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• Development of a component-based gray-box model of a unitary air conditioner using symbolic
regression

• Genetic algorithm used to formulate overall heat transfer coefficient correlation

• The model exhibits robustness and generalization, even with minimal training data

• Novel model utilizes only ambient temperatures and operational inputs, facilitating seamless inte-
gration into existing BEMs.
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Abstract

In this paper, we present the development of a gray-box model for unitary air conditioning equipment
that can be trained with as little as 5 data points with higher accuracy on test data. The model utilizes
the same model inputs as is typical in building energy simulation, and is accurate. While black-box
models require large data sets to deliver accurate results, white-box models require higher computational
and engineering efforts along with detailed knowledge of the system, and are often difficult to obtain.
The model presented here addresses a hybrid solution that is a steady-state, component-based, gray-
box model that requires inputs from the source and sink fluids and rated performance of the specific
piece of equipment, only. The basic physics of a vapor compression cycle are captured in individual
component models for the heat exchangers, compressor, and expansion valve. These components are
generalized to eliminate refrigerant-side inputs. A key addition is the development of correlations for the
overall heat transfer coefficient times surface area (UA) obtained from Symbolic Regression (SR). The
model successfully predicts the cooling capacity, coefficient of performance (COP), and sensible heat ratio
(SHR) for three state-of-the-art variable speed, split-system, air conditioning systems with capacities of
12.3(3.5), 14(4), and 17.6(5) kW(tons), achieving a mean absolute percentage error (MAPE) of less than
3.4%. These results suggest that the gray-box model can be useful in predicting the performance of similar
systems in the future, which could be valuable for energy management and optimization purposes.
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Nomenclature

Variables
A Area, (m2)
cp Specific heat capacity, (kJ (kg K)-1)
h Enthalpy, (kJ kg-1)
h Heat transfer coefficient, (Wm-2K-1)
ṁ Mass flow rate, (kg s-1)
P Pressure, (kPa)

Q̇ Heat flow capacity, (kW)
T Temperature, (K)
UA Overall heat transfer ratio times area, (W K-1)

V̇ Volumetric air flow rate, (m3s-1)

Ẇ Power, (kW)

Subscripts
a Air
act Actual
adp Apparatus dew point
ca Condenser air
comp Compressor
cond Condenser
ea Evaporator air
evap Evaporator
idt Indoor dry-bulb
is Isentropic
iwb Indoor wet-bulb
Net Net
odt Outdoor dry-bulb
rat Rated
ref Refrigerant
s Evaporator surface
suct Suction
sup Supply
temp Temperature

Acronyms
AHRI Air-conditioning, heating, and refrigeration
BEM Building energy model
BF Bypass factor
CFM Cubic feet per minute
COP Coefficient of performance
EPG Energy performance gap
HEX Heat exchanger
HVAC Heating ventilation air conditioning
MAPE Mean absolute percentage error
MB Moving boundary
ML Machine learning
NTU Number of transfer units
RMSE Root mean square error
SC Sub cooling
SH Superheat
SHR Sensible heat ratio
SR Symbolic regression
VCS Vapor compression system

Constants
α0, α1 Regression coefficients
β0, β1, β2 Regression coefficients
a0, a1, a2 Regression coefficients
c0, c1, c2 Regression coefficients
e0, e1, .., c10 Compressor map coefficients
n Number of data points

Greek Symbols
∆ Difference (e.g., enthalpy difference)
ε Effectiveness, (-)
ν Specific volume, (m3.kg-1)
ϕ Relative humidity, (%)
ψ Humidity ratio, (-)

1. Introduction

Understanding building energy usage is necessary for maximizing energy use and grid flexibility. In 2020,
total building energy used in the United States amounted to 20 quadrillion British thermal units (BTU),
of which more than 50% is used in heating, ventilation, and air conditioning (HVAC) applications AEO
(2020). Therefore, HVAC systems and appliances are of paramount importance to reduce overall building
energy utilization. Emphasis on models with reliable model predictive capabilities is required to bridge
the gap between the expected building energy utilization at the design phase and the actual energy
utilization in the building. This difference is known as Energy Performance Gap (EPG). EPG can be
up to 5 times the design phase building energy and can have a significant impact on energy efficiencies
and climate (Zou et al., 2019). A large portion of the EPG is related to the inability to accurately
predict the seasonal performance of the HVAC equipment in a building, which is largely attributed to
limitations in equipment models in building simulations ((Imam et al., 2017), (Karlsson et al., 2007)).
Major limitations of equipment models are associated with the ability of the model to predict equipment

