ment uncertainty with a magnitude of 0.01%. Each marker corresponds to the normalized
maximum error, and the solid curve represents a fourth-order polynomial fit in the log-log
scale. Results are shown for the Gaussian kernel (103)

Thus far, we assessed how changing the maximum perturbation δ to the
sample values affects the sensitivity of the error equations. Figure 5 illustrates
the effect of numerical precision. In particular, Figure 5 shows simulation re-
sults for δ = 0 and δ = 0.5%, and applying the same settings as for the results
in Figures 2 and 4, while varying the solver’s precision. Double-precision results
were generated using 64-bit calculations to compute α = K−1ȳ, and single-
precision results were generated using 32-bit calculations. We see that the
influence of numerical noise in transitioning from 64-bit to 32-bit calculations
can decrease the accuracy substantially during the regime when the sample
error dominates. This increase in error varies with the minimum separation
value. As an example, consider the typical value of the separation distance
rΞN

= .3 when δ = 0.5%. Thirty-two-bit calculations show a three-times
larger error than 64-bit calculations. Some smaller values of the separation
distance increase the error by an even larger factor. The induced numerical
noise is clearly significant. We conclude that, practically speaking, we should
interpret δ in the sampling contribution in the error bound (87) as capturing
both the deterministic noise due to the combination of the perturbation of the
sample data and the perturbation due to induced numerical noise.

Figure 6 shows simulation results for stochastic perturbations with the ini-
tial condition (x1,0, x2,0) = (1, 1), h = 0.025,M = 1865, and δi ∼ N (0, 0.0022).
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Fig. 8 Log-log plot of the normalized maximum prediction error versus the minimum sepa-
ration distance rΞN

, computed using Method 1 with three different kernel functions: Gaus-
sian, Sobolev–Matérn 5/2, and Wendland C6; see [35, pp. 54-57]. Each marker represents
the normalized maximum error computed under deterministic sinusoidal measurement un-
certainty. Filled and unfilled markers represent measurement uncertainties with magnitudes
of 1% and 0% (noise-free), respectively. Solid and dashed lines with unfilled markers represent
fourth-order polynomial fits in the log-log scale for the 1% and noise-free cases, respectively.

It appears that the maximum prediction error ultimately increases as the min-
imum separation decreases and as the number of centers increases.

Figure 7 presents the results of a simulation conducted with 100 initial
conditions uniformly spaced along the x2 axis, ranging from (x1,0, x2,0) = (1, 1)
to approximately (1, 1.99), approaching the singular point at (1, 2). For each
initial condition, a trajectory was generated using a fixed time step size h =
0.025, resulting in a sequence of M discrete time samples, where M decreased
from 1865 to 1778 as x2 increased. The measurement uncertainty was applied
as a deterministic sinusoidal perturbation of the form δi = 10−4 sin(40πt).
This plot demonstrates that the trend between normalized error and center
spacing in the one-dimensional case with minimum separation persists in the
two-dimensional setting using the fill distance under measurement uncertainty.

To generate the kernel center set ΞN used in the approximation, a set of
reference centers was first selected along the outermost trajectory using points
equally spaced in arc length, as in the single-manifold case, to compute the
two-dimensional minimum separation distance rΞN

. Then, while traversing
data points from all 100 manifolds in a random order, a new center was added
to ΞN only if its Euclidean distance to all previously selected centers exceeded
rΞN

. To quantify the spatial coverage of the selected center set ΞN over the
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Fig. 9 Log-log plot of the condition number of the Grammian matrix KN versus the mini-
mum separation distance rΞN

, corresponding to Method 1 with three different kernel func-
tions: Gaussian, Sobolev–Matérn 5/2, and Wendland C6; see [35, pp. 54-57]. Each marker
represents the condition number evaluated under deterministic sinusoidal measurement un-
certainty. Filled and unfilled markers represent measurement uncertainties with magnitudes
of 1% and 0% (noise-free), respectively. Solid and dashed lines with unfilled markers rep-
resent second-order polynomial fits in the log-log scale for the 1% and noise-free cases,
respectively

manifold embedded in R2, the fill distance hΞN ,Ω was recomputed as defined
in (10) and used as the horizontal axis in Figure 7.