2



Machine learning model

Empirical model

Gray-box model

Physics-based lumped 
parameter model 

Moving boundary model

Discretized models

Model Interpretability

Figure 1: Modeling spectrum with increasing complexity and interpretability.

behaviour accurately across a wide range of operating and load conditions. Modern equipment employs
large quantities of discrete control variables to satisfy load throughout the year including variable speed
compressors/fans, staging, economizing, and combinations of these variables. These complexities have
made existing models of equipment used in building energy modeling ineffective and/or necessitated very
large experimental datasets to train them, which is often impractical.

Unitary equipment models fall into two categories on a modeling spectrum, as shown in Figure 1: physics-
based (white-box) models and data-driven (black-box) models. White-box models integrate component
models through physical laws to formulate system-level models. For instance, heat exchangers (HEX)
can be formulated using approaches such as segment-by-segment modeling, moving boundary modeling
(MB), or lumping the entire HEX. For example, Rossi (1995), Jiang and Radermacher (2003), Jiang et al.
(2006), Bendapudi et al. (2008), and Schalbart and Haberschill (2013) use segment by segment approach
while Rasmussen and Alleyne (2006), McKinley and Alleyne (2008), Bendapudi et al. (2008), Bell (2012)
and Qiao et al. (2015) use MB methods to name a few. Some studies like Parise (1986), Braun (1988), Jin
and Spitler (2002), and Zhang and Canova (2013) etc averaged the refrigerant properties over the entire
length of HEX by using a single overall heat transfer coefficient time surface area (UA) value. Compressors
in white-box models are discretized into one or several control volumes (Qiao et al. (2015), Zhao et al.
(2024)) or using mechanistic chamber models (Tanveer et al. (2022), Islam et al. (2023)). The high fidelity
of these models results in highly flexible models that do not require large training datasets but have high
computational costs. Segment-by-segment models have the highest computational costs followed by MB
models. The computational expenses of lumped models are low (Zhang and Canova (2013), Jin and
Spitler (2002)) with reasonable accuracy and are used for model order reduction. In general, the physics-
based system models are used to draw physical insights by combining individual components and are best
suited for system design purposes but are generally too computationally expensive for building energy
simulation.

In contrast to the physics-based models, black-box models are created by analyzing data generated by a
system under various operating conditions and establishing a statistical relationship between the inputs
and outputs through a mathematical function. These models do not require a detailed understanding
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of the inner working of the system and are often more accurate in their training envelope with fewer
unknowns. However, they tend to have fewer generalization capabilities, meaning they may not perform
as well when applied to new or unseen data (Gabel and Bradshaw, 2023). Among these black-box models,
empirical models are polynomial equations-based models trained from experimental data for specific model
inputs. Yousaf et al. (2024) and Brandemuehl et al. (1993) present empirical models to predict system
performance metrics by introducing correction factors to account for the difference in the operational
conditions from rated performance. A variant in the black-box category is machine learning (ML) based
models. Yousaf et al. (2022), Afram and Janabi-Sharifi (2015), and Zhao et al. (2014) present black-box
models that are accurate and fast to respond. The main disadvantages of ML models, besides these
being not interpretable, are their poor predictive capabilities beyond training range and the architecture
formulation that needs to be optimized on trial and error method (Yousaf et al. (2019) Lu et al. (2021)).
These are acceptable in computational efficiency for building energy efficiency but generally fail to capture
the seasonal behaviour of a system or require impractically large datasets to do so.

This work proposes a marriage of the extensibility of the physics-based models with the computational
efficiency of the black-box models. This marriage is accomplished by developing a model with limited
physics that is coupled with regression elements to create a gray-box model. In recent years, considerable
research effort has been directed towards the development of hybrid or gray-box formulations, aiming to
seamlessly integrate data-driven approaches with physics-based models (Ghattas and Willcox, 2021). The
literature review underscores the critical focus on UA in air conditioning and refrigeration system mod-
eling. Notably, several studies employ regression analysis to determine UA, emphasizing its significance
in system performance optimization. For instance, Wang et al. (2000) and Jie (2015) base their models
on mass flow rates and experimental data, while Jin and Spitler (2002) utilize catalog data to establish a
constant UA value. Insights from Liu and Cai (2021) and Leerbeck et al. (2023) highlight UA’s pivotal
role in fault detection and predictive capabilities in refrigeration systems. Additionally, Hariharan and
Rasmussen (2011) and Zsembinszki et al. (2017) contribute to the understanding of UA through their
respective investigations on refrigerant mass flow rates and empirical relations. This synthesis of the lit-
erature, predominantly focused on chiller-based systems, emphasizes the pivotal role of UA in enhancing
air conditioning and refrigeration system performance.

In this paper, we bridge the gap in modeling by presenting a gray-box model for unitary air conditioning
equipment, specifically designed to address the EPG. This model is adept at capturing the intricate
behaviours of modern equipment using minimal experimental datasets. The key contributions of this
work are as follows:

• A novel gray-box steady-state model for unitary equipment that strikes a balance between accuracy
and data efficiency, addressing the limitations of both black-box and white-box models.

• Formulated correlations for prediction of UA using genetic algorithm-based symbolic regression.

• Evaluating the predictive performance of the model with fewer training data points demonstrating
its robustness and generalization capabilities over experimental data obtained from 3 different units
in a wide range of conditions (140 data points).

The development and rigor associated with these contributions are elaborated on in the following sec-
tions.

2. Methodology

This section details the gray-box system model, its components, and the methodology for deriving the
UA correlations used in heat exchanger simulations. It also explains how these component models are
integrated into a comprehensive system model and outlines the data collection methodology employed for
model validation.
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The gray-box model is a steady-state model that simulates the operation of a Vapor Compression System
(VCS). It utilizes fundamental thermodynamics of the VCS, combined with component-specific models
to represent the four main components of the cycle and the fans. These component models are devel-
oped using a combination of physics-based relationships and data-driven correlations. Notably, the heat
exchangers are modeled with an empirical correlation for the UA, derived using a genetic algorithm,
which simplifies the information required for model validation. The following sub-sections describe these
component models in detail.

2.1. Component models

The main components in the VCS are modeled, the compressor, condenser, evaporator, and expansion
device along with indoor and outdoor fans. The state points for these components are shown in Figure
2.
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Figure 2: State points for each component in gray-box model

2.1.1. Compressor model

The compressor is the heart of the VCS, and its behaviour has a large influence on the overall system-
level predictions. Despite their known limitations Gabel and Bradshaw (2023) the AHRI compressor maps
are well-known and accepted by the industry and presumably available to nearly all system developers
from compressor manufacturers Standard (2020). The AHRI model, also known as the 10-coefficient
model, has 3rd-degree polynomial equations for predicting the mass flow rate, power, and capacity of
the compressor. These polynomial equations are functions of suction saturation temperature (Tevap) and
discharge saturation temperatures (Tcond) or evaporating (Pevap) and condensing pressures (Pcond) given
as,

Y = c1+c2Tevap+c3Tcond+c4Tevap
2+c5TevapTcond+c6Tcond

2+c7Tevap
3+c8TcTevap

2+c9TeTcond
2+c10Tcond

3,
(1)
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In the equation 1, Y denotes Refrigerating capacity, power Input, or refrigerant mass flow rate while
c1...c10 are regression coefficients.

These compressor maps are developed at fixed superheat (SH) and subcooling (SC) degrees and require
correction if the actual operating superheat or subcooling differs from the mapped quantities. For a
different SH at state point 1 in Figure 2, the mass flow rate equation needs to be corrected by the ratio of
measured refrigerant density at suction to the standard refrigerant density at the map conditions. Dabiri
and Rice (1981) presented a standard correction factor to account for variation in the suction gas SH
from the map-based SH to the actual one as,

ṁref =

[
1 + F (

νmap

νact
− 1)

]
ṁref,map, (2)

where F is 0.75 by default unless provided by the manufacturer. (Dabiri and Rice, 1981) also proposed
another correction factor to correct for variance in SH affecting power prediction given as,

Ẇ = Ẇmap

(
ṁref

ṁref,map

)
∆his,act
∆his,map

. (3)

The enthalpy differences, ∆his,act and ∆his,map, represent the isentropic-actual and isentropic-mapped
enthalpy differences, respectively.