Figures 8 and 9 compare simulation results employing the Gaussian kernel
(103), the Sobolev-Matérn 5/2 kernel

K5/2(x1, x2) ≜
p!

(2p)!
exp

(
−
√

2p+ 1 ∥x1 − x2∥
) p∑
i=0

(p
i

)(
2
√

2p+ 1 ∥x1 − x2∥
)p−i

,

for all (x1, x2) ∈ R× R, (104)

with p = 2, and the Wendland C6 kernel

KC6(x1, x2) ≜

{
(1− r)8(32r3 + 25r2 + 8r + 1), 0 ≤ r ≤ 1,
0, r > 1,

(105)

where r ≜ ∥x1−x2∥
3 for all x1, x2 ∈ X. The amplification of the sampling error

is smaller for the selected Sobolev-Matérn and Wendland kernels. This be-
havior is partly justified by the better numerical conditioning associated with
these kernels, which is evident in Figure 9. For the finest spacing of centers,
the condition number of the Grammian matrix KN is at most ∼ O(107) for
the Wendland C6 kernel and ∼ O(104) for the Matérn-Sobolev 5/2 kernel,
respectively. For the Sobolev-Matérn kernel, the sampling error just starts to
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Fig. 10 Log-log plot of the normalized maximum prediction error versus the minimum sep-
aration distance rΞN

, computed using Method 2 for three different numbers of quadrature
points Mq = 10, 60, 120, under deterministic sinusoidal measurement uncertainty of mag-
nitude 0.1%. Each filled marker represents the normalized maximum error computed at a
given rΞN

. Solid curves with unfilled markers represent fourth-order polynomial fits in the
log-log scale for each corresponding quadrature point setting

curve upwards when the centers are most closely spaced for a noise level of
δ = 1%. This behavior is considerably better than using Gaussian kernels with
the same separation radius, where the condition number is ∼ O(1020). Overall,
these results confirm the general trend that is so well-known when comput-
ing with reproducing kernels: smoother kernels generate approximations with
higher convergence rates, but at the expense of increased condition numbers
of the associated Grammian matrices. From these observations, we note that
when using vRKHS to approximate Koopman operators in constructing fore-
casts, we should use the least regular kernel that meets the desired accuracy
requirements. However, if the smoothness index of the propagation function f
is unknown, applying this design criterion may be challenging.

In Figure 8, we note that, employing the Sobolev-Matérn and Wendland
kernels, the pointwise error is well approximated by straight lines for larger
values of the separation radius rΞN

or, equivalently, for larger values of the
fill distance for our quasiuniform samples. Using such observations to further
assess the “empirical or effective regularity” of the unknown functions f or
Koopman action Ufg would be a fruitful topic for future study.
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7.3 Method 2: Collocation with Quadrature

In this section, we employ the Galerkin approximation defined by (76). Fig-
ure 10 shows the maximum relative prediction error as a function of the
minimum separation radius rΞN

, parameterized by the number of quadra-
ture points Mq used in (76), along the orbit with initial condition (1, 1). The
quadrature error increases with the number of quadrature points Mq. The
quadrature error can therefore be interpreted as a source of computational
noise, in addition to the noise δi associated with the imprecise measurements
along an orbit of the system. As expected, increasing the size of the perturba-
tion due to the computational noise term amplifies the sampling error term.
Figure 11 compares results obtained by applying the method captured by (73)
and the method captured by (76). In both cases, we employed a Gaussian
kernel, Mq = 60 quadrature points, and noise levels δ ∈ {0.0%, 0.1%, 1.0%}.
Figure 11 shows a trend similar to Figure 10, that is, for smaller values of rΞN

,
the sampling error predominates, and for larger values of rΞN

, the approxi-
mation error dominates in the prediction error. Remarkably, both methods
exhibit similar convergence rates during the approximation-error-dominant
regime. However, employing (73), the approximation error is more sensitive
to noise for smaller values of rΞN

.