The discharge enthalpy, h2 of the refrigerant is calculated by an energy balance using

h2 = hsuct + (1− fQ)
Ẇ

ṁref
. (4)

If the heat loss (or gain) to the ambient is known along with the compressor power consumption. Generally,
it is challenging to predict the compressor shell temperature, and for this reason, it is accepted to use a
heat loss factor, (fQ) value from 10-40% (Chen et al., 2004) given as,

fQ =
Q̇loss

Ẇcomp

. (5)

2.1.2. Condenser model

Refrigerant from the compressor at state point 2 in Figure 2 is provided to the air-cooled condenser to
reject sensible heat and transform the superheated refrigerant into the subcooled high-pressure refrigerant
at state point 4. This process is modeled by assuming sensible-only heat rejection (dry air) and a lumped
conductance on the refrigerant side. Therefore, it is possible to use the effectiveness-NTU lumped method
as given by,

Q̇cond = ϵcondṁcacp,a(Tcond − Todt). (6)

where,
ϵcond = 1− eNTUcond , (7)

and

NTUcond =
UAcond

ṁcacpa
. (8)

where the UAcond is the overall conductance of the heat exchanger and is calculated as described in section
2.2. The exit enthalpy of the refrigerant, h3 from the condenser is calculated as,

h3 = h2 −
Q̇cond

ṁref
. (9)
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2.1.3. Expansion device model

The purpose of the expansion device is to take advantage of the Joule-Thompson effect of a refrigerant
by lowering the pressure from state point 3 to state point 4 and reducing refrigerant temperature below
ambient. Expansion devices are categorized as a fixed area such as capillary tubes, and controllable
expansion devices such as thermostatic and electronic expansion devices. To model fixed area expansion
devices, semi-empirical correlations are recommended to use (Shen, 2006), while to model the controllable
expansion devices, SH temperature is provided or mass flow rate across the expansion device is calculated.
In the current work, we assume there is some form of active control of the valve such that the SH value
is maintained by the system throughout the operation and the valve itself is adiabatic. Therefore the
energy balance on the valve reduces to,

h3 = h4. (10)

2.1.4. Evaporator model

Refrigerant from the expansion device enters the evaporator at state point 4. Similar to the condenser,
the evaporator is modeled using lumped analysis but, in contrast to the condenser, the analysis assumes
a fully wet evaporator where the heat absorption in the evaporator is calculated as,

Q̇evap = ϵevapṁea (hid(Tidt, Tiwb)− hs(Tevap, ϕ = 1)) , (11)

where,
ϵevap = 1− eNTUevap , (12)

and

NTUevap =
UAevap

ṁeacpa
. (13)

Similar to the condenser, the UAevap is calculated using the correlation derived in section 2.2. Additionally,
the enthalpy difference is calculated across the evaporator on the air side. The incoming air enthalpy
is determined as a function of evaporator air inlet temperature, Tidt and indoor wet bulb temperature,
Tiwb while the supply air enthalpy is determined by neglecting the resistance offered by evaporator tube
material and assuming the surface of evaporator temperature equal to the saturation temperature inside
evaporator with relative humidity (ϕ) equal to 1.

The bypass factor method (Brandemuehl et al. (1993)) is utilized to calculate the sensible heat ratio
(SHR) as,

SHR =
h(Tidt, ωadp)− hadp

hid − hadp
. (14)

Where,

hadp = hid −
hid − hsup
1−BF

. (15)

The bypass factor, (BF) represents the amount of air that bypasses the coil and is calculated at the rated
conditions (Cheng et al., 2021). It is given as,

BF =
hsup − hadp
hid − hadp

. (16)
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2.1.5. Fan model

To calculate the power consumed by the fans, fan laws are utilized (ASHRAE, 2020),

Ẇfan =
V̇

V̇rat
Ẇfan,rat. (17)

The fan model requires the rated volumetric flow rate and power consumption. Rated information of the
specific unit is used to calculate the fan power consumption at other operating conditions using,

Ẇfan =

(
a0 + a1

V̇

V̇rat
+ a2(

V̇

V̇rat
)2

)
Ẇfan,rat, (18)

where a0,a1, and a2 are coefficients obtained using linear regression using experimental data.

2.1.6. Superheat and subcooling models

The structure of the component-based model presented here requires an input of SH and SC, however,
this is atypical for a system model used in BEM simulations and not commonly provided information
by unit manufacturers. This is addressed by eliminating SC and SH from the inputs and introducing
submodels for the prediction of SH and SC. The SH submodel uses SH value at the rated conditions as
an initial input and is corrected for differences in the actual conditions to the rated conditions through a
correction factor for all other indoor and outdoor operational conditions,

SH =

(
Todt.Tiwb,rat

Todt,rat.Tiwb

)
∗ SHrat. (19)

A submodel for the estimation of SC temperature is developed that uses a first-degree polynomial equation
with SH temperature as,

SC = α0 + α1 ∗ SH. (20)

The coefficients α0 and α1 are to be updated using linear regression analysis from experimental data.

2.2. Derivation of heat exchanger UA correlations using genetic algorithms

The physics-based heat exchange component models described in the previous section use the UA to
determine the heat exchanger’s effectiveness. The UA is calculated as,

UA =
1

1
Aaha

+ 1
Arefhref

, (21)

where Aa and Aref are the surface areas of the air and refrigerant side of the coils, respectively, and ha
and href are the average heat transfer coefficients of the air and refrigerant side of the coils, respectively.
The heat transfer coefficients of air and refrigerant sides are calculated using correlations which are a
function of the geometry of the heat exchanger. These geometric details of the heat exchangers are hard
to find/calculate and are often known to manufacturers only, making estimating these based on Equation
21 impractical. The current work proposes a correlation to calculate the UA for the evaporator and
condenser in terms of the air-side inputs to the model.

2.2.1. Formulation of UA correlations

Both UA correlations for the evaporator and condenser are developed in a two-step process, the first
step is the identification of the most critical input parameters, and the second step is using the identified
inputs to develop the functional form for the correlation. Finally, the non-linear least square method uses
experimental data to fit a correlation.
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Figure 3: Pearson correlation matrix for evaporator UA

To identify the most critical inputs for the UA correlation, Pearson’s correlation matrix (Rodgers and
Nicewander, 1988) is obtained as shown in Figure 3 for the evaporator. There is positive correlation of
Teai and V̇ and negative correlation of Tiwb and Todt with UA for evaporator for these variables. Based on
this relationship, UA for the evaporator is a function of the variables available to model input as,

UAevap = f(Teai, V̇ , Tiwb, Todt). (22)

This process is repeated for the condenser and it is discovered that it is a function of the condenser air
inlet temperature (Todt) only,

UAcond = f(Todt). (23)

Once the most appropriate input variables are identified a final correlation formulation is generated using
genetic algorithm-based Symbolic Regression (SR). SR is a method that uses evolutionary computation to
find mathematical equations that can explain the relationship between input and output data (Cranmer,
2023a). Unlike traditional regression techniques which only find the best values for the parameters of
a pre-defined equation, SR uses evolutionary algorithms to search for the best equation that fits the
data. The algorithm explore different combinations of mathematical operators and operands to find the
equation that minimizes the error between the predicted and actual results. SR, in the literature, is
used to discover the hidden physics from data (Vaddireddy et al., 2020) as well as the development of
an optimized energy management system (Kefer et al., 2022). These algorithms are been coded into a
Python package available at Cranmer (2023b), which are utilized for this work. The final correlation
obtained through the use of SR for evaporator is shown as following,

UAevap = −(Todt − Tiwb)
3

Todt
+ e0

√
V̇ − e1V̇

(
(Tiwb − Tidt)

3 − Todt + e4.V̇
e2

e3 − V̇

)
, (24)

where e0, e1..e4 are regression coefficients. Temperatures, Todt, Tiwb, and Tidt are in K. At the same time,
flowrate, V̇ , is in the units of m3s−1 and UAevap would be in WK−1. It should be noted that this format
does not closely align with any known physical laws or relationships and is instead purely empirical. This
was concerning to the authors and was critically analysed. The correlation was benchmarked against a
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Figure 4: System model inputs and outputs.

heuristically derived one. The SR-derived correlation demonstrated superior performance, which justified
its inclusion in this work.

The UA for the condenser is notably less complex compared to that of the evaporator across the three
units and as such did not warrant the use of SR. Since the outdoor unit primarily responds to outdoor
temperature fluctuations, a heuristically derived empirical correlation is expressed as an affine function
of Todt-measured in K,

UAcond = (c0 + c1Todt)UAcond,rat, (25)

where c0, c1 are regression coefficients for condenser UA correction factor, and UAcond,rat is condenser
UA at rated conditions which is measured in WK−1.