8 Conclusions and Future Work

Motivated by the problem of identifying the dynamics of a discrete-time non-
linear dynamical model through some measured output, this paper presented
several novel theoretical results on Koopman invariance and the fidelity of
deterministic approximations of the discrete Koopman operator. The results
on the approximation error of the discrete Koopman operator can be used to
study the error of output predictions for the next time step based on the cur-
rent state. Among others, key results are Theorem 2, which provides necessary
and sufficient conditions for the Koopman invariance of the pullback vRKHS
P ≜ Uf (H) in the vRKHS H defined in terms of an operator-valued kernel,
and Theorem 10, which extends the “doubling trick,” a popular tool for the im-
provement of rates of convergence in scalar-valued RKHS, to a vector-valued
RKHS setting. This paper also introduced a general constructive procedure
in Section 5.3, which is based on the necessary and sufficient conditions in
Theorem 2, to build vRKHS that are invariant under the Koopman operator.

The proposed results for approximating Koopman operators in a vRKHS
are qualitatively similar to some well-known principles in statistical and ma-
chine learning theory. Indeed, the total prediction error can be decomposed
into the sum of an approximation error term and a sampling error term. While
the former typically decreases as d(N) → ∞ and the dimension of the approx-
imants increases, the latter can increase as d(N) → ∞. This fact has not been
noted nor emphasized in existing studies on the error of deterministic approx-
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Fig. 11 Log-log plot of the normalized maximum prediction error versus the minimum
separation distance rΞN

, comparing Method 1 and Method 2 under three levels of deter-
ministic sinusoidal uncertainty: 0%, 0.1%, and 1%. The number of quadrature points is fixed
at Mq = 60. Each marker represents the normalized maximum error computed at a given
rΞN

. Filled markers represent Method 1, while unfilled markers represent Method 2. Solid
and dotted curves with markers correspond to fourth-order polynomial fits in the log-log
scale for each method and uncertainty level.

imations of Koopman operators, and it arises when observation values along
a trajectory are subject to noise or are imprecisely measured.

While the bound in (87) is new in the context of approximations of Koop-
man operators, error bounds of this form have been studied for years in ap-
proximations of inverse problems posed in a wide collection of applications.
The novelty of this paper lies in the application of the power function and
the doubling trick in a vRKHS setting, which enables the general bound for
error in Galerkin approximations to be applied to Koopman operators. The
structure of this error bound suggests several extensions of the analysis in this
paper. For instance, the overall structure of the classic bound in Theorem 8
may serve as the starting point for refinements based on the regularization.

The theory of regularization of inverse problems accounts for the sample
error, which, for compact operators, grows with the dimension of the approx-
imation space HN as d(N) → ∞. This coupling between sampling error and
dimensions of the approximation space can be accomplished in various ways.
One way is to couple the dimension d(N) and the number of input-output
samples M to equilibrate the sample and approximation errors, and thereby
ensure that the final approximation “lies at the bottom” of the error curve
in Figure 4. Equivalently, methods like Tikhonov regularization use a regular-
ization parameter, which depends on the dimension d(N) and the number of
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Fig. 12 Log-log plot of the condition number of the Grammian matrix versus the minimum
separation distance rΞN

, comparing Method 1 and Method 2 under three levels of deter-
ministic sinusoidal measurement uncertainty: 0%, 0.1%, and 1%. The number of quadrature
points is fixed at Mq = 60. Each marker represents the condition number evaluated at a
given rΞN

. Filled markers represent the results of Method 1, and unfilled markers represent
the results of Method 2. Solid and dotted curves with markers correspond to second-order
and fourth-order polynomial fits in the log-log scale for Method 1 and Method 2, respectively

samples M , to generate approximations that “lie at the bottom” of the error
curve.