2.3. System model

The overarching goal of the system model is to include the same, or very similar, input parameters as
typical system models used in BEM, using the component models developed in the previous section. For
models used in BEM, a system operating in cooling mode, requires three input temperatures the outdoor
dry bulb (Todt), indoor dry bulb (Teai), and indoor wet bulb (Tiwb) temperatures. Additionally, the indoor
fan air supply, V̇ is also assumed to be known. These four model inputs are recommended for formulation
of a quasi-steady state system model after investigation of numerous candidate inputs from experimental
data obtained from unitary equipment as mentioned in Yousaf et al. (2023). On top of the four input
parameters, the rated information about the unit is also required, as shown in Figure 4, including the
rated cooling capacity, sensible capacity, indoor and outdoor fan power, supply air for indoor and outdoor
fans, and superheat temperature which is readily available information from the unit manufacturer.

The major outputs of the model are compressor power (Ẇ ), indoor fan power (Ẇfan), evaporator cooling
capacity Q̇evap, condenser heat rejection capacity Q̇cond , sensible heat ratio (SHR), and COP. Among
these, the performance metrics selected for evaluation are cooling capacity, COP, and SHR as shown in
Figure 4.
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All the component models are integrated and a system model is formulated as shown in Figure 5. The
resulting system model is therefore reflective of the underlying assumptions made by each of the component
models, summarized as:

• Steady-state operation with negligible changes in kinetic and potential energies.

• Pressure drop in the heat exchangers is neglected.

• Heat exchangers function in a counter-flow configuration.

Component models are formulated to iterate on the evaporator saturation temperature Tevap and con-
denser saturation temperature Tcond, while being constrained by conservation of energy for the VCS given
as:

Ẇcomp − Q̇loss + Q̇evap − Q̇cond = 0. (26)

The final values of Tevap and Tcond, are calculated from a residual calculation based on the above constraint.
The first residual, defined to obtain the value of Tevap, is formulated based on the entry of the compressor
and exit of the evaporator as,

Residual1 = ṁref (h1 − h1), (27)

where h1 is the enthalpy calculated based on Tevap at the current iteration and h̄1 is the enthalpy calculated
based on the energy balance constraint. The second residual formulated based on the entry of the
condenser and exit of the compressor to obtain Tcond as,

Residual2 = ṁref (h2 − h2), (28)

where h2 is the enthalpy calculated based on Tcond at the current iteration and h̄2 is the enthalpy calculated
based on the energy balance constraint. The nonlinear solver fsolve from SciPy (Virtanen et al., 2020)
is used to solve for the unknowns and drive these residuals to zero. Once, the two residuals converge
satisfying the energy conservation across the system, Equation 11 is used to calculate the cooling capacity,
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SHR of the system is calculated using Equation 14, and the COP is calculated as

COP =
Q̇evap

ẆNet

, (29)

where ẆNet is the combined work consumed by the compressor and indoor and outdoor fans.

2.4. Unitary equipment data collection for model validation

To evaluate the gray-box model performance, unitary equipment data is obtained from three AC systems
of capacity 12.3 (3.5), 14 (4), and 17.6 (5) kW (Tons) cooling capacity. High-fidelity data is recorded
for varying conditions of outdoor temperatures, indoor temperatures, and airflow conditions along with
the compressor speed utilizing a pair of psychrometric chambers. The outdoor temperature is varied
from 12.7 oC (55 oF) to 51.67 oC (125 oF) for all three units. The air handling unit, placed in the
indoor room, is exposed to dry bulb temperatures of 23.9 oC (75 oF) and 26.6 oC (80 oF) with wet bulb
temperatures varying from 13.9 oC (57 oF) to 22.2 oC (72 oF). Different combinations of fan speed and
compressor speed are utilised to run the unit at different part load conditions of operation. The resulting
test matrices include a total of 140 data points recorded in compliance with ASHRAE 37. A schematic
of the experimental AC system test setup showing key sensors in the psychrometeric chamber is shown
in Figure 6. More details about the variation in operational inputs are listed in Table 1.
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Figure 6: Schematic showing locations of key sensors in the unitary equipment.

Table 1: Unitary equipment experimental-data description.

Field Unit-1 Unit-2 Unit-3 Measurement Unit

Equipment capacity 12.3 (3.5) 14.0 (4) 17.6 (5) kW (Tons)
Todt range 12.77-51.67 (55-125) 12.77-51.67 (55-125) 12.77-51.67 (55-125) °C (°F)
Tiwb range 13.9-22.22 (57-72) 13.9-22.22 (57-72) 13.9-22.22 (57-72) °C (°F)
Teai range 23.9-26.7 (75-80) 23.9-26.7 (75-80) 23.9-26.7 (75-80) °C (°F)
V̇ range 0.42-0.825 (890-1750) 0.53-0.85 (1130-1800) 0.71-0.94 (1500-2000) m3/s (CFM)
Compressor speed HI -Low HI -Low HI -
Total data points 50 40 50 -
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2.4.1. Uncertainty analysis

This section reports the systematic uncertainty of all the instruments utilized in the experiments. Ad-
ditionally, propagated uncertainty is estimated using the method proposed by Taylor et al. (1994) for
cooling capacity.

System cooling capacity is determined using enthalpy difference across both sides of the evaporator on
the air side as a function of volumetric air flow rate. Details about the kind of sensors used to collect data
are provided in Table 2. The relative uncertainty of several of the measurements (e.g. pressure) varies
based on operating condition, resulting in variable propagated uncertainty of capacity. Table 3 reports
the resulting ranges of uncertainties associated with cooling capacity. For the power consumption, the
maximum uncertainty associated is 12 W.

Table 2: Sensor accuracy and usage for data collection.

Sensor Accuracy Use

Thermocouples 0.5 °C (0.9 °F) Air side temperature
Pressure sensor ±0.06% of F.S Refrigerant side pressure
Power meter ±0.1% of F.S Indoor and outdoor unit power
Coriolis flow meter ±0.1% of rate Refrigerant flow rate
Dew point hygrometer 0.15 °C (±.27 °F) Dew point

Table 3: Range of airside uncertainty associated with cooling capacity.

Unit Minimum [kW (Ton)] Maximum [kW (Ton)]

Unit-1 0.32 (0.10) 0.72 (0.20)
Unit-2 0.38 (0.11) 0.75 (0.21)
Unit-3 0.46 (0.13) 0.83 (0.23)

2.4.2. Model evaluation using experimental data

Using the data generated the models predictive capabilities are evaluated using two error metrics, mean
absolute percentage error (MAPE) and root mean square error (RMSE). MAPE measures the average
absolute percentage difference between the predicted and actual values, while RMSE measures the average
squared difference between the predicted and actual values, and then takes the square root of the results.
MAPE and RMSE are given as in Equation 30 and Equation 31 respectively.

MAPE =
100

n

n∑
i=1

|yi − ŷi|
yi

, (30)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2. (31)

where ‘n‘ is the number of data points, ‘yi‘ is the actual value, and ‘ŷi‘ is the predicted value.

MAPE is particularly useful when comparing models with varying magnitudes, as it provides a percentage-
based error metric, which can be easier to interpret. On the other hand, RMSE is a metric that is sensitive
to larger errors, which makes it easier to identify when a model is performing poorly.
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3. Results and discussion

In this section, the component-based gray-box model developed in the previous section is used to predict
experimental data, and the error in those predictions is analyzed. This analysis begins with an evaluation
of the predictive capabilities of the UA sub-models developed in Section 2.2, culminating in SR derived UA
for the evaporator presented in Equation 24 and the heuristically derived UA for the condenser presented
in Equation 25. Finally, the complete system model predictions are evaluated against experimental data,
and trends in error are discussed and analyzed.

3.1. UA correlation training and validation

Each UA formulation is evaluated for robustness by training the correlations with 100% of the data
collected and 10% of the total data, which is 5 data points for each unit. The results are compared
against the UA from the experiment, which represents the UA needed to satisfy Equations 11 to 13 for
the evaporator and Equations 6 to 8 for the condenser, given the experimentally obtained state points
and capacities.

Figure 7 shows the performance of both correlations in the 100% and 10% (5 data point) training scenarios.
It is noted that both correlations provide better predictive capabilities when trained with the complete
dataset (10.66% vs, 14.25% MAPE for the evaporator and 2.60% vs, 8.88% MAPE for the condenser) but
it is discovered that this level of improvement did not provide a demonstrable impact on the gray-box
model’s overall predictive capability. Therefore, the 10% training methodology is employed for the UA
training, using the same data points used to train the gray-box model. The authors believe it is important
to detail the criteria used for selecting training points in this work. The training points are chosen to
represent the full operational envelope. Specifically, two extreme points (high and low temperatures), one
at the rated temperature, and two additional points on either side of the rated temperature are selected
to train the model effectively.