In this paper, we primarily focused on the baseline error bounds in (87).
This result can be the starting point for understanding and designing subse-
quent approximations that use regularization. The analysis of the choice of
the regularization parameter and the subsequent associated error analysis ex-
ceeds the scope of this initial paper, focused on deterministic methods. It is
noteworthy, however, that the choice of the regularization parameter is treated
in [37,39,44], which study KME for stochastic dynamics. These error bounds
are typically stated in their strongest form for function norms associated with
spaces that depend on rates of decay of eigenvalues of the integral operator
that defines the KME method. Correspondingly precise regularization meth-
ods for approximations of deterministic Koopman operators remain an open
question.

For future research, the baseline error bound in (87) could be further im-
proved by studying how this worst-case error bound scales with the dimension
n of the state space of the dynamics. General considerations regarding how
some errors of approximation in vRKHS scale with the dimension of the state
space are discussed in [35]. In the following, we make some observations that
could motivate or guide finer studies of how this bound scales with n. For
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interpolation in vRKHS, the scaling of errors depends to a large degree on
whether the samples are quasi-uniform over an open connected set Ω ⊂ Rn,
or whether they are supported on some ℓ-dimensional submanifold M ⊂ Rn.
We outline this fact just considering scalar-valued RKHSs K defined in terms
of kernels K and interpolation from functions in KN ≜ span{Kξi | ξi ∈ ΞN}.
Choosing to construct approximations from the class of Wendland or Matérn
kernels, it is then possible to derive bounds on the L∞ norm of the interpola-
tion error that scale like hsΞN ,Ω , where the smoothness index s > 0 depends on
the specific kernel that defines K = K(Ω,R); for details, see [35,55]. However,
for quasi-uniform samples in a parallelopiped Ω ⊂ Rn, the number of centers
N scales like N(Ω) ∼ 1/hnΞN ,Ω , which means that the L∞ norm of the error
in approximating f by its interpolant fN ∈ KN scales like

∥f − fN∥L∞(Ω,R) ∼
(

1

N(Ω)

)s/n

∼ hsΞN ,Ω ,

where f, fN ∈ K(Ω,R). This bound shows that the number N(Ω) of basis
functions needed for some prescribed error of approximation grows rapidly
with n. However, if the samples are restricted to an ℓ-dimensional submanifold
M ⊂ Rn, and the reproducing kernel initially defined on all of Ω is restricted
to M ⊂ Rn, the approximation error can be captured by

∥f − fN∥L∞(M,R) ∼
(

1

N(M)

)s̄/ℓ

∼ hs̄ΞN ,M.

for f, fI ∈ K(M,R), with s̄ < s capturing a reduced measure of smooth-
ness [15]. Remarkably, if the system’s dynamics are supported on a subman-
ifold, then the dimension of the submanifold limits the error bound. These
observations suggest that further studies of how the worst-case error scales
with the dimension of the state space n can be improved for dynamics that
actually are supported on a submanifold of dimension ℓ < n. To the authors’
knowledge, this fact has never been studied in approximations of Koopman
operators.

In the scalar-valued RKHS setting, references [47, 49] show that the error
bound presented in Theorem 11 can be further refined with a careful analysis
of the error due to the use of quadrature points as in the approach captured
by (76). This result is based on the regularity of the integrand. In the future,
this analysis can be extended to the vRKHS setting to enable balancing the
contributions of the experimental and numerical noise to the total error in the
forecast predictions.

Finally, the proposed numerical simulations show how the approach cap-
tured by (76) is substantially less sensitive to sampling noise than the approach
captured by (73) for smaller values of the separation radius among kernel cen-
ters. No explanation was given in this paper for this behavior, and a careful
analytical explanation for this phenomenological observation would be a valu-
able extension of this work.
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