3.2. Gray-box model results

All the component models are integrated to comprise the system model which is evaluated on an exper-
imental data set for the three units in a low training data scenario. The model is trained with 5 data
points and tested on the remaining data. Figure 8a shows the MAPE for the performance metrics of
three heat pump systems. The model predicts all three performance metrics of cooling capacity, COP,
and SHR within a reasonable MAPE range of less than 3.2%. Figure 8a suggests that the model is more
accurate on Unit-3, Unit-1, and Unit-2, respectively. The average heat balance in the experimental data
for the air-side and refrigerant side in Unit-1, Unit-2, and Unit-3 is 2.75%, 6.99%, and 1.65%, which is
consistent with the model error trend across the three units. Similarly, the other error metric used for
model evaluation purposes is the RMSE and Figure 8b shows the RMSE for the performance metrics
of all units. The model is observed to be predicting cooling capacities, COP, and SHR with consistent
predictive capabilities indicating model stability and reliability. Figure 9 shows parity plots for Unit-1
for prediction of cooling capacity, COP, and SHR. The parity plots show that the cooling capacity is
estimated within a range of ± 7.5%, the COP is predicted in a range of -7.5% to +5% whereas the SHR
for the same unit is in the range of -2% to +5%. These parity plots show that the model predictions are
evenly distributed above and below the parity line, showcasing the model’s unbiased behavior towards
overestimation or underestimation. This balance prediction enhances the model reliability and trustwor-
thiness in as few as 10% (only 5) training data points from the operational envelope of the unitary AC
system. Similar behaviour is observed for the other two units examined as well.

The gray-box model results for the three units in different cases demonstrate its ability to accurately
predict performance metrics even when trained on a limited data set with as low as 5 data points.
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(a) UA of condenser: Training data= 100%,
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(b) UA of condenser: Training data= 10%,
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(c) Symbolic regression: Training data= 100%,
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(d) Symbolic regression: Training data= 10%,

Figure 7: Predictive performance of the two UA correlations on 100% and 10% training data.

4. Conclusions

The modeling of unitary AC systems presents considerable challenges. Existing white-box methods ex-
hibit a trade-off between accuracy and computational cost, while black-box models lack the level of
trustworthiness required by industry standards. There is a critical need for algorithms that offer both
efficiency and accuracy, along with effective integration with sparse observations. In this study, we aimed
to introduce a gray-box model for unitary air conditioning equipment that demonstrates the ability to
achieve accuracy with minimal data points, utilizes standard inputs for building energy simulation, and
offers reliable performance.

To this end, the proposed gray-box model for unitary air conditioning equipment offers a simplified solution
to overcome the limitations of both black-box and white-box models. By utilizing a component-based
approach and a genetic algorithm to formulate the correlation of the overall heat transfer coefficient, the
model achieved satisfactory accuracy in predicting the cooling capacity, COP, and SHR of three state-of-
the-art air conditioning systems. The final model can predict 140 experimental data points across three
different sizes of unitary air-conditioners with MAPE’s of 3.20% or less for cooling capacity, COP and
SHR for all units. In the process some conclusions can be drawn as follows:

• The correlation formulated through the use of a symbolic regression generated UA predictions for
the evaporator that are sufficient for very good predictive capabilities of the gray-box model.
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Figure 8: MAPE and RMSE of model for 3 heat pump units in AC mode operation.

• The model provides consistent results and offers low training data requirements (5 data points)
highlighting the robustness of the model, making it a valuable tool for air conditioning performance
prediction and building energy optimization.

• The model relies solely on operational inputs and ambient temperatures, making it compatible with
existing BEMs.

The gray-box model developed in this study presents a promising solution for energy management and
optimization in air conditioning systems since it is compatible with existing BEMs. Its accuracy makes it
a valuable tool for building energy optimization and reducing energy consumption. However, the model
also has some limitations. The model’s performance can be impacted by the quality of the training data
(adherence to ASHRAE standards in data collection), thereby affecting its overall effectiveness. Further-
more, the model is not evaluated on the heating operation and its effectiveness can be explored in the
future. Despite these limitations, the gray-box model offers a promising approach for a more sustainable
future, and further research can be done to improve its performance and applicability, particularly the
selection of training data.
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Figure 9: Representative parity plots for Unit-1
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Appendix A. Gray-box Model Coefficients and input data for Unit-1

This section provides compressor map coefficients from the manufacturer for refrigerant mass flow rate
(lb/hr) and power consumption (W ). Additionally, regression coefficients for the UA of the evaporator
and condenser are listed along with the indoor fan coefficients for power prediction. Rated information
of Unit-1 is also provided.
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